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We introduce in this paper a generalization of the pointwise Hölder spaces. We give alternative definitions of these spaces, look at
their relationship with the wavelets, and introduce a notion of generalized Hölder exponent.

1. Introduction

A real-valued function 𝑓 defined on R𝑑 belongs to the
uniformHölder spaceΛ𝛼(R𝑑) (𝛼 > 0) if there exist a constant𝐶 and a polynomial 𝑃 of degree less than 𝛼 such that

󵄨󵄨󵄨󵄨𝑓 (𝑥 + ℎ) − 𝑃 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝐶 |ℎ|𝛼 , (1)

for all 𝑥 ∈ R𝑑 and ℎ small enough. The supremum of all
these values 𝛼 is called the global Hölder exponent of 𝑓. One
can naturally define the pointwise version of these spaces: a
continuous function𝑓 belongs to the pointwise Hölder spaceΛ𝛼(𝑥0) if and only if there exist 𝐶, 𝐽 > 0 and a polynomial 𝑃
of degree less than 𝛼 such that

sup
|ℎ|≤2−𝑗

󵄨󵄨󵄨󵄨𝑓 (𝑥0 + ℎ) − 𝑃 (ℎ)󵄨󵄨󵄨󵄨 ≤ 𝐶2−𝑗𝛼, (2)

for all 𝑗 ≥ 𝐽. Of course, the supremum of all these values 𝛼 is
called the Hölder exponent of 𝑓 at 𝑥0. If 𝑓 is differentiable at𝑥0, theHölder exponent of𝑓 at𝑥0 is at least 1.The fact that the
constant𝐶 appearing in (1) is uniform forΛ𝛼(R𝑑) implies that
the uniform Hölder exponent is not necessarily the infimum
of the pointwise Hölder exponents. A classical example is the
function sinc(1/𝑥) = 𝑥 sin(1/𝑥), which is 𝐶1 at the origin,𝐶∞ everywhere else, while its global Hölder exponent is 1/2.

In [1, 2], the properties of generalized uniform Hölder
spaces have been investigated. The idea underlying the
definition is to replace the exponent 𝛼 of the usual spaces

Λ𝛼(R𝑑) [3, 4] with a sequence 𝜎 satisfying some conditions.
The so-obtained spacesΛ𝜎(R𝑑) generalize the spacesΛ𝛼(R𝑑);
the spaces Λ𝜎(R𝑑) are actually the spaces 𝐵1/𝜎∞,∞(R𝑑), but they
present specific properties (induced by 𝐿∞-norms) when
compared to the more general spaces 𝐵1/𝜎𝑝,𝑞 (R𝑑) studied in [5–
10], for example. Indeed, it is shown in [1, 2] that most of
the usual properties holding for the spaces Λ𝛼(R𝑑) can be
transposed to the spaces Λ𝜎(R𝑑).

Here, we introduce the pointwise version of these spaces:
the spaces Λ𝜎,𝑀(𝑥0), with 𝑥0 ∈ R𝑑. As in [1, 2], the idea is
again to replace the sequence (2−𝑗𝛼)𝑗 appearing in (2) with
a positive sequence (𝜎𝑗)𝑗 such that 𝜎𝑗+1/𝜎𝑗 and 𝜎𝑗/𝜎𝑗+1 are
bounded (for any 𝑗); the number𝑀 stands for the maximal
degree of the polynomial (this degree cannot be induced
by a sequence 𝜎). By doing so, one tries to get a better
characterization of the regularity of the studied function 𝑓;
a usual choice is to replace 2−𝑗𝛼 with 𝑗2−𝑗𝛼 (see, e.g., [11–13]).
For example, it is well known that, for the Brownian motion𝐵, there exist 𝐶, 𝐽 > 0 such that

sup
|ℎ|≤2−𝑗

|𝐵 (𝑥 + ℎ) − 𝐵 (𝑥)| ≤ 𝐶√𝑗2−𝑗/2, (3)

for any 𝑗 ≥ 𝐽 almost surely (see, e.g., [14, 15]). More generally,
the behavior of the oscillations of 𝑓(𝑥 + ℎ) − 𝑓(𝑥) as ℎ tends
to 0 can reveal specific local behaviors such as approximate
similarities [11]. Generalizations of the pointwise Hölder
spaces have already been proposed, but, to our knowledge,
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the definition we give here is the most general version and
leads to the sharpest results (in particular, the regularity
spaces introduced in [13] are a special case of the spacesΛ𝜎,𝑀(𝑥0); see Definition 2 and Remark 4).These spaces could
also be useful in the study of singularities of PDEs where the
function is smooth near 𝑥0 except on small sets of points
(such a situation could bemet in the case of theNavier-Stokes
equations in three dimensions [16]).

As a first application, we introduce here the sufficient
tools to develop amultifractal formalismbased on thewavelet
characterization (Theorem 16), in the same spirit as in [12].
The theory presented here also contributes to enlightening
the reasons why the customary proofs for the classical spacesΛ𝛼(𝑥0) work.

This paper is organized as follows. We first give the
definitions leading to generalized pointwise Hölder spacesΛ𝜎,𝑀(𝑥0) and prove that, under some general conditions, the
polynomials appearing in the definition are independent of
the scale, as is the case with the usual Hölder spaces. Next,
we give some alternative definitions of the spaces Λ𝜎,𝑀(𝑥0),
mimicking the different possible definitions ofΛ𝛼(𝑥0). One of
the nicest properties of the Hölder spaces is their relationship
with the wavelet theory given in [12]; we show here that
this result still holds in the general case. Finally, we give
some conditions underwhich one gets embedded generalized
pointwise Hölder spaces and define a generalized pointwise
Hölder exponent.

Throughout this paper, 𝐵 denotes the open unit ball of
R𝑑 centered at the origin; moreover, we set 𝐵𝑗 = 2−𝑗𝐵. The
floor function is denoted by [⋅] and P[𝛼] designates the set of
polynomials of degree at most [𝛼]. We use the letter 𝐶 for a
generic positive constant whose valuemay be different at each
occurrence.

2. Pointwise Generalized Hölder Spaces

To present the generalized pointwise Hölder spaces, we
first need to recall some notions concerning the admissible
sequences. After having introduced the definitions, we point
out a major difference between the usual spaces and the
generalized ones: the polynomial arising in the definition
depends on the scale. It is then natural to look under which
conditions this constraint can be dropped.

2.1. Definition. The generalization of the Hölder spaces we
propose here is based on the notion of admissible sequence
[10].

Definition 1. A sequence 𝜎 = (𝜎𝑗)𝑗∈N of real positive numbers
is called admissible if there exists a positive constant 𝐶 such
that

𝐶−1𝜎𝑗 ≤ 𝜎𝑗+1 ≤ 𝐶𝜎𝑗, (4)

for any 𝑗 ∈ N.

