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SUMMARY

This research develops a stochastic mean-field-homogenization (MFH) process that is used as Reduced
Order Model (ROM) to carry out a statistical multiscale analysis on unidirectional (UD) fiber reinforced
composites. First full-field simulations of UD Stochastic Volume Elements (SVEs), whose statistical
description is obtained from SEM images, are conducted to define statistical meso-scale apparent properties.
A stochastic Mori-Tanaka MFH model is then developed through an inverse stochastic identification process
performed on the apparent elastic properties obtained by full-field simulations. As a result, a random vector
of the effective elastic properties of phases and micro-structure information of the Mori-Tanaka model
is inferred. In order to conduct Stochastic Finite Element Method (SFEM) analyzes, a generator of this
random vector is then constructed using the copula method, allowing predicting the statistical response
of a composite ply under bending. The statistical dependence of the random vector entries is shown to
be respected by the generator. Although this work is limited to the elastic response, we believe that the
stochastic Mori-Tanaka model can be extended to nonlinear behaviors in order to conduct efficient stochastic
multiscale simulations. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays, the models developed in science and engineering practices are of increasing complexity,
and the solutions of these models can only be acquired via numerical methods most of the time.
Taking advantage from the ability of computers which develop at high speed, numerical analyzes
and simulations are applied to a broad range of applications. However, computational power
is limited, and the simulations of detailed models or analyzes that require a large number of
simulations cannot always been achieved. This is the case in the context of modeling of composite
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2 L. WU ET AL.

materials, for which numerical methods can lead to massive discretizations depending on the
involved phases and their geometrical arrangements. This problem becomes even more severe when
uncertainties are considered and Monte Carlo (MC) methods are required for statistical analyzes.

In order to carry out a complex analysis at an affordable computational cost, various approaches
have been developed in the field of Reduced Order Model (ROM). Widely speaking, any method
which helps to reduce the size or complexity of a numerical system, which needs to be solved, is an
order reduction.

The purpose of this research is to carry out a statistical multiscale analysis on unidirectional (UD)
fiber reinforced composites, in which case the model order reduction has a twofold meaning: the
first one is in the sense of stochastic analysis; and the second one is in the sense of a (deterministic)
multiscale analysis.

In a stochastic analysis, order reductions, which aim at reducing the stochastic dimension of
the random quantities used in the stochastic modeling of uncertain parameters and of the random
observations in a computational model, are called statistical reduction. Such a statistical reduction
is also used in the stochastic modeling of data coming from experimental measurements and/or
from numerical simulations. For second-order random variables or random fields for which the
covariance matrix is known, there are two well documented tools for statistical reduction: the first
one is the principal component analysis (PCA), which can deal with the statistical reduction of a
random vector V in finite dimension; and the second one is the Karhunen-Loève expansion which
can handle the statistical reduction of a random field F in infinite dimension.
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Figure 1. Definition of the homogenization method performed on the meso-scale volume element ω.

Homogenization-based multiscale analyzes have been extensively developed, see the reviews
[1, 2, 3]. In particular FE2 strategies [4, 5, 6, 7, 8] have gained popularity with the increase in
computational power. In such an approach, the macro-scale structure defines a Boundary Value
Problem (BVP) which is solved by considering homogenized material properties extracted, at each
(macro) material point of interest, from the resolution of a meso-scale BVP, see Fig. 1. This meso-
scale BVP is defined on a meso-scale volume, which represents the different phases of the material.
Some homogenization methods investigate the response of meso-scale volume elements through
full-field analyzes, which limits the applicability of the multiscale simulations to reduced size
problems. The researches on ROM aim at providing an efficient homogenization process with a
reduced version of the full-field analyzes. With the general idea of trading space for time, the ROM
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INVERSE MICROMECHANICS FOR STOCHASTIC ROM OF UD COMPOSITES 3

is mainly based on pre-off-line computations. In micro-scale analyzes, reduced versions of models
are created by projection of the governing equations into suitably selected sub-spaces based on
the acquired information from pre-off-line computations on a meso-scale volume. The micro-scale
model could be a computational model with a large number of displacement degrees of freedom,
such as in the FE2 method, in which case the reduced number of unknown variables is defined by
means of proper orthogonal decomposition of the displacement field [9]. A further order reduction,
called hyper-reduction, can be applied to reduce the computations on internal forces [10, 11]. A
numerical comparison of different projection-based ROMs in computational homogenization can
be found in [11]. The micro-scale ROM could also be a mechanical model that involves much less
variables, such as in micro-mechanics: order reduction is achieved in the nonuniform transformation
field analysis (NTFA) by using the pre-defined internal variables modes obtained with a full-field
FE analysis [12], and a tangent second-order (TSO) expansion of the dissipation potential is adopted
to speedup simulations [13]. The pre-off-line computations can also provide surrogate models by
means of constructing mapping functions, such as through kernel methods [14], polynomial chaos
expansion [15] etc.

These ROMs are mainly applied to deterministic multiscale analyzes. In this case, a statistical
representative meso-scale volume element, which is called Representative Volume Element (RVE),
is used in the full-field analysis. When uncertainties are involved, or when the volume element is
not several order of magnitude larger than the micro-scale size, the meso-scale volume element does
not respect the statistical representativity and is called Statistical or Stochastic Volume Element
(SVE) [16]. Therefore, the homogenized response depends on the SVE realization, and on the
applied boundary conditions as discussed for 2D-particle reinforced composites in the case of
elasticity [17, 18], linear micro-polar continua [19, 20, 21], elastoplasticity [17], thermoelasticity
or again finite elasticity [17]. For a given type of boundary condition, the homogenized properties
of SVE realizations exhibit a distribution whose standard deviation increases when the SVE size
becomes closer to the inclusion size. It has also been shown in [17] that the discrepancy is more
important in nonlinear cases than in linear elasticity. In the latter references, average properties
obtained using successively constrained displacement and traction boundary conditions –considered
as two bounding cases– on SVEs of different sizes were used to define the minimum SVE size
allowing statistically representative (and thus unique) homogenized properties to be extracted as the
bounds average. However stochastic homogenization can also be applied to capture the variation
in the homogenized response with a view of upscaling the resulting uncertainties. In this context,
computational homogenization performed on SVEs results in statistical homogenized properties
of heterogeneous materials: the homogenized behavior of random two-phase elastic composites
was described by a transverse isotropic law with resultant Young’s modulus and Poisson ratio
[22, 23, 24], an orthogonal anisotropic law was adopted in [25] for the same material system
and in [26] and [27] for polysilicon elastic behavior and thermoelastic damping, respectively.
In the context of nonlinear materials, a complete statistical analysis combining Monte Carlo
(MC) resolutions of SVEs to multiscale analyzes would require a huge series of pre-off-line
computations on SVEs. Moreover, the requirement of memory to store the information from off-
line computations will become overwhelming. An economical practice to avoid the costly coupled
micro-scale computations and the storage of pre-off-line information is to stochastically calibrate
a phenomenological macroscopic model with homogenized responses from full-field simulations
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performed on SVEs. However, the choice of the macroscopic model could be arbitrary and it is not
always easy to find a well fitted model when the materials system obeys to a complex behavior.
Moreover the information provided by the full-field simulations is discarded. These limitations
have motivated the research on the subject of efficient stochastic multiscale analyzes. In [28], the
stochastic homogenization of a UD composite cell is achieved by using a modified version of the
meso-scale Stochastic Finite Element Method (SFEM), leading to a more efficient solution. In
[29], stochastic multiscale analyzes were developed to account for fine-scale material properties
as random variables –and random fields in particular cases– using an order reduction method
combined to an asymptotic homogenization relying on the use of SVEs. In the context of finite
elasticity, a ROM was built from the resolution of SVEs, which are called composite material
elementary cells, by defining a meso-scale potential capturing the uncertainties related to the fibers
geometry/distribution in composites [30, 31]. In a more general way, the use of ROMs in data-driven
nonlinear stochastic analyzes is discussed in [32].

In this work, we propose to use a micro-mechanics-based ROM in which the effective constitutive
parameters of the different phases are stochastically calibrated from SVE full-field resolutions.
Considering inclusion reinforced matrix composites, Mean Field Homogenization (MFH), in
particular the Mori-Tanaka Method [33], is chosen as the micro-mechanics model. Although in
this work we focus on the linear response of unidirectional composite materials as a first step, with
a view to nonlinear and failure studies, the interest of the Mori-Tanaka Method lies in its ability
to represent complex nonlinear composite material behaviors, including failure [34], in an accurate
way. In contrast to the computational homogenization method, the RVE or SVE in MFH is only a
concept: there are no realizations of RVEs/SVEs being used during the homogenization. As a result,
MFH cannot directly capture the micro-structure uncertainty effects. Therefore, the overall effect of
micro-structure uncertainties needs to be represented by some key parameters as random variables
in MFH analyzes. To identify and evaluate these key parameters, an inverse Mori-Tanaka analysis
can be used. The inverse Mori-Tanaka analysis has been used to identify the material constants
of effective matrix of nanocomposites with the overall mechanical behavior of nanocomposites
given by molecular dynamics simulations [35], and to perform the convergence analysis of material
parameters of effective matrix according to the size of RVE [36]. In the present work, the effective
elastic properties of phases and micro-structure information of the MFH micro-mechanics model
are identified in a stochastic way by an inverse Mori-Tanaka process conducted on the results of
computational full-field analyzes of SVE realizations. Since each SVE realization yields one set
of parameters –the effective elastic properties of phases and micro-structure information– of the
MFH micro-mechanics model, the latter corresponds to a realization of a random vector VM-T. This
random vector VM-T, which is evaluated by repeating the inverse identification process on several
SVE realizations, thus defines the input of the stochastic Mori-Tanaka ROM.

