BFM Benthic

Arthur Capet, Paolo Lazzari, Cosimo Solidoro

OGS, Trieste, Italy
October 6, 2016

Why a benthic module?

Processes/Mechanism you need the benthic for :
Retention (part of) primary production mineralized locally

Why a benthic module?

Processes/Mechanism you need the benthic for :
Retention (part of) primary production mineralized locally Seasonal inertia Delayed remin. reshapes production seasonal cycle

Why a benthic module ?

Processes/Mechanism you need the benthic for :
Retention (part of) primary production mineralized locally Seasonal inertia Delayed remin. reshapes production seasonal cycle
Inter-annual inertia Delayed response to water policies

Why a benthic module ?

Processes/Mechanism you need the benthic for :
Retention (part of) primary production mineralized locally Seasonal inertia Delayed remin. reshapes production seasonal cycle
Inter-annual inertia Delayed response to water policies
Denitrification Net N removal (except N_{2} fixation)

Why a benthic module?

Processes/Mechanism you need the benthic for :
Retention (part of) primary production mineralized locally Seasonal inertia Delayed remin. reshapes production seasonal cycle
Inter-annual inertia Delayed response to water policies
Denitrification Net N removal (except N_{2} fixation)
P sequestration Solid P sequestration (Feedbacks!!)

Why a benthic module ?

Processes/Mechanism you need the benthic for :
Retention (part of) primary production mineralized locally Seasonal inertia Delayed remin. reshapes production seasonal cycle
Inter-annual inertia Delayed response to water policies
Denitrification Net N removal (except N_{2} fixation)
P sequestration Solid P sequestration (Feedbacks!!)
Biology Filtration, irrigation, turbation, consolidation, production, oxygenation, etc ...

Hypoxia in the Adriatic

We knows that

1. It happened in the Northern Adriatic shelf

T. Djakovac et al. / Journal of Marine Systems 141 (2015) 179-189

Hypoxia in the Adriatic

We knows that

1. It happened in the Northern Adriatic shelf
2. It happens in the Emilagna-Romana Coastal zone

Fig. 2. Total number (n) of hypoxic events recorded in 1977-2008: (a) spatial distribution in the ERCZ, (b) monthly distribution of hypoxia and strong hypoxia.

BFM benthic module

Previously in BFM, 4 levels of complexity :
0 . No benthic-pelagic coupling

1. Simple return
2. Benthic Organisms + intermediate diagenetic model
3. Benthic Organisms + diagenetic model

O. No benthic-pelagic coupling

\equiv Bath Tub

- No sediment layer
- Sinking OM accumulates in the lower layer
- All mineralisation process are driven by pelagic formulations
\rightarrow Delocalisation of OM remineralization, and pelagic rates instead of benthic rates.

1. Simple Benthic return

Benthic stocks for Organic Matter

- Sinking OM accumulates in the sediments
- Fixed mineralisation rates provide Oxygen and nutrient fluxes
- No burial (except from the standing equilibrium benthic stock when mineralisation = sedimentation)
- No benthic losses (e.g. denitrification, P sequestration) : All mineralised fluxes are sent back to the water column

2. Benthic Organisms + Simple Benthic return Benthic food web includes (all heterotrophs)
H1 : Aerobic bacteria
H2 : Anaerobic bacteria
Y1 : Epibenthic predators \sim Megabenthos, acts on surface
Y2 : Deposit feeders, feeds on Benth. Detritus + small Benth. Organisms
Y3 : Filter feeders, feeds on Pelagic OM and Phy.
Y4 : Meiobenthos: Large aggregation. Small \rightarrow No effect on sed. mix.
Y5: Infaunal predators "hunt" in the sediments for prey of their size

- Vertical distribution of OM and organism activity.
- No diagenetic modelling (fixed rates, no losses)

2. Benthic Organisms + Simple Benthic return Benthic food web includes (all heterotrophs)
H1 : Aerobic bacteria
H2 : Anaerobic bacteria
Y1 : Epibenthic predators ~ Megabenthos, acts on surface
Y2 : Deposit feeders, feeds on Benth. Detritus + small Benth. Organisms
Y3 : Filter feeders, feeds on Pelagic OM and Phy.
Y4 : Meiobenthos: Large aggregation. Small \rightarrow No effect on sed. mix.
Y5: Infaunal predators "hunt" in the sediments for prey of their size

- Vertical distribution of OM and organism activity.
- No diagenetic modelling (fixed rates, no losses)
- Later version of ERSEM (Blackford, 2002) includes Microphytobenthos (diatoms)

3. Benthic Organisms + Diagenetic model

- Now includes pore water dissolved state variables: O_{2}, $\mathrm{NO}_{3}, \mathrm{NH}_{4}, \mathrm{PO}_{4}, \mathrm{SiO}+$ Reduction Equivalent
- No vertical resolution, but analytical resolution for three (variables) layer: Oxic, Suboxic, Anoxic.

3. Benthic Organisms + Diagenetic model

- Now includes pore water dissolved state variables: O_{2}, $\mathrm{NO}_{3}, \mathrm{NH}_{4}, \mathrm{PO}_{4}, \mathrm{SiO}+$ Reduction Equivalent
- No vertical resolution, but analytical resolution for three (variables) layer : Oxic, Suboxic, Anoxic.

Figure: Example for phosphate dynamics.

3. Benthic Organisms + Diagenetic model

- Now includes pore water dissolved state variables: O_{2}, $\mathrm{NO}_{3}, \mathrm{NH}_{4}, \mathrm{PO}_{4}, \mathrm{SiO}+$ Reduction Equivalent
- No vertical resolution, but analytical resolution for three (variables) layer: Oxic, Suboxic, Anoxic.
- Bioturbation and bioirrigation derive from benthic organisms
- Benthic losses and burial finally enabled

3. Benthic Organisms + Diagenetic model

- Oxygen consumption (miner., nitrif. and oxid. of reduction equivalents) determines oxygen penetration depth.
- Oxygen penetration modifies the nutrient dynamics.
- The sulphide horizon depth derives from the nitrate module and controls the adsorption properties of Phopshate

Table

Table

B1B

Panox part of anoxic mineralization (ie. producing ODU)

Panox part of anoxic mineralization (ie. producing ODU)
Pdenit part of denitrification mineralization (ie. using NO_{x})

Panox part of anoxic mineralization (ie. producing ODU)
$P_{\text {denit }}$ part of denitrification mineralization (ie. using NO_{x})
$p_{\text {nit }}$ part of produced ammonium nitrified within the sediments

B1B

Panox part of anoxic mineralization (ie. producing ODU)
$P_{\text {denit }}$ part of denitrification mineralization (ie. using NO_{x})
$p_{\text {nit }}$ part of produced ammonium nitrified within the sediments
$p_{\text {sid }}$ ratio between potential and effective dissolution (saturation)

B1B

Panox part of anoxic mineralization (ie. producing ODU)
$P_{\text {denit }}$ part of denitrification mineralization (ie. using NO_{x})
$p_{\text {nit }}$ part of produced ammonium nitrified within the sediments
$p_{\text {sid }}$ ratio between potential and effective dissolution (saturation)

Panox part of anoxic mineralization (ie. producing ODU)
$P_{\text {denit }}$ part of denitrification mineralization (ie. using NO_{x})
$p_{\text {nit }}$ part of produced ammonium nitrified within the sediments
$p_{\text {sid }}$ ratio between potential and effective dissolution (saturation)
$p_{\ldots}=f\left(\mathrm{O}_{2, \text { bottom }}, \mathrm{NO}_{\mathrm{x}, \text { bottom }}, \mathrm{NH}_{3, \text { bottom }}, \mathrm{SiO}_{2, \text { bottom }}, \mathrm{C}_{\text {min }}\right)$

Meta-modelling

1. Calibrate (extend) OMEXDIA model from observations

OMEXDIA

- C,N,O,ODU,P,Si
- 100 lev. for 50 cm
- non-local irr.
- 2 lability (fixed)
- in-situ
- Bottom Water
- Porosity
- Sed. rate

Meta-modelling

1. Calibrate (extend) OMEXDIA model from observations

OMEXDIA

- C,N,O,ODU,P,Si
- 100 lev. for 50 cm
- non-local irr.
- 2 lability (fixed)
- in-situ
- Bottom Water
- Porosity
- Sed. rate

Meta-modelling

1. Calibrate (extend) OMEXDIA model from observations

OMEXDIA

- C,N,O,ODU,P,Si
- 100 lev. for 50 cm
- non-local irr.
- 2 lability (fixed)
- in-situ
- Bottom Water
- Porosity
- Sed. rate

Meta-modelling

1. Calibrate (extend) OMEXDIA model from observations

Meta-modelling

1. Calibrate (extend) OMEXDIA model from observations

Meta-modelling

1. Calibrate (extend) OMEXDIA model from observations
2. Perturbated Monte Carlo simulations

Meta-modelling

1. Calibrate (extend) OMEXDIA model from observations
2. Perturbated Monte Carlo simulations
3. Derive functions for B1B

Meta-modelling

1. Calibrate (extend) OMEXDIA model from observations
2. Perturbated Monte Carlo simulations
3. Derive functions for B1B

Steady State VS Dynamic

Steady State VS Dynamic

Steady State VS Dynamic

Steady State VS Dynamic

B1B in the Med

Setup

- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
- Waves (CMEMS)
- Bottom currents (CMEMS)
- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
- Waves (CMEMS)
- Bottom currents (CMEMS)

B1B in the Med

 Setup- OGSTM CMEMS
implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
- Waves (CMEMS)
- Bottom currents (CMEMS)

Issues

- free-surface partial inclusion
- IC

B1B in the Med

 Setup- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag

Issues

- free-surface partial inclusion
- Real case resuspension
- IC
- Waves (CMEMS)
- Bottom currents (CMEMS)

B1B in the Med Setup

- OGSTM CMEMS
implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
- Waves (CMEMS)
- Bottom currents (CMEMS)

Issues

- free-surface partial inclusion
- IC

B1B in the Med

 Setup- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag

Issues

- free-surface partial inclusion
- IC
- Real case resuspension
- Waves (CMEMS)
- Bottom currents (CMEMS)

B1B in the Med

 Setup- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag

Issues

- free-surface partial inclusion
- IC
- Real case resuspension
- Waves (CMEMS)
- Bottom currents (CMEMS)

Summary

Steps so far :

- OMEXDIA calibration
- BFM-B1B
- Framework for BFM-OMEXDIA

Summary

Steps so far :

- OMEXDIA calibration
- BFM-B1B
- Framework for BFM-OMEXDIA

Steps to go :

- BFM-B1B : Climatological Benthic implications in the Adriatic Sea

Summary

Steps so far :

- OMEXDIA calibration
- BFM-B1B
- Framework for BFM-OMEXDIA

Steps to go :

- BFM-BIB : Climatological Benthic implications in the Adriatic Sea

Further Steps :

- MITgcm - BFM-B1B for Adriatic
- BFM-OMEXDIA testing and comparison

Summary

Steps so far :

- OMEXDIA calibration
- BFM-B1B
- Framework for BFM-OMEXDIA

Further Steps:

- MITgcm - BFM-B1B for Adriatic
- BFM-OMEXDIA testing and comparison

Steps to go :

- BFM-B1B : Climatological Benthic implications in the Adriatic Sea

Side Steps:

- $\mathrm{BlB}-\mathrm{CO}_{2}$
- B1B-Biology

Romsten w itrmer ders Necerns

