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1.  Abstract 
This report presents new progresses in topology optimization of continuum structures with stress constraints. One 
principal contribution consists in the consideration of equivalent stress criteria which can generalization of von Mises 
criterion and which are able to take into account non equal stress limits in tension and compression. A literature review 
led us to consider Raghava and Ishai criteria, which include a contribution of hydrostatic pressure. With the help of 
these criteria topology optimization can predict more realistic designs in which structural members are able to withstand 
better tension loads than compression loads, or vice-versa, as it is sometimes encountered in civil engineering or in 
composite material design. The implementation and sensitivity analysis aspects of Raghava and Ishai criteria in the 
Finite Element context are presented. We also present recent advanced developments to the solution of topology 
problems with stress constraints like the stress constraint relaxation technique and the numerical optimization procedure 
based on convex approximations and dual optimizers. Finally numerical applications will show the original character of 
the stress based topology designs ad versus compliance designs when there are unequal stress limits or when there are 
more than one load case. 
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3. Introduction and formulation of the problem 
Since the foundation work of Bendsøe and Kikuchi [1], most of the topology optimization work has been based on 
compliance type arguments. Recently a couple of researches (e.g. [2], [3]) led to the successful solution of the stress 
constrained topology problem. This paper continues along this work and presents new progresses in topology 
optimization of continuum structures. 
 
Up to now topology optimization with stress constraints was based on the quadratic von Mises criterion. This criterion 
is problem is very usual, because it predicts very precisely failure for metals which are usually used in mechanical 
engineering. However there are many other cases where von Mises criterion is unable to predict real-life designs. 
Structures made of materials with unequal stress limits are good examples of this. Engineers know a lot of materials that 
have different behaviors in tension and compression: e.g. concrete, rocks, chalk, composite materials, etc. One also can 
remember that thin structural members, like cables or thin sheets, are also not able to sustain high compressive loads 
because of buckling. An indirect procedure to take into account this buckling in the preliminary design phase consists in 
restricting the compressive loads by reducing the stress limit in compression. From a practical point of view these 
different behaviors in tension and compression have been mastered for a long time and resulted in quite specific 
designs. For example since Roman time the arch technique allows the use of the high compressive resistance of bricks 
to build high buildings and bridges. On other hand civil engineers use cables, which have nearly no load bearing 
capability in compression for example by choosing suspension bridges where they work in a pure tensile stress state. 
Despite the fact that the phenomenon of unequal stress limits was quite well integrated in classical building techniques, 
topology optimization was nearly unable to take into account this effect and thus to predict realistic designs in this case, 
which means designs that stick to existing results that proved their efficiency. In order to give an appropriate answer to 
this problem one has be able to consider stress-constrained designs and to consider stress criteria able to cope with 
unequal stress limits. This particular type of problem is considered here. 
 
The general problem we consider is the following: to find the structural topology design that supports the applied loads 
using a minimum amount of material while avoiding the material failure everywhere in the structure. 
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)(xρ  is the material density at point x. ||)),((|| xxeq ρσ  is an equivalent stress criterion which predicts the failure of the 
material at point x while T is the stress limit. Up to now Von Mises was the only criterion that was considered, but other 
criteria are going to be introduced in the next paragraph. In this study a pure elastic regime is assumed, so that the 
criterion predicts the end of the elastic behavior everywhere in the material. 
 
In order to solve numerically the problem, the design domain is divided into finite elements and a density variable is 
attached to each element. The discrete valued 0/1 problem is avoided and the density is allowed to vary continuously 
between void and solid, so composite materials of intermediate densities are included in the design. The continuous 
formulation presents the advantage to allow the use of sensitivity analysis and mathematical programming algorithms to 
solve the problem in an efficient way. Unfortunately the discretized problem is ill-posed and its numerical solutions are 



mesh-dependent. To overcome the difficulty, we use here a restriction method of the design space based on a bound 
over the perimeter [4], a low-pass filtering scheme [5], or a combination of both. 
 