Conducting multiscale simulations using the Mori-Tanaka model has several advantages: the
homogenized response of the composite material is obtained at a low computational cost even for
nonlinear simulations, complicated anisotropic damage evolutions usually considered in the case
of damage simulations are replaced by simple isotropic damage laws in the phases [37, 38], and
finally, although the detailed information provided by the full-field simulations is lost, a certain
amount of qualitative information is kept by the micro-mechanics model in the sense of volume
average. These advantages make the stochastic Mori-Tanaka model an efficient ROM to achieve
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INVERSE MICROMECHANICS FOR STOCHASTIC ROM OF UD COMPOSITES 5

a full process from micro-structure analysis to statistical evaluation of composite structures. To
this end, the stochastic scale-transition, involved in propagating the uncertainties at the meso-
scale (SVEs) to the macro-structural scale, is carried out by SFEM. Therefore, by using material
properties which are random, SFEM can propagate the uncertainties through the mechanical system
and assess the structural stochastic response [39, 16, 40, 41]. In the present work, the random vector
VM-T of the effective elastic properties of phases and micro-structure information of the Mori-Tanaka
model corresponds to the random properties of the SFEM. Therefore, in order to conduct the SFEM
analyzes, a generator of the random vector is constructed using the copula method [42].

However, conducting a reliable stochastic multiscale structural analysis by SFEM requires the
stochastic description of the material properties to be defined accounting for the size of the stochastic
finite elements [26]: the SVEs used to define the meso-scale random material property fields should
have a comparable size to the finite element size in the composite structure analysis. Since there
exists a huge length gap between the computationally affordable SVEs size to the finite element size
of structural analysis in UD-fiber reinforced composites, the multi-level computational stochastic
homogenization developed in [25] is considered to define the random vector VM-T. However, no
ROM was developed in [25], which is the purpose of the present work through the development of
an inverse stochastic identification of the Mori-Tanaka model.

The paper is organized as follows. In Section 2, the stochastic homogenization of UD SVEs
is conducted, using as input the statistical description obtained from SEM images in [25]. In
particular the statistical convergence of the homogenized apparent elastic properties is studied. The
stochastic Mori-Tanaka model is developed in linear elasticity in Section 3. To this end, an inverse
stochastic identification process is performed from the apparent elastic properties in order to define
the random vector VM-T of the effective elastic properties of phases and micro-structure information
of the Mori-Tanaka model. The statistical dependence of this vector entries is also studied. The
cumulative distributions of the apparent elastic properties obtained by the stochastic Mori-Tanaka
model are compared to the results of the stochastic full-field homogenization in Section 4. A good
agreement between the two homogenization processes is found and confirmed by studying macro-
scale SFEM of a single composite ply realization. Finally, the dimension obtained by applying
an order reduction using a PCA on the random vector V obtained directly by the computational
stochastic homogenization is shown to be equivalent to the dimension of the random vector VM-T.
In order to conduct SFEM, a generator of the random vector VM-T is constructed using the copula
method [42] in Section 5. The statistical dependence of the random vector entries is shown to be
respected by the generator. A SFEM analysis of a composite ply under bending is then conducted
to demonstrate the applicability of the method. Finally, conclusions are drawn in Section 6.

2. STATISTICAL ANALYSIS OF THE APPARENT –OR HOMOGENIZED– MESO-SCALE
MATERIAL PROPERTIES BASED ON SVES

The statistical analysis of the apparent meso-scale material properties is carried out based on the
generated Stochastic Volume Elements (SVEs). With a proper micro-structure generation scheme,
which keeps the spatial characteristics of micro-structures, an adequate number of virtual samples
–here the SVEs– can be generated for virtual tests –here homogenizations. In this section, we briefly

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 L. WU ET AL.

summarize the SVE generation process built from SEM images statistical analysis as developed in
[25] and the computational homogenization theory. Stochastic homogenization is then applied on
the generated SVEs, and, using the obtained probabilistic behavior of the homogenized meso-scale
material, a classical statistical procedure, the Principal Component Analysis (PCA), is performed.
Finally, the aspect of random variables dimensionality reduction is discussed with a view to the
generation of random meso-scale material property.

2.1. Definition of the SVEs

 

(a) SEM image

 

(b) Numerical model

Figure 2. Micro-structures of UD-fiber reinforced composite [25]: (a) cross-section SEM image; (b)
Generated micro-structure.

In this work, we consider SVEs of UD composite materials in which the uncertainties result
from the fiber radius and spatial distribution. The micro-structure of UD carbon fiber reinforced
composites was statistically studied from cross-section SEM images in [25], in which a numerical
micro-structure model was developed. The numerical micro-structure model is built on the
images spatial analysis; empirical statistical descriptors are considered as dependent variables
and represented using the copula framework. Numerical micro-structures are then generated from
numerical sampling of these random variables combined to a fibers additive process. As a result, the
micro-structure realizations have an equivalent random fiber radius distribution and an equivalent
spatial distribution of fibers as the real composite material, see Fig. 2 which compares an SEM image
to a generated micro-structure. Note that the fibers packing was observed to be more dense along
the ply-thickness direction than along the ply width, and this feature is respected by the generation
process [25].

SVE cross-sections are then extracted from the numerical micro-structure realizations using a
square window of length lSVE, see an example of a realization with lSVE = 25µm in Fig. 3. Since
the SVEs are extracted from a larger micro-structure, fibers that cut the window are naturally
considered, improving the accuracy of the homogenization as compared to unrealistic volume
elements in which inclusions are constrained not to cross the window edges, see the discussion in
[20]. A 3D model is then obtained by extruding the extracted 2D cross-section along the longitudinal
direction “L” of the fibers, which also refers to the z-direction in this work. The transverse directions
“T” and “T’ ” of the fibers refer to the x- and y-directions, respectively, with y along the thickness
direction of the laminate, see Fig. 3(a).
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Figure 3. Example of a 25× 25× 1µm3 meso-scale volume element: (a) geometry of a SVE realization; and
(b) finite element discretization of the SVE.

The properties of matrix and fibers are assumed to be respectively isotropic linear elastic and
transverse isotropic linear elastic. As an assumption the micro-scale material properties are assumed
not to suffer from uncertainties. A similar material system has been identified and used in [38, 25],
in which the elastic properties of the matrix and fibers are:

• Matrix: Elastic Young’s modulus E0 = 3.2 GPa; Poisson ratio ν0 = 0.3.
• Inclusions (fibers): Longitudinal Young’s modulus EL

I = 230 GPa; transverse Young’s
modulus ET

I = 40 GPa; transverse Poisson ratio νTT
I = 0.2; longitudinal-transverse Poisson

ratio νLT
I = 0.256; transverse shear modulus GTT

I = 16.7 GPa; longitudinal-transverse shear
modulus GLT

I = 24 GPa.

Since the windows used to extract the micro-structures do not allow to reach statistical
representativity, the homogenized elastic properties depend on the SVE realization, and on the
applied boundary conditions as discussed in the introduction. The fact that the homogenized
properties are not unique has been exploited in the context of polycrystal in [26] to predict the
stochastic response at the structural scale. In particular, several SVE sizes have been studied and
it has been shown that, although the homogenized properties distributions depend on this size, the
distribution of the macro-scale or structural response is not dependent on the SVE size providing
the following three conditions are fulfilled:

1. The size of the SVE remains small compared to the structural scale;
2. The macro-scale simulations rely on the SFEM using as input a random field defined from the

homogenized properties distributions and their spatial correlations;
3. The size of the stochastic finite elements used at the macro-scale is smaller than the correlation

length of this random field; Note that this correlation length increases with the SVE size.

The effect of the SVE size has also been investigated in the case of UD composites [25]. For the
considered micro-structure, it has been shown that for SVEs of length lSVE ≥ 25µm, the distribution
of the homogenized elastic properties gets close to a normal distribution and the auto/cross
correlation vanishes at a distance equal to the SVE length. In other words, for two neighboring
SVEs, although they may share some common fibers, their homogenized elastic properties are not
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8 L. WU ET AL.

correlated and the homogenized properties can be approximated as independent random vectors.
Therefore, in this work we consider the size lSVE ≥ 25µm, and as a result

1. SVEs can be independently generated micro-structures;
2. The SVEs spatial correlation does not have to be considered;
3. The SFEM at the higher scale will use a random field discretized by a grid of 25µm-spacing,

unless a second step homogenization is performed as discussed in Section 5.2.

2.2. Evaluation of the apparent elastic properties of SVEs with computational homogenization

The apparent meso-scale material tensor can be estimated from the resolution of the meso-scale
boundary value problem (BVP) solved with the finite element method [7, 43]. The so-called
computational homogenization method is summarized in the context of linear elasticity in this
section. In particular, periodical boundary condition is applied on the meso-scale volume element
and the extraction of the homogenized material operator follows the multiple-constraint projection
method [44] detailed in [45].