If 𝜎 is such a sequence, we set

Θ𝑗 = inf
𝑘∈N

𝜎𝑗+𝑘𝜎𝑘 ,
Θ𝑗 = sup

𝑘∈N

𝜎𝑗+𝑘𝜎𝑘 ,
(5)

and we define the lower and upper Boyd indices as follows:

𝑠 (𝜎) = lim
𝑗

log2Θ𝑗𝑗 ,

𝑠 (𝜎) = lim
𝑗

log2Θ𝑗𝑗 .
(6)

Since (logΘ𝑗)𝑗∈N is a subadditive sequence, such limits always
exist [17]. The following relations about such sequences are
well known (see, e.g., [1]). If 𝜎 is an admissible sequence, let𝜀 > 0; there exists a positive constant 𝐶 such that

𝐶−12𝑗(𝑠(𝜎)−𝜀) ≤ Θ𝑗 ≤ 𝜎𝑗+𝑘𝜎𝑘 ≤ Θ𝑗 ≤ 𝐶2
𝑗(𝑠(𝜎)+𝜀), (7)

for any 𝑗, 𝑘 ∈ N. Let 𝜎 be an admissible sequence:

(i) if 𝑠(𝜎) > 0, then there exists a positive constant𝐶 such
that, for any 𝐽 ∈ N,

∞∑
𝑗=𝐽

𝜎−1𝑗 ≤ 𝐶𝜎−1𝐽 , (8)

(ii) if 𝑛 ∈ N satisfies 𝑠(𝜎) < 𝑛, then there exists a positive
constant 𝐶 such that, for any 𝐽 ∈ N,

𝐽∑
𝑗=1

2𝑗𝑛𝜎−1𝑗 ≤ 𝐶2𝐽𝑛𝜎−1𝐽 . (9)

In this paper, 𝜎 will always stand for an admissible sequence
and𝑀 for a natural number, possibly zero.

Starting from the definitions of the pointwise Hölder
spaces Λ𝛼(𝑥0) (with 𝛼 > 0) and the generalized uniform
Hölder spaces Λ𝜎(R𝑑) introduced in [1], we are naturally led
to the following definition.

Definition 2. Let 𝑥0 ∈ R𝑑; a continuous function 𝑓 belongs
to Λ𝜎,𝑀(𝑥0) if there exist 𝐶, 𝐽 > 0 such that

inf
𝑃∈P[𝑀]

󵄩󵄩󵄩󵄩𝑓 − 𝑃󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶𝜎𝑗, (10)

for any 𝑗 ≥ 𝐽.
We trivially have the following alternative definition forΛ𝜎,𝑀(𝑥0).

Definition 3. A continuous function 𝑓 belongs to Λ𝜎,𝑀(𝑥0) if
there exist 𝐶, 𝐽 > 0 such that, for any 𝑗 ≥ 𝐽, there exists a
polynomial 𝑃𝑗 ∈ P[𝑀] for which

sup
ℎ∈𝐵𝑗

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥0 + ℎ) − 𝑃𝑗 (𝑥0 + ℎ)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶𝜎𝑗. (11)
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Remark 4. In [13], a generalization of the pointwise Hölder
spaces is introduced by replacing the admissible sequence
appearing in Definition 2 by a modulus of smoothness (more
precisely, the definition is based on (34)). As shown in [1],
given a modulus of smoothness 𝜔, 𝜎𝑗 = 𝜔(2−𝑗) defines an
admissible sequence. The converse is not necessarily true:
only the decreasing admissible sequences converging to 0 give
rise to a modulus of continuity [1].

Sometimes, wewill also need to impose a slightly stronger
condition than continuity to the function.

Definition 5. A function 𝑓 is uniformly Hölder if there exists𝜀 > 0 such that 𝑓 ∈ Λ𝜀(R𝑑).
2.2. Independence of the Polynomial from the Scale. It is
important to remark that the polynomial occurring in
inequality (11) is a function of the scale 𝑗. However, for the
classical Hölder spaces, such polynomial is independent of 𝑗.
Here, we look under which conditions the independence still
holds in the generalized case, that is, under which conditions𝑃𝑗 = 𝑃 ∈ P[𝑀] for any 𝑗 ≥ 𝐽. In this section, 𝑓 will
designate a continuous function of 𝐿∞loc(R𝑑) (although the
continuity hypothesis is very often dropped when dealing
with𝐿∞ norms,we keep it here to ensure the equivalencewith
Definition 3).

We will need the following Markov inequality (see, e.g.,
[18]): Let 𝑝 ∈ (0,∞], 𝑘 ∈ {1, . . . , 𝑑}, and 𝑆 ⊂ R𝑑 be a bounded
convex set with nonempty interior; one has󵄩󵄩󵄩󵄩𝐷𝑘𝑃󵄩󵄩󵄩󵄩𝐿𝑝(𝑆) ≤ 𝐶𝑛2 ‖𝑃‖𝐿𝑝(𝑆) , (12)

for any 𝑃 ∈ P[𝑛], where𝐷𝑘𝑃 denotes the partial derivative of𝑃 following the 𝑘th variable and where 𝐶 depends only on 𝑆
and 𝑝. If 𝑥0 ∈ R𝑑, we thus have

󵄩󵄩󵄩󵄩𝐷𝑘𝑃󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝑟𝐵) ≤ 𝐶𝑛
2

𝑟 ‖𝑃‖𝐿∞(𝑥0+𝑟𝐵) , (13)

for any 𝑟 > 0 and any 𝑃 ∈ P[𝑛], where 𝐶 is a constant (and
does not depend on 𝑃, 𝑛, or 𝑟).
Lemma 6. If 𝑓 ∈ Λ𝜎,𝑀(𝑥0) with𝑀 < 𝑠(𝜎−1), the sequence of
polynomials (𝑃𝑗)𝑗 occurring in (11) satisfies󵄩󵄩󵄩󵄩󵄩𝐷𝛽𝑃𝑘 − 𝐷𝛽𝑃𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑘) ≤ 𝐶2𝑗|𝛽|𝜎𝑗, (14)

for any multi-index 𝛽 such that |𝛽| ≤ 𝑀 and 𝑘 ≥ 𝑗 ≥ 𝐽.
In particular, (𝐷𝛽𝑃𝑗(𝑥0))𝑗 is a Cauchy sequence for any

multi-index 𝛽 such that |𝛽| ≤ 𝑀.

Proof. Using the Markov inequality, we get󵄩󵄩󵄩󵄩󵄩𝐷𝛽𝑃𝑗 − 𝐷𝛽𝑃𝑗+1󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗+1)
≤ 𝐶2|𝛽|𝑗 󵄩󵄩󵄩󵄩󵄩𝑃𝑗 − 𝑃𝑗+1󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗+1)
≤ 𝐶2|𝛽|𝑗 (󵄩󵄩󵄩󵄩󵄩𝑃𝑗 − 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗+1) + 󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑃𝑗+1󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗+1))
≤ 𝐶2|𝛽|𝑗 (𝜎𝑗 + 𝜎𝑗+1) ≤ 𝐶󸀠2|𝛽|𝑗𝜎𝑗,

(15)

for any 𝛽 such that |𝛽| ≤ 𝑀. Therefore, if 𝑘 satisfies 𝑘 ≥ 𝑗 ≥ 𝐽,
one gets

󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃𝑗 − 𝑃𝑘)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑘)
≤ 𝑘−1∑
𝑙=𝑗

󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃𝑙 − 𝑃𝑙+1)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑘)

≤ 𝑘−1∑
𝑙=𝑗

󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃𝑙 − 𝑃𝑙+1)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑙+1) ≤ 𝐶
𝑘−1∑
𝑙=𝑗

2|𝛽|𝑙𝜎𝑙
≤ 𝐶2|𝛽|𝑗𝜎𝑗,

(16)

which is the desired result.

Lemma 7. If 𝑓 ∈ Λ𝜎,𝑀(𝑥0) with𝑀 < 𝑠(𝜎−1) and (𝑃𝑗)𝑗 is a
sequence of polynomials satisfying inequality (11), then, for any
multi-index 𝛽 such that |𝛽| ≤ 𝑀, the limit

𝑓𝛽 (𝑥0) = lim
𝑗→∞
𝐷𝛽𝑃𝑗 (𝑥0) (17)

is independent of the chosen sequence (𝑃𝑗)𝑗.
Proof. If (𝑄𝑗)𝑗 is another sequence of polynomials satisfying
inequality (11), one gets

󵄨󵄨󵄨󵄨󵄨𝐷𝛽𝑄𝑗 (𝑥0) − 𝑓𝛽 (𝑥0)󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨𝐷𝛽𝑄𝑗 (𝑥0) − 𝐷𝛽𝑃𝑗 (𝑥0)󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝐷𝛽𝑃𝑗 (𝑥0) − 𝑓𝛽 (𝑥0)󵄨󵄨󵄨󵄨󵄨 .

