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A relationship between Intrinsic Mode Functions (IMFs), deived from the Empir-
ical Mode Decomposition (EMD), and the slow-flow model of a nalinear dynamical
system has been exploited in the development of the Slow FldwWwodel Identification
(SFMI) method for strongly nonlinear systems, in which the ghysical parameters of
such systems are identified from experimental data. Both thelow flows and IMFs
provide the means to expand a general multicomponent signah terms of a series
of simpler, dominant, monocomponent signals. The slow floware obtained analyti-
cally, for example through application of the method of compexification and averag-
ing (CxA), which transforms the equations of motion into a séof approximate equa-
tions in amplitude and phase for each modeled frequency comgment. In contrast, the
EMD characterizes a signal through the envelope and phase @k elemental compo-
nents, the IMFs. Thus, between nonlinear transitions, theguations derived using the
CxA method govern the amplitude and phase of the modeled IMFEs Application of
SFMI has, until now, been limited to low-dimensional systera subjected to impulsive
excitation. Herein, the method is extended to identificatin of a planar rigid airfoil
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supported on nonlinear springs, subjected first to quasistedy aerodynamic loading,
and then to aerodynamic loads encountered in transonic flowThe SFMI method is
shown to be efficacious in these applications. These IMFs skgoromise for use in
constructing reduced-order models of such systems, capabbf capturing important
interactions, such as energy flow between substructures, thia minimum of degrees
of freedom.

I. Introduction

In several earlier papers, the authors demonstrated aoredhip between Intrinsic Mode Functions
(IMFs), derived from the Empirical Mode Decomposition (EMRnd the slow-flow model of a strongly
nonlinear dynamical systeh?3. This naturally led to the development of the Slow Flow Moldigntifica-
tion (SFMI) method for strongly nonlinear systems, in whileb physical parameters of such systems could
be identified from experimental data. Both the slow flows a3 provide the means to expand a relatively
general multicomponent signal in terms of a series of simp®nocomponent signals related to the dom-
inant frequency components. The slow flows are obtainedytacelly through, for example, application
of the method of complexification and averaging (GxAwhich transforms the equations of motion into a
set of approximate equations in amplitude and phase for eadeled frequency component. In contrast,
the EMD characterizes a signal through the envelope andepbiais elemental components, the IMFs.
Thus, between nonlinear transitions, the equations derigang the CxA method govern the amplitude and
phase of the modeled IMFs. Application of SFMI has, until nbeen limited to low-dimensional systems
subjected to impulsive excitation. Herein, the method Wl extended to identification of a planar rigid
airfoil supported on nonlinear springs, subjected, fisguasisteady aerodynamic loading and, second, to
aerodynamic loads encountered in transonic flow. The SFNhodewill be shown to be efficacious in these
applications.

II.  Problem Formulation
Consider the 2-DOF rigid wing (a flat plate or NACA0004 aiffalepicted in Fig. 1, where application
of a nonlinear attachment on the right of the figure is alreiadprporated for future use. The parameters
for this typical section were adapted from Isogai’s Case Alesob:

a=—02, X =09 ft, r2 =0.87 f2, wy = 100 rad's = 15.92 Hz (1)

where the chordd= 2b) is regarded as unity.

Fig. 1. Typical wing section for the transonic flutter model.
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The free (wind-off) vibration of this section is governed by

e F]E)T e ](5)-(0) @

Regardingwn, as a structural parameter, and solving a generalized efienproblem in the mass and
stiffness matrices, we obtain the natural frequencies absof free vibration. The corresponding physical
displacements of the wing are easily constructed from tiensiectors, which will in general depend on the
choice ofwy. Initial conditions for aeroelastic analysis are arbiydut it is convenient to assume zero
initial displacements and an initial velocity in the shapé¢he first (lower-frequency) natural mode.

For example, ifwy, = wy, then we obtain the information about the two structural espdhat is, the
two natural frequencies are; = 71.34 rad/'s = 11.35 Hz for the out-of-phase mode with the eigenvector
up = (1,-1.072)7, andw, = 53377 rad's = 84.95 Hz for the in-phase mode with the eigenveaigr=
(1,1.072T. The corresponding physical displacements of the wing @mdnstructed from these two
eigenvectors. The first mode (out-of-phase) with the frequency ratigw, = 0.713 exhibits a pivot point
at—3.87b from the elastic axis, whereas the pivot point for the seconde (in-phase) withy, /wy = 5.340
is at—0.13b from the elastic axis. Therefore, the first mode carries nebre bending mode, whereas the
second mode, more torsional.

Two approaches were taken to the simulation of the systerthelfirst, a simple program was written
in Fortran to calculate the heave and pitch responses, asgwimple, quasisteady aerodynamics. Nonlin-
ear, cubic-hardening springs were added to the model algthglimear, viscous dashpots, all acting at the
elastic axis. In the second approach, to more realisticatigel the aerodynamic loads encountered in tran-
sonic flow, the CAPTSDv computer program developed by NASA a@apted. This code solves a finite-
difference approximation to the transonic small-distad®mequations using an approximate-factorization
algorithm’, and has been used in several investigations of limit cystélation (see, e.c?”).

lll.  Preliminary Results
Two cases for the aeroelastic responses and the lift cagffiander the flow spedd = 310 ft/s (which
belongs to a low-speed subsonic regime) will be considdhet;is, responses with and without structural
damping. The initial conditions for the simulations wereeagi with zero initial displacements and an initial
velocity in the shape of the first natural mode. In additioméing convenient, this choice corresponds to
the appearance of transonic flutter (see, for exarif)én the first natural mode of the wing structure.