2.2.1. The meso-scale Boundary Value Problem (BVP) The meso-scale BVP is defined on the
meso-scale volume element: an SVE ω of boundary ∂ω, see Fig. 1. Since the SVE size is rather
small, here typically 25× 25× 1µm3, the time of the stress wave to propagate in the SVE remains
negligible. Therefore, the equivalence of the micro-strain to the macro-strain is instantaneous and
the equilibrium equations read ∇m · σm = 0 ∀x ∈ ω ,

nm · σm = tm ∀x ∈ ∂ω ,
(1)

where the subscript ’m’ refers to the local value at the micro-scale, σm is the Cauchy stress tensor,
and tm is the surface traction on the boundary of outward unit normal nm. Notations are given in
Appendix A.

To complete the micro-scale problem, the local constitutive laws of the different materials are
assumed to follow linear elasticity in this work, leading to

σm = Cm (x) : εm , (2)

where the fourth-order material tensor Cm (x) depends on the micro-scale material point location
x, and the small-deformation strain tensor εm is evaluated in terms of the micro-scale displacement
um as εm = 1

2 (∇m ⊗ um + um ⊗∇m).

2.2.2. The scale transition The volume average of a micro-scale field on the meso-scale volume-
element ω is written as

·M =< ·m >=
1

V (ω)

∫
ω

·mdV , (3)

where 〈·〉 is the volume average of the field ·, and V (ω) is the volume of the meso-scale volume
element ω, the resulting value is defined as the homogenized value with the subscript ’M’.
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INVERSE MICROMECHANICS FOR STOCHASTIC ROM OF UD COMPOSITES 9

In general, the apparent fourth-order material tensor, CM, is not the volume average of Cm.
Instead, it is defined in order to ensure the energy consistency at the different scales, which
corresponds to the Hill-Mandel condition

σM : δεM = δεM : CM : εM =< δεm : Cm : εm > , (4)

where σM and εM are the homogenized stress and strain tensors, respectively. In particular, in the
context of linear elasticity, we haveσM =< σm >=< Cm : εm >= CM : εM ,

εM =
(∇M⊗uM+uM⊗∇M

2

)
=< εm > ,

(5)

where uM is the macro-scale displacement field.
In order to satisfy this energy consistency condition, the scale transition problem is completed by

a specially defined boundary conditions applied on the meso-scale volume element ω. To this end,
the micro-scale displacement field is written under the form

um(x) = (uM ⊗∇M) · (x− xref) + u′(x) , (6)

where xref is a reference point of ω and u′ is the perturbation field. The definition of the
homogenized strain, Eq. (5), requires this perturbation field to satisfy

0 =< u′(x)⊗∇m >=
1

V (ω)

∫
∂ω

u′ ⊗ nmdS . (7)

Moreover, by substituting Eq. (6) in Eq. (4), integrating by parts, and using the equilibrium Eqs. (1),
the Hill-Mandel condition can be rewritten as

σM : δεM =< σm : δεm >= σM : δεM +
1

V (ω)

∫
ω

σm : (δu′ ⊗∇m) dV , (8)

or again as

0 =
1

V (ω)

∫
∂ω

(σm · nm) · δu′dS =

∫
∂ω

tm · δu′dS . (9)

2.2.3. Definition of the constrained micro-scale finite element problem The weak form of the
micro-scale Eqs. (1) reads ∫

ω

σm : (δu′ ⊗∇m) dV = 0 , ∀δu′ ∈ U , (10)

where U is the admissible kinematic vector field defined as a subset of the minimum kinematic field
Umin satisfying Eq. (7):

Umin =

{
u′|
∫
∂ω

u′ ⊗ nmdS = 0

}
. (11)

In that case the Hill-Mandel condition (4) is always verified. Indeed, this variational statement of
the Hill-Mandel condition introduced in [46, 47], see also [45], shows that the admissible kinematic
vector field U is defined by specific boundary conditions whose constraint is to satisfy Eq. (7), in
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10 L. WU ET AL.

which case the the resolution of the micro-scale weak form (10) always ensures Eq. (8), i.e. the
Hill-Mandel condition (4).

Following the study on the effect of boundary conditions in [25], only the periodic boundary
conditions (PBCs) are considered in this work, for which the admissible kinematic vector field U is
defined by

UPBC =
{
u′|um(x+)− um(x−) = (uM ⊗∇M) · (x+ − x−) ,

∀x+ ∈ ∂ω+ and corresponding x− ∈ ∂ω−
}
, (12)

where the parallelepiped SVE faces have been separated in opposite surfaces ∂ω− and ∂ω+. From
the definition of the perturbation field (6), one has directly that UPBC ⊂ Umin, and following the
previous discussion, the resolution of the weak form (10) always leads to the satisfaction of the Hill-
Mandel condition (4). Note that the variational statement does not require the PBCs to constrain
directly the symmetry of the surface traction in order to satisfy the Hill-Mandel condition. This
symmetry is a consequence of the micro-scale problem resolution as shown by considering arbitrary
δu′ ∈ UPBC in Eq. (9).

2.2.4. Resolution of the constrained micro-scale finite element problem The numerical resolution
of the meso-scale BVP relies on the finite elements discretization of the meso-scale volume element
ω into ωe, see Fig. 3(b). Applying the constraint such as the periodic boundary conditions, Eq. (12),
on the finite element discretizations of Eq. (10) leads to a set of coupled equationsKmum −CTλ = 0 , and

Cum − SEM = 0 ,
(13)

where Km is the stiffness matrix of the unconstrained meso-scale volume element, um is the vector
of the nodal displacement, λ is the vector of the Lagrange multipliers, which enforce the constraints,
EM represents the macro-scale kinematic variable uM ⊗∇M written under a vector form, and where
C and S are the so-called constraints matrix and kinematic matrix, respectively, built from the
different constraints.

The stiffness matrix of the meso-scale volume element reads

Km =
∧
ωe

∫
ωe

(Be)
T CmB

edV , (14)

where Cm is the matrix notation of the micro-scale fourth-order elastic tensor Cm, Be is the
elementary matrix of the shape functions gradient, and where

∧
ωe is used to symbolize the assembly

process.
In this work, the constraints are the PBCs (12), which have to be applied on a non-periodic mesh.

Therefore the polynomial interpolation method [48] is introduced to approximate the PBCs. By
considering a pair i = 1, 2, 3 of opposite faces (∂ω−i , ∂ω+

i ), one can define an interpolation form of
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INVERSE MICROMECHANICS FOR STOCHASTIC ROM OF UD COMPOSITES 11

degree n as

ϕi (x) =

n+1∑
k=1

N i
k (x)aik (no sum on i) , (15)

where N i
k with k = 1, ..., n+ 1 are the interpolation shape functions, and aik with k = 1, ..., n+ 1

are first-order tensors of new degrees of freedom corresponding to the interpolation form ϕi. The
PBCs (12) at a boundary position x ∈ ∂ωi, thus readu′

(
x+; ai1, . . . ,a

i
n+1

)
= ϕi

(
x−; ai1, . . . ,a

i
n+1

)
∀x+ ∈ ∂ω+

i , and

u′
(
x−; ai1, . . . ,a

i
n+1

)
= ϕi

(
x−; ai1, . . . ,a

i
n+1

)
∀x− ∈ ∂ω−i .

(16)

These equations show that introducing the new degrees of freedom aij with j = 1, ..., n+ 1 allows
the fluctuation field to satisfy the PBCs without constraining mesh periodicity. The functions N i

k

depend on the interpolation method considered. Typically 3-dimensional cases are derived using a
bilinear patch Coons formulation [48]. Finally, the constraints and kinematic matrices involved in
the set of equations (13) are deduced from these functions in Appendix B.

Following the Lagrange multiplier elimination approach summarized in [25, Appendix B], the
apparent elasticity tensor can be extracted in the matrix form CM as

CM = DK̃−1m

(
CT −QTKmC

T
(
CCT

)−1)
S . (17)

In this equation Q = I−CT
(
CCT

)−1
C, K̃m = CTC + QTKmQ, and D =(

1
V (ω)

∧
ωe

∫
ωe CmB

edV
)

, see details in [45].

2.3. Apparent elastic properties of SVEs

Applying the homogenization theory described in Section 2.2 on SVE realizations obtained
following Section 2.1 allows the apparent elasticity tensors to be extracted in the matrix form CM.
Using the combined pairs of indices as follows: (·)xx → (·)1, (·)yy → (·)2, (·)zz → (·)3, (·)yz →
(·)4, (·)zx → (·)5 and (·)xy → (·)6, we convert the obtained homogenized material elastic tensors
into their matrix forms, which have a feature as

CM =



CM11 CM12 CM13 0.0 0.0 CM16

CM22 CM23 0.0 0.0 CM26

CM33 0.0 0.0 CM36

CM44 CM45 0.0

symmetric CM55 0.0

CM66


, (18)

where ”CMxx” are presented only for non-zero values. The feature of the material tensor (18) results
directly from the direct homogenization conducted on the SVEs, in which the fiber are perpendicular
to the cross-section. However, as previously stated, the fibers packing is more dense along the
ply-thickness (y-direction) than along the ply width (x-direction), meaning that the homogenized
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12 L. WU ET AL.

material does not follow a transverse isotropic behavior. As a consequence, there exists a coupling
between tension and the xy-shearing, and between the yz-shearing and xz-shearing.

