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Abstract
Encheliophis chardewalli was described from a single cleared and stained specimen. Twelve years

later, additional specimens were found in the lagoon of Moorea (French Polynesia) in association

with their host, the sea cucumber Actinopyga mauritiana. These fish were used to consolidate the

species diagnosis, to validate species status and to record sound production. This species is

remarkable because of its ability to penetrate inside the cloaca of sea cucumbers having anal teeth

and the fact this species is largely unknown despite it lives in lagoons in 1m depth. Encheliophis

chardewalli produced three sound types: long regular calls made of trains of numerous pulses, short

irregular calls characterized by a constant lowering of its pulse period and short regular call (or

knock) made of 3 to 6 pulses. Comparison with other sympatric Carapini supports a large and dis-

tinct repertoire. Morphological characteristics could be the result of reduced body size allowing to

penetrate inside a new host, thus avoiding competition and conflict with other larger sympatric

Carapini species.

K E YWORD S

acoustic communication, Carapini, fish anatomy, pearlfish, sonic, Actinopyga

1 | INTRODUCTION

One remarkable association in the marine environment is between

pearlfish (Carapidae) as symbionts with various marine invertebrates

(holothuroids, asteroids, and bivalves) as hosts (Trott, 1970, 1981; Wil-

liams, 1984). Species of the genera Onuxodon and Carapus are com-

mensals whereas Encheliophis species are parasites (Parmentier & Das,

2004). Members of this family produce sounds (Parmentier, Vande-

walle, & Lagardère, 2003; Parmentier, Lagardère, Chancerelle, Dufrane,

& Eeckhaut, 2008; K�ever et al., 2014; Parmentier, Colleye, & Lecchini,

2016), which have been recorded (a) when several individuals of the

same species were inside the same host (Parmentier, Vandewalle et al.,

2003; K�ever et al., 2014), (b) when specimens of different species meet

each other inside the host (Lagardère, Millot, & Parmentier, 2005), (c)

when the fish were freely swimming (Parmentier, Fine, Vandewalle,

Ducamp, & Lagardère, 2006) or (d) when competing for access to the

host aperture (Parmentier, Fine et al., 2006). In the Carapini tribe

grouping Encheliophis and Carapus (Markle & Olney, 1990; Parmentier,

Castillo, Chardon, & Vandewalle, 2000), sound production is caused by

contraction of two long primary sonic muscles (PSM) that run from the

upper wall of the orbit to the anterior face of the swimbladder (Courte-

nay & McKittrick, 1970; Parmentier, Lagardère, Braquegnier, Vande-

walle, & Fine, 2006). In some Carapus species (C. boraborensis, C.

mourlani, C. acus), the PSM terminates in a complex tendon which

forms a “hook” that fits over a tubercle on the anterior dorsal surface

of the swim bladder (Parmentier et al., 2008). The sonic muscles con-

tract slowly, pulling the anterior bladder rostrally. Sound is generated

when extension trips the hook and causes the bladder to snap back to

its resting position (Parmentier, Lagardère et al., 2006). Carapus homei,

Encheliophis gracilis and E. vermiops lack the hook system and, conse-

quently have direct insertion of their PSM onto the swim bladder indi-

cating differences in the way sounds are produced. Interestingly, these

acoustically related morphological characteristics correspond to impor-

tant evolutionary steps within the Carapini. Carapus homei is the sister

species of all Encheliophis spp, showing that parasite species have

evolved from commensal species. Carapus homei already has the
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sound-producing mechanism typically found in the parasite forms, but

still has the head anatomy related to the commensal way of life, that is,

the ability to feed hard elusive preys and not the host tissue (Parment-

ier, Lanterbecq, & Eeckhaut, 2016).

The genus Carapus contains seven species whereas five are found

in Encheliophis. Within this genus, the description of Encheliophis char-

dewalli was based on a single cleared and alizarin stained specimen

deposited in the National Museum of Natural History in Washington

(USNM 372738) (Parmentier, 2004). During field missions in French

Polynesia, putative additional specimens have been found. In this study,

we used them to confirm the species status of E. chardewalli. Moreover,

we take advantage of these quite unusual living specimens to record

their sounds and determine if they are distinct from sounds of other

Carapini species.

