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Abstract

In so-called random preference models of probabilistic choice, a decision maker chooses ac-
cording to an unspecified probability distribution over preference states. The most promi-
nent case arises when preference states are linear orders or weak orders of the choice
alternatives. The literature has documented that actually evaluating whether decision
makers’ observed choices are consistent with such a probabilistic model of choice poses
computational difficulties. This severely limits the possible scale of empirical work in be-
havioral economics and related disciplines. We propose a family of column generation
based algorithms for performing such tests. We evaluate our algorithms on various sets of
instances. We observe substantial improvements in computation time and conclude that
we can efficiently test substantially larger data sets than previously possible.

Keywords: Choice Behavior, Probabilistic Choice, Column Generation, Membership
Problems

1. Introduction

We consider computational challenges that arise when testing a certain type of prob-
abilistic models of choice behavior. Imagine a decision maker who must specify a best
element out of a set of distinct alternatives. In such situations, decision makers do not
consistently select the same alternative as best, even when presented with the same (or
nearly the same) set of alternatives (see, e.g., Tversky, 1969). Thus, assuming that a
decision maker acts deterministically using a single decision rule (say, some linear order
of the alternatives) is unrealistic. Probabilistic models of choice, pioneered by Block and
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Marschak (1960) and Luce (1959), attempt to explain uncertainty and fluctuations in be-
havior through probabilistic specifications. We concentrate on a class of models in which
the permissible preference states are linear orders or weak orders of the alternatives. These
are prominent cases in the ongoing research about rationality of preferences in behavioral
economics, psychology, neuroscience and zoology (Regenwetter et al., 2011; Regenwetter
and Davis-Stober, 2012; Brown et al., 2015; Arbuthnott et al., 2017). The random prefer-
ence model captures the decision maker’s uncertainty about preference with a probability
distribution over these preference states. The probability of choosing a particular alterna-
tive is governed by that probability distribution over preference states.

In a seminal contribution, McFadden and Richter (1990) provided several equivalent
(sets of) conditions for choice probabilities to be consistent with such a probabilistic model
of choice. However, actually checking these conditions on choice probabilities poses compu-
tational challenges. Indeed, straightforwardly evaluating the “axiom of revealed stochastic
preference” and the “Block-Marschak polynomials” both require checking a number of
conditions that is exponential in the number of choice alternatives. Likewise, the system
of linear inequalities and the linear programs given in McFadden and Richter (1990) con-
tained one variable for every preference state. The resulting number of variables grows
exponentially in the number of alternatives, for most classes of preference states, including
for linear orders. Even so, this linear programming model forms the basis of our column
generation approach.

Most work on these probabilistic models has been on binary choice induced by linear
orders . More precisely, the probability that a person chooses an alternative i over an
alternative j, when required to choose one of the two, is the marginal probability of all
linear orders in which i is preferred to j. Block and Marschak (1960) described two classes
of inequalities and proved that these inequalities are necessary and sufficient conditions
for consistency with the probabilistic model of choice for data sets with up to 3 choice
alternatives. Dridi (1980) proved that these conditions are also necessary and sufficient for
data sets with up to 5 alternatives and showed that they are no longer sufficient for data sets
with 6 or more alternatives. Megiddo (1977) proved that testing data sets for consistency
with probabilistic choice induced by linear orders is difficult in general. He showed that the
problem is equivalent to testing membership of a given point in the linear ordering polytope.
Since optimization and separation over a particular polytope are polynomially equivalent
(see Grötschel et al., 1993), it follows that testing whether a given collection of choice
probabilities is consistent with a probabilistic model of choice induced by linear orders is
np-complete. In the last decade, researchers have generated extensive knowledge on the
facial description of the linear ordering polytope (see Doignon et al., 2006; Fiorini, 2006,
the survey by Charon and Hudry, 2007, and the book by Mart́ı and Reinelt, 2011, as well
as the references contained therein).

When carrying out tests of probabilistic models of choice, scholars usually circum-
vent the computational challenges that arise when the number of alternatives grows large.
Human laboratory experiments keep the number of alternatives small (see, e.g., Brown
et al., 2015; Cavagnaro and Davis-Stober, 2014; Regenwetter et al., 2011; Regenwetter and
Davis-Stober, 2012, who used sets of 5 alternatives). Kitamura and Stoye (2014) tested
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a probabilistic version of the “strong axiom of revealed preference,” using data from the
U.K. Family Expenditure Survey, which they partitioned into subsets of a manageable size.
One benefit of our proposed methodology is that it will allow researchers to design studies
with larger numbers of choice alternatives, which will, in turn, increase their realism and
generalizability. While testing probabilistic choice models is difficult in general, it becomes
easy for some settings and classes of preference states. Matzkin (2007) and Hoderlein and
Stoye (2014) provided conditions for a probabilistic version of the so-called “weak axiom
of revealed preference.” Davis-Stober (2012) described a set of linear inequalities that are
necessary and sufficient conditions for probabilistic choice induced by certain heuristic pref-
erences. Smeulders (2018) provided necessary and sufficient conditions for a probabilistic
model induced by single-peaked linear orders. Guo and Regenwetter (2014); Regenwetter
et al. (2014); Regenwetter and Robinson (2017) evaluated various sets of necessary and
sufficient conditions for binary choice probabilities. For all of these settings, the conditions
can be tested in polynomial time.

Here, we propose a family of algorithms based on column generation to test various
probabilistic models of choice and apply it to a model induced by linear orders. Column
generation is a technique to efficiently solve linear programs with a large number of vari-
ables; we come back to this technique in Section 3. Traditionally, the technique of column
generation has almost always been applied to optimization problems. Here, however, we
use it for a decision problem, namely, to detect whether given choice probabilities satisfy
the probabilistic model of choice or not (i.e., a yes/no answer). We show how this affects
the algorithm. The rest of this paper unfolds as follows. In Section 2, we lay out the
notation, the definitions and the model that we use. Section 3 provides a basic description
of the column generation algorithms. Section 4 discusses the implementation of a family of
such algorithms and reviews results from computational experiments. In Section 5 we show
that when testing the model for many similar choice probabilities, the column generation
algorithm can use output from one test to speed up subsequent tests. We illustrate how
this is useful for statistical analysis of probabilistic models, e.g., for calculating the Bayes
factor to evaluate statistical performance on laboratory data from human subjects. We
conclude in Section 6.

2. Notation and definitions

Consider a set A, consisting of n many alternatives and let A?A = {(i, j) | i, j ∈ A, i 6=
j} denote the collection of all ordered pairs of distinct elements of A. For each ordered
pair of distinct alternatives (i, j) ∈ A ? A, we are given a nonnegative number pi,j ≤ 1.
These numbers represent the probabilities that i is chosen over j for all distinct i and j in
A. For now, we concentrate on two-alternative forced choice, that is, the case in which a
person must choose one alternative or the other when offered a pair of alternatives. (We
consider other cases in the appendix.) Therefore, pi,j + pj,i = 1 for each pair of i, j ∈ A,
i 6= j. We refer to such a collection {pi,j | (i, j) ∈ A?A} of binary choice probabilities as a
data set. We denote a preference order over the alternatives by the relation � and we use
the index m to indicate a particular preference order. If, for the preference order �m, the
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alternative i ∈ A is preferred over the alternative j ∈ A, we write i �m j. The relations
�m are asymmetric, complete and transitive. The set of all such preference orders is O.
We further consider the subsets Oi,j ⊂ O for each (i, j) ∈ A ? A, where each Oi,j contains
all preference orders �m in which i �m j. The particular probabilistic model of choice that
we use is called the mixture model (also known as random preference model): this model
assumes that when a decision maker is faced with a choice, each preference order has a
certain probability of governing the choice. When these probabilities are consistent with
the numbers pi,j, we say that the mixture model rationalizes the data set.

Definition 1. Choice probabilities {pi,j | (i, j) ∈ A ? A} are rationalizable by the mixture
model if and only if there exist values xm, with 0 ≤ xm ≤ 1 for each �m∈ O, for which∑

�m∈Oi,j

xm = pi,j, ∀(i, j) ∈ A ? A. (1)

One straightforward way to find out whether a given data set is rationalizable by the
mixture model is to check whether there exist nonnegative values xm that satisfy this sys-
tem of equalities (1). Similarly, a collection of empirical choice proportions (say, in a human
subjects data set from a laboratory experiment) is rationalizable if it is consistent with hav-
ing been generated by choice probabilities that are rationalizable. Determining whether
this is the case is a matter of statistical inference subject to the equality constraints (1)
on the generating probabilities {pi,j | (i, j) ∈ A ? A}. Notice that the system of equali-
ties (1) has a variable for every possible preference order of the alternatives, of which there
exist |O| = n! many. Even for a moderate number of alternatives, it is computationally
prohibitive to solve this system.

Another approach is based on a result by Megiddo (1977): A collection {pi,j | (i, j) ∈
A?A} of binary choice probabilities can be viewed as a point in a n× (n− 1)-dimensional
space. The collection is rationalizable if and only if that point is contained in the linear
ordering polytope. This polytope (see Section 3.2 for its formulation) can theoretically be
described by its facet-defining inequalities, which means that the data set {pi,j| (i, j) ∈
A?A} is rationalizable by the mixture model if and only if the probabilities pi,j satisfy all
inequalities defining the linear ordering polytope. However, the number of facet-defining
inequalities needed to describe the linear ordering polytope rises very fast with the number
of alternatives; a complete description is known for up to 7 alternatives only (see, e.g.,
Mart́ı and Reinelt, 2011). Furthermore, the problem of establishing whether any facet-
defining inequalities are violated is np-complete for several known classes of inequalities.
Here, we circumvent the need to solve a huge system of equalities (1), or to list and check
all facet-defining inequalities, by moving to a different perspective: column generation.

3. Column generation

In this section, we describe an algorithm based on column generation to detect whether a
given data set can be rationalized by the mixture model. Column generation is a technique
dating back to Gilmore and Gomory (1961) who used it to solve cutting stock problems.

4



The advantage of using column generation is that we do not have to consider all of the
variables at once; instead, we repeatedly solve a linear program of limited size (the so-called
restricted master), and we solve a so-called pricing problem after each iteration to either
establish optimality of the solution found, or to identify new variable(s) to be added to the
restricted master. Being able to solve this pricing problem efficiently is key to developing
an attractive column generation method. We refer to Chvátal (1983) and Lübbecke and
Desrosiers (2005) for a more detailed description of column generation. In Sections 3.1,
3.2 and 3.3, we look at the setting described previously. In Section Appendix B, we briefly
show how to adapt the algorithm to different choice settings and decision rules.

3.1. A linear programming formulation

We rewrite the system of equalities given in Definition 1 as a linear programming
problem in the following fashion.

Minimize z, (2)

subject to
∑
�m∈Oij

xm + z ≥ pi,j, ∀(i, j) ∈ A ? A, (3)

∑
�m∈O

−xm ≥ −1, (4)

xm, z ≥ 0, ∀ �m∈ O. (5)

Fact 1. The optimal solution value of (2)-(5) is equal to 0 if and only if nonnegative
numbers xm (hence, preferences �m∈ O) exist that are a feasible solution to the system of
equalities (1).

The proof is given in Appendix A.1. Fact 1 implies that we can determine whether a
given data set is rationalizable by the mixture model by solving the minimization problem
(2)-(5). As is standard, we call that minimization problem the master problem.

3.2. The pricing problem

When we associate dual variables yi,j to constraints (3), and a dual variable c to con-
straint (4), the dual of (2)-(5) is as follows:

Maximize
∑

(i,j)∈A?A

pi,jyi,j − c, (6)

subject to
∑

(i,j)∈A?A:�m∈Oij

yi,j − c ≤ 0, ∀ �m∈ O, (7)

∑
(i,j)∈A?A

yi,j ≤ 1, (8)

yi,j, c ≥ 0, ∀(i, j) ∈ A ? A. (9)

To determine whether a given collection {yi,j | (i, j) ∈ A?A} and a given value c form a
feasible solution to this dual problem, one can solve a so-called pricing problem. In this case,
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since constraints (8) and (9) are easy to check, the pricing problem boils down to establish-
ing whether there exists a preference order �m∈ O, for which

∑
(i,j)∈A?A:�m∈Oij

yi,j > c. We
can formulate this pricing problem using binary variables bi,j that can be associated with
each (i, j) ∈ A ? A, as follows. We define bi,j = 1 if and only if alternative i is preferred
over alternative j. Let A ? A ? A denote the collection of all ordered triples of distinct
elements of A, i.e., A ? A ? A = {(i, j, k) | i ∈ A, j ∈ A, k ∈ A, with i, j, k distinct}. We
can formulate the pricing problem as the following maximization problem:

Maximize
∑

(i,j)∈A?A,i 6=j

yi,jbi,j, (10)

subject to bi,j + bj,i = 1, ∀(i, j) ∈ A ? A, (11)

bi,j + bj,k + bk,i ≤ 2, ∀(i, j, k) ∈ A ? A ? A, (12)

bi,j ∈ {0, 1}, ∀(i, j) ∈ A ? A. (13)

This pricing problem is the well known linear ordering problem (Mart́ı and Reinelt,
2011). The convex hull of all solutions satisfying (11) - (13) is the linear ordering polytope.
Any solution for which the objective value (10) is greater than c, corresponds to a violated
inequality (7) of the dual. This violated inequality directly corresponds to a primal variable,
which, when added, refines the restricted master problem so as to yield a better solution.

3.3. The method

A high-level description of our method is as follows. Initially, we solve a restricted
master problem. The formulation of this restricted master problem uses a subset of the
variables used in the master problem (2)-(5). Given a solution to the restricted master,
we test whether this solution is optimal for the master problem by solving the pricing
problem (10)-(13), yielding a solution {b∗i,j | (i, j) ∈ A ? A}. If the value of this solution
is bounded by c, i.e., if

∑
(i,j)∈A?A yi,jb

∗
i,j ≤ c, then the current solution to the restricted

master problem is in fact optimal for the master problem. Otherwise, we have identified a
violated constraint of type (7), and we add the associated primal variable to the restricted
master problem, which we then solve again. As there can be no solution to the master
problem with z < 0, the column generation algorithm terminates as soon as z = 0.

Thus, in this description of the method c acts as a threshold. We now show how to
strengthen this threshold by using the fact that the rationalizability question is a decision
problem. Indeed, we are only interested in detecting whether or not a feasible solution to
the master problem exists in which z = 0. This lets us use a stronger stopping condition,
based on the objective value of the solutions to the pricing problem. To proceed, let us
define a quantity P as

P =
∑

(i,j)∈A?A

yi,jpi,j.

Notice that, given the yi,j values and the pi,j values, P is trivial to compute.
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Theorem 1. (i) Given numbers yi,j for all pairs (i, j) ∈ A ? A, there exist nonnegative
values xm satisfying (1) only if there exists a linear order �m∈ O, such that∑

(i,j)∈A?A:i�mj

yi,j ≥ P. (14)

(ii) If the numbers yi,j and c are dual variables associated with a restricted master problem,
then P ≥ c.

The proof is given in Appendix A.2. This result allows us to end the column generation
algorithm if there is no linear order �m∈ O for which

∑
(i,j)∈A?A:i�mj yi,j > P . In Section

4 we show that using this stronger threshold substantially reduces running time.
Note that if condition (14) does not hold, Theorem 1 in effect states that there is a lower

bound z′ > 0 on the optimal solution z∗ of the master problem. In general, the convexity
constraint on the xm variables allows us to derive a lower bound on the master problem in
every iteration of the column generation algorithm (see Bazaraa et al., 2011; Lübbecke and
Desrosiers, 2005). We also note that Theorem 1 can be seen as an application of Farkas’
(1902) Lemma, as we show in Appendix A.3

We close this section with a pseudo-code version of our algorithm. For details on how to
select an initial set of variables (Line 1) specifying the restricted master problem and how
exactly to solve the pricing problem (Line 6), see Section 4. The value labeled “Threshold”
in Line 7 stands for either c or P , that is, the value of the pricing solution below which
the algorithm concludes that the data are nonrationalizable (see also Theorem 1).

The approach we describe is not restricted to either linear orderings or a binary choice
setting. In the appendix we describe two different variations of the model, and we illustrate
modifications of our approach to decide rationalizability.

Algorithm 1 Column Generation Input: A, {pi,j | (i, j) ∈ A ? A}
1: Solve Restricted Master Problem
2: if z = 0 then
3: Output: Yes, rationalizable
4: else
5: Update Pricing Problem with values {yi,j | (i, j) ∈ A ? A}
6: Solve Pricing Problem
7: if Value Pricing Solution ≤ Threshold then
8: Output: No, not rationalizable
9: else
10: Add to Restricted Master Problem the variable(s) corresponding to linear order(s)

found in Line 6
11: goto Line 1
12: end if
13: end if
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4. Implementation

In this section we discuss the implementation of the column generation algorithm. On
the one hand, we can run Algorithm 1 by making use of integer programming solvers to
solve the pricing problem. However, on the other hand, fast heuristics may already give
solutions with a value exceeding the threshold. We describe these heuristic algorithms
in Subsection 4.1. Subsection 4.2 then contains descriptions of our data sets. Finally,
Subsection 4.3 gives results on computation times for the various algorithms and data sets.

4.1. Heuristic algorithms

As the linear ordering problem is a well-known and well-studied np-hard problem,
there is an extensive literature on heuristic algorithms to solve it. In this section, we de-
scribe our implementation based on best insertion constructive and local search algorithms
(Laguna et al., 1999). The literature has observed that these perform well when compared
to other simple heuristics (see Mart́ı and Reinelt, 2011). We use multi-start procedures
that vary the order in which we add alternatives. In this way, we have multiple solutions
to compare against each other. We use these multiple solutions to either pick the best
solution, or to identify multiple variables to add to the restricted master in Column Gener-
ation. Furthermore, we describe an algorithm for the pricing problem that, under certain
circumstances, adjusts the given dual solution in order to find ‘promising’ linear orders
(that is, orders whose variables we expect to be positive in the solution to the master
problem).

4.1.1. Best insertion heuristics

We describe a constructive heuristic called Best Insertion (Algorithm 2); and a local
search method (Algorithm 3) based on a ‘move’ neighbourhood (Mart́ı and Reinelt, 2011).
Best Insertion creates an order by greedily inserting new alternatives in (sub)orders over
subsets of the alternatives. In the local search method, the position of alternatives in this
order can be changed by local moves. Initially, we consider the set A of all alternatives.
For every (i, j) ∈ A ?A, the value of placing i before j is given by yi,j. Let 〈a1, a2, . . . , ak〉,
with 1 ≤ k ≤ n, denote a linear order of k many elements in A.

For Local Search, let v(a) be the objective value associated with a linear order
〈a1, a2, . . . , an〉 in the pricing problem, i.e., v(a) =

∑
i<j yi,j. Furthermore, let v(a, `,m) be

the value of the order that results when the alternative in position ` is moved to position
m.

In this Local Search we define the neighborhood of an order as the collection of all orders
that can be constructed from the current order by moving a single alternative to a different
position. For a given alternative, we evaluate all possible such moves. If the best possible
move for this alternative improves the objective value, then we implement this move and
we update the order. The algorithm terminates if there are no more improvements possible
through moving a single alternative. Algorithm 3 gives the full pseudo-code.

In Algorithm 4, we combine the algorithms described so far. We denote the best
order found so far by ā. This implementation combines Best Insertion with Local Search
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Algorithm 2 Best Insertion Input: A, a1 ∈ A, {yi,j | (i, j) ∈ A ? A}
1: Set A := A\{a1}
2: Create an order 〈a1〉
3: Set k := 1
4: while A 6= ∅ do
5: Let 〈a1, a2, . . . , ak〉 denote the current order
6: Choose an alternative i ∈ A.
7: For each t = 1, . . . , k + 1, compute qt =

∑t−1
j=1 yaj ,i +

∑k
j=t yi,aj

8: Let r = arg maxt=1,...,k+1 qt
9: Set j := k + 1
10: while j > r + 1 do
11: aj := aj−1
12: j := j − 1
13: end while
14: ar := i
15: A := A\{i}
16: end while
17: Output: Linear order a

Algorithm 3 Local Search Input: a = 〈a1, a2, . . . , an〉, {yi,j | (i, j) ∈ A ? A}
1: Set i := 1
2: while i < n + 1 do
3: if maxj=1,...,n+1 v(a, i, j) > v(a) then
4: Set a := 〈. . . , aj−1, ai, aj, . . .〉
5: Set i := 1
6: else
7: Set i := i + 1
8: end if
9: end while
10: Output: Linear order a
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Algorithm 4 Pricing Problem (Single Solution) Input: A, {yi,j | (i, j) ∈ A?A}
1: Set V := −∞
2: for i ∈ A do
3: Run Best Insertion (Algorithm 2), starting with alternative i. Output a.
4: Run Local Search (Algorithm 3) with starting solution a. Output updated a.
5: If v(a) > V , set V := v(a) and ā := a
6: end for
7: if v(ā) ≤ 0 then
8: Solve the Pricing Problem exactly
9: else
10: Output: Linear order ā
11: end if

to quickly find linear orders that are good solutions to the pricing problem. Since the
outcome of the constructive heuristic depends strongly on the order in which alternatives
are added to the linear order, we use a multi-start procedure. For each alternative i ∈ A,
we run the algorithm once, inserting i first. From these multiple runs, we save the best
solution to the pricing problem, and, if we can use this solution to add a variable to the
restricted master problem, we do. If the objective value found through the heuristics is
not strictly positive, then we have not found any variables to add to the master problem.
However, as a back-up, we use an exact solver that either finds a new variable, if one exists,
or provides us with proof that no such a variable exists. In this way, we are still guaranteed
a correct test of the mixture model.

To further speed up Column Generation, we look for multiple solutions to our pricing
problem (Algorithm 5). By adding additional variables in a single iteration, we hope to
get larger improvements in the objective function value of the restricted master problem.
In our implementation, we keep using a multi-start Best Insertion heuristic that saves, in
a set B, every solution that provides a new improving variable.

Algorithm 5 Pricing Problem (Multiple Solutions) Input: A, {yi,j | (i, j) ∈ A ? A}
1: Set B := ∅
2: for all i ∈ A do
3: Run Best Insertion (Algorithm 2), starting with alternative i. Output a
4: Run Local Search (Algorithm 3), with starting solution a . Output updated a.
5: If v(a) > 0, set B := B ∪ {a}
6: end for
7: if B = ∅ then
8: Solve the Pricing Problem exactly
9: else
10: Output: Collection B of linear orders
11: end if
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4.1.2. Adjusting pricing solutions

As a final addition to the column generation algorithm in our implementation, we
propose a way to adjust a solution to the pricing problem, so that it matches the data
as closely as possible. More specifically, we propose the following adjustment. Suppose
that, as a solution to the pricing problem, we have found a linear order with i � j that
we can add to the restricted master problem as an improving column. If yi,j = yj,i = 0,
then a linear order with j � i has the same objective value in the pricing problem. Now
suppose that pj,i = 1. In that case, it follows that no order with i � j can be used in
the final solution to the master problem, and we should add an order with j � i instead.
Similar reasoning applies when pj,i > 0.5. Here, we cannot rule out that a variable with
i � j will be used. Even so, it is plausible that the eventual solution allocates more weight
to variables corresponding to orders with j � i. We therefore add the steps outlined in
Algorithm 6 below to the end of our heuristic pricing algorithms (i.e., we insert Algorithm
6 between Line 4 and 5 in Algorithm 4, and between Line 4 and 5 in Algorithm 5). In
effect, we solve a new linear ordering problem with values yi,j. We set these values in such
a way that the preference order returned by this second problem has at least the same
objective value as the original pricing problem when using the original yi,j values in the
objective. For every pair (i, j) ∈ A?A, for which yi,j > 0 and b∗i,j = 1 we set yi,j equal to an
arbitrarily high number (1000 in our application). This guarantees that the new solution
still satisfies i � j. For every pair (i, j) ∈ A ?A, for which yi,j = yj,i = 0, we set yi,j := pi,j
and yj,i := pj,i. We set all other values of yi,j equal to 0.

Algorithm 6 Pricing Problem (Adjusted) Input: A, a = 〈a1, a2, . . . , an〉,
{yi,j | (i, j) ∈ A ? A}
1: for all (i, j) ∈ A ? A do
2: Set yi,j := 0
3: If i � j in a and yi,j > 0, set yi,j := 1000
4: If yi,j = yj,i = 0, set yi,j := pi,j
5: end for
6: Run Local Search (Algorithm 3), with starting solution a

4.2. Data sets

We generated four distinct classes of binary (forced) choice data sets1, each with n = 20.
The resulting problems contain 381 constraints. Two classes of data sets, called Inside Easy
(IE) and Inside Hard (IH), satisfy the mixture model, whereas the other two classes of data
sets, called Outside Easy (OE) and Outside Hard (OH), violate it.

To create IE and IH, we first randomly generated t linear orders over the 20 alternatives.
For each alternative, we then randomly drew a number between 0 and 100. Next, we
ranked all alternatives by the size of the generated number in order to obtain linear orders

1The data sets are publicly available at http://hdl.handle.net/2268/207262
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(in case of a tie, the lower indexed alternative came first). For Inside Easy, we used
t = 20, whereas, for Inside Hard, we used t = 5. Next, we drew t − 1 random numbers
(qm,m = 1, 2, . . . , t− 1), between zero and one, which we then ranked from small to large.
This yielded t intervals [0, q1], [q1, q2], . . . , [qt−1, 1], that defined t numbers qi − qi−1 (with
q0 = 0 and qt = 1). We let each of these t numbers correspond to a different generated
linear order, i.e., we set xm = qm − qm−1 for m = 1, . . . , t. We then set the pi,j values as
pi,j =

∑t
�m∈Oij

xm.
We generated OE and OH in such a way that they were unlikely to satisfy the mixture

model. In the case of Outside Easy, for every pair of distinct alternatives i, j ∈ A, we drew
a number pi,j from a uniform distribution between zero and one and we set pj,i = 1− pi,j.
While this generation process did not guarantee nonrationalizability, it turned out that all
of the data sets that we obtained in this fashion did indeed violate the mixture model.
This is due to the restrictive nature of this model. Monte Carlo simulation shows that
only about 5% of data sets containing 5 alternatives generated in this manner satisfy the
mixture model, and that this percentage decreases with an increasing number of alterna-
tives (Regenwetter et al., 2010). For Outside Hard, we drew initial pi,j values using the
same procedure. We used these numbers as the input to an optimization problem that
minimized the changes in the pi,j values, under the constraint that, for every triple of dis-
tinct alternatives, (i, j, k) ∈ A ? A ? A, the inequality pi,j + pj,k + pk,i ≤ 2 held. This basic
inequality, which is called the triangle inequality, is well-known to be facet-defining for the
linear ordering polytope. The resulting data sets were generally much closer to satisfying
the mixture model than pi,j values drawn from a uniform distribution. Nonetheless, all
data sets we obtained using this procedure were still nonrationalizable.

4.3. Computational results

In this section, we consider computational experiments. In all cases, we used a PC with
an Intel i5 quad core 3.4 GHz processor and 4 GB RAM. We used CPLEX 12.4 for finding
the exact solutions to the pricing problem (Line 8 in Algorithms 4 and 5) and for solving
the restricted master problems (Line 1 in Algorithm 1).

In Table 1, we compare the computation times needed by Column Generation (Algo-
rithm 1) depending upon different ways in which we solved the pricing problem in Line 6.
We distinguish three cases: (i) Using an exact solver (here CPLEX; we display the results
in the upper subtable of Table 1), (ii) using Algorithm 4 that generates a single order (we
display the results in the middle subtable of Table 1), or (iii) using Algorithm 5 that po-
tentially generates multiple orders (we display the results in the lower subtable of Table 1).
The first column, entitled “Data Set Class,” describes the particular class of instances;
recall that a particular class contains 20 instances. Columns 2, 3, 4 and 5 give average
times in seconds, while Columns 6 and 7 give average numbers of iterations, and Column
8 gives, if applicable, the average number of orders added. More precisely, the second col-
umn, entitled “Decide Rationalizability,” gives the total time spent by Column Generation
on determining whether the instance is rationalizable or not. We summarize the most im-
portant sources for that time in the following three columns. “Pricing P. Exact” gives the
total time spent by CPLEX on solving the pricing problem exactly. “Restricted Master”
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gives the total time spent by CPLEX on solving the restricted master problems. “Pricing
Problem Single Solution” (respectively, “Multiple Solutions”) is the total time spent on
solving the pricing problem heuristically using Algorithm 4 (respectively, Algorithm 5).
The sixth column gives the total number of iterations in which the pricing problem was
solved, whereas the seventh column reports how many of those iterations used CPLEX.
The last column shows the total number of linear orders generated by Algorithm 5 (when
using Algorithm 4, the number of iterations equals the number of orders generated, and
hence we do not explicitly repeat this information in this column).

Column Generation with exact solver (Algorithm 1 with CPLEX in Line 6)
Data Set Class Average Time per Instance in Seconds Total Number of

Decide Pricing P. Restricted Iterations
Rationalizability Exact Master Pricing P.

Inside Easy 12,05 9,73 2,00 244,2
Inside Hard 1577,57 1524,14 41,13 1866,8

Outside Easy 2,01 1,85 0,10 85,7
Outside Hard2 >3600 >3600 >3600 -

Column Generation with Pricing Problem - Single Solution (Algorithm 1 with Algorithm 4 in Line 6)
Data Set Class Average Time per Instance in Seconds Total Number of

Decide Pricing P. Restricted Pricing Problem Iterations Iterations
Rationalizability Exact Master Single Solution Pricing P. Pricing P.-Exact

Inside Easy 2,35 0,00 1,86 0,27 261,4 0,0
Inside Hard 100,40 20,70 60,68 1,76 2238,1 11,2

Outside Easy 0,17 0,02 0,09 0,03 76,9 1,0
Outside Hard 1493,56 1448,15 32,42 1,36 1994,7 120,5

Column Generation with Pricing Problem - Multiple Solutions (Algorithm 1 with Algorithm 5 in Line 6)
Data Set Class Average Time per Instance in Seconds Total Number of

Decide Pricing P. Restricted Pricing Problem Iterations Iterations Orders Generated
Rationalizability Exact Master Multiple Solutions Pricing P. Pricing P.-Exact Pricing P.-Multiple

Inside Easy 1,15 0,00 0,82 0,02 30,2 0,0 556,1
Inside Hard 176,21 16,30 109,23 0,35 417,6 10,3 4405,1

Outside Easy 0,19 0,02 0,07 0,01 15,2 1,0 295,6
Outside Hard 1446,28 1393,68 32,15 0,34 499,1 124,4 3096,2

Table 1: Computational results for Column Generation with CPLEX, Algorithm 4, or Algorithm 5 for
solving the pricing problem.

We note that the computation times decrease substantially when we use heuristic meth-
ods for the pricing problem. Generally, these methods are able to find improving columns
in most iterations of the pricing problem, allowing us to skip the computationally expensive
exact pricing problems. In fact, for many satisfying data sets, in particular all instances
of Inside Easy, the mixture model test works without having to run any exact tests. For
the data sets with violations, at least one exact test is necessary for a guarantee that no
improving columns exist. For the Outside Easy data sets, no extra exact pricing problems
were necessary. For the Outside Hard data sets, however, we spent most of the run time on
solving exact pricing problems. Furthermore, we note that for these instances running Al-
gorithm 4 versus running Algorithm 5 did not lead to large differences in computation time.

2Computation time exceeded 1 hour for all 20 data sets.
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However, it is also true that while overall computation times were similar, that time split
differently over different parts of the algorithm. Indeed, when adding multiple columns in
each pricing iteration (i.e., when running Algorithm 5), the number of pricing iterations
that were necessary decreased substantially. However, the total number of added columns
was much larger, which, in turn, increased the time needed in updating and running the
master problem. Notice that the computation times for pricing and master problems do
not add up to the total computation time. The remaining time consisted of miscellaneous
tasks such as updating the master problem. In the case where all improving columns are
added, this can become an important factor in computation times.

In Table 2, we consider how using Algorithm 6 (which adjusts the pricing solutions as
described in Section 4.1.2), impacted the results. The results in Table 2 show that adjusting
the pricing solutions had a positive impact on average computation times for all classes
of data sets. This reduction in computation time was, depending on the basic algorithm,
due to two effects. First, when using Algorithm 4, the adjustment of pricing solutions (i.e.,
also using Algorithm 6) led to a large decrease in the number of iterations that Column
Generation required, as witnessed by comparing the corresponding numbers reported in
Column 6; this occurred for all types of instances. Second, when using Algorithm 5, the
improvement due to adjusting the pricing solutions was mainly due to the fact that a
smaller number of variables was being added in each iteration; this follows from comparing
the corresponding numbers in the last column. In both cases, total computation time went
down on average. However, while the adjustment sped up computation times on average,
we found significant variance between instances. As an example, when using Algorithm 4,
computation time for one Outside Hard instance increased from 963s to 1108s when using
the adjustment, while computation time for another instance decreased from 1879s to
1593s. We close this discussion by pointing out that when computation times increased for
an instance, this was always due to an increase in the number of exact pricing iterations
and overall longer integer program computation times.

Column Generation with Adjusted Pricing Problem - Single Solution (Algorithm 1 with Adjusted Algorithm 4 in Line 6)
Data Set Class Average Time per Instance in Seconds Total Number of

Decide Pricing P. Restricted Pricing Problem Iterations Iterations
Rationalizability Exact Master Single Solution Pricing P. Pricing P.-Exact

Inside Easy 1,66 0,00 1,30 0,22 190,10 0,00
Inside Hard 60,91 10,69 37,29 2,57 1776,70 5,60

Outside Easy 0,14 0,02 0,02 0,10 26,90 1,00
Outside Hard 1447,34 1413,67 23,48 1,86 1677,70 119,90

Column Generation with Adjusted Pricing Problem - Multiple Solutions (Algorithm 1 with Adjusted Algorithm 5 in Line 6)
Data Set Class Average Time per Instance in Seconds Total Number of

Decide Pricing P. Restricted Pricing Problem Iterations Iterations Orders Generated
Rationalizability Exact Master Multiple Solutions Pricing P. Pricing P.-Exact Pricing P.-Multiple

Inside Easy 1,08 0,00 0,64 0,025 49,30 0,00 414,50
Inside Hard 133,85 26,44 72,57 0,68 444,30 16,30 3666,40

Outside Easy 0,07 0,02 0,01 0,03 7,80 1,00 83,40
Outside Hard 1408,80 1377,87 18,03 0,46 470,10 122,00 2515,10

Table 2: Computational results including adjustments to the pricing solutions.

Finally, we investigate the effect of using the stronger stopping condition as discussed
in Section 3.3. Table 3 reports results for the Outside Hard data sets. Notice that a row
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in Table 3 no longer corresponds to a class of instances, but, instead, to a specification of
the main algorithm Column Generation. It is clear from the table that using this more
stringent stopping had a dramatic impact on the computation times. The algorithm now
quickly identified data sets that could not be consistent with the mixture model, cutting
average computation times from more than 20 minutes to less than half a minute. In each
tested instance of the Outside Hard class, the strong stopping condition terminated Column
Generation in the first iteration that used an exact method for the pricing problem. The
impact of using this strong stopping conditions exceeded the impact of all other choices
made when specifying the algorithm.

Column Generation with/without Adjusted Pricing Problem, with/without Stronger Stopping Condition
Pricing Problem Average Time per Instance in Seconds Total Number of

Decide Pricing P. Restricted Pricing Problem Iterations Iterations Orders Generated
Rationalizability Exact Master Multiple Solutions Pricing P. Pricing P.-Exact Pricing P.-Multiple

Single Solution Original 1493,56 1448,15 32,42 1,36 1994,70 120,50
Adjusted 1447,34 1413,67 23,48 1,86 1677,70 119,90

Adjusted & Strong 25,34 4,31 15,16 1,54 1239,90 1,00
Multiple Solution Original 1446,28 1393,68 32,15 0,34 499,10 124,40 3096,20

Adjusted 1408,80 1377,87 18,03 0,46 470,10 122,00 2515,10
Adjusted & Strong 15,78 3,69 6,07 0,24 165,30 1,00 1971,30

Table 3: Impact of adjustments to the pricing solutions and/or stopping condition (Outside Hard only).

5. Testing many similar data sets: Bayes factor calculation

In this section, we discuss an application of the column generation algorithm to a sta-
tistical problem described by Cavagnaro and Davis-Stober (2014). Those authors used the
Bayes factor (Klugkist and Hoijtink, 2007) for statistical model evaluation, model selec-
tion, and model competition on data from human subject experiments in the laboratory.
The calculation of the Bayes factor requires evaluating a large number of data sets against
the conditions of the probabilistic models of choice. Efficient algorithms for these tests
are essential: For example, Regenwetter et al. (2017) expended more than 24,000 CPU
hours, nearly all of them to compute Bayes factors, for their statistical analyses. Similarly,
Guo and Regenwetter (2014) spent 60,000 CPU hours. Both used methods dependant on
knowing the facet-defining inequalities. We show that our column generation approach has
additional advantages in this application, as it can leverage information from testing one
data set to speed up the tests for the following data sets.

The Bayes factor is defined as the ratio of the marginal likelihoods of two models.
First, given observed behaviour, a posterior distribution can be calculated for the mixture
model in question. This distribution represents how likely specific choice probabilities are to
generate the observed data. From this posterior distribution, we sample choice probabilities
and test whether these satisfy the mixture model. The percentage of such sampled data
sets that satisfy the mixture model (out of the total number of tested samples), provides an
approximation of the posterior probability that, given the observed choices, the decision
maker satisfies the mixture model. To calculate the Bayes Factor between the mixture
model and an unconstrained model that places no restrictions on choice behavior, we
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divide this posterior probability by the percentage of samples from a prior distribution
that are consistent with the model. In line with Cavagnaro and Davis-Stober (2014), we
take the prior distribution of a pi,j value to be a uniform distribution between 0 and 1. The
percentage of samples consistent with the mixture model is then equal to the volume of
the linear ordering polytope compared to the unit hypercube. We are mainly interested in
computing the posterior probability. The posterior distributions of the pi,j values are given
by Beta distributions. In particular, let qi,j be the rate at which i is observed chosen in a
choice between i and j. Then, for every pair of alternatives (i, j) ∈ A ?A, the distribution
of pi,j is given by Beta(qi,j + 1, qj,i + 1). Given a sampled pi,j value for every pair, we
have a data set for which the mixture model can be tested. To keep track of the fact
that we generate these data sets from the posterior distribution, we call them synthetic
data sets. To estimate the posterior probability as closely as possible, large numbers of
these synthetic data sets must be tested for consistency with the mixture model. However,
since all data sets are sampled from the same distribution, these data sets are usually
quite similar. In this section, we consider ways in which our column generation procedure
can exploit these similarities to quickly test many synthetic data sets. In Subsection 5.1
we look at how re-using the columns generated in one test as a starting set for new data
sets speeds up these tests. In Subsection 5.2 we show that the objective function of the
final pricing problem of a rejected data set provides inequalities that are also necessary
conditions for rationalizability by the mixture model. We can use these inequalities to test
more quickly whether data sets violate the mixture model.

5.1. Starting sets

As all data sets generated from the same distribution are fairly similar, it is likely that
the optimal solutions to the linear programs (2)-(5) for these data sets use many of the
same variables. By testing the points sequentially and using the variables generated while
testing previous data sets as a starting set for new data sets, we attempt to minimize the
number of pricing problems we need to solve.

We illustrate this by drawing 10,000 synthetic data sets from the posterior distribution
from a lab study with 8 choice alternatives. Table 4 shows the cumulative number of
variables generated in the column generation algorithm over these 10,000 synthetic data
sets. In this test, we used Column Generation via Algorithm 4 (i.e., generating a single
linear order in each iteration) in conjunction with Algorithm 6 (i.e., using the adjusted
pricing procedure). Table 4 shows how many variables were generated to test a number
of synthetic data sets. For example, to test the first 100 data sets, 126 variables were
generated by Column Generation algorithm. The table clearly shows that tests of the first
data sets required a larger number of variables to be generated. Evaluating later data
sets could mostly be done using already generated variables. In total, we only needed to
generate 540 different variables to test all 10,000 data sets. In the first 1% of the data
sets that we tested, we generated more than 10% of these variables; in the first 10% of
the data sets, we generated more than 50% of the variables. The number of variables
generated quickly tailed off, as the starting sets for later tests were generally sufficient to
prove violation of the model.
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# Data sets tested 1 2 5 10 100 1000 2500 5000 10000
# Variables generated 14 25 36 60 126 278 382 448 540

Table 4: Cumulative number of variables generated.

5.2. Valid inequality pool
Using the starting sets, as described in the previous subsection, offers substantial speed-

ups for testing many similar data sets. However, one remaining issue is that, for each
nonrationalizable data set, to prove that we have reached the optimal solution to the
master problem, we must solve an exact pricing problem. Since exact pricing problems
contribute heavily to overall computation times, we wish to avoid this if possible. This is
the motivation behind the following observation.

Observation 1. Suppose there exist numbers yi,j for all (i, j) ∈ A ? A, and a number c,
such that there does not exist a linear order �m∈ O for which

∑
(i,j)∈A?A:i�mj yi,j > c. Then

there exists no data set with numbers pi,j for all (i, j) ∈ A?A, that rationalizes the mixture
model and for which

∑
(i,j)∈A?A yi,jpi,j > c.

The proof is analogous to that of Theorem 1. The intuition behind this theorem is
as follows: if we have a hyperplane, defined by the yi,j values and c, and there is no
extreme point of the polytope beyond this hyperplane (i.e. no linear order �m∈ O for
which

∑
(i,j)∈A?A:i�mj yi,j > c), then there does not exist any point in the polytope beyond

the hyperplane (
∑

(i,j)∈A?A yi,jpi,j > c). In other words, it is a separating hyperplane. Each
time we solve a pricing problem, we encounter such a hyperplane. Furthermore, the value
of the optimal solution of the pricing problem provides the value c. Each time the pricing
problem is solved exactly, we obtain an inequality that all rationalizable data sets must
satisfy. We choose to save these inequalities in the iteration in which Column Generation
terminates. This means that, before using Column Generation on additional data sets, we
can first test whether these violate any of the inequalities we have identified so far. If we
find violations, then we conclude that the data set does not satisfy the mixture model and
that no further test is necessary.

For some problems, such as the linear ordering problem, there already exists a wealth
of information on valid and facet-defining inequalities. We can use these known inequal-
ities in the same way as valid inequalities identified during the column generation. This
can further reduce computation time because identifying valid inequalities requires solving
computationally expensive exact pricing problems. In fact, nearly all of the valid inequal-
ities we identify in our experiment are of the well-known class of triangle inequalities.
However, to show our approach also works for problems for which no or few classes of valid
inequalities are already known, we only rely on valid inequalities identified throughout the
column generation.

5.3. Computational results
We present results from a computational study for Bayes factor generation using pos-

terior distributions from a lab study. The laboratory study used eight choice alternatives
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and collected separate sets of responses from 32 human participants. For each of the result-
ing 32 posterior distributions, we generated 10,000 synthetic data sets and tested whether
they were rationalizable. The number of rationalizable synthetic data sets, out of 10,000,
varied between 0 and 235. In these computational tests, we used Column Generation with
Algorithm 4, Algorithm 6, and the strong stopping condition.

First, let us note that in these tests, the individual rationalizability tests were easier
than those in the previous section, since the instances only contained 8 choice alternatives.
Furthermore, the hard data sets in the previous section were specifically constructed to be
on the border of (non)rationalizability. Nonetheless, the large number of synthetic data
sets that needed to be evaluated for each instance made these computationally expensive.
Using neither the starting set nor the valid inequality pool, and using Column Generation
with only the exact pricing solver, the instances took on average 15 minutes. Our algorithm
without starting sets or valid inequality pool took 1 minute on average.

Table 5 shows that the valid inequality pool had a large impact on the computation
time. Indeed, if we do not first check against the pool of notes inequalities, then every
nonrationalizable data set requires solving at least one linear program and one exact pricing
problem. Solving these is computationally expensive, whereas checking the valid inequality
pool is computationally trivial in our analysis. Since the vast majority of sampled data
sets were nonrationalizable, both the number of LPs and exact pricing problems that must
be solved fell strongly. The starting sets provided a more modest speed-up. The re-use of
generated variables did lower the number of pricing and restricted master problems that
we must solve, both with and without valid inequality pools. It also lowered the number
of pricing problems that required an exact approach. However, solving individual linear
programs took longer, as they involved more variables. Total computation times for linear
and pricing problems fell slightly. Note that the difference in total runtime was largely
due to a difference in time spent on miscellaneous tasks, in this case resetting the master
problem after evaluating each data set.

Valid Inequality Pool
No Yes

Time Time Pricing Time LP CPLEX Calls Time Time Pricing Time LP CPLEX Calls
Re-use of No 57.34 26.97 15.27 10533.16 1.29 0.19 0.33 38.81
variables Yes 40.89 22.62 15.03 9997.47 1.06 0.18 0.22 37.13

Table 5: Comparison of computational results for valid inequality pools and re-use of variables.

We also note the following.
• Overall, instances for which many of the synthetic data sets were rationalizable re-

quired more computation time. This is in line with the result in the previous section which
showed that Inside Easy instances took longer than Outside Easy. In the scenario without
speed-ups, the instances for which more than 100 synthetic data sets were rationalizable
took 66 seconds on average, while the instances with less than 10 rationalizable synthetic
data sets took only 54 seconds. The valid inequalities strongly increased the difference (in
relative computation time), in the scenario with all speed-ups the average times were 1.52
seconds and 0.92 seconds, respectively.
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• The stronger stopping condition had relatively little effect in these tests; in the
scenario with all speed-ups it was used in only one instance. For this instance, total
computation time and the total number of calls to the exact pricing algorithm were higher
when using the strong stopping condition. The strong stopping condition was used on
the third synthetic data set evaluated. The strong stopping condition terminated Column
Generation early. The valid inequality obtained here appears to be weaker than the one
the algorithm found when Column Generation was allowed to finish. It was only used to
prove 428 synthetic data sets nonrationalizable, compared to 3,503 data sets for the valid
inequality obtained without the stronger stopping condition.

6. Conclusion

In this paper, we have presented an algorithm for testing models of probabilistic
preferences (mixture models), based on column generation. This algorithm is capable
of handling data sets of such size that the number of linear orders over all alternatives,
and thus the number of variables in Formulation (1) would make the system of equalities
prohibitive to solve. In the appendix, we have shown how to modify this algorithm to
handle other types of data and other models of choice. We have investigated the impact
of different choices when it comes to implementing the algorithm: heuristic versus exact,
generating a single solution versus generating many, using a strong stopping condition yes
or no. The largest positive impact on the computation times comes from using the strong
stopping condition. Furthermore, we have shown that the column generation algorithm is
well-suited for testing large numbers of similar data sets, as variables can be re-used and
the pricing objective function provides valid inequalities.
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Appendix A. Proofs

Appendix A.1. Proof of Fact 1

Fact. The optimal solution value of (2)-(5) is equal to 0 if and only if nonnegative numbers
xm (hence, preferences �m∈ O) exist that are a feasible solution to the system of equalities
(1).

Proof. This can be checked as follows. Suppose we have a solution to (3)-(5) with z = 0.
Consider the following expression for some distinct i, j ∈ A:

1 ≥
∑
�m∈O

xm =
∑

�m∈Oi,j

xm +
∑
�m∈Oj,i

xm ≥ pi,j + pj,i = 1. (A.1)

The first inequality follows from (4), and the first equality follows from the fact that the
set O can be partitioned into orders where i comes before j and orders where j comes
before i. The second inequality follows from (3). The final equality follows from the
definition of choice probabilities. Thus, expression (A.1) is valid, and hence we must have∑
�m∈Oi,j

xm = pi,j for each (i, j) ∈ A ? A. This implies that the values xm are a solution

to (1).
Conversely, suppose there exist nonnegative numbers xm (hence, preferences �m∈ O)

satisfying the system of equalities (1). The values of xm can then be put into the linear
programming problem. Since, for each (i, j) ∈ A ? A, we have

∑
�m∈Oi,j

xm = pi,j and∑
�m∈O xm = 1, it follows that constraints (3)-(5) are met with z = 0.

Appendix A.2. Proof of Theorem 1

Theorem. (i) Given numbers yi,j for all pairs (i, j) ∈ A?A, there exist nonnegative values
xm satisfying (1) only if there exists a linear order �m∈ O, such that∑

(i,j)∈A?A:i�mj

yi,j ≥ P.

(ii) If the numbers yi,j and c are dual variables associated with a restricted master problem,
then P ≥ c.

Proof. We prove (i) by contradiction. Suppose that there exist nonnegative values xm

satisfying (1), while for each �m∈ O ∑
(i,j)∈A?A:i�mj

yi,j < P. (A.2)

Then, using that, ∀ �m∈ O, xm ≥ 0 and that
∑
�m∈O xm = 1, we find

∑
�m∈O

xm

∑
(i,j)∈A?A:i�mj

yi,j

 < P. (A.3)
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The left-hand side of (A.3) can be written as

∑
�m∈O

xm

∑
(i,j)∈A?A:i�mj

yi,j

 =
∑

(i,j)∈A?A

∑
�m∈Oi,j

xmyi,j. (A.4)

Thus, using (A.3) and (A.4), we arrive at the following inequality:∑
(i,j)∈A?A

∑
�m∈Oi,j

yi,jxm < P. (A.5)

Now, since (1) is satisfied, we have, for each ordered pair (i, j) ∈ A ? A, that∑
�m∈Oi,j

xm = pi,j. (A.6)

Multiplying both sides of (A.6) by yi,j preserves the equality; thus, for each (i, j) ∈ A ?A,
we have ∑

�m∈Oi,j

yi,jxm = yi,jpi,j. (A.7)

Summing over all ordered pairs gives∑
(i,j)∈A?A

∑
�m∈Oi,j

yi,jxm =
∑

(i,j)∈A?A

yi,jpi,j = P. (A.8)

Clearly, equality (A.8) contradicts (A.5), and therefore (i) is proved.
To prove (ii), we observe that the value z of the objective function of the re-

stricted master problem equals the value of the objective function of the dual problem
(
∑

(i,j)∈A?A pi,jyi,j − c), that is,

z =
∑

(i,j)∈A?A

pi,jyi,j − c = P − c. (A.9)

Since z ≥ 0, it follows that P ≥ c.

Appendix A.3. Farka’s Lemma

Theorem 1 can be seen as an application of Farka’s Lemma. Indeed, consider this slight
rephrasing of the original system of equalities, in which we make the convexity constraint
explicit. Let ∑

�m∈Oij

xm = pi,j, ∀(i, j) ∈ A ? A, (A.10)

∑
�m∈O

xm = 1, (A.11)

xm ≥ 0, ∀ �m∈ O. (A.12)
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Then Farkas’ Lemma states that this system has a solution if and only if there does
not exist a solution (fi,j, g) to the following system of inequalities.∑

(i,j)∈A?A:i�mj

fi,j + g < 0, ∀ �m∈ O, (A.13)

∑
(i,j)∈A?A

pi,jfi,j + g ≥ 0. (A.14)

However, given a dual solution {c, yi,j | (i, j) ∈ A ? A} violating condition (14), i.e., given
that no linear order �m∈ O can satisfy (14), a solution to (A.13)-(A.14) must exist: Let
fi,j = yi,j. Then, for each �m∈ O:∑

(i,j)∈A?A:i�mj

fi,j <
∑

(i,j)∈A?A

pi,jfi,j. (A.15)

Given this, there must exist some g, such that∑
(i,j)∈A?A:i�mj

fi,j + g < 0 ≤
∑

(i,j)∈A?A

pi,jfi,j + g. (A.16)

Appendix B. Generalization of our approach

The approach we describe in this paper is not restricted to either linear orderings or
a binary choice setting. Here we describe two different variations of the model, and we
illustrate how modifications of our approach are still valid ways to decide rationalizability.

Indeed, suppose that, instead of choice ratios coming from binary choice, we are
given data from a ternary choice situation: Here, writing A3 to denote the set of (un-
ordered) triples consisting of three distinct alternatives from A, we have numbers pi,{i,j,k}
(respectively pj,{i,j,k}, or pk,{i,j,k}) denoting the probability that alternative i (respectively
j, or k) is preferred among the triple {i, j, k} ∈ A3. Then, writing Oi,S to denote the set
of linear orders in which alternative i is the most preferred alternative of the set S, the
following definition applies.

Definition 2. Choice probabilities {pi,S | S ∈ A3, i ∈ S} are rationalizable by the mixture
model if and only if there exist values xm, with 0 ≤ xm ≤ 1 for each �m∈ O, for which∑

�m∈Oi,S

xm = pi,S, ∀S ∈ A3, i ∈ S. (B.1)

Next, the analog of the model (2)-(5) for the setting with ternary choice becomes the
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following model.

Minimize z, (B.2)

subject to
∑

�m∈Oi,S

xm + z ≥ pi,S, ∀S ∈ A3, i ∈ S, (B.3)

∑
�m∈O

−xm ≥ −1, (B.4)

xm, z ≥ 0, ∀ �m∈ O. (B.5)

Following the arguments in Section 3.2, we arrive at the following pricing problem: We
need to determine whether there exists a preference order �m∈ O, for which∑

S∈A3

∑
i∈S:�m∈Oi,S

yi,S > c. (B.6)

The yi,S represent the dual variables corresponding to (B.3).
When formulating this pricing problem as an integer program, using - next to the

already defined binary variables bi,j - binary variables ri,S equalling 1 if and only if i is the
most preferred alternative in S, we arrive at the following model.

Maximize
∑
S∈A3

∑
i∈S:�m∈Oi,S

yi,Sri,S, (B.7)

subject to bi,j + bj,i = 1, ∀(i, j) ∈ A ? A, (B.8)

bi,j + bj,k + bk,i ≤ 2, ∀(i, j, k) ∈ A ? A ? A, (B.9)

ri,S ≤ bi,j, ∀S ∈ A3,∀i, j ∈ S, i 6= j, (B.10)

bi,j ∈ {0, 1}, ∀(i, j) ∈ A ? A, (B.11)

ri,S ∈ {0, 1}, ∀S ∈ A3, ∀i ∈ S. (B.12)

Notice that one can readily generalize this model beyond ternary choice and adapt it
to settings where the sets S contain more than three choice alternatives.

Another generalization arises when choice is not forced. In other words, when
confronted with a pair of alternatives, a respondent is allowed to respond by not selecting
a favorite alternative. We consider this choice to mean that the respondent is indifferent
between the respective alternatives. Thus, for every ordered pair (i, j) of alternatives we
are given a nonnegative number pi,j; now however, in contrast to Section 2, we only know
that pi,j + pj,i ≤ 1. In fact, 1 − pi,j − pj,i represents the probability that a respondent is
indifferent between alternatives i and j.

To accommodate indifference between alternatives, we consider weak orders (Regen-
wetter and Davis-Stober, 2012). A weak order can be seen as a partition of the set of
alternatives into ordered equivalence classes. We use the index m to indicate a partic-
ular weak order. If, for the weak order �m, the alternative i ∈ A is preferred over the
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alternative j ∈ A, we write i �m j. If, for the weak order �m, the alternatives i and j
are in the same equivalence class, then we write i ∼m j. We denote the set of all weak
orders as W . We further consider the subsets Wi,j denoting the set of all weak preference
orders in which alternative i is preferred over alternative j, and Wi−j denoting the set of
all weak preference orders in which alternatives i and j are in the same equivalence class
(i, j ∈ A, i 6= j). We modify Definition 1 as follows.

Definition 3. Choice probabilities {pi,j | (i, j) ∈ A ? A} are rationalizable by a mixture
model of weak orders if and only if there exist values xm, with 0 ≤ xm ≤ 1 for each �m∈ W ,
for which ∑

�m∈Wi,j

xm = pi,j, ∀(i, j) ∈ A ? A. (B.13)

∑
�m∈Wi−j

xm = 1− pi,j − pj,i, ∀{i, j} ∈ A2. (B.14)

The analog of the model (2)-(5) for the setting with indifference becomes as follows.

Minimize z, (B.15)

subject to
∑

�m∈Wi,j

xm + z ≥ pi,j, ∀(i, j) ∈ A ? A, (B.16)

∑
�m∈Wi−j

xm + z ≥ 1− pi,j − pj,i, ∀{i, j} ∈ A2, (B.17)

∑
�m∈W

−xm ≥ −1, (B.18)

xm, z ≥ 0, ∀ �m∈ W. (B.19)

We arrive at the following pricing problem: Writing yi,j for the dual variables corre-
sponding to inequalities (B.16), and ui,j for the dual variables corresponding to inequalities
(B.17), we need to determine whether there exists a weak preference order �m∈ W for
which ∑

i,j∈A?A:i�mj

yi,j +
∑

i,j∈A2:i∼mj

ui,j > c. (B.20)

We can reformulate this pricing problem using binary variables bi,j that equal 1 when
alternative i is preferred over alternative j, and equal 0 when alternatives i and j are in
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the same equivalence class.

Maximize
∑

(i,j)∈A?A,i 6=j

(yi,j − ui,j)bi,j, (B.21)

subject to bi,j + bj,i ≤ 1, ∀(i, j) ∈ A ? A, (B.22)

bi,j + bj,k + bk,i ≤ 2, ∀(i, j, k) ∈ A ? A ? A, (B.23)

bj,k − bj,i ≤ bi,k, ∀(i, j, k) ∈ A ? A ? A, (B.24)

bi,j − bk,j ≤ bi,k, ∀(i, j, k) ∈ A ? A ? A, (B.25)

bi,j ∈ {0, 1}, ∀(i, j) ∈ A ? A. (B.26)

Notice that inequalities (B.22) (in contrast to equalities (11)) allow alternatives i and j
to be in the same equivalence class. In addition inequalities (B.24) and (B.25) imply that if
alternatives i and j, as well as alternatives i and k, are in the same equivalence class, then
alternatives j and k should also be in the same equivalence class. Hence, (B.22)-(B.26)
gives a weak order.

These examples illustrate the versatility of the column generation approach. Any mix-
ture model, for which the underlying decision rule can be modeled to obtain a pricing
problem falls under this framework. Obtaining efficient solution methods may require
tailor-made methods to solve the pricing problem.
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