In our previous work [25], the non-zero values CM16, CM26, CM36 and CM45 were neglected, and an
orthogonal anisotropic material model was used to represent the obtained apparent elastic behavior.
This assumption is acceptable, because their values are much lower than the diagonal values, e.g.
for more than 99 % of the realizations of CM, the absolute values of CM16, CM26, and CM36 were
respectively lower than 4.0% of CM11, 4.0% of CM22, and 0.2% of CM33; only CM45 had an order of
magnitude of about 10% of CM44. In this work, we adopt the same treatment as in [26], where all
the non-zero entries are kept in a random vector V ∈ R13, to represent the random elastic tensor CM,
and further statistical analyzes will be carried out on this random vector V .

2.4. Statistical analysis on the random apparent material properties

In this section, we study the apparent elastic properties extracted from the stochastic homogenization
as described in Section 2.3. First the statistical convergence is studied with respect to the number of
realizations. Then, with a view to the comparison with the stochastic M-T model developed in the
next section, a PCA is performed on the uncertain apparent material properties.
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Figure 4. Statistical convergence of the random apparent elasticity tensor CM with the number of realizations.

2.4.1. Statistical convergence of the random apparent elasticity tensors CM Totally 12740
realizations of SVEs were used to carry out the computational homogenization. The matrix form
(18) of the apparent elastic tensors CM is used to study the statistical convergence of the obtained
random properties. The estimations of the coefficient of variation of the field ·, which is defined as
the ratio of the standard deviation σ· to the standard expectation E [·], i.e. cv· = σ·

E[·] , are plotted in
Fig. 4(a) for the entries CM11, CM12, CM33, CM23, CM44, and CM66. The standard deviations of the other
entries that have zero standard expectations, are plotted in Fig. 4(b). The statistical convergence
of the random apparent elasticity tensor CM is observed in Fig. 4 with an increasing number of
realizations. Although the marginal distributions of the random apparent properties have converged
after about 3000 realizations, with a view to the construction of a stochastic model involving
dependent random variables, we have evaluated more than 12000 realizations in order to be able
to construct an accurate empirical copula in Section 5.
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INVERSE MICROMECHANICS FOR STOCHASTIC ROM OF UD COMPOSITES 13

2.4.2. Principal Component Analysis (PCA) applied on the random material properties
representation V The uncertain apparent material properties are represented by a random vector
V , who carries the same information as CM. From the obtained n realizations vi (i = 1, ..., n), the
mean vector µV of V can be estimated by

µV =
1

n

n∑
i=1

vi , (19)

and the variance σV,r of each of its entry r (r = 1, ..., 13) results from

σ2
V,r =

1

n− 1

n∑
i=1

(vi,r − µV,r)2 . (20)

Before carrying out the PCA, a normalization is performed on vi (i = 1, ..., n) by

ṽi,r =
(vi,r − µV,r)

σV,r
, r = 1, ..., 13 . (21)

We define the data matrix ṼVV = {ṽ1, ṽ2, ..., ṽn} ∈ R13×n, and the matrix WWW = ṼVV ṼVV
T
∈ R13×13.

The 13 eigenvalues of WWW are denoted in a descending order as Λ1 ≥ Λ2 ≥ ... ≥ Λ13, and their
corresponding eigenvectors as u1, u2, ..., u13. The criterion

1.0−
∑p

i=1 Λi∑13
i=1 Λi

≤ δ with p ≤ 13 , (22)

where δ, a small value close to zero, controls the accuracy of the order reduction –e.g. if we set
δ = 0.0, this means that either we keep the original dimension p = 13, or WWW has at least one zero
eigen value and p < 13. Finally we define

UUU =
[
u1,u2, ...,up

]
13×p , (23)

and the dimensionaly reduced data matrix

Xp×n = UUUTṼVV . (24)

A random vector generator can be constructed based on the dimensionaly reduced data matrix X,
e.g. using the copula method [42]. From the generated random vector x, the random vector ṽ, which
has the original dimension of 13, can be estimated by ṽ = UUUx. By passing the inverse process of
Eq. (21), the desired realizations v of the random vector V are recovered.

Table I. Reduced order p and corresponding accuracy measure δ for the random vector V

p 3 4 5 6 7 8 9
δ 0.0648 0.0345 0.0137 0.0071 0.0035 0.0018 0.0006

A PCA analysis is performed on the 12740 realizations of V . The values of the reduced order p
and their corresponding accuracy δ, Eq. (22), are presented in Table I. Table I shows that p ≥ 5 is
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14 L. WU ET AL.

required during the order reduction on the random vector V in order to keep a reasonable accuracy,
i.e. better than 98%. Finally the random vector V ∈ R13 can be represented by a lower order random
vector which is denoted as X ∈ Rp with 5 ≤ p < 13.

In this section, it was shown that an order reduction on random apparent elastic properties of
SVEs could be carried out by a series of simple mathematical operations. PCA analysis is a widely
used statistic procedure for the purpose of random vector dimensional reduction and random vector
generation. However, for our specific problem of SVEs, some basic micro-structure information,
such as fiber volume fraction, shape of fibers, etc. are never used in PCA. In fact, if we use
the apparent elastic properties of SVEs in a direct way, there is no access to get even qualitative
information of the local phases (fiber, matrix) because these apparent elastic properties are totally
disconnected with their associated micro-structures. As a result, further nonlinear analyzes, in
particular history-dependent ones, will become rather complex, e.g. plasticity and/or damage and/or
failure descriptions need to be stated in an anisotropic way, which means a lot of parameters will be
required to model the nonlinear behavior of the material. With the view of having a simple stochastic
description for the nonlinear behavior of composites, a micro-mechanical analysis, which also has
the effect of order reduction, is introduced in the next Section.

3. MICRO-MECHANICS BASED ORDER REDUCTION

In this section, the main equations of the mean-field homogenization (MFH) method for two-phase
composites are summarized in the context of linear elasticity. In particularly, we consider the Mori-
Tanaka (M-T) assumption. With a view to performing a micro-structure related order reduction on
the random apparent elastic properties of the SVEs, the M-T model is compared to the computational
homogenization. Using as input the elastic properties resulting from the stochastic computational
homogenization, an inverse stochastic identification of the M-T model is then stated. Eventually the
inverse identification results are statistically analyzed.

3.1. MFH method and Mori-Tanaka model for two-phase linear elastic composites

In a multiscale procedure as illustrated in Fig. 1, a MFH method defines the relation between the
meso-strain tensor εεεM and meso-stress tensor σσσM into a relation between average strain tensor
< εεεm > and stress tensor < σσσm > over the volume element ω. We use the terminology “meso-
scale” to indicate the homogenized value on a volume element in order to stay consistent with the
notation of Section 2. Considering a two-phase isothermal linear elastic composite material, with
uniform constitutive material stiffness tensors C0 for the matrix and CI for the inclusions, and with
the respective volume fractions v0 + vI = 1 (subscript 0 refers to the matrix and I to the inclusions),
the homogenized strain and stress tensors can be written in terms of the volume-averaged values
over the matrix subdomain ω0 and the inclusions subdomain ωI as

εεεM = v0 < εεεm >ω0
+vI < εεεm >ωI and

σσσM = v0 < σσσm >ω0 +vI < σσσm >ωI . (25)
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In order to solve the relation between εεεM and stresses σσσM, the system of Eqs. (25) is completed by an
equation describing the relation between the strain averages per phase through a strain concentration
tensor Bε:

< εεεm >ωI= Bε :< εεεm >ω0
. (26)

Different assumptions on the micro-mechanics have been made in different MFH models to
approximate the solution of Bε, see e.g. [49, 33]. For the Mori-Tanaka (M-T) model, the strain
concentration tensor is given by

B̂ε = {I + S : [(C0)−1 : CI − I]}−1 , (27)

where B̂ε is used to indicate the approximated Bε, the Eshelby tensor S(I, C0) depends on the
geometry of inclusions (I) and on C0 [50], and I is the fourth-order symmetric identity tensor given
in Appendix A.

Therefore, using Eqs. (25-27), the meso-scale homogenized material behavior is written under
the form

σ̂σσM = ĈM : εεεM , with ĈM = [vICI : B̂ε + v0C0] : [vIB̂ε + v0I]−1 , (28)

where σ̂σσM refers to the approximated values of σσσM, and ĈM is the meso-scale homogenized material
tensor resulting from the MFH model. Equation (28) shows that the apparent meso-scale elasticity
tensor ĈM of composites can be computed from the elasticity tensors of the matrix, C0, and of the
fiber CI, from the volume fraction of fibers vI, and from the geometrical information of fibers (I).