(18)

One has, using the Markov inequality,

󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃𝑗 − 𝑄𝑗)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶2|𝛽|𝑗 󵄩󵄩󵄩󵄩󵄩𝑃𝑗 − 𝑄𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)
≤ 𝐶2|𝛽|𝑗 (󵄩󵄩󵄩󵄩󵄩𝑃𝑗 − 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) + 󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑄𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗))
≤ 𝐶2|𝛽|𝑗𝜎𝑗 󳨀→ 0,

(19)

as 𝑗 → ∞, which ends the proof.

For such functions, we can introduce the notion of Peano
derivative (see, e.g., [13, 19] for more information).

Definition 8. Under the hypothesis of Lemma 7, the 𝛽th
Peano derivative of 𝑓 at 𝑥0 is 𝑓𝛽(𝑥0) = lim𝑗𝐷𝛽𝑃𝑗(𝑥0).

We can now obtain the result concerning the indepen-
dence of the polynomials.

Theorem 9. If𝑀 < 𝑠(𝜎−1), then 𝑓 ∈ Λ𝜎,𝑀(𝑥0) if and only if
there exist𝐶 > 0 and a unique polynomial 𝑃 ∈ P[𝑀] such that

󵄩󵄩󵄩󵄩𝑓 − 𝑃󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶𝜎𝑗, (20)

for any 𝑗 sufficiently large.
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Proof. Let (𝑃𝑗)𝑗 be a sequence of polynomials for which
inequality (11) is satisfied and set

𝑃 (𝑥) = ∑
|𝛽|≤𝑀

𝑓𝛽 (𝑥0) (𝑥 − 𝑥0)
𝛽

𝛽! . (21)

One has
󵄩󵄩󵄩󵄩󵄩𝑃 − 𝑃𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)
=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∑|𝛽|≤𝑀 (𝑓𝛽 (𝑥0) − 𝐷

𝛽𝑃𝑗 (𝑥0)) (𝑥 − 𝑥0)
𝛽

𝛽!
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)

≤ ∑
|𝛽|≤𝑀

󵄨󵄨󵄨󵄨󵄨𝑓𝛽 (𝑥0) − 𝐷𝛽𝑃𝑗 (𝑥0)󵄨󵄨󵄨󵄨󵄨 2−𝑗|𝛽|.
(22)

Since Lemma 6 implies

󵄨󵄨󵄨󵄨󵄨𝑓𝛽 (𝑥0) − 𝐷𝛽𝑃𝑗 (𝑥0)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝑗|𝛽|𝜎𝑗, (23)

for any 𝑗 sufficiently large, we have

󵄩󵄩󵄩󵄩󵄩𝑃 − 𝑃𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶𝜎𝑗. (24)

This inequality can be used to obtain

󵄩󵄩󵄩󵄩𝑓 − 𝑃󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑃𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)
+ 󵄩󵄩󵄩󵄩󵄩𝑃𝑗 − 𝑃󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶𝜎𝑗,

(25)

which shows the existence of 𝑃.
If two polynomials 𝑃,𝑄 ∈ P[𝑀] satisfy inequality (20),

then

‖𝑃 − 𝑄‖𝐿∞(𝑥0+𝐵𝑗) ≤ 󵄩󵄩󵄩󵄩𝑃 − 𝑓󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)
+ 󵄩󵄩󵄩󵄩𝑓 − 𝑄󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶𝜎𝑗,

(26)

but if 𝑃 ̸= 𝑄,
‖𝑃 − 𝑄‖𝐿∞(𝑥0+𝐵𝑗) ≥ 𝐶2−𝑗𝑀, (27)

for any 𝑗 sufficiently large, so that 2𝑗𝑀𝜎𝑗 does not tend to zero.
The polynomial 𝑃 in inequality (20) is the Taylor expan-

sion of 𝑓, where the derivative is replaced with the Peano
derivative.

The spaces Λ𝜎,𝑀(𝑥0) are a generalization of the usual
Hölder spaces, defined by (2).

Remark 10. Let 𝛼 ∈ (0,∞); the sequence 𝜎 = (2−𝑗𝛼)𝑗∈N is
an admissible sequence with 𝑠(𝜎) = 𝑠(𝜎) = −𝛼, 𝑠(𝜎−1) =𝑠(𝜎−1) = 𝛼. Therefore, if 𝛼 is not a natural number, we have

Λ𝛼 (𝑥0) = Λ𝜎,[𝛼] (𝑥0) = Λ𝜎,[𝑠(𝜎−1)] (𝑥0) . (28)

It is easy to check that the polynomial satisfying (2) is
unique if and only if 𝛼 ∉ N. If 𝛼 ∈ N, one rather imposes 𝑃 ∈
P[𝛼 − 1] in order to obtain the uniqueness of the polynomial
(one easily verifies that both definitions lead to the same
spaces), so that Λ𝛼(𝑥0) = Λ𝜎,𝑠(𝜎−1)−1(𝑥0), with 𝜎𝑗 = 2−𝑗𝛼.
We will use the modified version in the sequel, ensuring the
uniqueness of the polynomial.

The following proposition rigorously expresses the idea
that the space Λ𝜎,𝑀(𝑥0) associated with a sequence (𝜎𝑗)𝑗 that
decreases faster than 2−𝑗𝑀 is included in the usual Hölder
space Λ𝑀(𝑥0).
Corollary 11. If 𝑠(𝜎−1) > 𝑀, one has Λ𝜎,𝑀(𝑥0) ⊂ Λ𝑀(𝑥0).
Proof. Let 𝑓 ∈ Λ𝜎,𝑀(𝑥0), 𝑃 be defined as in Theorem 9, that
is,

𝑃 (𝑥) = ∑
|𝛽|≤𝑀

𝑓𝛽 (𝑥0) (𝑥 − 𝑥0)
𝛽

𝛽! , (29)

and let us set

𝑄 (𝑥) = ∑
|𝛽|≤𝑀−1

𝑓𝛽 (𝑥0) (𝑥 − 𝑥0)
𝛽

𝛽! . (30)

One gets
󵄩󵄩󵄩󵄩𝑓 − 𝑄󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 󵄩󵄩󵄩󵄩𝑓 − 𝑃󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)

+ ‖𝑃 − 𝑄‖𝐿∞(𝑥0+𝐵𝑗)
≤ 𝐶𝜎𝑗 + 𝐶2−𝑗𝑀 ≤ 𝐶󸀠2−𝑗𝑀,

(31)

since 2𝑗𝑀𝜎𝑗 tends to zero.
3. Alternative Definitions of
Generalized Hölder Spaces

Since the uniform spaces Λ𝜎(R𝑑) can be defined via finite
differences or convolutions, one can wonder if such charac-
terizations also hold for the pointwise version of these spaces.