2 | MATERIALS AND METHODS

Two E. chardewalli Parmentier 2004 (total length 6–10 cm) were col-

lected in the lagoon of Rangiroa atoll (168360S, 1438420W) in June

2008. They were euthanazied with MS222 (Sigma-Aldrich, St. Louis,

Missouri) and fixed in 5% paraformaldehyde. Eleven specimens (total

length 6–10 cm) were found on the west side of bay mouth of Opu-

nohu Bay (178300S, 1498500W) at a depth from 1 to 3 m during May

2016. They were all found in the respiratory trees of the sea cucumber

Actinopyga mauritiana. Fish caught in Moorea were stored with their

host specimens in a community tank with running sea water. Sound

recordings were made at 268C in a glass tank (0.9�m 3 0.5�m 3 0.4�m).

The recording protocol is the one usually used with carapids (Parment-

ier, Vandewalle et al., 2003; Parmentier, Fine et al., 2006; Parmentier

et al., 2008; K�ever et al., 2014; Parmentier, Colleye et al., 2016). A

specimen of the host was placed in the center of the tank, and several

individuals were introduced successively into the aquarium. Sounds

were recorded with a hydrophone placed above the sea cucumber (HTI

Min-96, 2164.4 dB re 1V for a sound pressure of 1lPa; High-Tech

Industries, Long Beach, MS) connected to a Tascam DR-05 recorder

(44.1 kHz sampling rate; TEAC, Wiesbaden, Germany). The effects of

reverberation, resonance, and tank size can induce artifacts on sounds

recorded inside small glass tanks (Akamatsu, Okumura, Novarini, & Yan,

2002). The computed resonant frequency of the recording tank was

1.64 kHz; therefore a low-pass filter of 1.5 kHz was applied to all

recordings. Sounds were digitized at 44.1 kHz (16-bit resolution), low-

pass filtered at 1.5 kHz, and analyzed using AvisSoft-SAS Lab Pro 4.33

software. Only sounds with a good signal-to-noise ratio were used in

the analysis. Temporal features were measured from oscillograms and

frequency parameters were obtained from power spectra. The shape

of the oscillogram indicates that the sounds were somewhat distorted,

and pulse length may have been affected by tank acoustics (Parmentier,

Tock, Falguière, & Beauchaud, 2014). The following sound parameters

were measured: number of pulses in a sound; pulse period (measured

as the average peak-to-peak interval between consecutive pulses, in

ms), dominant frequency (Hz) and relative amplitude. The pulse periods

of E. chardewalli sounds were compared with previously published

results (Parmentier, Vandewalle et al., 2003; Lagardère et al., 2005; Par-

mentier et al., 2008; Parmentier, Colleye et al., 2016) using Kruskal–

Wallis tests, followed by Dunn’s multiple comparison tests.

After recording, specimens were euthanized with MS222 (Sigma-

Aldrich, St. Louis, Missouri) and fixed in 5% paraformaldehyde. Two

specimens, one from each location (Rangiroa and Moorea) were cleared

and stained with alizarin red S (Taylor & Van Dyke, 1985) to allow com-

parisons with the holotype (Parmentier, 2004). The fish were examined

with a Wild M10 binocular microscope coupled with a camera lucida.

Measurements were made to the nearest 0.01 mm. An additional spec-

imen from Moorea was dissected to describe the anatomy of the

sound-producing apparatus. Four complete specimens are now depos-

ited in the Florida Museum of Natural History (catalog number UF

238789).

3 | RESULTS

3.1 | Diagnosis

As described for the holotype, specimens from Moorea and Rangiroa

are mainly distinguishable from other Carapini species by the lack of

pectoral and pelvic fins and seven branchiostegal rays. The comparison

between the holotype and the specimens allows a correction, a clarifi-

cation and the addition of meristic (Table 1) and morphometric (Table

2) features. Different anatomical features confirm the impression

inferred from the holotype that this species could be paedomorphic

(Parmentier, 2004). It exhibits arrested development because the pec-

toral fin, the upper jaws, the neural spines, the metapterygoid, the mes-

opterygoid, and the general body size are clearly not fully developed.

The body coloration has a number of remarkable features (Figure

1). Globally the body is translucent so that internal characters such as

vertebral bodies, gills, and swimbladder are distinguishable. The main

color pattern is beige with melanophores concentrated around the ver-

tebral column and over myosepta. A higher melanophore concentration

TABLE 1 Meristic values in different Encheliophis chardewalli
specimens

USNM
372738 Rangiroa Moorea

Teeth on Dentary 14 17 18

Branchiostegal rays 7 7 7

Vertebrae 107 97 106

Precaudal vertebrae 20 23 20

Vertebrae to anal fin origin 8 6

Vertebrae to dorsal fin origin 20 17

Parapophysis origin 4 4 4

Vertebrae to vexillum origin 4 4

Number of lateral line scales Not visible 59

Vertebra to predorsal bone 4 4

The specimen USNM 372738 corresponds to the holotype.
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causes a black tail tip. Rostrally it is possible to distinguish the white

swimbladder although covered by many melanophores. However, the

anterior tip of the swimbladder is laterally deprived of pigmentary cells

providing two translucent areas that correspond to the position of the

osseous swimbladder plate usually found at the level of the 3rd-5th

vertebrae (5). In the pharyngeal region the lack of melanophores pro-

vides a lateral translucent area over the jaws and opercles and allows

the clear distinction of heart and blood vessels, giving a reddish aspect

to the head. Dorsally, it is possible to see the sagittal otoliths.

The sound-producing apparatus (Figure 2) is similar to those previ-

ously described in other Carapini species (Parmentier, Chardon, & Van-

dewalle, 2002; Parmentier, Gennotte, Focant, Goffinet, & Vandewalle,

2003; Parmentier, Vandewalle et al., 2003). The first two vertebrae dis-

play rodlike epineural that are movable in all directions, attach to each

other and to the swim bladder by a common distal ligament. The third

vertebra bears paired, broad, ossified plates that cover the anterior

swimbladder and extend caudally to the 5th vertebra. The cylindrical

swimbladder, extending from the 3rd vertebra to the 14th vertebra, is

divided into three regions. The primary sound producing muscle is par-

ticularly long in this species: its origin is on the anterior upper wall of

the orbit, at the level of the lateral ethmoid, and it inserts with a tendon

directly on the anterior swimbladder without a hook (Parmentier et al.,

2008; Parmentier, Lanterbecq et al., 2016). As usual in this taxa, the

swimbladder fenestra, the second region, is situated just under the

swim bladder plate and is thinner than surrounding regions. The third

region comprised the remainder of the long and slender bladder. One

pair of secondary sonic muscles joins the first epineurals with the

epiotics.

3.2 | Sounds

Fish do not make any obvious motions during sound production mak-

ing it impossible to recognize the emitter or determine whether more

than one fish was calling. Sounds were produced during encounters

while circling the sea cucumber. Specimens have difficulty entering the

host, and only 1 of 11 successfully entered. This observation suggests

that the sea cucumber may have evolved a mechanism to hinder entry.

The teeth around the cloacal opening appear to act as an impediment,

and this echinoderm species does not house the other sympatric carap-

ids that are all larger in diameter. Therefore all recorded sounds were

produced when the fish was outside the host. In addition, no sound

was emitted during the single penetration attempt.

Fish produced three kinds of sounds.

1. The long regular call (LRC/staccato) is made of trains of numerous

pulses (range from 15 to>80) with a uniform pulse period of

(mean6 SD) 235621 ms (n5340) and a pulse duration of 12–20

ms (Figure 3). The power spectrum has two main frequencies: 95

Hz and around 330 Hz. Dominant frequency is related to sound

level, and higher amplitude sounds have frequencies around

330 Hz.

2. The second sound type is a short irregular call (SIC) similar to a

drum with a decreasing pulse period (Figure 4). In calls having five

TABLE 2 Morphometric characters in different Encheliophis charde-
walli specimens

Head
length

Body
depth

Body
width

Eye
diameter

Total
length

Rangiroa 7.16 3.94 2.92 1.7 86

Moorea 8.38 4.42 2.92 1.72 94.5

10.42 5.1 2.86 1.88 104.5

6.62 2.96 1.80 1.10 61.5

8.36 4.02 2.62 1.70 90

8.46 3.98 2.60 1.6 83.7

Values are in mm.

FIGURE 1 Specimen of Encheliophis chardewalli attempting tail-
first penetration into the sea cucumber Actinopyga mauritiana (a, b).
Left lateral view of the fish head (c). Red zones at the level of the
opercle correspond to the blood flooding in the gills. White zone
posterior to the opercle corresponds to the swimbladder plate of
the sound-producing apparatus
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pulses or more, the last pulse period is usually half the duration

than the first period. These sounds are made of 3 to 8 pulses (56

1, n559) with a duration of 181650 ms (n5185). The main

pulse period is 2567 ms (n5234) but oscillates between 42 and

12 ms. The dominant frequency of the call is 3946112 Hz

(n558) which is close to the dominant frequency of each pulse

(3906110 Hz, n5230).