3.2. Comparison between the mean-field homogenization and the computational homogenization

The MFH and the computational homogenization methods have identical definitions on the
homogenized meso-scale strain tensor εεεM and stress tensor σσσM, which are respectively the volume
averaged values of their micro-scale counterparts εεεm and σσσm, see Eqs. (5) and (25). In the context of
linear elasticity, the meso-scale homogenized material behaviors are stated as

σσσM = CM : εεεM and σ̂σσM = ĈM : εεεM , (29)

for computational homogenization and MFH, respectively. Besides, in linear elastic region, the
elastic energy density on the meso-scale volume element ω is expressed as

φ =
1

2
< σσσm : εεεm >ω , (30)

which is rewritten as

φ =
1

2
σσσM : εεεM =

1

2
CM :: (εεεM ⊗ εεεM) and

φ̂ =
1

2
σ̂σσM : εεεM =

1

2
ĈM :: (εεεM ⊗ εεεM) , (31)

for computational homogenization and MFH, respectively.
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In general, for the same meso-scale strain tensor εεεM, σ̂σσM 6= σσσM, ĈM 6= CM, and φ̂ 6= φ. This
is particularly true in the context of Stochastic Volume Elements, for which computational
homogenization does not lead to unique homogenized value.

On the one hand, assuming the size of the meso-scale volume element is large enough, statistical
representativity is ensured and the meso-scale volume element is called Representative Volume
Element (RVE). In that case, the meso-scale elasticity tensor CM obtained by computational
homogenization is unique. It is however not always equal to ĈM, since the latter is derived
from an approximated mean (volume averaged) strain concentration tensor and micro-mechanics
assumptions, such as the M-T model. Nevertheless in the case of (possibly transversely anisotropic)
inclusions embedded in an isotropic matrix, the M-T model has been shown to be able to provide
good predictions for low to moderate volume fractions of inclusions [51], i.e. ĈM = CM.

On the other hand, when considering Stochastic Volume Elements (SVEs), the apparent meso-
scale elasticity tensor CM extracted from full-field finite element resolutions is not unique. It
depends on the micro-structure realization, characterized by a given arrangement of inclusions, and
on the defined boundary conditions. Since in this work, we are dealing with volume elements of
limited size, SVEs, the inclusion arrangement always affects the homogenized material tensor, CM,
obtained by computational homogenization. However, the apparent meso-scale elasticity tensor ĈM

is a priori unique since the MFH method does not require defining special boundary conditions, and
since there is no definition of a meso-scale length scale such as the length of the meso-scale volume
element ω. In fact, for volume elements of inclusion reinforced matrix materials with constant
inclusion volume fraction vI, and inclusion orientation, the obtained ĈM is unique.

In the next sections we will thus consider the input of the MFH as random variables in order to
recover the uncertain behavior observed with computation homogenization in Section 2.3.

3.3. Inverse stochastic identification of the M-T model

The purpose of this section is to reproduce with mean-field homogenization, in particular with
the Mori-Tanaka model, the uncertainties observed in the meso-scale apparent elasticity tensor CM

extracted by computational homogenization on the SVE realizations.
The meso-scale material tensor ĈM is evaluated by the M-T method by combining Eqs. (27-28),

and it depends on the elasticity tensors of the matrix C0, and of the fiber CI, the volume fraction of
fibers vI, and on the geometrical information of the inclusions (I). The inverse problem thus reads
for each realization

ĈM(̂I, Ĉ0, ĈI, v̂I, θθθ) ≈ CM , (32)

where a rotation angles vector θθθ has been included in order for the elasticity tensor of inclusion,
CI, and the Eshelby’s tensor, S, to be expressed in the local coordinates of the inclusion. In Eq.
(32), we have used the “̂·” notation to differentiate the effective values of the fields that satisfy the
approximation (32) from the original ones used during the computational homogenization in Section
2.3.

When considering an isotropic matrix material, i.e. Ĉ0 is isotropic, the anisotropy of ĈM can
result from the anisotropy of ĈI and/or from the non spherical shape of inclusion (I), which will
lead to an orthogonal anisotropic homogenized tensor ĈM. Therefore, it is possible to reproduce an
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 Random effective parameters from optimization steps I & III: 𝜃, 𝛾, 𝐸̂0, 𝜈̂0. 

 Random parameter according to the generated SVEs: 𝑣I.   

 Constant effective material parameter from optimization step II: 𝐸̂I
L. 

𝐸̂I
L 

𝜃, 𝒞M
L  and its tensor notation ℂM

L   
 

Input information for inverse Mori – Tanaka process: 

 Elastic tensor ℂM of the SVE extracted by computational homogenization. 

 Fiber volume fraction 𝑣I of the SVE. 

 Elastic properties of fibers ℂI(𝐸I
L, 𝐸I

T, 𝜈I
TT, 𝜈I

LT, … ). 

 Elastic properties of matrix ℂ0(𝐸0, 𝜈0). 

Optimization I  
Find the principal directions of homogenized material of the SVE: 

 ℂM is written in its Voigt notation 𝒞M.  

 A rotation matrix, 𝑅(𝜃), is defined by a rotation angle 𝜃 
along the fiber direction. 

 Define 𝒞M
L = 𝑅T𝒞M𝑅, and solve 

min
θ∈[0o,90o)

(|𝒞M
L

16
| + |𝒞M

L
26

| + |𝒞M
L

36
| + |𝒞M

L
45

|). 

Optimization II 

 (Needs to be solved for only one SVE: resulting 𝐸̂I
Lcan be used for all other SVEs) 

Find the effective longitudinal Young’s modulus of fiber 𝐸̂I
L: 

 The homogenized elastic tensor of the SVE is computed by MFH, and written 

as ℂ̂M(ℂ0, ℂI( 𝐸̂I
L; 𝐸I

T, 𝜈I
TT, 𝜈I

LT, … ), 𝛾, 𝑣I), with aspect ratio of fiber 𝛾 = 1.0. 

 𝐸̂I
L  is obtained by optimization: 

min
 𝐸̂I

L  
(|[ℂ̂M (ℂ0, ℂI(𝐸̂I

L; 𝐸I
T, 𝜈I

TT, 𝜈I
LT, … )) − ℂM]

𝑧𝑧𝑧𝑧
|). 

𝑧 – refers to the longitudinal direction of fiber. 

Optimization III  

Find the effective properties of matrix, 𝐸̂0 and 𝜈̂0, and the effective aspect ratio of fiber 𝛾: 

 The homogenized elastic tensor of the SVE is expressed in the principal directions of 

the homogenized material by MFH, and reads  

ℂ̂M
L (ℂ̂0(𝐸̂,  𝜈̂0), ℂI( 𝐸̂I

L), 𝛾, 𝑣I). 

 Solve the optimization problem 

min
𝐸̂, 𝜈̂0,𝛾

(‖ℂ̂M
L − ℂM

L ‖). 

Figure 5. Flowchart of the inverse identification of the M-T model for one SVE.

anisotropic apparent elasticity tensor CM with ĈM. The inverse resolution is summarized in Fig. 5,
and the different steps are detailed in the following paragraphs.

3.3.1. The anisotropy of CM and ĈM Let the three principal directions of the homogenized material
be denoted by x′, y′ and z′, with the material principal direction z′ identical to the z-direction of the
SVEs, and which refers to the longitudinal direction “L” along the fiber direction. The feature of
the homogenized elastic tensor CM in its matrix form CM, Eq. (18), indicates two kinds of possible
material anisotropy:

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



18 L. WU ET AL.

 

x 

x’ 

y’ y 

θ 

(a) Orthogonal
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anisotropy

Figure 6. Anisotropic material system, with x′ − y′ referring to the material coordinates and x− y to the
SVE coordinates.

• Orthogonal anisotropy, see Fig. 6(a), for which the principal material directions x′ and y′

are orthogonal to each other, and a rotation angle θ has to be defined between the material
coordinates x′ − y′ and the SVE coordinates x− y.

• Monoclinic anisotropy, see Fig. 6(b), for which the principal material directions x′ and y′ are
not orthogonal to each other but separated by an angle α 6= 90o, in which case the rotation
angle θ between material coordinates x′ − y′ and SVE coordinates x− y refers to the y-
direction.

The rotation angle θ defines a 6× 6-rotation matrixRRR(θ), such that

CL
M = RRRT(θ)CMRRR(θ) , (33)

where CL
M is the matrix form of a homogenized elasticity tensor expressed in its local material

coordinates. This rotation angle θ results from an optimization problem, which reads

min
θ∈[0o,90o)

(|CL
M16|+ |CL

M26|+ |CL
M36|+ |CL

M45|) , (34)

where CL
M16, CL

M26, CL
M36 and CL

M45 are four entries of CL
M, see Eq. (18). The optimum value of Eq.

(34) reaches zero when the homogenized material properties are orthogonal anisotropic.
In this paper, considering more than 12000 realizations of CM corresponding to more than 12000

SVE realizations of size 25× 25× 1µm3, Eq. (34) always reaches 0 or a value which is several
orders of magnitude lower than the diagonal entries CL

M. This means that either α = 90o or α ≈ 900,
see Fig. 6(b), and that the homogenized behavior can be approximated by an orthogonal anisotropic
material.

