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Abstract

The problem of minimizing a pseudo-Boolean function with
no additional constraints arises in a variety of applications.
A quadratization is a quadratic reformulation of the nonlin-
ear problem obtained by introducing a set of auxiliary binary
variables which can be optimized using quadratic optimiza-
tion techniques. Using the well-known result that a pseudo-
Boolean function can be uniquely expressed as a multilin-
ear polynomial, any pseudo-Boolean function can be quadra-
tized by providing a quadratization for negative monomials
and one for positive monomials. A desirable property for
a quadratization is to introduce small number of auxiliary
variables. For the case of negative monomials there exists
a quadratization using a single auxiliary variable which is, in
addition, submodular. However, much less is known for posi-
tive monomials. The best lower bound on the number of vari-
ables required by a quadratization in the literature is b n−1

2 c.
We present here new quadratizations of the positive mono-
mial that significantly improve this lower bound decreasing it
to a logarithmic bound. This lower bound is derived from
a more general result, stating that a quadratization with a
logarithmic number of variables can be defined for exact k-
out-of-n functions, which is a more general class of symmet-
ric functions. Moreover, for exact k-out-of-n functions we
also prove that a logarithmic number of variables is necessary
when requiring certain symmetry conditions to the quadrati-
zation. Finally, we provide quadratizations for general sym-
metric functions using O(

√
n) auxiliary variables. This upper

bound nicely matches a lower bound of Ω(
√

n) variables that
was recently introduced.

Introduction
A pseudo-Boolean function is a mapping f : {0, 1}n → R
that assigns a real value to each tuple of n binary variables
(x1, . . . , xn). Pseudo-Boolean functions have been exten-
sively used and studied during the last century and especially
in the last 50 years, given that they model problems in a wide
range of areas such as reliability theory, computer science,
statistics, economics, finance, operations research, manage-
ment science, discrete mathematics, or computer vision (see
(Boros and Hammer 2002) and (Crama and Hammer 2011)
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for a list of applications and references). In most of these ap-
plications f has to be optimized, therefore we are interested
in the problem

min
x∈{0,1}n

f (x), (1)

which is NP-hard even when f is a quadratic function.
Several techniques have been proposed to solve problem

(1), such as enumerative methods, algebraic methods, linear
reformulations and quadratic reformulations, which are then
solved using a linear or quadratic solver, respectively. It is
not clear whether one of the previous techniques is generally
better than the others. In fact, the performance of the differ-
ent approaches seems to depend on the underlying structure
of the problem, among other factors.

In this paper, we focus on quadratic reformulations of
problem (1), which are also called quadratizations. Interest-
ingly, much progress in the understanding of quadratizations
has been made in the field of computer vision, where these
type of techniques perform especially well for problems
such as image restoration. A systematic study of quadra-
tizations and its properties has been initiated in (Anthony et
al. 2017), where a quadratization is defined as follows.
Definition 1. Given a pseudo-Boolean function f (x) on
{0, 1}n, we say that g(x, y) is a quadratization of f if g(x, y) is
a quadratic polynomial depending on x and on m auxiliary
variables y1, . . . , ym, such that

f (x) = min
y∈{0,1}m

g(x, y) ∀x ∈ {0, 1}n. (2)

It is clear that given a pseudo-Boolean function f and a
quadratization g, minimizing f over x ∈ {0, 1}n is equiva-
lent to minimizing g over the (x, y) ∈ {0, 1}n+m. Moreover,
it is known that every pseudo-Boolean function f admits a
quadratization (Rosenberg 1975).

Not all quadratizations will perform equally well when
solving the resulting quadratic problem. A desirable prop-
erty of a quadratization is to have a small set of auxiliary
variables, so that the size of the reformulation does not in-
crease too much with respect to the size of the original prob-
lem. Another interesting property is submodularity. Of
course, if the original pseudo-Boolean function f is not sub-
modular, then it does not admit a submodular quadratization.
However, even if a quadratization is not submodular, a small
number of positive quadratic terms might have a positive im-
pact in resolution performance.



