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Abstract—When a smart meter, be it single-phase or three-
phase, is connected to a three-phase network, the phase(s) to
which it is connected is (are) initially not known. This means that
each of its measurements is not uniquely associated with a phase
of the distribution network. This phase information is important
because it can be used by Distribution System Operators to take
actions in order to have a network that is more balanced.

In this work, the correlation between the voltage measurements
of the smart meters is used to identify the phases. To do so, the
constrained k-means clustering method is first introduced as a
reference, as it has been previously used for phase identification.
A novel, automatic and effective method is then proposed
to overcome the main drawback of the constrained k-means
clustering, and improve the quality of the clustering. Indeed,
it takes into account the underlying structure of the low-voltage
distribution networks beneath the voltage measurements without
a priori knowledge on the topology of the network. Both methods
are analysed with real measurements from a distribution network
in Belgium. The proposed algorithm shows superior performance
in different settings, e.g. when the ratio of single-phase over three-
phase meters in the network is high, when the period over which
the voltages are averaged is longer than one minute, etc.

Index Terms—Voltage correlation, clustering, constrained k-
means clustering, phase identification, smart meter, three-phase
distribution network.

I. INTRODUCTION

When a smart meter, be it single-phase or three-phase, is
connected to a three-phase network, the phase(s) to which it
is connected is (are) initially not known. This means that each
of its measurements is not uniquely associated with a phase
of the distribution network. This can be achieved by solving
the phase identification problem, i.e. associating the phases
of the network to those of the smart meter. It is equivalent
to clustering the measurements in three groups, one for each
phase of the network. This phase information is important
because it can be used by Distribution System Operators
(DSO) to take actions in order to have a network that is more
balanced.

In this work, the correlation between the voltage mea-
surements of the smart meters is used to solve the phase
identification problem. To do so, the constrained k-means
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clustering method is first introduced. It will be used as a
reference for the performance as it has been previously used
for phase identification [1]. A novel, automatic and effective
method is then proposed to overcome the main drawback of
the constrained k-means clustering and improve the quality
of the clustering. Indeed, it takes into account the underlying
structure of the low-voltage (LV) distribution networks beneath
the voltage measurements without a priori knowledge on the
topology of the network. Both methods are analysed with
real measurements from a distribution network in Belgium,
in order to give insight on how to parametrise them, and
generalise their performance in different settings, by varying
the ratios of single-phase over three-phase meters in the
network, increasing the period over which the voltages are
averaged, etc.

The paper is organised as follows: the phase identification
problem is motivated in the first section and formalised in
the second. In section 3, the two clustering algorithms are
presented. We then describe the LV distribution network used
for the computations and the assessment of the algorithms.
Sections 4 and 5 present the parametrisation of the algorithms
and their performance in different settings. Finally, section
6 summarises the advantages and pitfalls of the proposed
clustering methods to identify the phase of smart meters in
a LV distribution network.

II. ON THE IMPORTANCE OF PHASE IDENTIFICATION

LV distribution networks are intrinsically unbalanced due
to the currents that are consumed by single-phase household
appliances, or produced by single-phase distributed generation
units. This imbalance reduces the hosting capacity of the net-
work, i.e. the maximum amount of distributed generation that
can be connected without violating the operational constraints
in the network [2]-[5]. Thus, the first action to increase the
hosting capacity is to better balance production on the three
phases of the network. The phase information allows the
distribution system operators (DSOs) to do so by changing
the phase(s) to which their customers are connected.

Moreover, three-phase power flow simulations take as input
the active and reactive powers that are consumed or pro-
duced at each connection point, phase by phase. To obtain
simulations accurately reflecting real operations, the phase
information is required to know to which phase of the network
the active and reactive power measurements correspond. This



also allows for the comparison between the voltages that are
measured and voltages that are simulated.