3.3.2. Introduction of the inverse identification Since each realization of CM is associated to a SVE
realization, which is characterized by a given volume fraction of inclusions vI, a CM is associated
to a volume fraction vI. Moreover, following the argumentation in Section 3.3.1, the rotation angles
vector θθθ can be reduced to an angle θ, which can be determined by solving the optimization problem
(34). Hence, with given values of vI and θ the general inverse problem (32) is simplified for UD
composite materials as

ĈM(̂I, Ĉ0, ĈI; vI, θ) ≈ CM , (35)
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Figure 7. Illustration of the inverse identification of mean-field homogenization model for UD composite
materials.

where Ĉ0 and ĈI are the effective elasticity tensors of matrix and inclusion, respectively. The
effective inclusion geometry Î together with θ reflect the distribution of unidirectional fibers in the
matrix. Figure 7 illustrates the simplified inverse problem for UD composites.

In fact, defining ad hoc elasticity tensors of the phases is really common in MFH, especially for
nonlinear analyzes in which a Linear Comparison Composite (LCC) is usually defined depending on
the adopted scheme. In particular, variational schemes of MFH define the effective elastic tensors
of phases by minimizing the difference between the energy of the homogenized system and that
of the real system. In our problem, ĈM ≈ CM is equivalent to state that φ̂ ≈ φ in Eq. (31), cf. the
discussion in Section 3.2.

Using the value of θ obtained from Eq. (34), we can write ĈM and CM in their local material
principal coordinates, and the effective elasticity tensors of the matrix and inclusion phases can be
identified through a simplified optimization problem, which reads

min
Î,Ĉ0,ĈI

‖ĈL
M(̂I, Ĉ0, ĈI; vI)−CL

M‖ , (36)

where ‖ · ‖ refers to the Frobenius norm. Note that, for each realization, vI is a known value
associated to the SVE from which CL

M is computed. The arguments of this optimization problem
(36) can be further simplified with the following specializations:

• In the real material system whose micro-structure was statistically studied in [25], the fibers
have the shape of circular cylinders and are randomly distributed in the matrix. In the effective
material system, we use isotropically distributed right elliptic cylinders to imitate the real
system, see Fig 7. Therefore, the shape of the effective inclusions is defined by the semi-axes
a and b of their elliptic cross section, and in order to characterize Î, only one parameter is
needed and is defined by γ = b/a. The effective inclusions shape is thus denoted by Î(γ).

• For the matrix phase, we assume that the effective matrix material follows an isotropic
behavior so that Ĉ0 is defined by the effective Young’s modulus Ê0 and effective Poisson
ratio ν̂0. The effective matrix elasticity tensor is denoted by Ĉ0(Ê0, ν̂0).

• For UD-fiber reinforced composites, the material response is dominated by the behavior of
the matrix phase when transversely loaded and by that of the fiber phase when longitudinally
loaded. Therefore, in order to define the effective transverse isotropic elasticity tensor of
the fiber ĈI, we keep the original transverse-related material properties, i.e. ET

I , νTT
I , νLT

I ,
GTT

I and GLT
I , see Section 2.3, are kept as such. However, since using M-T model on UD-

fiber reinforced composites leads to the result of Voigt assumption for the response in the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



20 L. WU ET AL.

longitudinal direction, which is an upper bound for the homogenized property, in order
to obtain an accurate homogenized response with the M-T model, a reduced longitudinal
Young’s modulus ÊL

I is used instead of its original value. The effective inclusion elasticity
tensor is thus denoted by ĈI(Ê

L
I ). The reduced ÊL

I can be obtained through a simple pre-step,
which reads,

min
ÊL

I

∣∣∣[ĈM(I,C0, ĈI(Ê
L
I ); vI)−CM

]
zzzz

∣∣∣ , (37)

where [·]zzzz indexes the entry of a fourth-order tensor along the fibers direction. In Eq. (37),
ÊL

I is the only argument, all the other material parameters take their original value. Solving the
optimization problem (37) with more than 12000 realizations of CM shows that the resulting
ÊL

I is an almost constant value for all the realizations of CM, as it will be discussed in the next
Section.

According to these previous analyzes, the optimization problem (36) simplifies into

min
Ê0,ν̂0,γ

‖ĈL
M(Ê0, ν̂0, γ; vI, Ê

L
I )−CL

M‖ . (38)

The Eshelby tensor S(̂I, Ĉ0) for cylindrical inclusions required for this optimization process is
detailed in Appendix C.

3.4. The stochastic M-T model

Based on the 12740 realizations of CM obtained in Section 2.3, the inverse stochastic identification
of the M-T model, which is expressed by a series of optimization problems Eqs. (34), (37) and
(38) as developed in Section 3.3, see also Fig. 5, is performed in order to extract the geometrical
parameters θ and γ, and the effective properties ÊL

I , Ê0 and ν̂0. Practically, these optimization steps
are performed using the SciPy library of Python.

3.4.1. The reduced longitudinal Young’s modulus of fiber ÊL
I By solving the optimization problem

stated by Eq. (37), the obtained ÊL
I realizations turn out to be almost constant for all the realizations

of CM: a value ÊL
I = 222.1 GPa is found and has to be compared with the original of value 230.0

GPa. This ÊL
I = 222.1 GPa value is thus used as a known parameter in the optimization problem

stated by Eq. (38).

3.4.2. Random geometrical and material parameters of the M-T model The random apparent
elastic properties of the SVE realizations, which were represented by a random vector V ∈ R13 in
Section 2.3, are now represented by a new random vector VM-T = [vI, θ, γ, Ê0, ν̂0]T ∈ R5 obtained
by the resolution of the inverse identification of the M-T model. This random vector VM-T gathers
the random material properties, Ê0 and ν̂0, and the random micro-structural information vI, θ, and
γ†.

†In the optimization problem (34), θ is constrained in [0o, 90o) because of the periodicity of its objective function in
terms of θ. For a given value of θ, the optimization process (38) identifies the aspect ratio, γ = b/a, of the elliptic cross
section of the fictitious fibers, Fig. 7. Depending on the real fibers distribution of each SVE, the resulting value of γ could
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(d) Ê0 [MPa]
0.24 0.25 0.26 0.27 0.28 0.29 0.300

10

20

30

40

50

60

Pr
ob

ab
ilit

y 
De

ns
ity

(e) ν̂0 [−]

Figure 8. The histograms of the random micro-structure (a-c) and material (d-e) parameters of the stochastic
M-T model.

be {
γ ≤ 1.0 , if b ≤ a or
γ > 1.0 , if b > a .

(39)

In order to limit the range of γ, e.g. γ ∈ (0, 1], a simple operation is performed according to the rotational symmetry of
an elliptical cylinder: for the case of γ > 1.0, the values of a and b are exchanged and θ is set to θ + 90o. Therefore, for
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The histograms of the entries of VM-T are given in Fig. 8. Since the values of vI are directly
extracted from the SVE realizations, the related histogram, Fig. 8(a), is defined by the micro-
structure generator developed in [25]. The random variables θ and γ partly reflect the micro-structure
information of the SVEs and their histograms, see Figs. 8(b) and 8(c), are also related to the micro-
structure generator to a certain degree. Indeed, it was shown in [25] that the fibers are seldom
isotropically distributed in the matrix phase, leading to an anisotropic behavior in the two transverse
directions. The effective matrix material properties, i.e. the Young’s modulus Ê0 and the Poisson
ratio ν̂0, are close to their original values, respectively E0 = 3.2GPa and ν0 = 0.3, see Figs. 8(d)
and 8(e). However, it can be seen that Ê0 > E0 and ν̂0 < ν0.

Figure 8 shows that the distributions of all these random variables are non-Gaussian. In order not
to assume a particular distribution type, the empirical copula method will be used in Section 5 as a
stochastic model, which requires first to assess their statistical dependence. Since their distributions
are non-Gaussian, the statistical dependence of the random variables must be assessed by their
distance correlations [52]. The obtained distance correlation matrix of the five random variables
reads

dCor =



vI θ γ Ê0 ν̂0

vI 1.0 0.015 0.114 0.523 0.499

θ 1.0 0.092 0.016 0.014

γ 1.0 0.080 0.076

Ê0 symmetric 1.0 0.661

ν̂0 1.0

 . (41)

The dependency between any two of these random variables is characterized by the corresponding
entry in this distance correlation matrix (41), which indicates that they need to be treated as statistical
dependent random variables.

We need to remind that using the random vector VM-T alone is not enough to reproduce the random
apparent properties of SVEs: the constant elastic tensor of fibers, ĈI(Ê

L
I ), is still needed.

3.4.3. Discussion on the order reduction The classical statistical order reduction procedure based
on the PCA has been introduced in Section 2.4.2, where it has been applied on V , the vector
representation of the 12740 realizations of CM. It has been concluded that at least 5 random variables
(i.e. 5 dimensions) are required in order to describe the uncertainties of the homogenized meso-scale
material properties.

Table II. Reduced order p and corresponding accuracy measure δ for the random vector VM-T

p 3 4 5
δ 0.1539 0.0550 0.00

the two geometrical random variables, we have

θ ∈ [0o, 180o) and γ ∈ (0, 1.0] . (40)
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The stochastic M-T model uses the random vector VM-T = [vI, θ, γ, Ê0, ν̂0]T to compute the
uncertain homogenized meso-scale material properties. A PCA is also performed on VM-T, which
also includes 12740 realizations resulting from the inverse stochastic identification of the M-T
model, to study the possibility of further order reduction. The results of the PCA and order reduction
on VM-T are given in Table II, see Eq. (22). The results in Table II indicate that the random vector
VM-T indeed includes the variations in 5 dimensions. Therefore, the order of VM-T cannot be reduced
anymore from the aspect of accuracy in order to preserve enough information of the uncertainties.