3.1. Characterization in Terms of Finite Differences. As usual,Δ𝑛ℎ𝑓 will stand for the finite difference of order 𝑛: given a
function 𝑓 defined on R𝑑 and 𝑥, ℎ ∈ R𝑑,

Δ1ℎ𝑓 (𝑥) = 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) ,
Δ𝑛+1ℎ 𝑓 (𝑥) = Δ1ℎΔ𝑛ℎ𝑓 (𝑥) ,

(32)

for any 𝑛 ∈ N. We also set

𝐵𝑀ℎ (𝑥0, 𝑗) = {𝑥 : [𝑥, 𝑥 + (𝑀 + 1) ℎ] ⊂ 𝑥0 + 𝐵𝑗} , (33)

where [𝑥, 𝑥 + (𝑀+1)ℎ] is the line segment with end points 𝑥
and 𝑥+ (𝑀+1)ℎ. In order to obtain a more general result, we
drop the continuity condition of Definition 2 in this section.
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Proposition 12. Let 𝑓 ∈ 𝐿∞𝑙𝑜𝑐(R𝑑); one has 𝑓 ∈ Λ𝜎,𝑀(𝑥0) if
and only if there exist 𝐶, 𝐽 > 0 such that

sup
ℎ∈𝐵𝑗

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐵𝑀
ℎ
(𝑥0 ,𝑗))

≤ 𝐶𝜎𝑗, (34)

for any 𝑗 ≥ 𝐽.
Proof. The theorem of Whitney (see, e.g., [20]) directly
implies that if 𝑓 satisfies inequality (34), then 𝑓 ∈ Λ𝜎,𝑀(𝑥0):
one has

inf
𝑃∈P[𝑀]

󵄩󵄩󵄩󵄩𝑓 − 𝑃󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶 sup
ℎ∈𝐵𝑗

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐵𝑀
ℎ
(𝑥0 ,𝑗))

. (35)

Let us now suppose that 𝑓 ∈ Λ𝜎,𝑀(𝑥0) and let 𝑥 ∈𝐵𝑀ℎ (𝑥0, 𝑗), 𝑃 ∈ P[𝑀]. One has, using the Fréchet functional
equation,󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐵𝑀

ℎ
(𝑥0 ,𝑗))

= 󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ (𝑓 − 𝑃)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐵𝑀
ℎ
(𝑥0 ,𝑗))

≤ (𝑀 + 1)! (𝑀 + 2) 󵄩󵄩󵄩󵄩𝑓 − 𝑃󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) .
(36)

Now, since there exists a polynomial 𝑃𝑗 ∈ P[𝑀] such that󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑃𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶𝜎𝑗, (37)

for any 𝑗 sufficiently large, one gets

sup
ℎ∈𝐵𝑗

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐵𝑀
ℎ
(𝑥0 ,𝑗))

≤ 𝐶𝜎𝑗, (38)

for any 𝑗 sufficiently large.

3.2. Characterization in Terms of Convolutions. Let us denote
the space of the infinitely differentiable functions with com-
pact support included in a subset 𝐸 of R𝑑 by 𝐶∞𝑐 (𝐸). In this
section, 𝜌 will denote a radial function of 𝐶∞𝑐 (𝐵) such that𝜌(𝑥) ∈ [0, 1] for any 𝑥 ∈ R𝑑 and ‖𝜌‖1 = 1. Moreover, one sets𝜌𝑗 = 2𝑗𝑑𝜌(2𝑗⋅), for any 𝑗 ∈ N.

In [1], the following result has been obtained.

Lemma 13. Let𝑁 ∈ N0; if 𝑓 ∈ 𝐿1𝑙𝑜𝑐(R𝑑) satisfies
sup
𝑘≥𝑗

󵄩󵄩󵄩󵄩𝑓 ∗ 𝜌𝑘 − 𝑓󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶𝜎𝑗, (39)

for 𝑗 ≥ 𝐽, then, for any multi-index 𝛽 such that |𝛽| ≤ 𝑁, one
has 󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑓 ∗ 𝜌𝑗 − 𝑓 ∗ 𝜌𝑗−1)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶2𝑗𝑁𝜎𝑗, (40)

for 𝑗 ≥ 𝐽 + 1.
Using the same ideas as in [1], one gets a similar charac-

terization.

Theorem 14. If𝑓 ∈ Λ𝜎,𝑀(𝑥0), then there exists a functionΦ ∈𝐶∞𝑐 (R𝑑) such that
sup
𝑘≥𝑗

󵄩󵄩󵄩󵄩𝑓 − 𝑓 ∗ Φ𝑘󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶𝜎𝑗, (41)

for any 𝑗 sufficiently large.

Conversely, if 𝜎 → 0, if 𝑓 is uniformly Hölder and satisfies
inequality (41) for a functionΦ ∈ 𝐶∞𝑐 (R𝑑), then 𝑓 ∈ Λ𝜎,𝑀(𝑥0)
for any𝑀 ∈ N0 such that𝑀+ 1 > 𝑠(𝜎−1).
Proof. Assume𝑓 ∈ Λ𝜎,𝑀(𝑥0). As in [1] (see also [3]), let us set
Ψ (𝑥)
= 𝑚/2−1∑

𝑗=0

(−1)𝑗 𝑚!𝑗! (𝑚 − 𝑗)! 1
(2𝑗 − 𝑚)𝑑 𝜌(

𝑥2𝑗 − 𝑚) ,
(42)

where 𝑚 is large enough (larger than 𝑀 + 1) and Φ =Ψ/∫Ψ𝑑𝑥. Using the same arguments as in [1], one gets

𝑓 ∗ Φ𝑘 (𝑥) − 𝑓 (𝑥) = 𝐶∫Δ𝑚2−𝑘𝑡𝑓 (𝑥) 𝜌 (𝑡) 𝑑𝑡, (43)

which, due to Proposition 12, leads to inequality (41).
Let us show the converse. Let 𝛼 ∈ (0, 1) be such that 𝑓 ∈Λ𝛼(R𝑑) and set, as in [1],

𝑓1 = 𝑓 ∗ Φ1,
𝑓𝑗 = 𝑓 ∗ (Φ𝑗 − Φ𝑗−1) , (44)

for 𝑗 > 1. Since 𝑓 is uniformly Hölder, 𝑓 is uniformly equal
to ∑𝑗≥1 𝑓𝑗 on R𝑑 and

Δ𝑀+1ℎ 𝑓 = ∑
𝑗≥1

Δ𝑀+1ℎ 𝑓𝑗, (45)

uniformly on R𝑑, for any ℎ ∈ R𝑑. For 𝑗 ∈ N, let 𝑛0 ∈ N0,ℎ ∈ R𝑑, and 𝑗0 ∈ N0 be such that𝑀 + 1 < 2𝑛0 , |ℎ| ≤ 2−(𝑗+𝑛0),
and 2−(𝑗0+1)𝛼 ≤ 𝜎𝑗 ≤ 2−𝑗0𝛼. One has
󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤

𝑗−1∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓𝑘󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑗0∑
𝑘=𝑗

Δ𝑀+1ℎ 𝑓𝑘
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)

+ ∑
𝑘≥𝑗0+1

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓𝑘󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ,

(46)

where the second term in the right-hand side only appears if𝑗 ≤ 𝑗0.
Using Lemma 13 and the fact that 𝑀 + 1 > 𝑠(𝜎−1), the

mean value theorem allows writing

𝑗−1∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓𝑘󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)
≤ 𝑗−1∑
𝑘=1

𝐶 |ℎ|𝑀+1 sup
|𝛽|=𝑀+1

󵄩󵄩󵄩󵄩󵄩𝐷𝛽𝑓𝑘󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗−1)
≤ 𝐶2−𝑗(𝑀+1)𝑗−1∑

𝑘=1

2𝑘(𝑀+1)𝜎𝑘 ≤ 𝐶𝜎𝑗.

(47)
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Moreover,󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑗0∑
𝑘=𝑗

Δ𝑀+1ℎ 𝑓𝑘
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)

= 󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ (𝑓 ∗ Φ𝑗0 − 𝑓 ∗ Φ𝑗−1)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝑓
∗ Φ𝑗0 − 𝑓 ∗ Φ𝑗−1󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗−1)
≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝑓 ∗ Φ𝑗0 − 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗−1)
+ 󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑓 ∗ Φ𝑗−1󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗−1)) ≤ 𝐶𝜎𝑗−1 + 𝐶𝜎𝑗−1
≤ 𝐶𝜎𝑗.

(48)

Finally,

∑
𝑘≥𝑗0+1

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓𝑘󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶 ∑
𝑘≥𝑗0+1

󵄩󵄩󵄩󵄩𝑓𝑘󵄩󵄩󵄩󵄩𝐿∞(R𝑑)
≤ 𝐶 ∑

𝑘≥𝑗0+1

2−𝑘𝛼 ≤ 2−𝑗0𝛼 ≤ 𝐶𝜎𝑗. (49)

One then has

sup
ℎ∈𝐵𝑗+𝑛0

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗+𝑛0 ) ≤ sup
ℎ∈𝐵𝑗+𝑛0

󵄩󵄩󵄩󵄩󵄩Δ𝑀+1ℎ 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)
≤ 𝐶𝜎𝑗 ≤ 𝐶𝜎𝑗+𝑛0 ,

(50)

as wanted, in view of Proposition 12.

4. Generalized Pointwise Hölder
Spaces and Wavelets

The usual Hölder spaces can “nearly” be characterized in
terms of wavelets [12]: for the sufficiency of the condition,
the function has to be uniformly Hölder and a logarithmic
correction appears.We show here that such a result still holds
in the generalized case.

4.1. Definitions. Let us briefly recall some definitions and
notations (formore precisions, see, e.g., [21–23]). Under some
general assumptions, there exist a real-valued function 𝜙 and2𝑑 − 1 real-valued functions (𝜓(𝑖))1≤𝑖<2𝑑 defined on R𝑑, called
wavelets, such that

{𝜙 (⋅ − 𝑘) : 𝑘 ∈ Z𝑑}
∪ {𝜓(𝑖) (2𝑗 ⋅ −𝑘) : 1 ≤ 𝑖 < 2𝑑, 𝑘 ∈ Z𝑑, 𝑗 ∈ N0} ,

(51)

form an orthogonal basis of 𝐿2(R𝑑). Any function𝑓 ∈ 𝐿2(R𝑑)
can be decomposed as follows:

𝑓 (𝑥) = ∑
𝑘∈Z𝑑
𝐶𝑘𝜙 (𝑥 − 𝑘)

+ +∞∑
𝑗=0

∑
𝑘∈Z𝑑

∑
1≤𝑖<2𝑑

𝑐(𝑖)𝑗,𝑘𝜓(𝑖) (2𝑗𝑥 − 𝑘) ,
(52)

where

𝑐(𝑖)𝑗,𝑘 = 2𝑑𝑗 ∫R𝑑 𝑓 (𝑥) 𝜓(𝑖) (2𝑗𝑥 − 𝑘) 𝑑𝑥,
𝐶𝑘 = ∫

R𝑑
𝑓 (𝑥) 𝜙 (𝑥 − 𝑘) 𝑑𝑥.

(53)

Let us remark thatwe donot choose the𝐿2(R𝑑)normalization
for the wavelets, but rather an 𝐿∞ normalization, which
is better fitted to the study of the Hölderian regularity.
Hereafter, the wavelets are always supposed to belong to𝐶𝑛(R𝑑)with 𝑛 > 𝑀, and the functions (𝐷𝑠𝜙)|𝑠|≤𝛾, (𝐷𝑠𝜓(𝑖))|𝑠|≤𝛾
are assumed to have fast decay (where 𝛾 is a sufficiently large
number, i.e., strictly greater than𝑀).

A dyadic cube of scale 𝑗 is a cube of the form
𝜆 = [𝑘12𝑗 , 𝑘1 + 12𝑗 ) × ⋅ ⋅ ⋅ × [𝑘𝑑2𝑗 , 𝑘𝑑 + 12𝑗 ) , (54)

where 𝑘 = (𝑘1, . . . , 𝑘𝑑) ∈ Z𝑑. From now on, wavelets and
wavelet coefficients will be indexedwith dyadic cubes𝜆. Since𝑖 takes 2𝑑 − 1 values, we can assume that it takes values in{0, 1}𝑑 − (0, . . . , 0); we will use the following notations:

(i) 𝜆 = 𝜆(𝑖, 𝑗, 𝑘) = 𝑘/2𝑗 + 𝑖/2𝑗+1 + [0, 1/2𝑗+1)𝑑,
(ii) 𝑐𝜆 = 𝑐(𝑖)𝑗,𝑘,
(iii) 𝜓𝜆 = 𝜓(𝑖)𝑗,𝑘 = 𝜓(𝑖)(2𝑗 ⋅ −𝑘).

The pointwise Hölderian regularity of a function is closely
related to the decay rate of its wavelet leaders.

Definition 15. The wavelet leaders are defined by

𝑑𝜆 = sup
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝑐𝜆󸀠 󵄨󵄨󵄨󵄨 . (55)

Two dyadic cubes 𝜆 and 𝜆󸀠 are adjacent if they are at the same
scale and if dist(𝜆, 𝜆󸀠) = 0. We denote by 3𝜆 the set of the 3𝑑
dyadic cubes adjacent to 𝜆 and by 𝜆𝑗(𝑥0) the dyadic cube of
side length 2−𝑗 containing 𝑥0; we then set

𝑑𝑗 (𝑥0) = sup
𝜆⊂3𝜆𝑗(𝑥0)

𝑑𝜆. (56)

4.2. Result. From now on, we will suppose that the wavelets
are compactly supported (such wavelets are constructed in
[24]) and 𝑗0 will stand for a natural number such that the
support of 𝜓(𝑖) is included in 2𝑗0𝐵, for any 𝑖 ∈ {1, . . . , 2𝑑 − 1}.
Theorem 16. If 𝑓 ∈ Λ𝜎,𝑀(𝑥0), then there exist 𝐶 > 0 and𝐽 ∈ N0 such that

𝑑𝑗 (𝑥0) ≤ 𝐶𝜎𝑗, (57)

for any 𝑗 ≥ 𝐽.
Conversely, let 𝑓 be a uniformly Hölder function; if

inequality (57) is satisfied for an admissible sequence 𝜎 that
tends to zero, then 𝑓 ∈ Λ𝜏,𝑀(𝑥0), where 𝜏 is the admissible
sequence defined by 𝜏𝑗 = 𝜎𝑗|log2𝜎𝑗| and𝑀 ∈ N0 is any number
satisfying𝑀+ 1 > 𝑠(𝜎−1).
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Proof. In what follows, 𝑃𝑗−𝑘0 ∈ P[𝑀] is according to (11). If
𝑓 ∈ Λ𝜎,𝑀(𝑥0), let 𝑘0 ∈ N0 be such that 2𝑗0+1 + 4𝑑 ≤ 2𝑘0 . For𝑗 ≥ 𝑘0 + 1 and 𝜆 = 𝜆(𝑖, 𝑗󸀠, 𝑘󸀠) ⊂ 3𝜆𝑗(𝑥0), one has
󵄨󵄨󵄨󵄨𝑐𝜆󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨2𝑑𝑗

󸀠 ∫𝑓 (𝑥) 𝜓𝜆 (𝑥) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨2𝑑𝑗

󸀠 ∫(𝑓 (𝑥) − 𝑃𝑗−𝑘0 (𝑥)) 𝜓𝜆 (𝑥) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

𝑑𝑗󸀠 ∫
𝑘󸀠/2𝑗
󸀠
+𝐵
𝑗󸀠−𝑗0

(𝑓 (𝑥) − 𝑃𝑗−𝑘0 (𝑥)) 𝜓𝜆 (𝑥) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝑑𝑗󸀠 ∫
𝑥0+𝐵𝑗−𝑘0

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑃𝑗−𝑘0 (𝑥)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜓𝜆 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 𝐶2𝑑𝑗󸀠𝜎𝑗−𝑘0 ∫ 󵄨󵄨󵄨󵄨𝜓𝜆 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶𝜎𝑗,

(58)

which is the desired result.
Now, let us suppose that inequality (57) is satisfied for a

function 𝑓 ∈ Λ𝜀(R𝑑) and an admissible sequence 𝜎 tending
to 0. Let us set

𝑓−1 = ∑
𝑘

𝐶𝑘𝜙 (⋅ − 𝑘) ,
𝑓𝑗 = ∑

𝑖,𝑘

𝑐𝜆𝜓𝜆, (59)

for 𝑗 ∈ N0. In [2], it has been shown that these functions have
the same regularity as the wavelets and that 𝑓 is uniformly
equal to ∑𝑗≥−1 𝑓𝑗. Let us define

𝑃𝐽 (𝑥) = ∑
|𝛽|≤𝑀

(𝑥 − 𝑥0)𝛽𝛽!
𝐽∑

𝑗=−1

𝐷𝛽𝑓𝑗 (𝑥0) , (60)

and let us choose 𝑛𝑑 ∈ N such that 𝑅 > 2−𝑗 and 𝑘/2𝑗 ∈ 𝑥+𝑅𝐵
(𝑥 ∈ R𝑑) implies

𝑘2𝑗 + 𝑖2𝑗+1 + [0, 12𝑗 )
𝑑 ⊂ 𝑥 + 2𝑛𝑑𝑅𝐵. (61)

Let us also choose𝑚𝑑 ∈ N such that any ball 𝑥 + 𝐵𝑗 (𝑥 ∈ R𝑑,𝑗 ∈ N0) is included in a dyadic cube of length 2𝑚𝑑−𝑗. If 𝐽󸀠 is
such that 𝜎𝑗 < 1 for any 𝑗 ≥ 𝐽󸀠, we finally choose 𝐽 such that𝐽 ≥ sup{𝐽󸀠, 𝑗0 + 𝑛𝑑 + 𝑚𝑑 + 1}. One has
󵄩󵄩󵄩󵄩𝑓 − 𝑃𝐽󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽)
≤ 𝐽∑
𝑗=−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑓𝑗 (𝑥) − ∑|𝛽|≤𝑀
(𝑥 − 𝑥0)𝛽𝛽! 𝐷𝛽𝑓𝑗 (𝑥0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽)
+ ∑
𝑗≥𝐽+1

󵄩󵄩󵄩󵄩󵄩𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽) .
(62)

Let us look at the first term of the right-hand side. Let𝑗 ≤ 𝐽; using the Taylor expansion, one gets
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑓𝑗 (𝑥) − ∑|𝛽|≤𝑀

(𝑥 − 𝑥0)𝛽𝛽! 𝐷𝛽𝑓𝑗 (𝑥0)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽)

≤ 𝐶2−𝐽(𝑀+1) sup
|𝛽|=𝑀+1

󵄩󵄩󵄩󵄩󵄩𝐷𝛽𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽) .
(63)

If 𝛽 satisfies |𝛽| = 𝑀 + 1, we have, for any 𝑥 ∈ 𝑥0 + 𝐵𝐽,
󵄨󵄨󵄨󵄨󵄨𝐷𝛽𝑓𝑗 (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ ∑

𝑖,𝑘

2𝑗(𝑀+1) 󵄨󵄨󵄨󵄨𝑐𝜆󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐷𝛽𝜓𝜆 (𝑥)󵄨󵄨󵄨󵄨󵄨
= ∑

𝑖

∑
𝑘2−𝑗∈𝑥+𝐵𝑗−𝑗0

2𝑗(𝑀+1) 󵄨󵄨󵄨󵄨𝑐𝜆󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐷𝛽𝜓𝜆 (𝑥)󵄨󵄨󵄨󵄨󵄨 .
(64)

Each coefficient 𝑐𝜆 in the last sum is such that 𝜆 ⊂ 𝑥+𝐵𝑗−𝑗0−𝑛𝑑 .
Therefore, if 𝑗 ≥ 𝑗0 + 𝑛𝑑 + 𝑚𝑑 + 1, then

󵄨󵄨󵄨󵄨𝑐𝜆󵄨󵄨󵄨󵄨 ≤ 𝐶𝜎𝑗−𝑗0−𝑛𝑑−𝑚𝑑−1. (65)

Otherwise, since 𝑓 is uniformly Hölder, |𝑐𝜆| ≤ 𝐶 ≤ 𝐶𝜎𝑗.
Therefore,

󵄩󵄩󵄩󵄩󵄩𝐷𝛽𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽) ≤ 𝐶2𝑗(𝑀+1)𝜎𝑗, (66)

for any 𝑗 ≤ 𝐽, which implies

𝐽∑
𝑗=−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑓𝑗 (𝑥) − ∑|𝛽|≤𝑀
(𝑥 − 𝑥0)𝛽𝛽! 𝐷𝛽𝑓𝑗 (𝑥0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽)
≤ 𝐶2−𝐽(𝑀+1) 𝐽∑

𝑗=−1

2𝑗(𝑀+1)𝜎𝑗 ≤ 𝐶𝜎𝐽.
(67)

For the second term in the right-hand side of (62), let us
define 𝐽1 ∈ N as the number such that 2−𝜀𝐽1 ≤ 𝜎𝐽 < 2−𝜀(𝐽1−1)
and decompose the sum as follows:

∑
𝑗≥𝐽+1

󵄩󵄩󵄩󵄩󵄩𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽) = ∑
𝑗≥𝐽1+1

󵄩󵄩󵄩󵄩󵄩𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽)

+ 𝐽1∑
𝑗=𝐽+1

󵄩󵄩󵄩󵄩󵄩𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽) .
(68)

We have

∑
𝑗≥𝐽1+1

󵄩󵄩󵄩󵄩󵄩𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽) ≤ ∑
𝑗≥𝐽1+1

󵄩󵄩󵄩󵄩󵄩𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(R𝑑) ≤ 𝐶 ∑
𝑗≥𝐽1+1

2−𝜀𝑗

≤ 𝐶2−𝜀𝐽1 ≤ 𝐶𝜎𝐽.
(69)

Now, for 𝑗 ∈ {𝐽 + 1, . . . , 𝐽1} and 𝑥 ∈ 𝑥0 + 𝐵𝐽, one has
󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ ∑

𝑖

∑
𝑘2−𝑗∈𝑥+𝐵𝑗−𝑗0

󵄨󵄨󵄨󵄨𝑐𝜆𝜓𝜆 (𝑥)󵄨󵄨󵄨󵄨 . (70)
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If 𝑗 ≥ 𝐽 + 𝑗0 + 𝑛𝑑, the wavelet coefficients 𝑐𝜆 in the last sum
are such that

𝜆 ⊂ 𝑥 + 𝐵𝑗−𝑗0−𝑛𝑑 ⊂ 𝑥0 + 𝐵𝐽−1, (71)

and therefore
󵄨󵄨󵄨󵄨𝑐𝜆󵄨󵄨󵄨󵄨 ≤ 𝐶𝜎𝐽−𝑚𝑑−1 ≤ 𝐶𝜎𝐽. (72)

In the other case,

𝜆 ⊂ 𝑥 + 𝐵𝑗−𝑗0−𝑛𝑑 ⊂ 𝑥0 + 𝐵𝑗−𝑗0−𝑛𝑑−1, (73)

and thus
󵄨󵄨󵄨󵄨𝑐𝜆󵄨󵄨󵄨󵄨 ≤ 𝐶𝜎𝑗−𝑗0−𝑛𝑑−𝑚𝑑−1 ≤ 𝐶𝜎𝑗 ≤ 𝐶𝜎𝐽. (74)

These inequalities lead to

𝐽1∑
𝑗=𝐽+1

󵄩󵄩󵄩󵄩󵄩𝑓𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽) ≤ 𝐶𝐽1𝜎𝐽 ≤ 𝐶 󵄨󵄨󵄨󵄨log2 (𝜎𝐽)󵄨󵄨󵄨󵄨 𝜎𝐽. (75)

Putting all these inequalities together, one gets
󵄩󵄩󵄩󵄩𝑓 − 𝑃𝐽󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝐽) ≤ 𝐶 󵄨󵄨󵄨󵄨log2 (𝜎𝐽)󵄨󵄨󵄨󵄨 𝜎𝐽, (76)

as desired.