Literature review
Given a pseudo-Boolean function f , there are many different
methods to define a quadratization. In particular, termwise
quadratizations have attracted much interest in the litera-
ture. This type of procedure uses the well-known result that
a pseudo-Boolean function f can be represented by a unique
multilinear polynomial (Hammer, Rosenberg, and Rudeanu
1963), (Hammer and Rudeanu 1968), i.e.,

f (x1, . . . , xn) =
∑

S∈2[n]

aS

∏
i∈S

xi, (3)

where [n] = {1, . . . , n} and 2[n] is the sets of subsets of [n]. A
termwise quadratizations of f can be defined by providing
a quadratization for each term, therefore it is necessary to
understand quadratizations of positive monomials (aS > 0)
and of negative monomials (aS < 0).

The case of negative monomials is well understood. A
simple expression to quadratize cubic negative monomials
was introduced in (Kolmogorov and Zabih 2004). This ex-
pression was later extended to higher degrees in (Freed-
man and Drineas 2005). Their quadratization for a degree
n monomial Nn(x) = −

∏n
i=1 xi is

sn(x, y) = (n − 1)y −
n∑

i=1

xiy. (4)

This quadratization is submodular because all quadratic
terms have negative coefficients.

Surprisingly, much less is known for positive monomials.
Until now, the quadratization introducing the smallest num-
ber of artificial variables was defined in (Ishikawa 2011).
Consider a positive monomial Pn(x) =

∏n
i=1 xi. Then,

n∏
i=1

xi = min
y1,...ym∈{0,1}

m∑
i=1

yi(ci,n(−S 1 + 2i) − 1) + aS 2, (5)

where S 1, S 2 are the elementary linear and quadratic sym-
metric polynomials in n variables,

S 1 =

n∑
i=1

xi, S 2 =

n−1∑
i=1

n∑
j=i+1

xix j =
S 1(S 1 − 1)

2
,

m = b n−1
2 c and ci,n =

{
1, if n is odd and i = m,
2, otherwise.

Quadra-

tization (5) introduces
(

n
2

)
positive quadratic terms. Despite

this fact, this quadratization performs very well computa-
tionally (Ishikawa 2009).

In this paper we define several quadratizations that im-
prove the number of artificial variables used in quadratiza-
tion (5); one uses d n

4 e auxiliary variables, and the other two
only use a logarithmic number on n.

A more general class of pseudo-Boolean functions are
symmetric functions, which are defined as follows.
Definition 2. A pseudo-Boolean function f : {0, 1}n → R is
symmetric if there is a discrete function r : {0, 1, . . . , n} → R
such that f (x) = r(X), where X =

∑n
i=1 xi is the Hamming

weight (number of ones) in x.

In the next section we define several quadratizations for
a special class of symmetric functions, namely, exact k-out-
of-n functions, which use a logarithmic number of auxiliary
variables.

An upper bound of n − 2 and a lower bound of Ω(
√

n) on
the minimum number of variables required to quadratize a
symmetric function was recently established in (Anthony et
al. 2016). In the last section we define a quadratization using
O(
√

n) auxiliary variables, thus providing a matching upper
bound.

Quadratizations of exact k-out-of-n functions
This section is concerned with quadratizations of exact k-
out-of-n functions. We provide a quadratization using a log-
arithmic number of variables in n and we prove that, when
requiring certain symmetry conditions to the quadratization,
then it is also necessary to use a logarithmic number of aux-
iliary variables.

An exact k-out-of-n function is defined as follows. Con-
sider n binary variables, xi, i = 1, ..., n, set X =

∑n
i=1 xi, and

let 0 ≤ k ≤ n be an integer. Let us consider a symmetric
function of the form

fk(x1, ..., xn) =

{
1 if X = k
0 otherwise.

We are concerned with the quadratizations of fk. Notice that
the positive monomial is an exact k-out-of-n function with
k = n.

Observation 1. Let x̄i = 1 − xi, for all i. Then
fk(x1, . . . , xn) = fn−k(x̄1, . . . , x̄n).