The modelling of the intermediate density properties is based on the power-law approach (also called SIMP model). If 
the script * denotes the effective properties of the porous material and the index 0 is relative to the solid material 
properties, the effective Young's modulus E* is given in term of the density ρ  by: 

0* EE pρ=       (2) 
The factor p>1 is introduced to penalize the intermediate densities in order to end up with ‘black and white’ designs. 
Moreover to consider stress constraints in continuous topology optimization, one also needs the definition of a relevant 
stress measure in the porous composites. Following the approach developed in [3] we consider an overall stress measure 
that controls the stress state in the microstructure. For the SIMP model of stiffness, a careful study [3] showed that a 
power-law model with the same power p is a consistent model for the micro-stresses ijσ :  

p
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Therefore the overall failure criteria in the porous composites |||| eqσ that predicts the first failure in the microstructure 
is given by: 

Tpeqeq ≤= ρσρσ /||)(|| *      (4) 
 
4. Failure criteria for unequal stress limits in tension and compression 
Treating different behaviors in tension and compression requires particular failure criteria. For brittle materials one can 
consider a principal stress criterion. Iσ , IIσ  and IIIσ  are defined as the principal stresses. T and C are the stress limits 
(in absolute value) respectively in tension and compression. One defines also 's ' the ratio between the stress limits in 
compression and in tension: TCs /= . The material fails when the maximum principal stress does not satisfy: 
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The principal stress criterion is quite realistic for brittle materials (like glass), but this criterion does not fit so well to 
experiments for ductile materials. Furthermore one would prefer to use smooth criteria which render better the physics 
of the failure for a lot of materials. We also prefer to find a quadratic criterion that can generalize the well-known von 
Mises theory. Quadratic character is quite interesting, because it insures that the criterion is smooth and convex. 
Smoothness is very good for differentiability in sensitivity analysis. A review work (see for example [6] and [7]) was 
necessary to scan different criteria that are able to cater with unequal compressive and tensile stress limits. From the 
comparison of the different criteria, we selected the Raghava criterion and the Ishai criterion for this study in topology 
optimization. 
 
As the two criteria are functions of the first stress invariant J1 and the second deviator stress invariant J2D we remind the 
reader with the definition of these two stress invariant numbers: 
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The second invariant is directly related to the distortional shear stress 0τ  and to the equivalent von Mises stress σVM: 
22

023 VMDJ στ == . This presence of the second invariant is obvious because the criteria have to render the von Mises 
criterion when the stress limits are equal. The first invariant is related to the hydrostatic pressure hJ σ31 = and its 
presence in the criterion is essential since it introduces the dependence upon the sign of the stress state and so the 
different behaviors in tension and compression. 
 
The Raghava criterion [8] is a quadratic failure criterion that is generally used with adhesive materials. In terms of the 
stress invariants, the Raghava stress criterion and the related equivalent stress can be written as: 

T
s

sJsJsJ Deq
RAG ≤

+−+−
=

2
12)1()1( 2

22
11σ      (7) 

As it is demonstrated in [6], the Raghava criterion can also be viewed as a particular case of Tsai-Wu criterion of 
orthotropic materials when one assumes that the stress limits along the 3 orthotropy directions are the same. 

 
An interesting alternative to Raghava is the Ishai criterion [9]. With the notations that has been defined, one writes the 
Ishai equivalent stress and its failure criterion: 
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As shown in [6] this criterion belongs to the Drucker-Prager plasticity criterion family that is of a general use for chalk, 
rocs and soils materials. 
 
The two criteria can be compared in Fig. 1 and 2 where their failure envelopes are plotted in the space (σh , τ0) of the 
hydrostatic pressure and of the distortional shear stress. At first the failure surface of the Raghava approach is a 
parabolic curve whereas the Ishai criterion is a hyperbolic one. But from the figures, one also notices that the two 
theories predict the failure for different maximum hydrostatic pressures and for different pure distortional shear stresses. 
The pure hydrostatic stress limit predicted by Ishai’s theory is twice Raghava’s one. We remind the reader that this 
hydrostatic failure stress is infinite in von Mises’ theory. Failure under a pure shear stress state is also different in the 
two theories. The pure distortional shear stress limit for Raghava’s theory is always greater than Ishai’s one because 
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Figure 1: Raghava failure criterion   Figure 2: Ishai failure criterion 

 
5. Numerical implementation and sensitivity analysis of Ishai and Raghava criteria 
If the implementation of von Mises criterion in an optimization code coupled with a finite element analysis is well 
known, it may be quite interesting here to describe the guidelines of the implementation of Ishai’s and Raghava’s 
criteria. This is the opportunity to underline the specific character of the two criteria. 
 