III. THE PHASE IDENTIFICATION PROBLEM

In this paper, we consider that the meters can either be single
phase, i.e. connected between a phase and the neutral, or three
phase, i.e. connected to the three phases and the neutral. This
implies that the network to which the meters are connected
is a four-wire, three-phase and neutral star-shaped distribution
network. Let

S = {SJ},] eJ=1.J

be the set of all meters, where J is the total number of
smart meters. The meters measure several electrical quantities
that can be aggregated, such the total active power that is
consumed, or phase related, such as phase-to-neutral voltages.
The latter measurements are identified by the letters r;, s;,
t;, among which each corresponds to one phase of the meter.
When a smart meter is single phase, only the index r; is used.

As explained in the introduction, there is no coherence
between r, s and ¢ at the network level. They are only valid
at the meter level. If the phases of the network are labelled a,
b, c, the goal of the phase identification is thus to associate
the phase 75, s; and t; of each smart meter, S;, to one phase
of the distribution network.

It is equivalent to clustering the phases of the meters
in three groups, which will be denoted C;,Cs,Cs, and then
associating each group to one phase of the network by taking
a common reference. Moreover, the physical nature of the
problem imposes constraints on the clustering process. Since
meter phases are electrically connected to different phases of
the network, two indices linked to the same smart meter cannot
be placed in the same cluster, i.e. 7}, s;,t; must be placed
in different clusters. Of course, single-phase meters do not
impose such constraints and the phase index can be placed in
a cluster without restrictions.

IV. EXISTING SOLUTIONS

Two types of solution oppose each other to solve the
phase identification problem: manual ones, which require a
technician to proceed, manually, to the phase identification
and automatic ones which either use a built-in function of the
smart meters or perform an analysis of the measurements.

A. Manual methods

On the one hand, phase identifiers are equipment usually
composed of two parts, with one of them connected at a
reference point in the network and the other one used by a
technician to identify the phases at the customers’ premises.
A primary technology uses clocks that are synchronised with
GPS, to compare the voltage angle between the reference
voltage and the voltage measured by the technician. A second
technology broadcasts different signals in the three phase con-
ductors, and the technician proceeds to the phase identification
by reading the signal in each of the smart meter’s conductors.
The main drawbacks are the equipment cost and the need to

send a technician to the premises. Moreover, these methods
may also be prone to human error.

B. Automatic methods

On the other hand, recent smart meters, which uses Power
Line Carrier (PLC) technology to transfer the measurements,
have a built-in function to identify the phases. However, if it
does not have this function or uses a technology other than
PLC, e.g. General Packet Radio Service (GPRS), a remote
solution would instead be to use the measurements collected
by the smart meter to perform the phase identification.

In the literature, it has been proposed to use energy mea-
surements [6] or voltage measurements [7], [8] to (re)-discover
the network topology, including the phase identification of the
smart meters. Paper [6] proposes a method using graph theory
based on a principal component analysis (PCA), whereas [7],
[8] use a correlation-based approach exploiting the similarities
between the voltage measurements of the same phase (k-means
clustering). Papers [1], [9], [10] explicitly identify the phases
with either energy or voltage measurements. [9] applies graph
theory and PCA to identify the phases of a simulated dataset,
taking into account the effect of noise. [10] uses correlation
to find how to locally associate the phases of each smart
meter to the phases of a reference meter. Finally, instead of
directly employing correlation, [1] extracts features on which
they perform a k-means clustering.

This paper extends the work done in [11]. Its contribu-
tions are four-fold: (i) It proposes a novel algorithm with a
global network, using the advantages of both graph theory
and correlation to identify the measurements that should be
linked together and cluster them. (ii) The performance of the
algorithm is assessed in comparison to those of a constrained
k-means clustering performed on the voltage measurements.
(iii) Unlike previous references, the algorithms are designed
for the specificities of European LV distribution networks.
(iv) The algorithms are tested on real measurements from a
distribution network in Belgium, in a variety of settings.

V. DESCRIPTION OF THE PROPOSED METHODS

After a description of the distribution network character-
istics that provides an insight on how to measure similarity
between two voltage measurements, the constrained k-means
and the novel approach are presented. It should be men-
tioned that both methods are automatic and do not require
additional equipment. Moreover, they are solely based on
voltage measurements and do not require a priori knowledge
of the network topology, such as the partition of smart meters
between feeders. This point is important since this information
is often not reliable due to the various reconfigurations of LV
distribution networks.