A. Aeroelastic responses with no structural damping

Figure 2 (a) depicts the heave and pitch mode responses avitlamping in the wing structure for the
low subsonic flow speed = 310 ft/s, and Fig. 2 (b), the close-up foe [1,1.5]. The responses in both
modes apparently exhibit modulations of envelopes, whiehalmost in-phase. This modulation behavior
is evident from the wavelet transforms in Fig. 2 (c). Thatiken the initial conditions were given to excite
the first natural mode ab;, most of the modal energy is concentrated near2 Q. The aeroelastic modes
result in various harmonics with energy distributed maetiyhe integer factors d@. All these harmonics
represent quasiperiodic aeroelastic responses underdbenge of no structural damping.

Furthermore, the WTs depict two predominant regimes: thedimode response aroung and an-
other beat response but with the componer dieing prominently dominant. Performing the enhanced
EMD analysis on these time series, these two dominant regare obviously separated as the first two
intrinsic mode functions (IMFs) in Figs. 2 (d) and (e). ThedHMF represents the componentat/2.
Note that the first IMFs, apparently containing several laanies, cannot be separated further, and thus can
be regarded as a single (weak) intrinsic mode oscillatidiQ). The IMO is defined as a linear oscilla-
tion but with narrow-bandwidth, time-varying frequencydadteamping. Instantaneous frequencies obtained
from the first two IMFs correspond to the main frequency-gpatistribution on the WTs, where the in-
stantaneous frequency from the first IMF clearly capturesntodulated behavior with several harmonic
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components. Figure 2 (f) depicts reconstruction of theiwaigresponses with the IMFs obtained, which
should be obvious by virtue of decomposition.

The partial time series of the total lift coefficient (wiily = wy/2) is plotted in Fig. 3 (a), the whole of
which is very close to an LCO driven and bounded entirely bylinear aerodynamic forces. The portion
of the response that is strongly influenced by initial candsg is quite brief and cannot be discerned on this
plot, but the aerodynamically dominated response incladesge “burst” peaking arourtd= 0.6 sec into
the time series, followed by a smaller-amplitude, unstezstyllatory response.

Although the EMD method is frequently said to be a filteringltdhe instability of the EMD method
hinders obtaining clean narrow-bandwidth IMFs from thedtiseries of lift coefficient containing very
high-frequency noise-like components. Since these higipgency contents are not dominant, the time
series were smoothed by applying a low-pass filter and ialatipn (Fig. 3 (a)). Then, the three dominant
IMFs of narrow bandwidth are obtained in Fig. 3 (b); the ar@isignal can be reconstructed from the most
dominant IMF,c, (Fig. 3 (c)). The instantaneous frequency is superimposetti@® WT plot in Fig. 3 (d),
depicting that the lift coefficient in€ [0.25,1.25 is dictated by the unsteady aerodynamic excitation.

B. Aeroelastic responses with structural damping

When there exists a structural damping, the aeroelastionses exhibit LCOs (i.e., steady-state, peri-
odic motions), which is evident in Figs. 4 (a) and (b). Thenmamics developed become much simpler than
that in the case of no damping (Fig. 4 (c)) — only at odd factdr® = 3wy. From the WTs in Fig. 4 (c),
we can see that the LCOs are formed after very short trassi@iie three frequency components for both
modes are depicted in Figs. 4 (d) and (e), by means of the eatidMD analysis. The original responses
are reconstructed in Fig. 4 (f), using all the three IMFs. Ider, the first IMF & €I can be negligible
for the whole dynamics, and the next two components can b&idenred to be dominant.

The partial time series of the total lift coefficient in theepence of structural damping is plotted in Fig.
5 (a). Similar arguments to the case of no damping can be ssltieexcept for the fact that the presence of
damping seems to eliminate the initial burst peak due to ¢hedynamically dominated response. Instead,
there appears continual smaller-amplitude, unsteadylaiscy response.

IV. Conclusions
We have shown that aeroelastic response (e.g., heave ghddsplacements or total lift coefficient)
represented as time histories can be decomposed onto abasisting of a small number of intrinsic mode
functions obtained by standard techniques of empiricalerd®tomposition. These IMFs show promise for
use in constructing reduced-order models (ROMSs) of suctesys capable of capturing important interac-
tions, for example energy flow between substructtté§'? with a minimum of degrees of freedom. The
properties of these ROMs, and their use in design, will bestigated in subsequent work.
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Fig. 2. Quasiperiodic flutter response when there is no struaral damping present: (a) and (b) Com-
parison of the heave and pitch responses; (c) wavelet trarmins; (d) and (e) the first three IMFs for
the heave and pitch responses; (f) reconstruction of the gginal responses using the three IMFs.
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