3. The last sound (Figure 4) is a short regular call (SRC/knock) made

of 3 to 6 pulses (460.8, n542) having a constant pulse period of

about 5366 ms (n5128). The call duration ranges from 77 to

260 ms (174644 ms, n543) and the dominant frequency is

4076102 Hz (n5147).

In most cases (84%), SRCs are followed by SICs (Figure 4). There is usu-

ally 84656 ms (n590) between the end of the SRC and the beginning

of the SIC. The amplitude of SRC is ca. 60% lower than drums (t-stu-

dent, t521.8, d.f.565, p< .001). Because E. chardewalli does not

move during sound production, it is not possible to claim if sounds

were made by two different specimens or not.

The comparison of the shapes of each pulse from the different

kinds of sound seems to indicate that pulses from staccatos and

SICs are constructed in the same way and most probably result

FIGURE 3 Long regular calls produced by Encheliophis chardewalli.
Oscillogram (a) and enlargement of some pulses (b). Oscillogram
and corresponding spectrogram (c). Spectral analysis information:
sampling frequency 44 100Hz; Windows: Flat Top (filter
bandwidth: 15Hz); FFT length: 1024

FIGURE 2 Left lateral view of the anterior part of the sound-producing system in Encheliophis chardewalli. Yellow dotted lines corresponds
to the position of the swimbladder fenestra

FIGURE 4 Different kinds of sounds in Encheliophis chardewalli.
Oscillogram (a) and enlargement of some pulses (b) with SRCs or
knocks (1), and SIC (2). Oscillogram and corresponding spectrogram
of both kinds of sounds (c). Spectral analysis information: sampling
frequency 44 100Hz; Windows: Flat Top; FFT length: 1024
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from the same mechanism (Figure 5). In this case, it seems that the

difference between both kinds of sound would be simply related to

differences in the rate emission. On the other hand, the shape of

the knock pulse appears to be different and would result from a dif-

ferent way of sound producing.

4 | DISCUSSION

The new specimens collected at Moorea show a series of key charac-

ters that corresponds undoubtedly to E. chardewalli, including the lack

of pectoral fins, seven branchiostegal rays and short premaxilla (Par-

mentier, 2004). We designate specimens from this study as metatypes

that validate the species’ status. However, we adjust the original

description: some specimens possess reduced pelvic bones, a single

row of scales at the lateral line, upper jaws reaching the coronoid pro-

cess of the mandible, up to 18 conical teeth on the mandible and a pre-

dorsal bone at the level of the 4th vertebra (Table 1). An additional

distinctive character is the number of vertebrae anterior to the origin

of the dorsal fin, between 17 and 20, which is higher than in other

carapid species (but E. vermicularis has 16–19 vertebrae) (Markle &

Olney, 1990). Morphological features suggest that E. chardewalli is a

paedomorph with arrested development. The life cycle of Carapidae is

divided into four stages: the vexillifer and tenuis larvae, juveniles and

adults (Olney & Markle, 1979). The vexillifer larva provides the pelagic

dispersal stage. Later, the tenuis larva increases in length substantially

before a deep metamorphosis (within the host) that includes a shorten-

ing of the body (Parmentier, Lecchini, & Vandewalle, 2004; Parmentier,

2016), leading to the juvenile stage (Padoa, 1947; Arnold, 1956; Par-

mentier, Lecchini, Lagardere, & Vandewalle, 2004) before the sexually

mature adults. The anatomy and the small body size associated with

the straight body diameter suggest the adults still have the morphology

of the tenuis (Parmentier, Lanterbecq et al., 2016).

Encheliophis chardewalli was found in the surf redfish A. mauritiana,

a sea cucumber that usually dwells in shallow waters from the surface

to 20m depth. It is quite surprising to find carapid fish inside this sea

cucumber because it possesses anal teeth around its cloacal opening

(Moss & Murchison, 1966). These teeth complicate penetration by

restricting the anal aperture and could harm the fish. The narrow

guarded opening probably explains the particularly narrow dimensions

of E. chardewalli (Table 2) and the absence of pectoral fins. However, E.

chardewalli was already supposed to be paedomorphic given that its

skeletal morphology has a series of features (narrow sizes, poor devel-

opment of the vertebra, lack of pectoral fins, tenuis aspect) that appa-

rently represent arrested development (Parmentier, 2004). This general

morphology could be the result of a reduction of body size allowing to

FIGURE 5 Typical shapes of pulses belonging to the different kinds of sounds in Encheliophis chardewalli. The double-head arrow shows
the pulse duration. The ending part that looks like a sine wave is a tank reflection

TABLE 3 Synthesis of the different sounds known in Carapini
species

Staccato Knock
Double-
pulse Hum SIC

Encheliophis chardewalli V V V V

Encheliophis gracilis V V

Carapus homei V V

Carapus boraborensis V

Carapus mourlani V V V V

Carapus acus

FIGURE 6 Comparison of the pulse period (mean and S.E.)
between knocks and staccatos of different Carapini species. All the
sounds are significantly different
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penetrate inside new host, avoiding competition and conflict with other

sympatric Carapini species (C. boraborensis, C. mourlani, C. homei, E.

gracilis).

In E. chardewalli, the comparison of the shapes of each pulse from

the different kinds of sound seems to indicate that pulses from stacca-

tos and SICs are constructed in the same way and most probably result

from the same mechanism (Figure 5). In this case, it seems that the dif-

ference between both kinds of sound would be simply related to differ-

ences in the rate emission. On the other hand, the shape of the knock

pulse appears to be different and would result from a different way of

sound producing. The use of secondary sonic muscles could be

involved because the contraction of these muscles necessarily implies

the forward and outward displacement of the posterior tips of the epi-

neurals, and consequently of the anterior part of the swimbladder

(Courtenay & McKittrick, 1970; Parmentier, Gennotte et al., 2003).

Sound production ability is well developed in the Carapini with

recorded species producing different sound types. Pulses can be pro-

duced as a single unit or in long regular trains (staccato) in C. boraboren-

sis (Parmentier, Vandewalle et al., 2003). They occur in groups of 2–6

pulses, suites of double-pulses, staccatos and hums in C. mourlani (Par-

mentier, Fine et al., 2006; Parmentier, Colleye et al., 2016). They can

be single, suites of double-pulses, or in groups of three pulses to seven

pulses in C. homei (Parmentier, Vandewalle et al., 2003; Lagardère

et al., 2005). They are single or in groups of five to six pulses in E. graci-

lis (Parmentier, Vandewalle et al., 2003; Parmentier et al., 2008). Only

single pulses were recorded in C. acus (Parmentier, Fine et al., 2006),

suggesting this species most probably produces additional kinds of

sounds. Single-pulsed sounds and long trains are emitted by O. fowleri

(K�ever et al., 2014). Encheliophis chardewalli produces at least three dif-

ferent sound types. Unfortunately, it is currently not possible to associ-

ate these sounds with a specific message because they are produced

during similar conditions. We note that bird species often produce dif-

ferent calls in the same setting (Brown, 1975). It also means the com-

plete repertoire of each recorded species was unlikely present.

Nevertheless, based on current knowledge, E. chardewalli is the only

Carapini species able to produce the SIC since single pulses, staccatos,

and knocks can be produced by other species (Table 3).

Recordings in tanks can distort the signal in different ways. Com-

parative experiments on the red drum, Sciaenops ocellatus indicate,

however, that potential distortion does not affect the pulse period, or

the number of pulses or the period between consecutive calls (Par-

mentier et al., 2014). The comparison of staccatos and knocks indicated

the pulse periods of each species (Figure 6) are significantly different

(Kruskall-Wallis, p< .001) indicating each species can be distinguish-

able. It can be helpful in future field studies since all these species were

found in the bay of Opunohu (Moorea) and for some of them in the

same host species (Parmentier & Vandewalle, 2005).

During our laboratory observations, it was not possible to associ-

ate the sounds with a given behavior or to identify the emitter since no

associated movements accompanied sound production. The high diver-

sity of sounds in all studied species clearly supports the importance of

this behavior in these nocturnal symbiotic species. It is also likely that

sound production exits in all carapids since all species possess sound

producing muscles associated with the swimbladder (Parmentier et al.,

2002).
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