The converse part of the previous theorem requires a
uniform regularity condition. As shown in [25], a stronger
condition than continuity is necessary in the usual case (see
also [26], where similar results are obtained (in the usual
case) with a Besov regularity assumption). Similarly, the
logarithmic correction is best possible in the usual case [25].

5. A Generalized Definition
of the Hölder Exponent

The usual Hölder spaces are embedded: 𝛼 < 𝛽 impliesΛ𝛽(𝑥0) ⊂ Λ𝛼(𝑥0). A notion of regularity for a function𝑓 ∈ 𝐿∞loc(R𝑑) at 𝑥0 can thus be given by the so-called Hölder
exponent:

ℎ𝑓 (𝑥0) = sup {𝛼 > 0 : 𝑓 ∈ Λ𝛼 (𝑥0)} . (77)

To do so in the generalized case, one needs some conditions
under which Λ𝜎,𝑀(𝑥0) ⊂ Λ𝜎󸀠 ,𝑀󸀠(𝑥0).

This generalized exponent naturally leads to the defini-
tion of an alternative multifractal formalism, yet similar to
the one developed in [12], where, for example, logarithmic
corrections can appear.

5.1. A Trivial Illustration. The classical version ofTheorem 16
theoretically allows estimating the Hölder regularity at a
given point 𝑥0 by looking at the behavior of 𝑑𝑗(𝑥0) versus
the scales 𝑗 [12]. This notion of regularity is given by the
Hölder exponent ℎ𝑓(𝑥0), defined by equality (77). Following
the standard wavelet characterization [12], one should have

log2 𝑑𝑗 (𝑥0) ∼ ℎ𝑓 (𝑥0) 𝑗 + 𝐶, (78)
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Figure 1:The function 𝑗 󳨃→ 𝑑𝑗(𝑥0) in black, with the standard curve𝐶2−𝑗ℎ (blue) and the logarithmically corrected curve (using equality
(80)) (red) obtained with the Levenberg-Marquardt algorithm.

and a log-log plot can be used to estimate the slope ℎ0. This
method is simpler than directly fitting the curve

𝛾𝐶,ℎ (𝑡) = 𝐶𝜔(ℎ) (2−𝑗) , (79)

with 𝜔(ℎ)(𝑟) = 𝑟ℎ to the function 𝑗 󳨃→ 𝑑𝑗(𝑥0), since in this
latter case one has to estimate two parameters (𝐶 and ℎ) to
retain only one (namely, ℎ, which is the estimation of ℎ𝑓(𝑥0)).
However, this approach allows fine-tuning the computation
of ℎ0 using Theorem 16. In the case of a Brownian motion,
for example, having the law of the iterated logarithm in mind
[14, 15], one should rather choose

𝜔(ℎ) (𝑟) = (𝑟 log 󵄨󵄨󵄨󵄨log 𝑟󵄨󵄨󵄨󵄨)ℎ , (80)

in the definition of 𝛾𝐶,ℎ. Fitting 𝑑𝑗(𝑥0) with different defini-
tions of 𝜔(ℎ) should help to discern between specific models.
In the case proposed here, it could support the detection of
the presence of a logarithmic correction, which could be the
signature of a Brownian motion.

As an illustration, the wavelet leader of a Brownian
motion 𝑗 󳨃→ 𝑑𝑗(𝑥0) for some 𝑥0 (the middle was arbitrarily
chosen) is represented in Figure 1. When trying to fit
the curve 𝐶2−𝑗ℎ to 𝑑𝑗(𝑥0) using the Levenberg-Marquardt
algorithm [27], one gets ℎ𝑓(𝑥0) = 0.554 (see Figure 1). The
same computation with the logarithmic correction (using
Definition (80)) gives ℎ𝑓(𝑥0) = 0.495, which is closer to the
expected value 1/2. Computing the distance, for each point𝑥0 of the signal (220 points), between the estimated Hölder
exponent ℎ𝑓(𝑥0) and the expected value 1/2 gives rise to the
boxplot represented in Figure 2.

Of course, this application is only a simple illustrative
example; more sophisticated work is required to show the
effectiveness of this approach and is out of the scope of
this work (see [28]). From a numerical point of view, the
estimation of ℎ𝑓(𝑥0) is unstable (in particular, the detection
of fast and slow points in the Brownian motion seems to be a
difficult task, if not insufferable); this is why one rather tries to
estimate the size of the set of points sharing the same Hölder
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Figure 2: Boxplot of the distance between 1/2 and the estimated
Hölder exponent. The left boxplot corresponds to the usual method
and the other corresponds to a method involving the logarithmic
correction.

exponent. This is the purpose of the multifractal formalism
for functions (see, e.g., [12]), which will not be recalled here.

5.2. Preliminary Results. We first need some technical easy
results. From now on, if 𝑓 ∈ Λ𝜎,𝑀(𝑥0), (𝑃𝑗)𝑗 will stand for
the sequence of polynomials of P[𝑀] corresponding to the
definition. We will write

𝑃𝑗 (𝑥) = ∑
|𝛽|≤𝑀

𝑎(𝛽)𝑗 𝑥𝛽,
𝑄𝑗 (𝑥) = ∑

|𝛽|≤𝑀−1

𝑎(𝛽)𝑗 𝑥𝛽.
(81)

Lemma 17. Let 𝑓 ∈ Λ𝜎,𝑀(𝑥0); one has

sup
|𝛽|=𝑀

󵄨󵄨󵄨󵄨󵄨󵄨𝑎(𝛽)𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶(
𝑗−1∑
𝑘=1

(2𝑀Θ1)𝑘 + 1) , (82)

sup
|𝛽|=𝑀

󵄨󵄨󵄨󵄨󵄨󵄨𝑎(𝛽)𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶(𝜎𝑗Θ−𝑗1
𝑗−1∑
𝑘=1

(2𝑀Θ1)𝑘 + 1) . (83)

Proof. Using the Markov inequality (13), we get

󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃𝑗 − 𝑃𝑗+1)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗+1)
≤ 𝐶2𝑗𝑀 󵄩󵄩󵄩󵄩󵄩𝑃𝑗 − 𝑃𝑗+1󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗+1)
≤ 𝐶2𝑗𝑀 (󵄩󵄩󵄩󵄩󵄩𝑃𝑗 − 𝑓󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) + 󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑃𝑗+1󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗+1))
≤ 𝐶2𝑗𝑀𝜎𝑗,

(84)

for any 𝛽 such that |𝛽| ≤ 𝑀 and 𝑗 sufficiently large.Therefore,
we have󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃1 − 𝑃𝑗)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)

≤ 𝑗−1∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃𝑘 − 𝑃𝑘+1)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗)
≤ 𝑗−1∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃𝑘 − 𝑃𝑘+1)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑘+1) ≤ 𝐶
𝑗−1∑
𝑘=1

