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A relationship between Intrinsic Mode Functions (IMFs), derived from the Empir-
ical Mode Decomposition (EMD), and the slow-flow model of a nonlinear dynamical
system has been exploited in the development of the Slow FlowModel Identification
(SFMI) method for strongly nonlinear systems, in which the physical parameters of
such systems are identified from experimental data. Both theslow flows and IMFs
provide the means to expand a general multicomponent signalin terms of a series
of simpler, dominant, monocomponent signals. The slow flowsare obtained analyti-
cally, for example through application of the method of complexification and averag-
ing (CxA), which transforms the equations of motion into a set of approximate equa-
tions in amplitude and phase for each modeled frequency component. In contrast, the
EMD characterizes a signal through the envelope and phase ofits elemental compo-
nents, the IMFs. Thus, between nonlinear transitions, the equations derived using the
CxA method govern the amplitude and phase of the modeled IMFs. Application of
SFMI has, until now, been limited to low-dimensional systems subjected to impulsive
excitation. Herein, the method is extended to identification of a planar rigid airfoil
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supported on nonlinear springs, subjected first to quasisteady aerodynamic loading,
and then to aerodynamic loads encountered in transonic flow.The SFMI method is
shown to be efficacious in these applications. These IMFs show promise for use in
constructing reduced-order models of such systems, capable of capturing important
interactions, such as energy flow between substructures, with a minimum of degrees
of freedom.

I. Introduction
In several earlier papers, the authors demonstrated a relationship between Intrinsic Mode Functions

(IMFs), derived from the Empirical Mode Decomposition (EMD), and the slow-flow model of a strongly
nonlinear dynamical system1,2,3. This naturally led to the development of the Slow Flow ModelIdentifica-
tion (SFMI) method for strongly nonlinear systems, in whichthe physical parameters of such systems could
be identified from experimental data. Both the slow flows and IMFs provide the means to expand a relatively
general multicomponent signal in terms of a series of simpler, monocomponent signals related to the dom-
inant frequency components. The slow flows are obtained analytically through, for example, application
of the method of complexification and averaging (CxA4), which transforms the equations of motion into a
set of approximate equations in amplitude and phase for eachmodeled frequency component. In contrast,
the EMD characterizes a signal through the envelope and phase of its elemental components, the IMFs.
Thus, between nonlinear transitions, the equations derived using the CxA method govern the amplitude and
phase of the modeled IMFs. Application of SFMI has, until now, been limited to low-dimensional systems
subjected to impulsive excitation. Herein, the method willbe extended to identification of a planar rigid
airfoil supported on nonlinear springs, subjected, first, to quasisteady aerodynamic loading and, second, to
aerodynamic loads encountered in transonic flow. The SFMI method will be shown to be efficacious in these
applications.

II. Problem Formulation
Consider the 2-DOF rigid wing (a flat plate or NACA0004 airfoil) depicted in Fig. 1, where application

of a nonlinear attachment on the right of the figure is alreadyincorporated for future use. The parameters
for this typical section were adapted from Isogai’s Case A modes5,6:

a = −0.2, xα = 0.9 ft, r2
α = 0.87 ft2, ωα = 100 rad/s= 15.92 Hz (1)

where the chord (c = 2b) is regarded as unity.
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Fig. 1. Typical wing section for the transonic flutter model.
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The free (wind-off) vibration of this section is governed by
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Regardingωh as a structural parameter, and solving a generalized eigenvalue problem in the mass and
stiffness matrices, we obtain the natural frequencies and modes of free vibration. The corresponding physical
displacements of the wing are easily constructed from the eigenvectors, which will in general depend on the
choice ofωh. Initial conditions for aeroelastic analysis are arbitrary, but it is convenient to assume zero
initial displacements and an initial velocity in the shape of the first (lower-frequency) natural mode.

For example, ifωh = ωα, then we obtain the information about the two structural modes; that is, the
two natural frequencies areω1 = 71.34 rad/s = 11.35 Hz for the out-of-phase mode with the eigenvector
u1 = (1,−1.072)T , andω2 = 533.77 rad/s = 84.95 Hz for the in-phase mode with the eigenvectoru1 =
(1,1.072)T . The corresponding physical displacements of the wing can be constructed from these two
eigenvectors5. The first mode (out-of-phase) with the frequency ratioω1/ωα = 0.713 exhibits a pivot point
at−3.87b from the elastic axis, whereas the pivot point for the secondmode (in-phase) withω2/ωα = 5.340
is at−0.13b from the elastic axis. Therefore, the first mode carries moreof a bending mode, whereas the
second mode, more torsional.

Two approaches were taken to the simulation of the system. Inthe first, a simple program was written
in Fortran to calculate the heave and pitch responses, assuming simple, quasisteady aerodynamics. Nonlin-
ear, cubic-hardening springs were added to the model along with linear, viscous dashpots, all acting at the
elastic axis. In the second approach, to more realisticallymodel the aerodynamic loads encountered in tran-
sonic flow, the CAPTSDv computer program developed by NASA was adapted. This code solves a finite-
difference approximation to the transonic small-disturbance equations using an approximate-factorization
algorithm7, and has been used in several investigations of limit cycle oscillation (see, e.g.,8,9).

III. Preliminary Results
Two cases for the aeroelastic responses and the lift coefficient under the flow speedU = 310 ft/s (which

belongs to a low-speed subsonic regime) will be considered;that is, responses with and without structural
damping. The initial conditions for the simulations were given with zero initial displacements and an initial
velocity in the shape of the first natural mode. In addition tobeing convenient, this choice corresponds to
the appearance of transonic flutter (see, for example,5,6) in the first natural mode of the wing structure.

A. Aeroelastic responses with no structural damping
Figure 2 (a) depicts the heave and pitch mode responses with no damping in the wing structure for the

low subsonic flow speedU = 310 ft/s, and Fig. 2 (b), the close-up fort ∈ [1,1.5]. The responses in both
modes apparently exhibit modulations of envelopes, which are almost in-phase. This modulation behavior
is evident from the wavelet transforms in Fig. 2 (c). That is,when the initial conditions were given to excite
the first natural mode atω1, most of the modal energy is concentrated near 3ω1 , Ω. The aeroelastic modes
result in various harmonics with energy distributed mainlyat the integer factors ofΩ. All these harmonics
represent quasiperiodic aeroelastic responses under the presence of no structural damping.

Furthermore, the WTs depict two predominant regimes: the mixed-mode response aroundω2 and an-
other beat response but with the component atΩ being prominently dominant. Performing the enhanced
EMD analysis on these time series, these two dominant regimes are obviously separated as the first two
intrinsic mode functions (IMFs) in Figs. 2 (d) and (e). The third IMF represents the component atω1/2.
Note that the first IMFs, apparently containing several harmonics, cannot be separated further, and thus can
be regarded as a single (weak) intrinsic mode oscillation (IMO). The IMO is defined as a linear oscilla-
tion but with narrow-bandwidth, time-varying frequency and damping. Instantaneous frequencies obtained
from the first two IMFs correspond to the main frequency-energy distribution on the WTs, where the in-
stantaneous frequency from the first IMF clearly captures the modulated behavior with several harmonic
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components. Figure 2 (f) depicts reconstruction of the original responses with the IMFs obtained, which
should be obvious by virtue of decomposition.

The partial time series of the total lift coefficient (withωh = ωα/2) is plotted in Fig. 3 (a), the whole of
which is very close to an LCO driven and bounded entirely by nonlinear aerodynamic forces. The portion
of the response that is strongly influenced by initial conditions is quite brief and cannot be discerned on this
plot, but the aerodynamically dominated response includesa large “burst” peaking aroundt = 0.6 sec into
the time series, followed by a smaller-amplitude, unsteadyoscillatory response.

Although the EMD method is frequently said to be a filtering tool, the instability of the EMD method
hinders obtaining clean narrow-bandwidth IMFs from the time series of lift coefficient containing very
high-frequency noise-like components. Since these high-frequency contents are not dominant, the time
series were smoothed by applying a low-pass filter and interpolation (Fig. 3 (a)). Then, the three dominant
IMFs of narrow bandwidth are obtained in Fig. 3 (b); the original signal can be reconstructed from the most
dominant IMF,c2 (Fig. 3 (c)). The instantaneous frequency is superimposed on the WT plot in Fig. 3 (d),
depicting that the lift coefficient int ∈ [0.25,1.25] is dictated by the unsteady aerodynamic excitation.

B. Aeroelastic responses with structural damping
When there exists a structural damping, the aeroelastic responses exhibit LCOs (i.e., steady-state, peri-

odic motions), which is evident in Figs. 4 (a) and (b). The harmonics developed become much simpler than
that in the case of no damping (Fig. 4 (c)) – only at odd factorsof Ω = 3ω1. From the WTs in Fig. 4 (c),
we can see that the LCOs are formed after very short transients. The three frequency components for both
modes are depicted in Figs. 4 (d) and (e), by means of the enhanced EMD analysis. The original responses
are reconstructed in Fig. 4 (f), using all the three IMFs. However, the first IMF (≈ e5 jΩt ) can be negligible
for the whole dynamics, and the next two components can be considered to be dominant.

The partial time series of the total lift coefficient in the presence of structural damping is plotted in Fig.
5 (a). Similar arguments to the case of no damping can be addressed, except for the fact that the presence of
damping seems to eliminate the initial burst peak due to the aerodynamically dominated response. Instead,
there appears continual smaller-amplitude, unsteady oscillatory response.

IV. Conclusions
We have shown that aeroelastic response (e.g., heave and pitch displacements or total lift coefficient)

represented as time histories can be decomposed onto a basisconsisting of a small number of intrinsic mode
functions obtained by standard techniques of empirical mode decomposition. These IMFs show promise for
use in constructing reduced-order models (ROMs) of such systems, capable of capturing important interac-
tions, for example energy flow between substructures10,11,12, with a minimum of degrees of freedom. The
properties of these ROMs, and their use in design, will be investigated in subsequent work.
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Fig. 2. Quasiperiodic flutter response when there is no structural damping present: (a) and (b) Com-
parison of the heave and pitch responses; (c) wavelet transforms; (d) and (e) the first three IMFs for
the heave and pitch responses; (f) reconstruction of the original responses using the three IMFs.
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Fig. 3. Lift coefficient when there is no structural damping present: (a) Smoothening process for the
response; (b) the three predominant IMFs; (c) reconstruction of the original response with the most
dominant IMF; (d) instantaneous frequency of the dominant IMF superimposed on the WT.
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Fig. 4. LCO response when there is damping present: (a) and (b) Comparison of the heave and pitch
responses; (c) wavelet transforms; (d) and (e) the first three IMFs for the heave and pitch responses;
(f) reconstruction of the original responses using the three IMFs.
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Fig. 5. Lift coefficient when there is damping present: (a) Smoothening process for the response; (b)
the three predominant IMFs; (c) reconstruction of the original response with the most dominant IMF;
(d) instantaneous frequency of the dominant IMF superimposed on the WT.
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