A. Definition of the distance between two voltage measure-
ments

Correlation-based approaches seem very well adapted to
the phase identification problem and have been successfully

used in [8], [10]. The proposed algorithms also use Pearson’s
correlation to assess the similarities between two time series



M; and M, gathering the measurements of the phase-to-
neutral voltage magnitudes:

Ypy (Mis — M) (M — M)
VI (M- 025 (0 - 012)

where M 1 and Mg are the mean values of M, and M5, and

n the length of both time series. Indeed, the voltage at the
end of an electrical line is equal to the sum of the voltage
at its beginning and the voltage drop caused by the current
flowing through the impedance. Thus, points that are separated
by a line with a small impedance, or which are traversed by
a small current, have voltages that are more correlated. Since
phases are not electrically connected to each other, voltage
measurement from different phases are less correlated. Other
similarity metrics could be of interest, such as the cosine
similarity, if the same approach were to be adapted to other
applications with a different type of data.

Finally, let the set of voltage measurements be M = {M;,},
with ¢ € T = {ry,s1,t1,72,...,75,87,ts}, where M, is a
voltage time series and ¢ is its index in the total set of time
series, not the time index. The distance between two voltage
measurements is defined as

PC(M,, My) =

2

d(M, M;) =1— PC(M;,M;), VlieZ
so that the distance is equal to O if the measurements are
perfectly correlated.

B. Reference algorithm: Constrained k-means Clustering

k-means clustering [12] aims at partitioning a set of obser-
vations into k£ clusters. At each iteration, the observations are
associated to the cluster with the closest centre, in the sense of
a distance metric (e.g., Euclidian distance, correlation measure,
etc.) that assesses the similarity between an observation and
a centre. The centres are usually computed by averaging the
observations already associated to the cluster. In the phase
identification case, the number of clusters, k, is equal to the
number of phases, i.e. £ = 3. However, this algorithm does not
take into account the constraints that the measurements from
a same three-phase smart meter must be placed in different
clusters. The k-means clustering algorithm is thus modified
to correspond to the one proposed in [13], which introduces
background knowledge through constraints..

Formally, the constrained k-means (CKM) clustering al-
gorithm for phase identification (as used in references [1],
[13], [14], detailed in Algorithm 1 and illustrated in Figure
6) works as follows: Three empty clusters are defined based
on the number of phases. The initial centres are equal to
the measurements of the root three-phase smart meter given
as input. This ensures that initial centres are measurements
from three distinct phases. At each iteration, all smart meters
are examined: each voltage time series of the smart meter
is associated with the cluster whose center is the closest,
in such a way that only one measurement can belong to a
cluster to satisfy the three-phase constraint. For the sake of

Algorithm 1 Constrained k-means Algorithm
Inputs:
1) Set of measurements M
2) Set of smart meters S
3) Three-phase root smart meter .S,
4) Distance metric d(-, -)
Output:
e Three clusters satisfying the smart meter constraints: C1, Ca, C3.
Algorithm:

1) Letcy = M’“jo ,Co = Msj0 ,c3 = Mtjo be the initial cluster centres
of C1, Ca, C3.
2) Let J1 be the subset of the single-phase smart meter indices and J3
the subset of three-phase smart meter indices.
3) Cp =0 with k=1,2,3.
4) VS]', with j € J1,
k* = argmin d(ck,Mrj)
k={1,2,3}
Cp+ = Cpx U rj

5) VS; with j € 73,

a) {ki,ii} = argmin

k={1,2,3}
i={rj,s;,t;}
— « 5k
Ckf = Ckl Uy

by {k3,i3} =

d(cg, M;)

arg min
k={1,2,3}\k]
i={rj,s;,t;}\i]
— « sk
Ck; = Ck2 Uy
© ky = {1,2,30\{kT, k2 }, i3 = {rj, 55, 133 \{41, i3}
— ¥ 5k
Ckg = Cks Ug

d(C, M;)

6) For each cluster Cg, update its center by averaging all the measure-
ments M;, Vi € Cy,.