4. VERIFICATION OF THE MICRO-MECHANICS-BASED REDUCED ORDER MODEL

In this section, the presented stochastic M-T process, whose inputs have been stochastically
identified in Section 3.4 by inverse analysis of the SVE realizations, is numerically verified with
respect to the results obtained by direct stochastic homogenization in Section 2.3. First we compare
the cumulative distributions of the stochastic M-T apparent elasticity tensor ĈM entries to the ones
of the apparent elasticity tensor CM directly obtained by computational homogenization. Then we
compare the macro-scale stress distribution in a ply realization transversely loaded.

Although, knowing the entries of VM-T from Section 3.4.2, we could build a generator of ĈM,
which will be done in the next section, for the sake of comparison and in order to avoid a
possible bias from the generator, we reproduce here an apparent elasticity tensor ĈM from each
CM realization as follows

• For a given realization of CM with a known vI, we solve the optimization problem stated by
Eqs. (34) and (38) to obtain the corresponding material parameters θ, γ, Ê0 and ν̂0 of the M-T
model.

• Using γ, Ê0 and ν̂0 together with vI and ĈI(Ê
L
I ), the corresponding ĈL

M is evaluated through
Eqs. (27) and (28).

• By using θ and the rotation Eq. (33), ĈL
M is rotated to the global coordinates, leading to ĈM.

4.1. Comparison of meso-scale apparent property distributions

We first compare the cumulative distributions of the stochastic M-T apparent elasticity tensor
ĈM entries to the ones of the apparent elasticity tensor CM directly obtained by computational
homogenization. By performing the reproduction process previously described on all the
realizations of CM, the same number of ĈM is obtained, and the matrix form ĈM of the latter can
also be represented by 13 random variables just as for CM, see Eq. (18).

Figure 9 compares the cumulative distributions of the 13 entries of CM and ĈM. A good agreement
can be seen between the corresponding entries of CM and the M-T reproduction ĈM, at the exception
of the entry ĈM66 which is less accurate, see Fig 9(c). For this entry ĈM66, its relative error is
computed by

err =
|CM66 − ĈM66|
|CM66|

, (42)

and reported statistically in Fig. 10. It can be seen that more than 50% of the samples have a relative
error lower than 0.05 and that more than 90% of the samples have a relative error lower than
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Figure 9. Cumulative distributions of entries of CM (solid lines) and of ĈM (dashed lines).
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Figure 10. The percentage of samples which have a relative error lower than the value given by the vertical
coordinate.

0.1, which remains acceptable for computational analyzes since the shearing in the cross-section
is usually not the dominant response mode.
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Figure 11. Tensile stochastic finite element analysis: discretizations of the random field (top) and of the finite
element structure (bottom).

4.2. Verification of a macro-stress analysis of a tensile test realization

A tensile test is now performed on a ply cross-section realization by using the SFEM. A composite
cross-section of 1000× 250µm2 is loaded in the transverse direction with plane strain condition
along the z-direction and plane stress condition along the y-direction. The random field of the
material properties is discretized into squares of 25× 25µm2, and the material properties of each
square are independent of the properties in the neighboring squares [25]. In order to avoid a strong
contrast of material properties, which may lead to an artificial stress concentration, smooth-step
functions are used to describe the transition of material properties at the internal boundaries of the
random field discretization [25]. The discretizations of the random field and of the finite element are
shown in Fig. 11 along with the boundary and loading conditions that are applied on the structure.
We successively consider two random material properties fields, which are

• The homogenized meso-scale properties CM obtained from computational homogenization;
• The stochastic M-T apparent elasticity tensors ĈM, which are reproduced from each CM

realization.

The macro-stress distributions σMxx of the tensile test obtained with the two kinds of random
material properties, random CM and the corresponding ĈM, are compared in Fig. 12 at the average
loading strain εMxx

= 7.2× 10−3. It can be seen that using ĈM, Fig. 12(b), preserves the same level
of uncertainty information as using CM, Fig. 12(a), in a stochastic multiscale analysis.

According to the comparisons of cumulative distributions, Fig. 9, the error study, Fig. 10, and
the macro-scale stress distribution of a tensile test, it can be concluded that the presented stochastic
M-T model is an accurate ROM. Indeed, by using the random vector VM-T = [vI, θ, γ, Ê0, ν̂0]T in the
M-T model, the apparent elastic properties of SVEs can be reproduced in an accurate way.
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Figure 12. Macro-stress σMxx distributions in the 1000× 250µm2 cross-section under transverse loading for
an average loading strain εMxx = 7.2× 10−3.

5. APPLICATION OF THE MICRO-MECHANICS REDUCED ORDER MODEL TO
STOCHASTIC FINITE ELEMENT METHOD

In Section 2 the statistical homogenized behavior of UD composites has been analyzed by
performing a stochastic homogenization of SVEs. In particular it has been shown in Section 2.4.2
that the resulting apparent elasticity tensors can be used to conduct a PCA and an order reduction.
However, in order to keep micro-structure information in the ROM, and with a view to the extension
to the nonlinear behavior, we have developed a stochastic M-T model in Section 3. In particular, it
has been shown that by using the random vector VM-T = [vI, θ, γ, Ê0, ν̂0]T in the M-T model, the
apparent elastic properties of SVEs can be reproduced in an accurate way. However this random
vector cannot be reduced anymore without loosing accuracy. In this section, we build a generator
of the random vector VM-T in order to conduct SFEM analyzes using the stochastic M-T model as
micro-mechanics ROM.

5.1. Random meso-scale material properties generation

Meso-scale material properties are obtained by a two-step process:

• The random vector VM-T is generated with its empirical distribution which is acquired based on
the inverse study of 12740 realizations of CM. In Section 3.4.2, it has been shown that the five
random variables, vI, θ, γ, Ê0 and ν̂0, of the random vector VM-T are not independent to each
others. Therefore, pseudo-random samples of dependent random variables are generated by
using their copula [42]. We need to note that the required number of realizations to construct
an accurate empirical copula depends on the number of dependent random variables or on the
order of VM-T: the more dependent random variables are involved, the more realizations are
needed. This explains the reason of using more than 12000 realizations in this work, although
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the statistical convergence of CM has already been achieved after 3000 realizations, see Fig.
4.

• From the generated vI, γ, Ê0 and ν̂0 and the constant tensor ĈI(Ê
L
I ), the ĈL

M can be computed
using the M-T model, i.e. through Eqs. (27) and (28) and then rotated to obtain ĈM using the
generated θ and Eq. (33).

In a SFEM analysis, the first step is an off-line process and the VM-T realizations are used as material
inputs of the SFEM. The second step can also be an off-line process in the context of linear finite
element analyzes, but with a view to nonlinear studies it is embedded in the finite-element as a
material law.

In order to assess the accuracy of the generation process, we generate 1000 random samples of
ĈM. The entries of the generated samples are plotted in 2D in Fig. 13 to study their distributions
and dependencies. One thousand realizations obtained from direct computational homogenizations
are also plotted in Fig. 13 to serve as a reference. Only 1000 generated samples are considered
for a better visualization. Since, CM has 13 random entries, it is not possible to show all the joint
distributions between any two entries, so only part of the information is presented in Fig. 13. A good
agreement in the joint distributions can be seen between the generated samples and their references
in most of the cases, Figs. 13(a)-13(f). A lower accuracy is observed in Fig. 13(g) as expected
according to the study in Section 4.1, since the stochastic M-T model provides a lower accuracy for
CM66; Fig. 13(h) also falls short of accuracy. However, the values of these entries are much lower
than the other entries, and their effects in macro-scale analyzes are limited.

5.2. SFEM analysis of a ply under bending

In order to illustrate the applicability of the stochastic MT in the context of SFEM, we submit a
composite cross-section of 875× 250µm2 to a three-point bending test, see Fig. 14. Plane-strain
conditions are assumed along the fiber direction, i.e. along the z-direction. A displacement δ is
applied at the upper mid-length resulting in a loading force F along the y-direction.

The random field and finite element discretizations are illustrated in Fig. 14. In order to improve
the efficiency of the SFEM analysis, the random field uses two different domain sizes: On the one
hand, the random field of material properties is discretized into domains of 25× 25× 1µm3 in the
middle of the cross-section; On the other hand, the random field of material properties is discretized
into domains of 125× 125× 1µm3 at both extremities of the cross-section. The 25× 25× 1µm3-
domain size corresponds to that of the SVE studied in Section 2.3, so that the random vector
VM-T can be directly used as input of the M-T model. However, for the 125× 125× 1µm3-domain
size, proceeding as such would over-estimate the uncertainties since the random vector VM-T was
defined for a stochastic content of SVE of size 25× 25× 1µm3. Therefore, relying on the fact that
all the 25× 25× 1µm3-SVEs are independently generated micro-structures, and that their spatial
correlation does no have to be considered, see discussion in [25], we perform a two-step stochastic
homogenization: 25 random vector VM-T are generated for each domain of size 125× 125× 1µm3

and a computational homogenization is performed on the latter to extract a CM realization. The
relevance of the 2-step computational homogenization to capture the stochastic content with
accuracy was discussed in [25]. Note that we could also have performed the inverse stochastic
identification of the M-T model after having performed the computational homogenization on the
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125× 125× 1µm3-SVE in order to be able to generate the two kinds of random vectors VM-T for
the two different SVE sizes, and such an approach will be used in nonlinear analyzes for which
offline computation of the material response is not possible. Monte-Carlo simulations can then
be conducted on the 3-point bending sample to study the effect of material uncertainties on the
structural response.

