Phase Identification of Smart Meters by Clustering Voltage Measurements

Frédéric OLIVIER

Antonio SUTERA

Pierre GEURTS

Raphaël FONTENEAU

Damien ERNST

University of Liège, Belgium

Introduction

The phase identification problem

Why is the phase information important? What are the existing solutions? What is the algorithm we propose?

Performance and discussions

Why is the phase information important? What are the existing solutions? What is the algorithm we propose? Performance and discussions

The phase identification is important

Why is the phase information important? What are the existing solutions? What is the algorithm we propose? Performance and discussions

Existing solutions

Contributions

- 1. Novel algorithm
 - 1. Using the underlying structure of the network
 - 2. Using the advantages of both graph theory and correlation
 - 3. Identifying the measurements that should be linked together and cluster them.
- 2. Performance compared to those of a constrained k-means clustering
- 3. Tested on real measurements from a distribution network in Belgium, in a variety of settings.

Why is the phase information important? What are the existing solutions? What is the algorithm we propose? Performance and discussions

Distances

- Distance between two voltage measurements:
 - Pearson's correlation

$$d(M_l, M_i) = 1 - PC(M_l, M_i), \qquad \forall l, i \in \mathcal{I}$$

• Distance between a voltage measurement and a cluster

$$\Delta(\mathcal{C}_k, M_i) = \min_{l \in \mathcal{C}_k} d(M_l, M_i)$$

Reference algorithm Constrained k-means Clustering

Proposed algorithm Constrained Multi-tree Clustering

Why is the phase information important? What are the existing solutions? What is the algorithm we propose?

Performance and discussions

Test system

- Belgium LV distribution network
- 5 feeders, star configuration 400 V
- 79 three-phase smart meters
- 2 single phase smart meters
- Average phase-to-neutral voltage measurements every minute

Results for the test sets Discussions on the selection of the root

Performance measure

The ratio between the measurements correctly identified and the total number of measurements

Influence of the voltage-averaging period

PSCC 2018

Influence of ratio single-phase – three-phase smart meters

Influence of the number of smart meters

CMT

Conclusion

- Novel method to identify the phases of smart meters in LV distribution networks
- Clustering the voltage measurements using graph theory and the correlation between measurements
- A root smart meter as input upon which the clustering process is done
- Better performance than Constrainted *k*-means clustering

Future works

- Use this novel method to infer network topology.
- Test the algorithm on measurements from other network configurations, such as
 - 1. 3-phase 4-wire with grounded neutral,
 - 2. 3-phase 3-wire (3x230V) and no ground.

Phase Identification of Smart Meters by Clustering Voltage Measurements

Contact:

Frédéric OLIVIER

Montefiore Institute (B28) University of Liège, Belgium frederic.olivier@uliege.be

PSCC 2018 Dublin

