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Abstract

In this work, the elastic response of unidirectional fiber (UD) reinforced compos-
ites is studied in a stochastic multiscale way. First, the micro-structure of UD
carbon fiber reinforced composites is statistically studied based on SEM images
of its cross-section and an algorithm to generate numerical micro-structures
with an equivalent random distribution of fibers is developed. In particular,
based on the images spatial analysis, the empirical statistical descriptors are
considered as dependent variables and represented using the copula framework,
allowing generating micro-structure realizations used as Stochastic Volume El-
ements (SVEs). Second, a stochastic scale transition is conducted through the
homogenization of SVEs. With a view to the use of the resulting meso-scale
random field in structural stochastic analyzes, the homogenization is performed
in two steps in order to respect the statistical content from the micro-meter-long
SVEs to the millimeter-long structural finite elements. To this end, the com-
putational homogenization is applied in a hierarchy model: i) Micro-structure
generator produces Small SVEs (SSVEs) which are homogenized; ii) Big SVEs
(BSVEs) are constructed from the SSVEs. Finally, it is shown on simple illus-
trative examples that the scatter of the (homogenized) stress distribution in a
composite ply can be simulated by means of the developed methodology.
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1. Introduction

Accounting for scatter, variability and uncertainty, as major issues which
affect structural and material performance and reliability, has attracted more
and more attention from both the scientific and the industrial communities.
In different engineering fields, non-deterministic methodologies are being devel-
oped to enrich the current modeling and analysis procedures. The sources of
variability or uncertainty arise at different structural levels: at the system level
in terms of loads and boundary conditions, at the component level in terms of
component geometry, but also at the material level in terms of its mechanical
properties. This work focuses on the latter aspect.

Uncertainty is an inherent nature of materials, especially for composite ma-
terials, in which the uncertainty due to the heterogeneities has a significant im-
pact on the material properties and might influence the response of structures
made of that material as well. Stochastic Finite Element Method (SFEM),
as an extension of the deterministic Finite Element Method (FEM), can solve
static and dynamic stochastic problems involving uncertainties resulting from
material properties [1–3]. By using finite elements whose properties are ran-
dom, SFEM can propagate the uncertainties through the mechanical system
and assess the structural stochastic response [4, 5]. However, in order to obtain
a reliable structural analysis by SFEM, a well defined stochastic description of
the material properties is required.

A limited number of mechanical tests cannot reliably sample the material
properties distributions, since this would require an excessive number of tests.
To overcome this issue, the concept of virtual stochastic tests is developed. Al-
though a stochastic model of macro-scale composite material properties can be
built from direct macro-scale measurements [6, 7, e.g.], there is a growing in-
terest to account in an explicit way for the uncertainties related to material
micro-structure. The stochastic description then relies either on mathematics
models or on database, which are characterized by a quantification of the ma-
terial uncertainties. Indeed, the uncertainty due to the material heterogeneities
can be described as the spatial variability of the material properties at the
micro-structure level. According to the material systems and material scales of
interest, different techniques are applied to assess the micro-structure spatial
variability. In the context of composite materials, X-ray microfocus computed
tomography (micro-CT) is often used to characterize the Three-Dimensional
(3D) spatial geometrical variability of fiber tows [8, 9] and defects [10] in the scale
of a few millimeters, and 3D Digital Image Correlation (DIC), as a complemen-
tary technique, can be used to characterize long-range weave defects in textile
composites [11]. For unidirectional (UD) composites, the spatial characteriza-
tion often focuses on the material cross-sections, and their Two-Dimensional
(2D) images can be acquired via the Scanning Electron Microscope (SEM) in
scales ranging from a few to hundreds of micrometers [12, 13]. From the charac-
terized stochastic features, virtual specimen generators are then constructed to
create large numbers of replicas of the micro-structure as proposed in [9, 10, 14]
for textile composites, in [12, 15] for UD composites and in [16] for particle
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reinforced composites. The replicas serve as virtual specimens in simulations
that can reveal the correlation between the micro-structural variations and the
material performance.