7) Iterate between (3) and (6) until the algorithm reaches convergence
(i.e., changes in centres are smaller than a given threshold €) or the
maximal number of iterations.

implementation, the pair measurement-cluster with the small-
est distance is first selected, then the second pair (excluding
the measurement and cluster from the first pair), and then the
last pair is trivially associated to the remaining cluster. For a
single-phase element, the measurement is directly associated to
the closest centre. Once all smart meters have been examined,
centres are updated by averaging all the measurements that
have been assigned to them. If those updates are still above
the given convergence threshold, or if the maximal number of
iterations is not reached, then the process keeps iterating.

A drawback of the k-means clustering approach is the
fact that, between two subsequent iterations, measurements
associated with a given cluster are averaged to compute the
cluster centre for the next iteration. Averaging measurements
may destroy some information by eliminating small variations
in the measurements.

C. Proposed algorithm: Constrained Multi-tree Clustering

This paragraph explains the motivation for a tree-structured
algorithm to cluster the phase measurements. Distribution
systems are usually operated radially, i.e. there are no electrical
loops, with one point of connection between the MV network
and the LV network (the distribution transformer). From a



graph theory perspective, the network can be seen as a
tree, where the distribution transformer is the root and the
connection points are the leaves. Indeed, a tree is defined as
an undirected graph in which any two nodes are connected by
exactly one path, in other words without cycles. It makes sense
to use a tree structure to cluster the measurements, as explained
in [11], because the tree structure of the network creates
an underlying structure between the voltage measurements.
Indeed, the voltages at two points that are neighbours in the
network tree are more correlated.

The Constrained Multi-tree (CMT) algorithm was inspired
by Prim’s algorithm, which is used to calculate minimum
spanning trees in weighed graphs. Prim’s algorithm starts at
a root node and makes the tree grow gradually by adding
the node whose branch will add the lowest weight to the
tree. Prim’s algorithm cannot be applied in this form to
cluster the measurements because its output is only one tree.
The algorithm is modified to output three trees, hence three
clusters.

Let

be the definition of the distance between a cluster C; and
a measurement M. Initially, the clusters contain only one
measurement, those of the root smart meter given as input
to the algorithm. For the same reason as for the previous
algorithm, the root smart meter needs to be three-phase. Mea-
surements will be sequentially added to the root measurements
to form the trees in the cluster, as explained in Algorithm 2
and illustrated in Figure 7. At each iteration, a distance §; is
associated to the measurement M, from a smart meter, that
is the closest to a cluster, while satisfying the constraints. A
potential cluster x; and a potential predecessor m; are also
associated, corresponding to the cluster and its measurement,
which minimises the distance. The constraints are taken into
account by selecting the best pair between the remaining
measurements for a smart meter and the remaining clusters.
If the measurements of a smart meter are already in a cluster,
the distance, potential cluster, and potential predecessor are
computed without considering those measurements and corre-
sponding clusters.

Once the distances have been computed, the measurement,
which is not yet in a cluster and whose distance is the smallest,
is added to its potential cluster, and edge is created with its
potential predecessor. By doing so, the trees grow at each
iteration by adding the measurement with the minimum cost,
i.e. whose connection to the minimum spanning tree will make
the sum of the weight of the edges increase by the least
amount. The process is repeated until all measurements are
clustered.

VI. TEST SYSTEM

A. The low-voltage distribution network

The algorithm is tested on voltage measurements from a
Belgian LV distribution network, which is composed of five
feeders with a star configuration 400V/230V.