2𝑘𝑀𝜎𝑘

≤ 𝐶𝑗−1∑
𝑘=1

(2𝑀Θ1)𝑘 ,

(85)

for any 𝑗.
Now, let 𝛽 be a multi-index such that |𝛽| = 𝑀; inequality

(82) follows from󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃1 − 𝑃𝑗)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≥ 𝐶(
󵄨󵄨󵄨󵄨󵄨󵄨𝑎(𝛽)𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨󵄨𝑎(𝛽)1 󵄨󵄨󵄨󵄨󵄨󵄨) , (86)

while inequality (83) can be obtained in the same way, using

󵄩󵄩󵄩󵄩󵄩𝐷𝛽 (𝑃1 − 𝑃𝑗)󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶
𝑗−1∑
𝑘=1

2𝑘𝑀𝜎𝑘

≤ 𝐶𝜎𝑗Θ−𝑗1
𝑗−1∑
𝑘=1

(2𝑀Θ1)𝑘 ,
(87)

valid for any 𝑗.
Corollary 18. Let 𝑓 ∈ Λ𝜎,𝑀(𝑥0); one has the following
inequalities:

(i) if 2𝑀Θ1 < 1,󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑄𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶 (𝜎𝑗 + 2−𝑗𝑀) , (88)

(ii) if 2𝑀Θ1 > 1,󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑄𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶(𝜎𝑗 + Θ𝑗1) , (89)

(iii) if 2𝑀Θ1 = 1,󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑄𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶 (𝜎𝑗 + 2−𝑗𝑀𝑗) . (90)

Corollary 19. Let 𝑓 ∈ Λ𝜎,𝑀(𝑥0); one has the following
inequalities:

(i) if 2𝑀Θ1 < 1,󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑄𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶(𝜎𝑗 (2𝑀Θ1)−𝑗 + 2−𝑗𝑀) , (91)

(ii) if 2𝑀Θ1 > 1,󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑄𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶 (𝜎𝑗 + 2−𝑗𝑀) , (92)

(iii) if 2𝑀Θ1 = 1,󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑄𝑗󵄩󵄩󵄩󵄩󵄩𝐿∞(𝑥0+𝐵𝑗) ≤ 𝐶 (𝜎𝑗𝑗 + 2−𝑗𝑀) . (93)



10 Journal of Function Spaces

5.3. Definitions. Before introducing the definition of a gen-
eralized Hölder exponent, we must first consider embedded
spaces of type Λ𝜎,𝑀(𝑥0). Once the definitions are given, we
provide sufficient conditions for generalizedHölder spaces to
be embedded.

Definition 20. If, for any𝛼 > 0,𝜎(𝛼) is an admissible sequence,
the application

𝜎(⋅) : 𝛼 > 0 󳨃󳨀→ 𝜎(𝛼) (94)

is called a family of admissible sequences.

Definition 21. Let 𝑥0 ∈ R𝑑; a family 𝜎(⋅) of admissible
sequences is decreasing for 𝑥0 if 𝛼 > 𝛽 implies Λ𝜎(𝛼) ,[𝛼](𝑥0) ⊂Λ𝜎(𝛽) ,[𝛽](𝑥0).
Definition 22. Let 𝜎(⋅) be a decreasing family of admissible
sequences for 𝑥0; if 𝑓 ∈ 𝐿∞loc(R𝑑), then the Hölder exponent
of 𝑓 at 𝑥0 for the family 𝜎(⋅) is given by

ℎ𝜎(⋅)𝑓 (𝑥0) = sup {𝛼 > 0 : 𝑓 ∈ Λ𝜎(𝛼) ,[𝛼] (𝑥0)} . (95)

The following proposition is a simple corollary of the
results obtained in the previous section; it helps to check if a
family of admissible sequences is decreasing. If 𝜎(⋅) is a family
of admissible sequences, we set

Θ(𝛼)𝑗 = inf
𝑘∈N

𝜎(𝛼)
𝑗+𝑘

𝜎(𝛼)
𝑘

,

Θ(𝛼)𝑗 = sup
𝑘∈N

𝜎(𝛼)
𝑗+𝑘

𝜎(𝛼)
𝑘

.
(96)

Proposition 23. Let 𝜎(⋅) be a family of admissible sequences
and 𝑥0 ∈ R𝑑; 𝜎(⋅) is decreasing for 𝑥0 if it satisfies the following
two conditions:

(1) if 𝑚 ≤ 𝛼 < 𝛽 < 𝑚 + 1, with 𝑚 ∈ N0, then there exist𝐶, 𝐽 > 0 such that
𝜎(𝛽)𝑗 ≤ 𝐶𝜎(𝛼)𝑗 , (97)

for any 𝑗 ≥ 𝐽,
(2) for any 𝑚 ∈ N, at least one of the following two

conditions is satisfied:

(a) there exists 𝜀0 > 0 such that, for any 𝜀 ∈ (0, 𝜀0),
there exist 𝐶, 𝐽 > 0 for which 𝜎(𝑚)𝑗 ≤ 𝐶𝜎(𝑚−𝜀)𝑗 and

(i) if 1 < 2𝑚Θ(𝑚)1 , then (Θ(𝑚)1 )𝑗 ≤ 𝐶𝜎(𝑚−𝜀)𝑗 ,

(ii) if 1 > 2𝑚Θ(𝑚)1 , then 2−𝑗𝑚 ≤ 𝐶𝜎(𝑚−𝜀)𝑗 ,

(iii) if 1 = 2𝑚Θ(𝑚)1 , then 𝑗2−𝑗𝑚 ≤ 𝐶𝜎(𝑚−𝜀)𝑗 ,

for any 𝑗 ≥ 𝐽,

(b) there exists 𝜀0 > 0 such that, for any 𝜀 ∈ (0, 𝜀0),
there exist𝐶, 𝐽 > 0 for which 2−𝑗𝑚 ≤ 𝐶𝜎(𝑚−𝜀)𝑗 and

(i) if 1 < 2𝑚Θ(𝑚)1 , then 𝜎(𝑚)𝑗 ≤ 𝐶𝜎(𝑚−𝜀)𝑗 ,
(ii) if 1 > 2𝑚Θ(𝑚)1 , then 𝜎(𝑚)𝑗 (2𝑚Θ(𝑚)1 )−𝑗 ≤𝐶𝜎(𝑚−𝜀)𝑗 ,
(iii) if 1 = 2𝑚Θ(𝑚)1 , then 𝑗𝜎(𝑚)𝑗 ≤ 𝐶𝜎(𝑚−𝜀)𝑗 ,

for any 𝑗 ≥ 𝐽.
This result is similar to the one obtained in [1] (under

the hypothesis of Proposition 23, one gets a decreasing family
of admissible sequences for the uniform case), but the proof
given for these generalized uniform Hölder spaces cannot be
adapted for the pointwise case.

Remark 24. Since the family of admissible sequences 𝜎(⋅)
defined by 𝜎(𝛼)𝑗 = 2−𝑗𝛼 satisfies the conditions of Proposi-
tion 23, this result implies the classical inclusion Λ𝛽(𝑥0) ⊂Λ𝛼(𝑥0), for any 𝛼, 𝛽 satisfying 𝛼 < 𝛽.

Let us consider the following example to grasp the
practicality of Proposition 23.

Example 25. Let 𝑔 : 𝛼 > 0 󳨃→ 𝑔(𝛼) be a positive function and
set

𝜎(𝛼)𝑗 = 2−𝑗𝛼𝑗𝑔(𝛼). (98)

One directly checks that condition (2)(b) is satisfied, so that𝜎(⋅) is a decreasing family of admissible sequences.
Both conditions can be used to obtain decreasing families

of admissible sequences; here is an example where the first
condition is used.

Example 26. Let

𝑔 (𝛼) = {{{
−1 if 𝛼 ∈ N
0 otherwise. (99)

If 𝜎(⋅) is defined using identity (98), condition (2)(a) is
satisfied so that this sequence is also a decreasing family of
admissible sequences.
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