We define a quadratization Gk of fk as follows. Assume
first that k ≥ 2. Let l = dlog ke, consider variables z ∈ {0, 1}
and y = (y0, ..., yl−1) ∈ {0, 1}l and define

Ak(X, y, z) = X − (k − 2l)z − (k + 1)(1 − z) −
l−1∑
i=0

2iyi.

With these notation define the quadratic function

Gk(x, y, z) =

{
Ak(X, y, z)2 if n

2 ≤ k ≤ n,
An−k(n − X, y, z)2 if 0 ≤ k ≤ n

2 .

Theorem 1. Gk(x, y, z) is a quadratization of fk with
K + 1 ≤ 1 + dlog ne auxiliary variables, where K =
max(dlog(k)e, dlog(n − k)e).

Proof. Clearly, Gk(x, y, z) ≥ 0 for all (x, y, z) and for all k.
Assume that n

2 ≤ k ≤ n. We show that, for all x with
X , k, there exists (y, z) such that Gk(x, y, z) = fk(x) = 0.

1. If 0 ≤ X < k, set z = 1 so that Ak(X, y, 1) = X − k +
2l −

∑l−1
i=0 2iyi. Note that 0 ≤ X − k + 2l ≤ 2l − 1 (the first

inequality holds because k ≤ 2l, and the second inequality
follows from X < k). Hence, one can choose yi, for i =
0, . . . , l − 1, in such a way that X − k + 2l =

∑l
i=1 2i−1yi,

and Gk(x, y, 1) = Ak(X, y, 1) = 0.



2. If k < X ≤ n, set z = 0 so that Ak(X, y, 0) = X − k − 1 −∑l−1
i=0 2iyi. Now, 0 ≤ X − k − 1 ≤ 2l − 1 (since k < X, and

since X− k ≤ n− k ≤ k ≤ 2l by definition of l and because
k ≥ n

2 ). Hence, one can choose yi, for i = 0, . . . , l − 1, in
such a way that X − k − 1 =

∑l−1
i=0 2iyi, and Gk(x, y, 0) =

Ak(X, y, 0) = 0.

Consider now the case where X = k. When z = 1, we obtain
Ak(k, y, 1) = 2l −

∑l−1
i=0 2iyi ≥ 1, and hence Gk(x, y, z) ≥ 1.

When z = 0, Ak(k, y, 0) = −1 −
∑l−1

i=0 2iyi ≤ −1, and hence
again Gk(x, y, z) ≥ 1. The minimum value Gk(x, y, z) = 1 is
obtained by setting either z = yi = 1 for i = 0, . . . , l − 1 or
z = yi = 0 for 0 = 1, . . . , l − 1.

Assume now that 0 ≤ k ≤ n
2 . Observation 1 and the anal-

ysis of the previous case imply that An−k(n − X, y, z)2 is a
quadratization of fk. �

Corollary 1. If f : 0, 1n 7→ R is a symmetric function the
value of which is strictly above its minimum value for at most
µ different values of X, then it can be quadratized with at
most µ(1 + dlog ne) auxiliary variables.

Consider now a slightly modified version of quadratiza-
tion Gk, defined as follows. Let l = dlog ke, consider vari-
ables z ∈ {0, 1} and y = (y1, ..., yl−1) ∈ {0, 1}l−1 and define

A′k(X, y, z) = X − (k − 2l)z − (k + 1)(1 − z) −
l−1∑
i=1

2iyi.

Let

G′k(x, y, z) =


(

A′k(X,y,z)
2

)
if n

2 ≤ k ≤ n,

(
A′n−k(n−X,y,z)

2

)
if 0 ≤ k ≤ n

2 .

Theorem 2. G′k(x, y, z) is a quadratization of fk with
K + 1 ≤ dlog ne auxiliary variables, where K =
max(dlog(k)e, dlog(n − k)e) − 1.

Proof. Note first that G′k(x, y, z) ≥ 0 for all for all (x, y, z)
and k, since it is the half-product of two consecutive integers.

Assume that n
2 ≤ k ≤ n. We show first that, for X , k,

there exists (y, z) such that Gk(x, y, z) = fk(x) = 0.

1. If 0 ≤ X < k, set z = 1 so that A′k(X, y, 1) = X − k + 2l −∑l−1
i=1 2iyi. As before, 0 ≤ X − k + 2l ≤ 2l − 1. Hence,

depending on the parity of X − k + 2l, one can choose yi
for i = 1, . . . , l−1, in such a way that either A′k(X, y, z) = 0
or A′k(X, y, z) − 1 = 0, and hence G′k(x, y, z) = 0.

2. If k < X ≤ n, set z = 0 so that A′k(X, y, 0) = X − k − 1 −∑l−1
i=1 2iyi. As before, 0 ≤ X − k − 1 ≤ 2l − 1. Hence,

depending on the parity of X − k − 1, one can choose yi,
for i = 1, . . . , l−1, in such a way that either A′k(X, y, z) = 0
or A′k(X, y, z) − 1 = 0, and hence G′k(x, y, z) = 0.

Consider finally the case where X = k. When z = 1, we
obtain A′k(k, y, 1) = 2l−

∑l−1
i=1 2iyi ≥ 2, and hence G′k(x, y, z) ≥

1. When z = 0, A′k(k, y, 0) = −1 −
∑l−1

i=1 ≤ −1, and hence
again G′k(x, y, z) ≥ 1. The minimum value G′k(x, y, z) = 1 is
obtained by setting either z = yi = 1 for i = 1, . . . , l − 1 or
z = yi = 0, for i = 1, . . . , l − 1.

Assume now that 0 ≤ k ≤ n
2 . As before, by Observa-

tion 1 and by the analysis of the previous case, we have that
1
2 A′n−k(n− X, y, z)(A′n−k(n− X, y, z)− 1) is a quadratization of
fk. �

Theorem 2 defines a quadratization using one less vari-
able than the one of Theorem 1, but Theorem 1 has the ad-
vantage of unveiling the nature of the construction in a more
transparent way.

The remainder of this section is devoted to proving a the-
orem giving a logarithmic lower bound on the minimal num-
ber of variables that are required to quadratize exact k-out-
of-n functions, when requiring certain symmetry conditions
on the quadratization.

Assume that g(x, y) is a pseudo-Boolean function in n + m
variables x1, . . . , xn and y1, . . . , ym.
Definition 3. A pseudo-Boolean function g(x, y) is x-
symmetric if for all y∗ ∈ {0, 1}m the function g(x, y∗) is a
symmetric function of its variables x1, . . . , xn, or equiva-
lently, if there exists a function G such that g(x, y) = G(X, y).
Lemma 1. If g(x, y) is x-symmetric, then there exists a func-
tion G such that g(x, y) = G(X, y), where G is a multilinear
polynomial in the y variables and whose degree is the same
as the degree of g.

Proof. Let us introduce [n] = {1, 2, . . . , n} and write

g(x, y) =
∑

S⊆[n]

ψS (y) ·
∏
i∈S

xi.

Since for any y ∈ {0, 1}m we have that g(x, y) is symmetric
in the xi variables, we must have that ψS (y) = ψT (y) for any
two subsets S ,T ⊆ [n] with |S | = |T |. It follows that there
exist pseudo-Boolean functions φk(y) for k = 0, . . . , n such
that

g(x, y) =

n∑
k=0

φk(y) ·
∑

S⊆[n]
|S |=k

∏
i∈S

xi.

Each subexpression Tk(x) =
∑

S⊆[n]
|S |=k

∏
i∈S xi defines an x-

symmetric function of degree k, and since the expression
Tk(x) counts the number of subsets of size k of the set of xi
variables taking value one, Tk(x) can be written as

Tk(x) =

(
X
k

)
=

1
k!

k−1∏
j=0

(X − j). (6)

Expression (6) is a polynomial of degree k in X, which
can be substituted for Tk in the expression of g(x, y). This
completes the proof.

�

Definition 4. A pseudo-Boolean function g(x, y) is x-linear
if every term in its unique multilinear expression contains at
most one of the xi variables.

Observe that every pseudo-Boolean function f (x) has an
x-linear quadratization. Namely, let q(x, y) be an arbitrary
quadratization of f (x). Then

M
n∑

i=1

(xi x̄′i + x̄ix′i ) + q(x′, y)



is an x-linear quadratization of f (x) for a large enough M.
Now, let Z = {0, 1, . . . , n}.

Definition 5. A function r : Z → Z is concave if for all
0 < j < n we have that r( j) ≥ 1

2 r( j − 1) + 1
2 r( j + 1).

In the next lemma we show that if f (x) = r(X) is a non-
concave symmetric function, then it does not have an x-
linear x-symmetric quadratization.
Lemma 2. If f (x) = r(X) is a nonconcave symmetric func-
tion on n ≥ 3 variables and g(x, y) is an x-symmetric
quadratization of f , then g is not x-linear.

Proof. By Lemma 1 there exists a quadratic polynomial
G(X, y) that is multilinear in y such that g(x, y) = G(X, y).
G can be written as

G(X, y) = αX2 + X

β +

m∑
j=1

γ jy j

 + (7)

+

 ∑
1≤i< j≤m

δi jyiy j +

m∑
j=1

ε jy j + φ


The statement is equivalent to saying that α , 0. Let us
assume for a contradiction that α = 0.

For each X∗ = 0, . . . , n let us denote by F j(X∗) the min-
imizing binary values of the y j, for j = 1, . . . ,m in prob-
lem miny∈{0,1}mG(X∗, y). Let us further introduce a(X∗) =
β +

∑m
j=1 γ jF j(X∗), and b(X∗) =

∑
1≤i< j≤m δi jFi(X∗)F j(X∗) +∑m

j=1 ε jF j(X∗) + φ.
With these notations we have that there is a vector y(X∗) =

F(X∗), and two corresponding values a(X∗), b(X∗) such that

r(X∗) = min
X∗′=0,...,n

{X∗ · a(X∗
′

) + b(X∗
′

)}.

Since r(X∗) is the minimum of a finite number (2m) of
affine functions, it must be concave, which is a contradiction.

�

Theorem 3. If g(x, y) = G(X, y) is an x-symmetric quadra-
tization of fk(x) using m auxiliary variables, then m + 1 ≥
log n.

Proof. Define a set Z = {0, 1, . . . , n}, and a function r : Z →
{0, 1} by r(X) = fk(x) for all x ∈ {0, 1}n.

Since G is a quadratic polynomial and y j, j = 1, . . . ,m are
binary variables, we can write

G(X, y) = αX2 + X

β +

m∑
j=1

γ jy j

 + (8)

+

 ∑
1≤i< j≤m

δi jyiy j +

m∑
j=1

ε jy j + φ

 ,
for some reals α, β, γ j, δi j, ε j and φ.

Since g is a quadratization of fk(x), we have that fk(x) =
miny∈{0,1}m g(x, y), for all x ∈ {0, 1}n. For every x and
every index 1 ≤ j ≤ m, let us denote F j(x) a mini-
mizing value of the variable y j in the previous equality.
Clearly, F j is a Boolean function over {0, 1}n for every j =
1, . . . ,m. Furthermore, since fk(x) = miny∈{0,1}m g(x, y) =

miny∈{0,1}m G(X, y), these Boolean functions can be chosen
to be symmetric themselves. Consequently, it will be not
misleading to use F j(X) to denote such a minimizing binary
value.

Thus, we have the following equalities
r(X) = fk(x) = min

y∈{0,1}m
g(x, y) =

= min
y∈{0,1}m

G(X, y) = G(X, F1(X), . . . , Fm(X)).

Therefore, by (8) we obtain the following system of equa-
tions

r(X) = αX2 + X

β +

m∑
j=1

γ jF j(X)

 + (9)

+

 ∑
1≤i< j≤m

δi jFi(X)F j(X) +

m∑
j=1

ε jF j(X) + φ

 .
This equality implies that r(X) can be viewed as a

quadratic expression of X. Let us focus now on the three
coefficients of this expression.

For a binary vector ω ∈ {0, 1}m let us define Z(ω) = {z ∈
Z | ω = (F1(x), . . . , Fm(z))}, and observe that the three co-
efficients in (9) are the same for all X ∈ Z(ω). Namely, we
have for all X ∈ Z(ω) that

r(X) = αX2 + X

β +

m∑
j=1

γ jω j

 + ∑
1≤i< j≤m

δi jωiω j +

m∑
j=1

ε jω j + φ

 .
Since for n ≥ 3 function fk is a nonconcave symmetric func-
tion, Lemma 2 implies that its x-symmetric quadratization
is not x-linear, i.e., α , 0. Since for a particular nonlinear
quadratic function over Z(ω), we cannot have three pairwise
different values z, z′, z′′ ∈ Z(ω) with r(z) = r(z′) = r(z′′),
and since this is true for all ω ∈ {0, 1}m, and r takes the same
value zero for n different elements of Z, we can conclude
that

2 · 2m ≥ n,
which completes the proof. �

Theorems 1, 2 and 3 provide tight upper and lower bounds
for the minimum number of auxiliary variables when requir-
ing a quadratization of an exact k-out-of-n function to be
x-symmetric. An important open question is to provide a
lower bound for general non-symmetric quadratizations.

Quadratizations of the positive monomial
In this section we first write Theorems 1 and 2 for the pos-
itive monomial, which is an exact k-out-of-n function, with
k = n.
Theorem 4. Assume that n ≤ 2k and et K = 2k − n. Then,

g(x, y) =

K + X −
k−1∑
i=0

2iyi


2

is a quadratization of the positive monomial Pn using dlog ne
auxiliary variables.



Theorem 5. Assume that n ≤ 2k+1. Let K = 2k+1 − n. Then,

g(x, y) =
1
2

(K + X −
k∑

i=1

2iyi)(K + X −
k∑

i=1

2iyi − 1) (10)

is a quadratization of the positive monomial f (x) = Pn(x) =∏n
i=1 xi using dlog ne − 1 auxiliary variables.
Theorems 4 and 5 are direct consequences of 1 and 2,

respectively, when taking k = n and fixing z = 1.
The quadratizations presented in Theorems 4 and 5 pro-

vide a significant improvement, of orders of magnitude, with
respect to the linear bounds on the minimum number of aux-
iliary variables given by (5). Moreover, to the best of our
knowledge, (10) is the quadratization of the positive mono-
mial introducing the smallest number of auxiliary variables.

In the remainder of this section, we present a quadrati-
zation of the positive monomial using d n

4 e auxiliary vari-
ables. This quadratization uses a linear number of auxil-
iary variables, but we find it worth to present this result here
due to computational reasons. Indeed, the quadratizations in
Theorems 4 and 5 use many large coefficients, which might
have a negative impact on computational performance even
though they introduce a smaller number of auxiliary vari-
ables than quadratization (5) or the quadratization that we
present below. Note also that dlog ne−1 is equal to d n

4 e when
3 ≤ n ≤ 12, so that the difference in the number of auxiliary
variables only becomes relevant for very high degrees. An-
other factor that might affect computational performance is
having a different number of positive quadratic terms. These
are open computational questions that should be tested.
Theorem 6. The positive monomial Pn =

∏n
i=1 xi has a

quadratization using m = d n
4 e auxiliary variables.

We will actually prove more. Consider X as in Definition
2 and let us define the following notation: for a vector of
auxiliary variables (y1, . . . , ym), let Y =

∑m
j=2 y j. Note that

the sum defining Y starts with j = 2, so that Y ≤ m − 1.
Theorem 7. For all integers n,m, if n ≥ 2, n

4 ≤ m ≤ n
2 , and

N = n − 2m then

g(x, y) =
1
2

(X − Ny1 − 2Y) (X − Ny1 − 2Y − 1) (11)

is a quadratization of the positive monomial Pn =
∏n

i=1 xi
using m auxiliary variables.

Proof. Clearly, g(x, y) is a quadratic function. Moreover, the
right-hand side of (11) is one half of the product of two con-
secutive integers. Thus, g(x, y) is nonnegative and is integral
for all (x, y).

Consider now any vector x ∈ {0, 1}n and let X be its Ham-
ming weight. We must show that Pn(x) = miny g(x, y).

1. Assume first that X ≤ 2m−1. In particular, X ≤ n−1, and
hence Pn(x) = 0 ≤ g(x, y) for all y. To obtain a minimizer
of g(x, y), let y1 = 0 and set the first b X

2 c components of
(y2, . . . , ym) to 1. Note that this is always possible, since
X
2 ≤ m − 1

2 , and hence b X
2 c ≤ m − 1. The Hamming

weight of (y2, . . . , ym) is Y = b X
2 c, that is, either 2Y = X or

2Y = X − 1, depending on the parity of X. It immediately
follows from definition (11) that g(x, y) = 0, as required.

2. Assume next that 2m ≤ X ≤ n − 1. Here again, Pn(x) =
0 ≤ g(x, y) for all y. In order to describe a minimizer of
g(x, y), let us first observe that 0 ≤ 4m − n ≤ X − N ≤
2m − 1, and hence 0 ≤ b X−N

2 c ≤ m − 1. Thus, we can
define y by setting y∗1 = 1, and the first b X−N

2 c components
of (y2, . . . , ym) to 1. It follows that the Hamming weight of
(y2, . . . , ym) satisfies either 2Y = X−N or 2Y = X−N−1,
and in view of (11), g(x, y) = 0, as required.

3. Finally, assume that X = n, meaning that x is the all-one
vector and Pn(x) = 1. For all y ∈ {0, 1}m, (11) becomes

g(x, y) =
1
2

(n − Ny1 − 2Y) (n − Ny1 − 2Y − 1). (12)

Moreover, the following inequalities hold:

2Y ≤ 2m − 2 = n − N − 2 ≤ n − Ny1 − 2,

which immediately implies that g(x, y) ≥ 1 for all y ∈
{0, 1}m. Let now y j = 1 for all j = 1, . . . ,m. From (12),
we get g(x, y) = 1, and this completes the proof.

�

Remark 1. As a side-remark, note that when n = 2m, g(x, y)
does not depend on y1. So, g(x, y) defines a quadratization
of Pn using m − 1 = n

2 − 1 auxiliary variables, as in (5).

Remark 2. Let us show that when, m < d n
4 e, then g is not

a quadratization of Pn. Choose a vector x∗ with Hamming
weight X∗ = 2m. So, Pn(x∗) = 0 and

g(x∗, y) =
1
2

(2m − Ny1 − 2Y) (2m − Ny1 − 2Y − 1).

If y1 = 0, then g(x∗, y) = 1
2 (2m − 2Y) (2m − 2Y − 1) > 0,

since Y ≤ m − 1. If y1 = 1, then

g(x∗, y) =
1
2

(2m − N − 2Y) (2m − N − 2Y − 1)

=
1
2

(4m − n − 2Y) (4m − n − 2Y − 1),

and again g(x∗, y) > 0 since 4m < n. So, miny g(x∗, y) > 0,
and g is not a quadratization.

A tight upper bound for quadratizations of
symmetric functions

In this section we provide an upper bound of O(
√

n) auxil-
iary variables to quadratize symmetric functions that nicely
matches the lower bound that was recently introduced in
(Anthony et al. 2016).

Theorem 8. There exist symmetric functions of n variables
for which any quadratization must involve at least Ω(

√
n)

auxiliary variables. (Anthony et al. 2016)

As in the previous section let Z = {0, 1, . . . , n} and X =∑n
i=1 xi. Now, let r : Z → Z+ be a nonnegative function, and

consider f (x1, . . . , xn) = r(X). Let l = d
√

n + 1e, and choose
a large integer M such that M > r(k) for all k ∈ Z.



Let us consider auxiliary variables yi, i = 0, . . . , l − 1 and
z j, j = 0, . . . , l − 1, and define

g(x, y, z) =

l−1∑
i=0

l−1∑
j=0

r(i · l + j) · yi · z j

+ M

1 − l−1∑
i=0

yi


2

+ M

1 − l−1∑
j=0

z j


2

+ M

X −

l l−1∑
i=0

i · yi +

l−1∑
j=0

j · z j




2

Theorem 9. Function g is a quadratization of f with
2d
√

n + 1e = O(
√

n) auxiliary variables.

Proof. Observe first that every integer k ∈ Z has a unique
representation k = i · l + j with 0 ≤ i, j ≤ l − 1. Since
for every x ∈ {0, 1}n we have X ∈ Z, let us define integers
i(x) and j(x) such that X = i(x) · l + j(x), 0 ≤ i(x) ≤ l − 1
and 0 ≤ j(x) ≤ l − 1 hold. Note that every binary vector
x ∈ {0, 1}n defines uniquely such integers.

Let us then define auxiliary vectors y∗, z∗ ∈ {0, 1}l (we
start indexing by 0), such that

y∗i =

{
1 if i = i(x),
0 otherwise,

z∗j =

{
1 if j = j(x),
0 otherwise.

Let us observe next that due to the three terms involving
M in the definition of g, we have g(x, y, z) < M if and only
if y = y∗ and z = z∗. Due to the definition of the first part of
g, in this case we have g(x, y∗, z∗) = r(X) = f (x). �

Consider now a generalization of symmetric functions,
where the value of the function f for a given x does not
depend on X but on a weighted sum of the values of the
components. More precisely, assume that l, n and R < l2
are nonnegative integers, and Z = {0, 1, ...,R}. Assume
also that L : {0, 1}n 7→ Z is a linear function, and that the
pseudo-Boolean function f : {0, 1}n 7→ Z is defined by
f (x) = r(L(x)) ≥ 0, where r : Z 7→ R+ satisfies r(0) = 0.

We are concerned with the description of a quadratization
of f with O(l) = O(

√
R) auxiliary variables.

Let us as consider binary variables, y j, z j, j = 1, ...` − 1,
and define

Y = l

 l−1∑
j=1

y j

 +

l−1∑
j=1

z j,

and set

X = L(x).
Furthermore, define M = maxx∈{0,1}n f (x), and define reals
ai, j, i = 1, ..., l − 1 and j = 1, ..., l − 1 such that

r(α · l + β) =

α∑
i=1

β∑
j=1

ai, j (13)

holds for all 0 ≤ α < l and 0 ≤ β < l.

Theorem 10. The function

g(x, y, z) =

l−1∑
i=1

l−1∑
j=1

ai, j · yi · z j

+ M + M · (X − Y − 1) · (X − Y + 1)

+ M ·
l−2∑
i=1

(1 − yi) · yi+1

+ M ·
l−2∑
j=1

(1 − z j) · z j+1

is a quadratization of f with m = 2 · l auxiliary variables.

Proof. The last two terms make sure that at the (y, z)-
minimizing solution we have y = (1..., 1, 0, ...0) and z =
(1, ..., 1, 0, ..., 0). The second term makes sure that L(x) =
l ·

∑l−1
i=1 yi +

∑l−1
j=1 z j. Finally the first term guarantees that

f (x) = miny,z g(x, y, z), by (13). �

Conclusion
In this paper we have introduced new quadratizations for
several types of symmetric pseudo-Boolean functions. For
exact k-out-of-n functions, the quadratizations use a loga-
rithmic number of auxiliary variables. Positive monomials
are special cases of exact k-out-of-n functions. The quadrati-
zations that we provide significantly improve the best known
bound (roughly n

2 ) for the smallest number of auxiliary vari-
ables required to quadratize a positive monomial. A tight
logarithmic lower bound is also provided for the case where
we require certain symmetry properties to the quadratiza-
tion. However, an important open question that remains is
whether the lower bound of a general not necessarily sym-
metric quadratization is also logarithmic.

However, the quadratizations using a logarithmic num-
ber of variables presented here introduce many large coef-
ficients, which might have a negative impact on their com-
putational performance. A quadratization for the positive
monomial using roughly n

4 variables is also defined, which
does not introduce such large coefficients and still reduces
the best known lower bound. All these quadratizations
should be tested computationally, since it is not clear which
one will be more beneficial, especially for polynomials of
low degree.

Finally, we have also defined a quadratization that uses
O(
√

n) auxiliary variables for symmetric functions and for
a generalization of these, which nicely matches a recently
published lower bound.
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