Algorithm 2 Constrained Multi-Tree Algorithm

Inputs:
1) Set of measurements M
2) Set of smart meters S
3) Three-phase root smart meter Sj,
4) Distance metric d(-, -)
Output:
e Three clusters satisfying the smart meter constraints: C1, Ca, Cs.
Algorithm:
1) Let C1 = {rj,},C2 = {sj,},C3 = {tj,} be the initial clusters,
where 7, 55,1, are the phase indices of the root smart meter S .
2) Let J1 be the subset of single-phase smart meters and 73 the subset
of three-phase smart meters.
3) 6 =+oo,VieT
4) VS; with j € J1, whose measurement index is not yet in a cluster,

a) k* = argmin A(Ck, Mr;)
k={1,2,3}
b Gy = ACk, M)
7p; = argmin d(M;, Mr;)
1EC)«
Kr, = k*

J
5) VSj, with j € J3, whose three measurements are not yet in a cluster,
o LetT* = {rj,sj,t;} N (U2_,Cy) be the set of measurement
indices from the smart meter S; that are already in a cluster, and
the set of corresponding clusters C*.
e Then,
{k*,i*} = arg min A(Ck, M;)
k={1,2,3}\k"
i={rj,s;,t; \NT"
biv = A(Cie, Miv)
Ti* = argmin d(]\fl7 Mz*)
1EC, =

Ki*x = k‘*

6) The measurement index with the smallest distance ¢ is added to the
corresponding cluster x:

<k

1 = argmin §;

; 3
zeI\Uk:le

Cmi* :Cni* Ui*

Create an edge between ¢* and 7 x.
7) Iterate between (3) and (6) until all measurements are assigned to a
cluster.

The network supplies 89 houses, among which 74 are
equipped with a three-phase smart meter and two with a single-
phase smart meter. Three houses are equipped with both a
regular smart meter and a night-exclusive one, the latter not
providing voltage measurements during the day from 7:00 to
22:00.

Each smart meter provides phase-to-neutral voltage mea-
surements as a one-minute average that are transferred using
GPRS. The beginning of each feeder is also equipped with a
smart meter and each feeder is associated with voltage and
current measurements at the transformer. So, the total number
of voltage measurement points is 81. It is important to note
that the phase identification of all smart meters is known, in
order to evaluate the performance of the algorithms.



B. Voltage measurement test set

To deal with night-exclusive meters, the phase identification
is done with night measurements. The test set is composed
of night measurements from all houses and transformer from
September 15th, 2017, 23:00 to September 18th, 2017, 4:00,
without any measurements from 7:00 to 23:00. This cor-
responds to 239 time series of 1260 one-minute voltage
measurement.

C. Performance measure and empirical assessment

In order to assess the validity of the phase identification, two
cases need to be distinguished: (i) an empirical verification
(the true phase identification) is available or possible, at a
potentially high cost, and can be used to verify the results, (ii)
no information is available.

With a (partial) solution, two accuracy metrics can be used
benefiting from the true solution. The first one considers
each pair (measurement-cluster) as an individual element. The
second one considers network elements (house or transformer)
as indivisible elements and therefore, an element is either fully
correctly identified or not at all. This second metric is not
sensitive to the number of measurements per element, while
the first one allows to have score for partial identification.
In the following, we only focus on the first metric in order to
differentiate single-phase and three-phase smart meters. More-
over, if an empirical verification — by sending a technician for
example — is possible, but expensive, it can be used to verify
the network at some critical points.

Without a (partial) solution, no clues are available to
evaluate the quality of the prediction. In this case, some con-
fidence scores may be extracted from the phase identification
process in order to identify what may or may not be correctly
identified. For example, instead of using all the measurements,
one can divide the measurements into several (overlapping)
windows of a given length. The consistency of the predictions
is assessed by comparing the results of the phase identification
for all time windows. To do so, the number of occurrences on
which two measurements are in the same cluster are counted
to obtain a confidence measure on the association of these two
measurements.

VII. RESULTS FOR THE TEST SET: DISCUSSIONS ON THE
SELECTION OF THE ROOT

Both algorithms need an initialisation with the measure-
ments from a three-phase smart meter. The current section
aims at assessing the impact of the root on the performance
of the algorithms. The performance index is equal to the
ratio between the number of voltage measurements which
are correctly identified and the total number of measurements
(i.e. 239 for the full data set). When the root is the meter
at the distribution transformer, the performance index is 1
for both algorithms. When it is a house, the performance is
between 0.67 and 1 for CKM and remains at 1 for the CMT.
When half the number of three-phase meters are converted
to single-phase meters by randomly selecting one phase, the

performance index lies between 0.67 and 1 for both algo-
rithms, while the performance index remains at 1 when the
transformer is the root. This highlights the influence of the
root on the performance of the algorithms, and hints that the
transformer provides a strong root. Indeed, the voltages at the
distribution transformer have a particular importance because
they influence all the other voltages of the LV network. To
further show this behaviour, the algorithms were tested in
more demanding settings. The phase identification was run 100
times. For each run, half the meters were randomly removed
and half of the remaining were converted to single-phase smart
meters by randomly selecting a phase. Furthermore, the 1-
minute-average voltages were converted to 15-minute-average
voltages by taking the mean of 15 samples at the time. In one
case, the root was the transformer and in the other case, the
root was randomly selected among the remaining three-phase
smart meters. The mean performance index is shown in Figure

Performance index

CKM (transf.)

CKM (house) CMT (transf.) CMT (house)

Figure 1. Mean performance indices comparing Constrained k-means (CKM)
and Constrained Multi-trees (CMT) in demanding settings (i.e., fewer smart
meters among which more are single-phase smart meters, and the sampling
period is equal to fifteen minutes).

As can be seen, the mean performance indices are higher
with CMT, and for both algorithms the performance is better
when the root is the transformer. This is explained thanks
to the radial structure of the distribution network and the
central role that is played by the distribution transformer.
Indeed, the order, with which the measurements are added,
and the final tree structures in each cluster are coherent with
the network topology, especially with the separation of smart
meters between feeders. Since, the CMT algorithm works by
sequentially adding the measurement with the lowest cost and
making the corresponding tree grow, it may happen that all
single-phase measurements are added to the same tree, which
grows unequally compared to the two other trees. Indeed,
which tree is growing is only selected by the cost and no
other method, which may not be optimal. Because of the high
number of nodes for that tree, it may occur by chance that the
similarity between one of these many nodes is high enough to
capture a wrong association and thus gather two phases in the
same cluster, leading to three incorrect trees. This could not
occur with three-phases measurements because, by definition,
one voltage measurement is associated to each tree/phase. This
is probably the pitfall of the method and on its own justifies



why a central element should be used as root to avoid such
a situation as often as possible. Nevertheless, let us note that
the multi-trees algorithm cannot reach the optimal solution if
the best way to make trees grow is to connect measurements
from different phases according to the given distance measure,
reflecting the inherent limitation in the data that restrains the
performances of the algorithm.

VIII. PERFORMANCE IN DIFFERENT SETTINGS

In this section, the performances of both algorithms are
analysed when the original data set is modified in four different
ways: (i) when one-minute average voltage time series are
converted to time series averaging voltages over a longer
period of time, (ii) when some random smart meters are
removed from the data set, (iii) when three-phase smart meters
are converted to single-phase ones by conserving a randomly
selected phase, (iv) when the time window over which the
phase identification is performed is less than the one from the
original data set. Given the results of the previous section,
the measurements from the distribution transformer are used
as roots of the three clusters. Both algorithms are applied
on exactly the same data, and thus results are comparable
across methods. In all experiments, the performance index is
the one defined in the previous section, i.e. the ratio between
the measurements correctly identified and the total number of
measurements.

Moreover, all experiments were repeated 100 times in order
to obtain average results, since the process is partially ran-
domised, except for the first case where only one experiment
is carried out. Finally, all results are represented with box
plots: on each box, the central mark is the median, while the
edges of the box are the 25th and 75th percentiles. Outliers are
identified and plotted individually, while the whiskers extend
to the most extreme data points not considered as outliers.

A. Influence of the voltage-averaging period

If the smart meters’ internal clocks are well synchronised,
averaging the voltages over a short period of times is more reli-
able because it keeps more variations in the voltages.However,
due to technical limitations, some equipment is not able to
measure voltages at a high frequency, e.g. instead of one
measure per minute, one measure is taken every five minutes,
or even every 15 minutes, which is established as the standard
in the power system community.

Even if it seems better to gather as much data as possible, it
also leads to huge amounts of data that need to be transferred
and then stored, potentially inducing a trade-off between the
amount of data required to achieve good performances in phase
identification, while being reasonable on the amount of data.

Figure 2 illustrates the performance index when the sam-
pling period increases up to one measure per hour. When
analysing the performances of the reference method, it appears
that the ability to solve the phase identification decreases
as the sampling period increases. As expected, the loss of
information caused by the lower resolution makes it harder
to correctly gather measurements. However, it also shows that

(i) the performances of the constrained multi-trees are more
stable, and (ii) this method is able to perfectly solve the phase
identification problem, even with an extremely high sampling
period.
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Figure 2. Performance index as a function of the decrease of the sampling
frequency. With red circle markers, the reference (constrained k-means
clustering) and with blue cross markers, the proposed method (constrained
multi-trees) which outperforms the former.

B. Influence of ratio single-phase — three-phase smart meters

From a correlation point of view, the three-phase constraints
may help to find the phase identifications for measurements.
Indeed, if, in the three voltage measurements from a three-
phase smart meter, two are strongly correlated to the other
measurements, while the other one is not. The constraint
will ensure that the final measurement is properly identified
by correctly identifying the first two. However, if the same
voltage measurements were to belong to three different single-
phase smart meters, and thus not be constrained, the third
measurement could be associated to a wrong cluster because
it could be more closely correlated to measurements from the
clusters to which the first and second measurements belong.
Single-phase smart meters complicate the phase identification
process.

Figure 3 displays the performance index when a certain
number of randomly selected three-phase meters (the maxi-
mum of three-phase meters being 79) are converted to single-
phase ones.

From Figure 3, the stability of the constrained multi-trees
algorithm seems obvious when the number of single-phase
meters increases, while the performance of the reference
method decreases significantly. Indeed, measurements from
single-phase smart meters are harder to correctly identify, but
growing tree structures prove to be effective with a great
number of single-phase smart meters.

C. Influence of missing smart meters

In this section, smart meters (without distinction between
single phase and three phase) are randomly removed in order
to virtually reduce the observability on the network, and
evaluate the critical number of meters that is required to solve
the identification problem. This is equivalent to increasing the
number of houses that are not monitored.



Fiooo

:

o
©
A
14
©
a

+

1

o
©

performance index
o
©

performance index

o
®
a
o
®
a

4
©
o
©

o
3

performance index
=} =}
~ (o]

performance index
o
©

]
—t{J}
[]
al

0 10 20 30 40 50 60 70 ’ 0
# single-phase smart meters

10 20 30 40 50 60 70
# single-phase smart meters

(a) Constrained k-means (b) Constrained multi-trees

Figure 3. Performance index according to the evolution of the number of
single-phase smart meters.

Similarly, as in results from section VIII-B, constrained
multi-trees performance are more stable and significantly bet-
ter than the reference when the data set is small (i.e. less than
40 smart meters). Given that the results for CMT only shows
outliers and the median is equal to 1, the outliers probably
correspond to cases where the remaining smart meters are not
correlated to other measurements, e.g. where a single smart
meter is the only one remaining at the end of a long feeder.
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Figure 4. Performance index according to the number of removed smart
meters (i.e., a decrease in the total number of smart meters).

D. Influence of sliding time windows

Measurements of the original data set gather 1260 samples
each, which may seem enough when measuring similarities
thanks to correlation. However, one may ask if the algorithm
is able to solve the identification problem with a smaller set
of measurements.

To perform this experiment, only a random sub-window
of a given length L is kept. In other words, L consecutive
measurements were randomly extracted in order to produce a
new dataset with a smaller recording time window.