Theoretically, the size of generated virtual specimens could reach the size of
macro-specimens [9, 10] or, when performing a structural analysis, the struc-
tures can be generated with the spatial geometrical variability. However, direct
numerical simulations accounting explicitly for the material structure cannot
always be envisioned due to the huge computational cost. Therefore, because of
the different involved length scales [17], there is a need to develop framework to
up-scale the uncertainties by formulating a computationally efficient stochastic
scale transition to bridge the gap between the material scale and the structural
scale. Most of the time, the generated virtual specimens serve as Stochastic
Volume Elements (SVEs) in a stochastic multiscale analysis. The development
of stochastic scale-transition methods is a very recent subject of research, even
for linear systems.
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Figure 1: Definition of the homogenization method performed on the meso-scale volume
element ω.

Among the existing deterministic multiscale methods, homogenization-based
ones were extensively developed, see the reviews [18, 19]. In such an approach,
the macro-scale structure defines a Boundary Value Problem (BVP) which
is solved by considering homogenized material properties extracted, at each
(macro) material point of interest, from the resolution of a meso-scale BVP,
see Fig. 1. This meso-scale BVP is defined on a meso-scale volume which
represents the different phases of the material. The resolution of this meso-
scale BVP links the macro-, or homogenized-, stress tensor and the macro-, or
homogenized-, strain tensor, which correspond to the average values of respec-
tively the local stress tensor and strain tensor on the meso-scale volume element.
In case of statistical representativity of the meso-scale problem, the meso-scale
volume element is called Representative Volume Element (RVE). In case the
meso-scale volume element does not respect the statistical representativity, it is
called Statistical or Stochastic Volume Element (SVE) [5]. The so-called compu-
tational homogenization developed in [20–24] can be applied on SVEs to define
the probability convergence criterion of RVE for masonry [25], for poly-silicon
[26] and for composite materials [27]. When combined to a Monte Carlo (MC)
resolution of SVEs, the computational homogenization is used to study meso-
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scale properties in a statistical way: e.g. to evaluate in a probabilistic way the
parameters of a meso-scale porous constitutive model [28], open foams meso-
scale properties [29], the effective properties of random two-phase composites
[27, 30, 31], the meso-scale properties of poly-silicon in the context of elas-
ticity [32] and thermo-elastic damping [33], or to study the scale-dependency
of homogenization for random composite materials [34, 35]. Poly-silicon thin
structures uncertainties resulting from material and surface roughness can be
considered altogether through second-order homogenization on SVEs in [36].
When the spatial correlation is also captured during the stochastic homogeniza-
tion process, e.g. using a moving-window technique [37], a meso-scale properties
random field is defined, which can in turn be used as input of the macro-scale
SFEM.

Therefore, when considering the material uncertainties from the properties
spatial variability at the micro-scale, the process of stochastic multiscale ana-
lyzes can be summarized as i) The assessment of the spatial variability of the
micro-structure, to acquire its stochastic description; ii) The construction of
SVEs’ generator and the homogenization of the SVEs to obtain the stochastic
material properties at the meso-scale; and iii) The structural analysis with the
stochastic material properties obtained at the meso-scale.

However in order to account for general micro-scale randomness, the reso-
lution of the meso-scale problems during the resolution of the structural-scale
analysis can lead to a prohibitive cost when considering probabilistic studies.
This has motivated the constructions of meso-scale random fields generators.
The meso-scale random field generator can be built based on a mathematical
formulation, but it can also be a database driven generator in which the empiri-
cal Probability Distributions Functions (PDF) of random variables and discrete
correlation functions are used. Meso-scale random field generators can be built
using a Karhunen-Loève expansion as in the context of the meso-scale porous
constitutive model [38] or of open foams [29], using the maximum entropy prin-
ciple [39, 40] as in the context of polycrystalline materials, or using a spectral
representation method [41] combined to a non-Gaussian mapping technique [42–
44] as in the context of poly-silicon elasticity [32], thermo-elastic damping [33],
and plate bending [36], or again in the context of 2-phase composite materials
[31]. The generated meso-scale random fields are then used in an efficient way
as input of the SFEM to up-scale the micro-scale uncertainties to the structural
behaviors.