The equilibrium equation after discretization by finite element writes K q = f where K is the stiffness matrix, q is the 
generalized displacement vector and f is the load vector. When writing the overal stress in the finite element in a vector 
form, it is given by σ = T q where T is the stress matrix of the element. The two first invariants of the stress in the finite 
element that are required to calculate the equivalent stress criteria can be written in matrix form: 
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As the stress matrix depends linearly upon the stiffness properties, one can also write 0TT pρ= where T0 is the stress 
matrix of an element of relative density of 1. In the same way the influence of density can be put in evidence in matrices 
W and V: 02 VV pρ= and 0WW pρ= where matrices the V0 and W0 are the von Mises stress matrix and the hydrostatic 
stress matrices of the solid element. 
 
Therefore one can evaluate easily the effective failure criteria based on Ishai and Raghava theories with the following 
expressions: 
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Sensitivity analysis can also be implemented efficiently for Ishai and Raghava criteria as it can be done for Von Mises 
theory. As only the guidelines of the implementation are presented we give only the main results of the derivation 
calculus.  



For Ishai equivalent stress, we get:  
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Raghava’s criterion is a bit more difficult. After some calculus the derivative of the averaged stress criterion can be 
written as: 
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In a direct approach of the sensitivity analysis one would evaluate all the derivatives of the generalized displacements 
iq ρ∂∂ , which could be a major job in topology optimization. However the number of active stress constraints is 

generally smaller than the number of design variables and the adjoined method is generally preferred because only one 
additional load case is required per active constraint. In this case the adjoined load vector is the vector that is put 
between curly braces. 
 
6. Numerical solution of stress-constrained problems 
As it has been shown in [10] and [3], the topology optimization with stress constraints is subject to the ‘singularity’ 
phenomenon. At short the paradox comes from the fact that the optimization procedure is often unable to remove or to 
add some vanishing members without violating the stress constraints although one would end up with a perfectly 
feasible design if they were removed or added. From a mathematical point of view the classical algorithms are unable to 
reach some optimum configurations because of the degeneracy of the design space. In order to turn around the difficulty 
one has to use a perturbation technique of the stress constraints, generally known as the ε-relaxation technique [10] that 
results in a relaxation of the stress limits in the low-density regions. We use here the following ε-relaxed formulation of 
the overall stress criterion that is slightly modified for density variables:  
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The advantage of this relaxation formulation is that the influence of the perturbation always cancels for ρ = 1 whatever 
is the value of relaxation parameter ε. Therefore one can stop the optimization procedure with any value of ε with a 
feasible design for the stress constraints in hands. In addition to this new relaxation formulation, an automatic strategy 
to reduce the ε parameter is also provided. The program without any interaction of the user makes the reduction of the 
perturbation parameter. The parameter is reduced as soon as the optimization problem is solved with a sufficiently small 
tolerance. 
 
A second interesting aspect of the procedure is the use of a mathematical programming approach suited to the solution 
of large-scale systems. A robust approximation strategy has been elaborated on the basis on the Method of Moving 
Asymptotes (MMA) [11] while the core of the solution algorithm relies on a dual algorithm [12]. In fact the separability 
of the approximations is one of the key ideas to manage efficiently the solution of large-scale problems. The MMA 
algorithm has been customized in order to give rise to small trust regions and avoid constraint violations. The primal-
dual optimizer from Fleury [12] showed itself as extremely robust for large-scale problem solution. Optimal solutions 
are generally produced within a computation time that of the same order of magnitude than the finite element analysis 
for all our numerical applications. 
 
7. Applications 
 
Two-bar truss benchmark 
The first application is the classic two-bar truss problem. In fact the two-bar truss problem is not a trivial example in the 
framework of topology optimization with stress constraints, moreover with unequal stress limits. Indeed even if the lay-
out of the solution is the obvious two-bar truss for equal stress constraints and the von Mises stress criterion (see Fig. 3 
right), one have to be able to overcome the problem of the singular stress paradox. The part of the design domain that is 
enclosed inside the two bars remains highly strained and thus highly stressed while all its material vanishes. Without the 
ε-relaxation technique it is impossible to remove totally this part. In the framework of unequal stress limits the second 
point of interest is to be able to check the analytical solution for this problem. The analytical solution has been exhibited 
by Rozvany [13] while discussing shortcoming of Michell’s truss theory. When adopting a tensile stress limit is 3 times 
higher than the compressive stress limit, the solution is still a two bar truss, but the two bars make an angle of 30° and 
60° degrees respectively with the foundation wall. Ishai equivalent stress is adopted to take into account the different 
stress limits effect. The optimized material distribution is presented in Fig.3 (left). The numerical result totally matches 
the theoretical prediction, which validates the method. 
 