Figure 15 reports the histograms of the homogenized tensile stress σMxx at the mid-length
lower face reached in each sample and the applied loading F per unit thickness for a maximum
displacement δ = 8.0µm at the loading point. Note that σMxx is not the maximum stress reached in
the different phases of the composite material. This figure shows that the stochastic Mori-Tanaka
model predicts uncertainties in the structural response and in particular in the maximum tensile
stress σMxx of the composite ply, which explains the discrepancy observed during failure analysis
of composites.

In order to assess the performance of the numerical methodology, we can sort the computational
times as follows

• The largest computation time results from the computational homogenization of the SVEs
as performed in Section 2. A typical computational time ranges from 1.5 s for a SVE length
lSVE = 25µm to 1250 s for a SVE length of lSVE = 125µm‡, per SVE realization, with more
than 10000 realization required.

• The inverse identification process developed in Section 3 requires a fraction of second per
SVE, independently of the SVE length. Note that both the SVE resolution and the inverse
identification process can be achieved in parallel easily since the SVE realizations are
independent from each other.

• Building the copula from the 12740 realizations of ĈM obtained though the inverse
identification process requires around 2 s and is one-time operation. These latter three
operations are off-line operations.

• Finally, the time requires to generate a random vector field VM-T for one realization of
the SFEM problem illustrated in Fig. 14 is about 70 s, time which includes the 2-step
homogenization performed for 125µm-long grid elements.

6. CONCLUSIONS

A micro-mechanics based order reduction procedure was presented in this work to reduce the
number of random variables required to describe the random apparent material properties of SVEs.
The presented procedure is based on the mean-field homogenization method, especially the Mori-
Tanaka model, and focuses on inclusions reinforced matrix composites, in particular elastic UD
fiber reinforced matrix.

A reduced number of full-field simulations of SVE realizations was required to define the
statistical apparent or homogenized meso-scale properties, which can be represented by a random
vector V –here the anisotropic elastic tensor. Then, an inverse stochastic identification process was

‡As explained, in this paper we had recourse to a 2-step homogenization for those larger SVEs in order to avoid this extra
cost

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



INVERSE MICROMECHANICS FOR STOCHASTIC ROM OF UD COMPOSITES 29

performed from the apparent elastic properties in order to define the random vector VM-T of the
effective elastic properties of phases and micro-structure information of the Mori-Tanaka model. In
order to conduct SFEM, a generator of the random vector VM-T was constructed using the copula
method.

We have then compared the meso-scale stochastic properties obtained directly by stochastic
computational homogenization and by the stochastic Mori-Tanaka model, and we have shown
that the stochastic Mori-Tanaka model respects the cumulative distribution and dependence of the
anisotropic homogenized elasticity tensor components.

In this work, the uncertain material response was propagated from the micro-scale to the macro-
scale under a linear elastic assumption by combining the generator of random vector VM-T of the
effective elastic properties of phases and micro-structure information of the Mori-Tanaka model and
SFEM. Although the copula method could also have been used to build a generator of the random
vector V obtained by the stochastic computational homogenization, the number of realizations
required as input to construct this empirical copula is an exponential function of the number of
random variables involved. A dimension reduction should thus be used using the PCA analysis. It
was shown in this work that the presented micro-mechanics procedure has the same order reduction
effect as applying PCA on V in which case the number of needed random variables is reduced from
13 to 5. However, the micro-mechanics based order reduction is more prospective than the PCA
for a future extension to nonlinear behaviors. Indeed, when considering plasticity and/or damage
and/or failure, a direct description of the meso-scale response cannot be stated in the form of a
single material tensor. Therefore, the responses obtained from computational homogenizations of
SVEs will not only demand a complex material model to be defined, but also a lot of material
parameters, which are surely to be random variables, to be inferred. Since the stochastic Mori-
Tanaka model is based on micro-mechanics and takes the information of the micro-structure into
account, it is expected to simplify the stochastic description of nonlinear behaviors in a future work.
In particular, in the case of damaging behavior, the micro-mechanics model will be based on the
non-local incremental-secant Mori-Tanaka model, which avoids mesh dependency at the macro-
scale through the definition of a characteristic length scale [37].
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A. TENSORIAL OPERATIONS AND NOTATIONS

• Dots and colons are used to indicate tensor products contracted over one and two indices
respectively:

uuu · vvv = uivi, (aaa · uuu)i = aijuj ;

(aaa · bbb)ij = aikbkj , aaa : bbb = aijbji ;

(C : aaa)ij = Cijklalk, (C : D)ijkl = CijmnDnmkl . (43)

• Dyadic products are designated by ⊗:

(uuu⊗ vvv)ij = uivj , (aaa⊗ bbb)ijkl = aijbkl . (44)

• Symbols 111 and I designate the second- and fourth-order symmetric identity tensors
respectively:

111ij = δij , Iijkl =
1

2
(δikδjl + δilδjk) , (45)

where δij = 1 if i = j, δij = 0 if i 6= j.

B. CONSTRAINT AND KINEMATIC MATRICES FOR PBCS

Using Eq. (6) allows relating the fluctuation u′ to the nodal unknowns on the boundary gathered
in the nodal vector u±m , where the superscript “±” refers to all the boundary nodes, and Eq. (16)
becomes

u±m − SEM −Auam = 0 , (46)

where A is the constraint coefficients matrix constructed from the values of the interpolation bases
N i
k (x−), where aij with j = 1, ..., n+ 1 are gathered under the nodal vector uam of size 9(n+ 1)

(3 surfaces ∂ωi and three degrees of freedom per term aij), and where S is the assembly matrix of
boundary nodal positions x± from xref

S3nb×9 =



x±
T

x 01×nb 01×nb

x±
T

y 01×nb 01×nb

x±
T

z 01×nb 01×nb

01×nb x±
T

x 01×nb

01×nb x±
T

y 01×nb

01×nb x±
T

z 01×nb

01×nb 01×nb x±
T

x

01×nb 01×nb x±
T

y

01×nb 01×nb x±
T

z



T

, (47)
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where nb is the number of boundary nodes.
The set of Eqs. (13) is then rewritten by considering as degrees of freedom um =

[uI
T

m u±
T

m ua
T

m ]T , where uIm are the nodal degrees of freedom of the nI nodes not lying on the
boundary ∂ω. The matrices thus read C =

[
03nb×3∗nI I3nb×3nb −A3nb×9(n+1)

]
and Km = KII

m KI±
m 03nI×9(n+1)

K±Im K±±m 03nb×9(n+1)

09(n+1)×3nI 09(n+1)×3nb 09(n+1)×9(n+1)

, where the micro-scale BVP stiffness matrix has

been decomposed in terms of internal and boundary degrees of freedom. More details about the
implementation can be found in [45].

C. ESHELBY’S TENSOR FOR AN ELLIPTIC CYLINDER IN AN ISOTROPIC MEDIUM

The Eshelby’s tensor satisfies minor symmetries,

Sijkl = Sjikl = Sijlk i, j, k, l = 1, 2, 3 . (48)

However, it does not satisfy major symmetry. For an elliptic cylinder of cross-section semi axes a
and b, with a→ b, a and b correspond to the directions 1→ 2 and the longitudinal direction of the
cylinder with 3. In an isotropic medium, the nonzero terms of the Eshelby’s tensor S read [50]

S1111 =
1

2(1− ν)

[
b2 + 2ab

(a+ b)2
+ (1− 2ν)

b

a+ b

]
(49)

S2222 =
1

2(1− ν)

[
a2 + 2ab

(a+ b)2
+ (1− 2ν)

a

a+ b

]
S1122 =

1

2(1− ν)

[
b2

(a+ b)2
− (1− 2ν)

b

a+ b

]
S2233 =

1

2(1− ν)

2νa

a+ b

S2211 =
1

2(1− ν)

[
a2

(a+ b)2
− (1− 2ν)

a

a+ b

]
S1212 =

1

2(1− ν)

[
a2 + b2

2(a+ b)2
+

(1− 2ν)

2

]
S1133 =

1

2(1− ν)

2νb

a+ b

S2323 =
a

2(a+ b)

S3131 =
b

2(a+ b)
,

where ν is the Poisson ratio of the medium (here the matrix).
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Figure 13. Comparison of the joint distributions of the homogenized elastic properties from computational
homogenization and micro-mechanics-based generator.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



36 L. WU ET AL.

 

F,   

Figure 14. Stochastic finite element analysis of a ply under bending: discretizations of the random field (top)
and of the finite element structure (bottom).
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Figure 15. The histograms of the stochastic bending test (1141 samples) for a displacement δ = 8.0µm: (a)
The maximum tensile stress σMxx reached in each sample; and (b) The applied loading F per unit thickness.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme


