Hindawi

Journal of Function Spaces

Volume 2018, Article ID 8276258, 11 pages
https://doi.org/10.1155/2018/8276258

Research Article

Hindawi

Generalized Pointwise Holder Spaces
Defined via Admissible Sequences

Damien Kreit and Samuel Nicolay

Université de Liége, Institut de Mathématique, 12 Allée de la Découverte, Batiment B37, Sart-Tilman, 4000 Liége, Belgium

Correspondence should be addressed to Samuel Nicolay; s.nicolay@uliege.be

Received 29 January 2018; Revised 29 March 2018; Accepted 8 April 2018; Published 29 May 2018

Academic Editor: Adrian Petrusel

Copyright © 2018 Damien Kreit and Samuel Nicolay. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

We introduce in this paper a generalization of the pointwise Holder spaces. We give alternative definitions of these spaces, look at
their relationship with the wavelets, and introduce a notion of generalized Holder exponent.

1. Introduction

A real-valued function f defined on R? belongs to the

uniform Holder space A%R?) (a > 0) if there exist a constant
C and a polynomial P of degree less than « such that

|f (x+h) = P(x)| <CIhl*, @)

for all x € R? and h small enough. The supremum of all
these values « is called the global Hélder exponent of f. One
can naturally define the pointwise version of these spaces: a
continuous function f belongs to the pointwise Holder space
A%(x,) if and only if there exist C, ] > 0 and a polynomial P
of degree less than « such that

sup |f (x, +h) - P(h)| < C277%, )

|h<27i

for all j > J. Of course, the supremum of all these values « is
called the Holder exponent of f at x,,. If f is differentiable at
X, the Holder exponent of f at x,, is atleast 1. The fact that the
constant C appearing in (1) is uniform for A*(R?) implies that
the uniform Hoélder exponent is not necessarily the infimum
of the pointwise Holder exponents. A classical example is the
function sinc(1/x) = xsin(1/x), which is C' at the origin,
C® everywhere else, while its global Holder exponent is 1/2.

In [1, 2], the properties of generalized uniform Hoélder
spaces have been investigated. The idea underlying the
definition is to replace the exponent « of the usual spaces

A%*(RY) [3, 4] with a sequence o satisfying some conditions.
The so-obtained spaces A°(R?) generalize the spaces A*(R%);
the spaces A°(R?) are actually the spaces Béé‘foo(Rd), but they
present specific properties (induced by L*-norms) when
compared to the more general spaces B;{g(Rd) studied in [5-
10], for example. Indeed, it is shown in [1, 2] that most of
the usual properties holding for the spaces A*(R?) can be
transposed to the spaces A°(R?).

Here, we introduce the pointwise version of these spaces:
the spaces A"’M(xo), with x, € R?. As in [L, 2], the idea is
again to replace the sequence (27/%) j appearing in (2) with
a positive sequence (0;); such that 0;,,/0; and 0;/0},, are
bounded (for any j); the number M stands for the maximal
degree of the polynomial (this degree cannot be induced
by a sequence o). By doing so, one tries to get a better
characterization of the regularity of the studied function f;
a usual choice is to replace 27/* with j277* (see, e.g., [11-13]).
For example, it is well known that, for the Brownian motion
B, there exist C, J > 0 such that

sup [B(x+h) - B(x)| < Cy[j27", 3)

|h|<277

forany j > J almost surely (see, e.g., [14, 15]). More generally,
the behavior of the oscillations of f(x + h) — f(x) as h tends
to 0 can reveal specific local behaviors such as approximate
similarities [11]. Generalizations of the pointwise Holder
spaces have already been proposed, but, to our knowledge,
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the definition we give here is the most general version and
leads to the sharpest results (in particular, the regularity
spaces introduced in [13] are a special case of the spaces
AOM (x,); see Definition 2 and Remark 4). These spaces could
also be useful in the study of singularities of PDEs where the
function is smooth near x, except on small sets of points
(such a situation could be met in the case of the Navier-Stokes
equations in three dimensions [16]).

As a first application, we introduce here the sufficient
tools to develop a multifractal formalism based on the wavelet
characterization (Theorem 16), in the same spirit as in [12].
The theory presented here also contributes to enlightening
the reasons why the customary proofs for the classical spaces
A%(x,) work.

This paper is organized as follows. We first give the
definitions leading to generalized pointwise Hélder spaces
A”M(x,) and prove that, under some general conditions, the
polynomials appearing in the definition are independent of
the scale, as is the case with the usual Holder spaces. Next,
we give some alternative definitions of the spaces A% (x,),
mimicking the different possible definitions of A*(x,). One of
the nicest properties of the Holder spaces is their relationship
with the wavelet theory given in [12]; we show here that
this result still holds in the general case. Finally, we give
some conditions under which one gets embedded generalized
pointwise Holder spaces and define a generalized pointwise
Holder exponent.

Throughout this paper, B denotes the open unit ball of
RY centered at the origin; moreover, we set B ;= 27/B. The
floor function is denoted by [-] and P[«] designates the set of
polynomials of degree at most [«]. We use the letter C for a
generic positive constant whose value may be different at each
occurrence.

2. Pointwise Generalized Holder Spaces

To present the generalized pointwise Holder spaces, we
first need to recall some notions concerning the admissible
sequences. After having introduced the definitions, we point
out a major difference between the usual spaces and the
generalized ones: the polynomial arising in the definition
depends on the scale. It is then natural to look under which
conditions this constraint can be dropped.

2.1. Definition. The generalization of the Holder spaces we
propose here is based on the notion of admissible sequence
[10].

Definition 1. A sequence o = (0;) ey of real positive numbers

is called admissible if there exists a positive constant C such
that

-1
C o;<0y, <Coj (4)

forany j € N.
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If o is such a sequence, we set

Otk
@, = inf =,
1 keN 0y
o (5)
— j+k
®; =sup =
keN Ok

and we define the lower and upper Boyd indices as follows:

log,® .
s(0) = limh,
J

log,® ©
0 .
$(0) = lim—224

J

Since (log © ) jey is a subadditive sequence, such limits always

exist [17]. The following relations about such sequences are
well known (see, e.g., [1]). If o is an admissible sequence, let
€ > 0; there exists a positive constant C such that

(o

ClpJslo)-e) @j < < @j < C2i6@re) @)

Ok
for any j, k € N. Let o be an admissible sequence:

(i) ifs(o) > 0, then there exists a positive constant C such
that, forany J € N,

Yo;' <Ca, (8)
=

(ii) if n € N satisfies s(0) < n, then there exists a positive
constant C such that, for any J € N,

I
Y2t <C2op 9)
j=1

In this paper, o will always stand for an admissible sequence
and M for a natural number, possibly zero.

Starting from the definitions of the pointwise Hoélder
spaces A%(x,) (with « > 0) and the generalized uniform
Holder spaces A° (Rd) introduced in [1], we are naturally led
to the following definition.

Definition 2. Let x, € R% a continuous function f belongs
to A”M(x,) if there exist C, ] > 0 such that

Peill;l[g\/l] If - P||L°°(x0+Bj) < Coj, (10)

forany j > J.

We trivially have the following alternative definition for
A%M(x,).
Definition 3. A continuous function f belongs to A% (x,) if
there exist C,J > 0 such that, for any j > J, there exists a
polynomial P; € P[M] for which

sup |f (xg +h) = P; (xo + h)| < Co;. (1)
heB;
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Remark 4. In [13], a generalization of the pointwise Holder
spaces is introduced by replacing the admissible sequence
appearing in Definition 2 by a modulus of smoothness (more
precisely, the definition is based on (34)). As shown in [1],
given a modulus of smoothness w, o; = w(27/) defines an
admissible sequence. The converse is not necessarily true:
only the decreasing admissible sequences converging to 0 give
rise to a modulus of continuity [1].

Sometimes, we will also need to impose a slightly stronger
condition than continuity to the function.

Definition 5. A function f is uniformly Holder if there exists
€ > Osuch that f € AS(RY).

2.2. Independence of the Polynomial from the Scale. It is
important to remark that the polynomial occurring in
inequality (11) is a function of the scale j. However, for the
classical Holder spaces, such polynomial is independent of j.
Here, we look under which conditions the independence still
holds in the generalized case, that is, under which conditions

P; = P € P[M] for any j > J. In this section, f will

designate a continuous function of L(f;’c(Rd) (although the
continuity hypothesis is very often dropped when dealing
with L norms, we keep it here to ensure the equivalence with
Definition 3).

We will need the following Markov inequality (see, e.g.,
[18]): Let p € (0,00],k € {1,...,d},and S C R? be a bounded

convex set with nonempty interior; one has
2
"DkP"LP(S) < Cn”||Pliges) » (12)

for any P € P[n], where D, P denotes the partial derivative of
P following the kth variable and where C depends only on S

and p. If x, € R?, we thus have

cn?

e (13)
"

l|DkP||L°°(x0+rB) <

for any r > 0 and any P € P[n], where C is a constant (and
does not depend on P, n, or r).

||P||L°°(x0+rB) >

Lemma 6. If f € A”M(x,) with M < s(o™"), the sequence of
polynomials (P;) occurring in (11) satisfies

T T

for any multi-index 3 such that |f| < M andk > j > ].
In particular, (DP Pi(x,)); is a Cauchy sequence for any
multi-index 8 such that || < M.

Proof. Using the Markov inequality, we get

[D°B; = DBy o

< 2P "Pj - Pj+1|'L°°(xo+Bj+l>
(15)
< CZlﬁl] <||Pj - f"LDO(x0+Bj+1) + "f - Pj+1"L°°(xo+Bj+1))

< 2Rl (aj + ajﬂ) < C'Z'ﬁlfaj,

for any 8 such that | 3| < M. Therefore, if k satisfies k > j > ],
one gets

”Dﬁ (PJ' - Pk)||L°°(x0+Bk)

k-1
S 1 P
=]

(16)
k-1 ﬁ k-1 il
< Z "D (P - P1+1)||L°°(xo+3m) = CZZ i
I=j I=j
< Czlﬁll'aj’
which is the desired result. O]

Lemma 7. If f € A®(x)) with M < s(0™") and (P)); is a
sequence of polynomials satisfying inequality (11), then, for any
multi-index 3 such that |B| < M, the limit

fﬁ (x0) = J}Ln(}oDﬁPj (%) (17)

is independent of the chosen sequence (P;);.

Proof. If (Q;); is another sequence of polynomials satisfying
inequality (11), one gets

|DﬁQj (x0) = f,B (xo)'
< |DPQ; (xo) - DPP; (x,)| (18)
+ 'D'BPJ‘ (%) = Ip (x0)| .
One has, using the Markov inequality,

[0 (P - Q) <c2Vp;-qf

L®(xo+B;) —

< G2 (18~ iy * 1S = Qi) 0

L% (xo+B;)

< 2o, — 0,

as j — 00, which ends the proof. O

For such functions, we can introduce the notion of Peano
derivative (see, e.g., [13, 19] for more information).

Definition 8. Under the hypothesis of Lemma 7, the Sth
Peano derivative of f at x; is fg(x,) = lim jDﬁ Pi(x).

We can now obtain the result concerning the indepen-
dence of the polynomials.

Theorem 9. If M < s(c™"), then f € A" (x,) if and only if
there exist C > 0 and a unique polynomial P € P[M] such that
”f - P||L°°(x0+Bj) £ Caj’ (20)

for any j sufficiently large.



Proof. Let (P;); be a sequence of polynomials for which
inequality (11) is satisfied and set

B
X-x
mm-meﬁ o (1)
IBI<M B!
One has
"P - Pj||L°°(x0+Bj)
B
X—x
=1 2 (fp () = DP;(x0)) % (22)
Bl=M " lioge+B)
<y 'fﬁ (%) - DﬁPj (x0)| 27,
IBl=M
Since Lemma 6 implies
|5 (x0) - DPP; (x,)] < C2Wlar;, (23)
for any j sufficiently large, we have
”P - Pf||L°°(x0+B/-) < Coj. (24)
This inequality can be used to obtain
“f - P||L°°(x0+Bj) s “f - Pj||L°O(xO+B,)
(25)
+ “Pj - P||L°°(x0+B) = Ccr

which shows the existence of P.
If two polynomials P,Q € P[M] satisty inequality (20),
then

1P = Qllzo ey < NP = fllioguysn,
(26)
+]f - Ql|L°°(x0+B]-) < Co;,
butif P # Q,
IP = Qllyeouypy = C27, 27)

for any j sufficiently large, so that 2/M ¢ ; does not tend to zero.
O

The polynomial P in inequality (20) is the Taylor expan-
sion of f, where the derivative is replaced with the Peano
derivative.

The spaces A”M(x,) are a generalization of the usual
Holder spaces, defined by (2).

Remark 10. Let o € (0,00); the sequence o = (z_j“)jGN is
an admissible sequence with s(o) = 5(0) = -a, s(o™) =
E(o_l) = «. Therefore, if « is not a natural number, we have

A% (xg) = A% () = A (). (28)
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It is easy to check that the polynomial satisfying (2) is
unique if and only if &« ¢ N. If « € N, one rather imposes P €
Pl — 1] in order to obtain the uniqueness of the polynomial
(one easily verifies that both definitions lead to the same
spaces), so that A%(x,) = Aaé("il)_l(xo), with 0; = 277,
We will use the modified version in the sequel, ensuring the
uniqueness of the polynomial.

The following proposition rigorously expresses the idea
that the space ATM (x,) associated with a sequence (aj) i that

decreases faster than 2~/M
space AM(x,).

is included in the usual Holder

Corollary 11. If§(o_1) > M, one has A"’M(xo) C AM(xo).
Proof. Let f € A”™(x,), P be defined as in Theorem 9, that

is,

X - xoﬁ
P(x)= Y f5(x) (= xo).

(29)
|BI<M B

and let us set

X=X ﬁ
Y S (x) (=) °) (30)

IBl=M-1

Q(x) =

One gets
If = Qllioieyeny < If = Pliocsyemy
+ P = Qllzeo(xp+8,) (31)
< Co;+C27™M < C'27M,

since 2/M 0; tends to zero. O

3. Alternative Definitions of
Generalized Holder Spaces

Since the uniform spaces A”(Rd) can be defined via finite
differences or convolutions, one can wonder if such charac-
terizations also hold for the pointwise version of these spaces.

3.1. Characterization in Terms of Finite Differences. As usual,
A, f will stand for the finite difference of order n: given a

function f defined on R? and x, h € R,
AWf () = f (x+h) = f(x),
AL f () = M)A (%),

for any n € N. We also set

(32)

B,i\/[(xo,j):{x:[x,x+(M+l)h] Cx0+Bj}, (33)

where [x, x + (M + 1)h] is the line segment with end points x
and x + (M + 1)h. In order to obtain a more general result, we
drop the continuity condition of Definition 2 in this section.
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Proposition 12. Let f € Lloc(Rd); one has f € AM(x,) if
and only if there exist C, ] > 0 such that

Zup "AM+1f “LOO(BM(x0 = < Coj, (34)

forany j>J.

Proof. The theorem of Whitney (see, e.g., [20]) directly
implies that if f satisfies inequality (34), then f € A% (x,):
one has

Pg{}& If- P||L°°(X0+B) s Csup "A

M+1
f"Lm(BhM(xO,j)) © (35)

Let us now suppose that f € A”M(x,) and let x ¢

BhM (x> j), P € P[M]. One has, using the Fréchet functional
equation,

85 Al = 1857 (£ =P )"m%w»

< (M + DUM +2) | f = Pl

(x0:))
xO+B
Now, since there exists a polynomial P; € P[M] such that
"f J“L"o(xo+B , < Coj, (37)
for any j sufficiently large, one gets

sup “AIP\I/IHf“LO"(BhM(xU,j)) < Coj, (38)

for any j sufficiently large. O

3.2. Characterization in Terms of Convolutions. Let us denote
the space of the infinitely differentiable functions with com-

pact support included in a subset E of RY by C°(E). In this
section, p will denote a radial function of C:°(B) such that

p(x) € [0,1] for any x € R? and lpll; = 1. Moreover, one sets
pj = 274 p(2/.), for any j € N.
In [1], the following result has been obtained.

Lemma13. Let N € N; if f € L}, .(RY) satisfies
sup |f % P = flliopeny < Copo (39)
2]

for j > ], then, for any multi-index [3 such that || < N, one
has

“Dﬁ( * PJ f PJ “L‘”(x0+3) - CZ]N

forj=J+1

(40)

Using the same ideas as in [1], one gets a similar charac-
terization.

Theorem 14. If f € A% (x,), then there exists a function ® €
Cfo(Rd) such that

e |f =7 * Pl ooy my < Co (41)
>j

for any j sufficiently large.

Conversely, if 0 — 0, if f is uniformly Holder and satisfies
inequality (41) for a function ® € Cfo(Rd), then f € A"’M(xo)
for any M € N such that M +1 > 5(a ™).

Proof. Assume f € A%M(x,). Asin [1] (see also [3]), let us set

¥ (x)
m/2-1 ! 1 X (42)
1y " ,
]Zo T - p<2j—m>

where m is large enough (larger than M + 1) and ® =
v/ J Y dx. Using the same arguments as in [1], one gets

Frdy(x)= f(x)=C j AT F()p()dt,  (43)

which, due to Proposition 12, leads to inequality (41).
Let us show the converse. Let & € (0,1) be such that f €

A*(R?) and set, as in [1],
fi=f=*oy,
fi=fx(0;-0),

for j > 1. Since f is uniformly Holder, f is uniformly equal
to Y5 fjon R and

AI;\,I/[+1f ZAM+1fj,

j=1

(44)

(45)

uniformly on RY, for any i € R For j € N, let n, € N,
h € R% and j, € N, be such that M + 1 < 2", |h| < 270,
and 27 Uot e < 0; < 27% One has

"AM+1f“L°°(xO+B) = Z ||AM+1fk||L°°(xO+B})

Zo M+1fk (46)

L°°(x0+B]-)

M+1
+ Z "Ah fk'|L°°(x[,+Bj) >
k>jo+1
where the second term in the right-hand side only appears if
J < Jo-
Using Lemma 13 and the fact that M + 1 > 5(07), the
mean value theorem allows writing

j-1
M+1
kz ”Ah fk|'L°°(xo+Bj)
=1

<ZC|h|M+1 SuP ”D fk'le(x +B;,) “7)

|Bl=M

j-1
—j(M+1) k(M+1)
<C2 kZZ 0 < Ccrj.
=1



Moreover,
Jo

YAV

k=j

L°°(x0+B]-)

= |'A12!/I+1 (f * q)jo - f * q)j_l)'lL"o(x0+Bj) <C ||f
# @~ f = q’j—IHLoo(xomj,l) (48)
< (I * 05~ Flioers,

ff-fx q>j_1||Lm(x0+Bq)) <Cop, +Co;,

J

< Co;
< Co‘].

Finally,
X iy <€ 2 Wil

k>jo+1 >jo+1
_ (49)
<C Yy 2™ <27 <o,
k=jo+1

One then has

M+1
sup HA h

heB

M+1
< swp |21,
i) hes b Tl (e +B))

j+ng (50)

]

j+ng

<Co; <Cojp s

as wanted, in view of Proposition 12. O

4. Generalized Pointwise Holder
Spaces and Wavelets

The usual Holder spaces can “nearly” be characterized in
terms of wavelets [12]: for the sufficiency of the condition,
the function has to be uniformly Holder and a logarithmic
correction appears. We show here that such a result still holds
in the generalized case.

4.1. Definitions. Let us briefly recall some definitions and
notations (for more precisions, see, e.g., [21-23]). Under some
general assumptions, there exist a real-valued function ¢ and

2% — 1 real-valued functions ("), ;,« defined on R?, called
wavelets, such that

{¢( -k :kez}
o (51)
Ufy? (2 —k):1<i<2% keZ? jeN,},

form an orthogonal basis of 12 (Rd). Any function f € 12 (Rd)
can be decomposed as follows:

fx) =) Cip(x—Fk)

kezd

+ Z Z Z cJ(.f,)cv/(l) (2]x - k),

j=0 kezd 1<i<2d

(52)
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where

=2 [ 76y (2x-k)dx,
¢ (53)
C = j F)$(x-K)dx.
R

Let us remark that we do not choose the L*(R?) normalization
for the wavelets, but rather an L* normalization, which
is better fitted to the study of the Holderian regularity.
Hereafter, the wavelets are always supposed to belong to
C"(R?) withn > M, and the functions (Ds¢)|s|gy, (Dsy/(i))|s|gy
are assumed to have fast decay (where y is a sufficiently large
number, i.e., strictly greater than M).
A dyadic cube of scale j is a cube of the form

A=["_1.,"1_+,1)x...x[k—‘?,kd+.1), (54)
207 2 277 2J

where k = (k,...,k;) € Z%. From now on, wavelets and
wavelet coeflicients will be indexed with dyadic cubes A. Since

i takes 2% — 1 values, we can assume that it takes values in

{0, l}d —(0,...,0); we will use the following notations:
(i) A =AG, j, k) = k/Zj + i/2j+1 + [0, 1/21+1)d,
(ii) ¢, = c})’}(,

(iii) v, = q/;’,)( =y k).

The pointwise Holderian regularity of a function is closely
related to the decay rate of its wavelet leaders.

Definition 15. The wavelet leaders are defined by

dﬂ = sup |C/\/| . (55)
N
Two dyadic cubes A and A’ are adjacent if they are at the same
scale and if dist(1, A") = 0. We denote by 31 the set of the 3%
dyadic cubes adjacent to A and by A ;(x,) the dyadic cube of
side length 27/ containing x,; we then set

d.(x,)= sup d,.
0= R =)

4.2. Result. From now on, we will suppose that the wavelets
are compactly supported (such wavelets are constructed in
[24]) and j, will stand for a natural number such that the

support of ¥ is included in 2B, for any i € {1,...,2% - 1}.

Theorem 16. If f € A (x,), then there exist C > 0 and
J € N such that

d;(x,) < Co;, (57)

forany j>].

Conversely, let f be a uniformly Holder function; if
inequality (57) is satisfied for an admissible sequence o that
tends to zero, then f € A" (x,), where T is the admissible
sequence defined by T; = o ,|log,0;| and M € N, is any number
satisfying M + 1 > 5(o™ ).
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Proof. In what follows, Py, € P[M] is according to (11). If

f e A%M(x,), let k, € N, be such that 2/0*! + 4d < 2%, For
j=ky+land A = A, j',k') C 3/\j(x0), one has

lCA| =

247 j F )y (%) dx|

(f )= Prog, () 9 (<) ]

24 J
K2 4B,
<2 J

< C2dj’0j_k0 J [y (x)] dx < Coj,

f (%) = Pig, () va (x) dx|  (58)

f(x) ik, ()] v (3] dx

which is the desired result.
Now, let us suppose that inequality (57) is satisfied for a

function f € As(Rd) and an admissible sequence ¢ tending
to 0. Let us set

fa=)C( -k,
k
fi= ZQ%»
ik

(59)

for j € N. In [2], it has been shown that these functions have
the same regularity as the wavelets and that f is uniformly
equalto } ;. _; f;. Let us define

Py (x) =

Z DFf (%) (60)

j=-1

(x xo)
y L)

|Bl=M

and let us choose ; € N such that R > 27/ and k/2’ € x+RB
(x € RY) implies

k i

1 d
4+ — 0, —) C x+2™RB. (61)
YRR Y Ry

Let us also choose m; € N such that any ball x + B; (x € RY,

j € Np) is included in a dyadic cube of length 2™/, If J' is
such thato; < 1forany j > J !, we finally choose J such that

J = sup{J’, j, + ny +my + 1}. One has

"f - P]||L°°(x0+B,)

3

=

) ||f1||L°°(x0+B,

]>+

fe- Y B )ﬁD’;f (o)
j /3| j\*0
IBI=M

(62)
L (xo+By)

Let us look at the first term of the right-hand side. Let
j < J; using the Taylor expansion, one gets

g Gl e

(%) -
5 = P!

L (xy+By) (63)

< C2/MY gyp “Dﬁ J“

o .
|Bl=M+1 L*(x,+Bj)

If B satisfies |B| = M + 1, we have, for any x € x, + B},

D f; ()] < Y27 oy [DPyy ()]
ik

v 64)
=Y Y MV g||Dfyy ().
i k2 jex+B;
Each coefficient ¢) in the last sum is such that A ¢ x+B;_; _,, .
Therefore, if j > j, + n; + m, + 1, then
|C/\| < CG] —jo—ng—my—1- (65)

Otherwise, since f is uniformly Hélder, |¢| < C < Co;.
Therefore,

"Dﬁfj"L00 (x+By) < 2™ Tjs (66)

for any j < J, which implies

J

2

=

x—x,)F
z QDﬁfj(xo)

() -
fJ [Bl=M P!

L (xo+By)
< C2—](M+1) Z 2] M+1)O’ CG]
j=-1

For the second term in the right-hand side of (62), let us

define J; € N as the number such that 2™ < oy < 270D
and decompose the sum as follows:

j;l ||fj||L°°(x0+B]) - jg:ﬂ ||fj||L°°(xo+B,)

I (68)

+ j:;d "fj"LOO(xO+B,) )

We have
Z ”fJ“L"O(xO+B, Z “fj“L""(Rd) = C' Z 277
j=2J+1 j=2J+1 j2J+1 (69)
<C2 < Coy.

Now, for j € {J+1,...,J;} and x € x;, + B}, one has

@<y Y law @l (70)

i k27 ex+B;. "



If j > ] + j, + ny, the wavelet coefficients ¢, in the last sum
are such that

ACx+Bj_, Cxo+ By, (71)
and therefore
lon| < Coy_py -1 < Coy. (72)
In the other case,
ACx+Bj , Cxg+Bjj 1 (73)
and thus
la| < Coi_j—pyom,—1 < Coj < Coy. (74)

These inequalities lead to

Ji
Z |'fj"L°°(x0+B,) < CJ,0; < C|log, (d)| 0. (75)
j=J+1

Putting all these inequalities together, one gets
"f - PI"LOO(xOJrB,) <C |10g2 (Ul)l o7 (76)

as desired. O

The converse part of the previous theorem requires a
uniform regularity condition. As shown in [25], a stronger
condition than continuity is necessary in the usual case (see
also [26], where similar results are obtained (in the usual
case) with a Besov regularity assumption). Similarly, the
logarithmic correction is best possible in the usual case [25].

5. A Generalized Definition
of the Holder Exponent

The usual Holder spaces are embedded: « < f implies
AP(x,) < A*(xy). A notion of regularity for a function
fe L‘l’gc(Rd) at x,, can thus be given by the so-called Holder
exponent:

hy(x) =sup{a>0: feA%(xp)}. (77)

To do so in the generalized case, one needs some conditions

under which A (x,) c A””M’(xo).

This generalized exponent naturally leads to the defini-
tion of an alternative multifractal formalism, yet similar to
the one developed in [12], where, for example, logarithmic
corrections can appear.

5.1. A Trivial Illustration. The classical version of Theorem 16
theoretically allows estimating the Holder regularity at a
given point x, by looking at the behavior of d;(x,) versus
the scales j [12]. This notion of regularity is given by the
Holder exponent h¢(x,), defined by equality (77). Following
the standard wavelet characterization [12], one should have

log, d; (xo) ~hs(x0) j+C, (78)
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0 2 4 6 8 10 12 14
FIGURE 1: The function j +— d ]-(xo) in black, with the standard curve

C27" (blue) and the logarithmically corrected curve (using equality
(80)) (red) obtained with the Levenberg-Marquardt algorithm.

and a log-log plot can be used to estimate the slope k. This
method is simpler than directly fitting the curve

Yo (1) = Co™ (277), (79)

with ™ (r) = #" to the function j — d (xo), since in this
latter case one has to estimate two parameters (C and h) to
retain only one (namely, /1, which is the estimation of i f(xo)).
However, this approach allows fine-tuning the computation
of h, using Theorem 16. In the case of a Brownian motion,
for example, having the law of the iterated logarithm in mind
[14, 15], one should rather choose

" (r) = (rlog|log r|)h , (80)

in the definition of y,. Fitting d(x,) with different defini-

tions of @™ should help to discern between specific models.
In the case proposed here, it could support the detection of
the presence of a logarithmic correction, which could be the
signature of a Brownian motion.

As an illustration, the wavelet leader of a Brownian
motion j — d;(x,) for some x, (the middle was arbitrarily
chosen) is represented in Figure 1. When trying to fit
the curve C277" to d j(xo) using the Levenberg-Marquardt
algorithm [27], one gets h f(xo) = 0.554 (see Figure 1). The
same computation with the logarithmic correction (using
Definition (80)) gives h £(xo) = 0.495, which is closer to the
expected value 1/2. Computing the distance, for each point
x, of the signal (2% points), between the estimated Hélder
exponent h¢(x,) and the expected value 1/2 gives rise to the
boxplot represented in Figure 2.

Of course, this application is only a simple illustrative
example; more sophisticated work is required to show the
effectiveness of this approach and is out of the scope of
this work (see [28]). From a numerical point of view, the
estimation of h f(xo) is unstable (in particular, the detection
of fast and slow points in the Brownian motion seems to be a
difficult task, if not insufferable); this is why one rather tries to
estimate the size of the set of points sharing the same Hélder
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lin log
FIGURE 2: Boxplot of the distance between 1/2 and the estimated
Holder exponent. The left boxplot corresponds to the usual method

and the other corresponds to a method involving the logarithmic
correction.

exponent. This is the purpose of the multifractal formalism
for functions (see, e.g., [12]), which will not be recalled here.

5.2. Preliminary Results. We first need some technical easy
results. From now on, if f € A"’M(xo), (Pj) j will stand for
the sequence of polynomials of P[M] corresponding to the
definition. We will write

_ ®B B
Pj(x) = Z a;"x",
|BlsM
(81)
Q; (x) = Z a;ﬁ)xﬁ.
IBI<M-1

Lemmal7. Let f € A”M(x,); one has

-1
sup |a ﬁ>|<c<]Z(2M61)k+1>, (82)

|Bl=M k=1
j-1
clo0’Y (2M0.) 1). 83
grklecleg e ) w

Proof. Using the Markov inequality (13), we get

"Dﬁ (PJ J+1 ||L°°(XO+B 1)
<™ “PJ - Pj+1||L°°(x0+Bj+1)
(84)
< O (1= Moy * 1 = Pl )
< CZjMGj,

for any 8 such that |3| < M and j sufficiently large. Therefore,
we have

"Dﬁ (Pl - Pj)"LOO(xUJrBj)

= Z ”Dﬁ Pk+1)"L°°(xo+B )
j-1 (85)

0 c3 s

Pk+1 ) “Lw (x0+Bk+1)

for any j.
Now, let 8 be a multi-index such that | ]
(82) follows from

= M; inequality

||DI3 (Pl | (ﬁ)| |a(ﬂ)|> (86)

while inequality (83) can be obtained in the same way, using

Micisyony = €

"Dﬁ ( ||L°°(x0+B )y © CZZkMGk
(87)
-1
<00y (2,
k=1
valid for any j. O

Corollary 18. Let f € A”(x,); one has the following
inequalities:

() if2Me, < 1,
“f QJ“L“’(xO+B) = C(G +2 ]M) (88)

(i) if 2@, > 1,

“f Qj ”fo’ (x0+B;) <C (Uj + 61) ’ (89)
(iii) if 20, = 1,
|17 = Qi) <C o3 +27M0). 00y

Corollary 19. Let f € A™M(
inequalities:

() if2Me, < 1,

"f_Q ||L°°(x0+B) < C( (2 (] ) +27jM)’ 1)

Xo); one has the following

(i) if 2@, > 1,
“f QJ“L"O(xO+B) = C(G +2 JM) (92)
(iii) if2M@, = 1,

"f - QJ'||L°°(x0+Bj) =C (ij + z_jM)' (93)
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5.3. Definitions. Before introducing the definition of a gen-
eralized Holder exponent, we must first consider embedded
spaces of type A" (x,). Once the definitions are given, we

provide sufficient conditions for generalized Holder spaces to
be embedded.

Definition 20. If, forany & > 0, is an admissible sequence,
the application

o a >0 @ (94)

is called a family of admissible sequences.

Definition 21 Let x, € R% a family ¢© of admissible
(o)
sequences is decreasing for x, if « > 8 implies A% "1 (x,) ¢
®
A7 P (xy).

Definition 22. Let 6 be a decreasing family of admissible
sequences for x,; if f € L‘f;’c(Rd), then the Holder exponent

of f at x, for the family ¢* is given by

h‘}w (%) = sup {oc >0: fe ACed (xo)}. (95)

The following proposition is a simple corollary of the
results obtained in the previous section; it helps to check if a
family of admissible sequences is decreasing. If 6*” is a family
of admissible sequences, we set

()
itk
@YW = inf L=,
—J keN O-l(c(x)

@ (96)
(24

0j+k

()

keN O‘k

8" = sup

Proposition 23. Let ¢ be a family of admissible sequences
and x, € R%; 0 is decreasing for x, if it satisfies the following
two conditions:

(D) ifm <« < B <m+ 1, withm € N, then there exist
C,J > 0 such that

o*;ﬁ ) < Caﬁ.‘x), (97)

forany j>],

(2) for any m € N, at least one of the following two
conditions is satisfied:

(a) there exists g, > 0 such that, for any € € (0,¢,),
there exist C, ] > 0 for which 0;"’) < Ca;mig) and
(i) if 1 < 278,", then (@)’ < Ca?™,
(i) if 1 > 2®,", then 277" < Co'"™9,
ioon —(m) . (m—e)
(iii) if 1 = 2"@, , then j27/™ < Cojm e

forany j =],

Journal of Function Spaces

(b) there exists &, > 0 such that, for any € € (0,¢,),
there exist C, ] > 0 for which2™/™ < Caﬁ.'”‘s) and

(i) if1 < 2'"@(1"’), then a;m) < Ca;.m_s),
(M) if 1 > 270", then 0" (2"0!")7 <
Co_(m—e)
] b
o e (m) . (m) (m—e)
(ii) if 1 = 2@, then jo;"™ < Co "7,

forany j>J.

This result is similar to the one obtained in [1] (under
the hypothesis of Proposition 23, one gets a decreasing family
of admissible sequences for the uniform case), but the proof
given for these generalized uniform Holder spaces cannot be
adapted for the pointwise case.

Remark 24. Since the family of admissible sequences o)
defined by 0;“) = 27/% satisfies the conditions of Proposi-
tion 23, this result implies the classical inclusion AP (x9) C
A%(x,), for any a, f3 satisfying « < f.

Let us consider the following example to grasp the
practicality of Proposition 23.

Example 25. Let g : a > 0 — g(«) be a positive function and
set

(@) _ H—jer g(ax)
o, =270 (98)

One directly checks that condition (2)(b) is satisfied, so that
o is a decreasing family of admissible sequences.

Both conditions can be used to obtain decreasing families
of admissible sequences; here is an example where the first
condition is used.

Example 26. Let

-1 ifaeN
g(a) = (99)
0  otherwise.

If o is defined using identity (98), condition (2)(a) is
satisfied so that this sequence is also a decreasing family of
admissible sequences.
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