 
 

Figure 3: Two-bar truss solutions for equal stress limits (T=C)  
and different stress limits (T=3C) 

 
Four-bar truss problem 

 
Figure 4: Four-bar truss solutions for equal stress limits (C=T) (left), high compressive strength (C=4T) (center) 

and high tension strength (T=4C) (right) 
 
The second example stems from an application that was initially suggested by Swan and Kosaka [12] to demonstrate 
that ultimate strength optimization can lead to substantially different results from a minimum elastic compliance design. 
In the present study the same example is revisited in the framework of first failure stress constraints and elastic 
behavior. The design domain is a square (L= 1m) clamped in the four corners. A unit load is applied downwards in the 
center of the square domain. Using a normalized material (E=100N/m² and ν=0.3) one bounds at first the von Mises 
equivalent stress to T=C=10 N/m² (see Fig 4-left). The same optimal topologies could be obtained for minimum 
compliance as for minimum volume subject to stress constraints. It is cross-like structure that withstands the load in 
tension (upper members) and compression (lower members). Now if one uses a material that has a better strength limit 
in compression than in tension (T=6 N/m², C=24 N/m²), the optimal structure (Fig 4-center) is an arch that works only 
in compression. Conversely if the material works better in tension than in compression (T=24 N/m², C=6 N/m²) one 
gets a structure (Fig. 4-right) working exclusively in tension like cables in suspension bridges. We have also to remark 
that the results for unequal stress limits have been made with the Ishai criterion, but the same results can be obtained 
with the Raghava criterion since they give exactly the same strength for members under a one dimensional stress state 
as here. 
 
Three-bar truss problem 
The last example is the three-bar truss problem [3], which lends itself to demonstrate the specific character of the stress-
constrained design when there is more than one load cases. The sizes and material data of the problem are normalized 
(L=1 m, W =2.5 m, E=100 N/m², ν=0.3). The minimum compliance design leads to a two-bar truss design (see Fig. 5 
top, left). The von Mises stress constraints (with T=C=150 N/m²) give rise to a different layout with a three-bar truss 
design (Fig. 5 top, right). A posteriori computation of the stress level in the two-bar truss solution shows that this 
configuration is over-stressed by nearly a factor 1.5 compared to the three-bar truss, which proves that the 3-bar truss 
topology is not a local optimum. One may also remark that introducing unequal stress limits with Ishai criterion (T=150 
N/m² and C=450 N/m² in Fig 5 bottom left and T=450 N/m² and C=150 N/m² in Fig.5 bottom right) leads again to a 
two-bar truss configuration. This demonstrates the different nature of minimum compliance design and strength 
maximization when there are several load cases. 
 
8.  Conclusion 
Although most of structural problems can be successfully studied with compliance minimization or local von Mises 
constraints, there are many cases where the effect of unequal stress limits is crucial upon structural layout. When the 
structure is made of materials with different stress limits, topology predictions matching practical engineering 
experience can be made with Raghava and Ishai equivalent stresses. These quadratic failure criteria generalize von 
Mises theory in the case of unequal stress limits, by introducing a dependence upon the first invariant of stresses. 
Numerical applications validated the quality of the results. These criteria are not difficult to implement in topology 
optimization codes. 
 



 
 

Figure 5. Three-bar truss designs for minimum compliance (top, left) and for stress constraints (top, right), 
and for unequal stress limits: high compressive strength (bottom left) and high tensile strength (bottom right). 

 
The numerical applications presented herein lead also to demonstrate the original character of stress-constrained designs 
compared to compliance distributions. Even if engineers know that minimum compliance designs and stress-constrained 
designs can differ, most of the examples from literature are cases in which minimum compliance and maximum 
strength designs are the same. Indeed the examples are generally based on one load case, the same stress limits in 
tension and compression and one material (and void). Here our examples have demonstrated two important cases for 
which structural topologies are different for maximum stiffness designs and maximum strength design: 
• When one considers unequal stress limits (even if one load case); 
• When there are several load cases (even if equal stress limits). 
New researches will be devoted to topology problems in which the structure is made of more than one material (and the 
void) in order to illustrate the third category. 
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