As expected, smaller time windows complicate the task
of phase identification. However, constrained multi-trees still
manage to achieve better performance with a very small
number of consecutive measurements, i.e. a very small mea-
surement time window.

IX. CONCLUSION

This paper introduces a novel method to identify the phases
of smart meters in LV distribution networks by clustering the
voltage measurements using graph theory and the correlation
between measurements. The algorithm, named constrained
multi-tree clustering, successfully manages to identify the
phases of smart meters based on real voltage measurements

o
=)
o
)

1260 900 600 300 100 " 1260 900 600 300 100
window width window width

(a) Constrained k-means (b) Constrained multi-trees

Figure 5. Performance index according to the decrease in the time window
width.

from an LV network in Belgium. It takes, as input, a root
smart meter upon which the clustering process is done. Com-
putations show that a good choice for the root is the meter
at the distribution transformer. This is mainly due to the
central position played by the distribution transformer in LV
networks. The performance of the algorithm in various settings
is compared to those of constrained k-means clustering. The
constrained multi-tree method performs better regardless of
the ratio between single-phase and three-phase smart meters,
or the increasing number of houses that are not monitored,
i.e. a very small set of measurements. Finally, another one of
its advantages is its capacity to properly handle voltages that
are averaged over a longer period of time without wrongly
identifying smart meters.

In this paper, the algorithms have been tested on volt-
age measurements from a 3-phase 4-wire network with un-
grounded neutral. Future works could include tests on mea-
surements from other network configurations, such as (i)
3-phase 4-wire with grounded neutral, (ii) 3-phase 3-wire
(3x230V) and no ground. The proposed algorithm need not
be adapted since the identification is based on the fact that
voltage measurements between the same phases are more
correlated, than measurements between different phases. On
the one hand, the performance are expected to increase in case
(1) because the neutral voltage is kept low thanks to its repeated
connection to the ground. On the other hand, the chance of
misidentification should increase in configuration (ii) because
the correlation between two phase-to-phase voltage measure-
ments that share a common phase should be higher than the
one between two phase-to-neutral voltage measurements.

We could also improve the method to handle which cluster
is growing and at what pace, to avoid the growth of a cluster
at the expense of the others. Finally, it could be interesting
to use this novel method to infer network topology, especially
since the tree-structured assumption seems very well adapted
to distribution networks.
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‘ When convergence is reached ‘

‘ phase b H phase a H phase ¢ ‘

(a) To associate the first measure-
ment from a three-phase smart me-
ter, its distance to all three cluster
centres is computed. The closest
one (i.e. the one with the smallest
distance) is chosen.

(b) The second measurement from
a three-phase smart meter is as-
sociated based on its distance to
the two remaining cluster centres,
the other one being unavailable be-
cause of the first measurement.

(c) The constraints force the last
measurement from a three-phase
smart meter to be trivially associ-
ated to the remaining cluster.

(d) Since single-phase smart me-
ters do not impose constraints, its
measurement is associated to the
closest cluster centre.

Figure 6. Schematic representation of the Constrained k-means algorithm applied to phase identification: initially, the cluster centres are defined by the selected
root. At the beginning of every iteration, all three clusters are empty. After each iteration, the centres are computed as the average of the measurements associated
to the cluster. Measurements are associated to clusters following steps (a) to (c) for three-phase smart meters and step (d) for single-phase smart meters.
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(a) The measurements are sorted
according to the distance §; be-
tween them and the closest clus-
ter, while satisfying the constraints
and the potential association of the
other measurements from the same
smart meter.

(b) The measurement with the
smallest distance is associated to
its potential cluster, expending the
tree by being connected to its po-
tential predecessor. The distances
é; of the remaining measurements
are recomputed.

Figure 7. Schematic representation of the Constrained Multi-Tree algorithm.

(c) The process of measurement se-
lection and association is repeated
until all measurements are in a
cluster.
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When all measurements
are assigned to a cluster
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(d) The three clusters are associ-
ated to the phases of the network
either arbitrarily or by selecting a
reference.