This work focuses on the stochastic multiscale analysis of UD-fiber rein-
forced composites. Indeed, the spatial arrangement of fibers in a composite
micro-structure is normally not periodic and can have a significant effect on
the failure/damage initiation and evolution under certain loading conditions
[13, 45, 46]. To illustrate this behavior, Fig. 2 studies the effect of the micro-
structure characteristics of hexahedral micro-structured UD composites, i.e. the
loading orientation θ with respect to the fiber lattice and the minimum distance
between fibers dmin, on the response of transversely loaded SVEs. In this
model, the fibers follow a transverse isotropic elastic material model, while the
matrix follows a damage enhanced elasto-plastic model described in [47], which
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Figure 2: Study of the loading orientation and of the net minimum distance between fibers
effects on the homogenized behavior of hexahedral micro-structured UD composites: (a) Def-
inition of the SVE loading conditions; (b) Definition of the loading orientation θ and of the
minimum net distance between fibers dmin; (c) Loading curves for a given dmin = 0.5µm; (d)
loading curves for a given θ = 15◦ (dmin in µm).

allows approximating the failure point of the composite material. The material
properties of the two phases have been identified in [48]. For a given micro-
structure parameter kept constant, dmin = 0.5µm in Fig. 2(c) and θ = 15◦ in
Fig. 2(d), it can be seen that both the elastic part of the response and the maxi-
mum homogenized stress reached upon composite material failure depend on the
other parameter, respectively the orientation θ and the net minimum distance
between fibers dmin. The purpose of this work is to study in a stochastic multi-
scale way the effect of UD-fiber micro-structure uncertainties on the composite
material elastic behavior. In a future work, the effect of the micro-structure un-
certainties on failure will be accounted for, e.g. by defining probabilistic fracture
strength from SVE simulations as in [49, 50].

As the first addressed aspect of the paper, the micro-structure of UD carbon
fiber reinforced composites is statistically studied based on SEM images of its
cross-section. A new algorithm to generate SVEs with an equivalent random
distribution of fibers is then presented. There exist two main kinds of random
fiber generation algorithms: additive and compact. The additive process [12]
uses the statistical spatial descriptors of point patterns, such as neighboring
fiber distances, to position fibers successively in the target area. Although the
distribution of fiber radius is applied in the fiber generating process, it is treated
independently from its neighboring fiber distances, which increases the possibil-
ity of fiber being rejected because of overlapping. The dependency among the
nearest neighbor distances and orientations, such as between the first and second
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nearest neighbor distances, is not considered either. The compact process [15]
stirs and compacts the existing fibers iteratively to obtain a random fiber dis-
tribution with a target fiber volume fraction. The generated distributions were
analyzed using statistical functions and a good agreement was found compared
with the completely spatial randomness of a Poisson distribution. However, for
a real material the fiber volume fractions of SVEs are uncertain values [27] and
the spatial point pattern of fibers does not necessarily follow a Poisson distribu-
tion. In this work, based on the spatial analysis of SEM images, the empirical
statistical descriptors of nearest neighbor distances and orientations are used in
the fiber additive process. Moreover, the observed dependency of the empiri-
cal statistical descriptors is also accounted for. The statistical analysis of the
generated SVEs shows that the achieved fiber volume fraction is defined by the
statistical spatial descriptors of the material micro-structure, which indicates
the rationality of using an additive algorithm to produce SVEs.

The second aspect addressed in this work is on improving the computa-
tional efficiency of the scale transition from SVEs to structures. In [32] direct
MC simulations of micro-electromechanical system realizations are compared to
the stochastic multiscale predictions obtained by combining the random field
generator and the SFEM. This showed that accounting for the spatial correla-
tion through the meso-scale random field ensures the accuracy of the method
if the SVEs have a size comparable to the structural finite elements. How-
ever, this requirement is not always possible for composite materials. Although
for textile composites, the generated SVEs have a size of millimeters and their
homogenized properties can be used directly as meso-scale random fields for
structural analyzes [51], for UD-fiber reinforced composites, the characteristic
size of SVEs is typically in the scale of the micrometer for computational effi-
ciency. Indeed, the direct FEM analysis on the SVEs of UD composites is rather
time consuming in the perspective of non-linear and failure analyzes. Consider-
ing the computational efficiency of a statistical analysis, which requires a huge
amount of simulations on SVEs, the size of SVEs that can be considered is
limited. Therefore, for the stochastic analysis of UD composites and other het-
erogeneous materials which face the same challenge, the researches are usually
limited in analyzing the stochastic responses of SVEs [15, 34, 37]. Although the
homogenized properties of SVEs have been used in up-scaling analyzes, the up-
scale samples were still limited to the micrometers [37]. In a real FEM analysis
of composite structures, the finite element sizes are of the millimeter order. This
requires the SVEs used to define the meso-scale random fields to have a com-
parable size. In order to be able to carry out a statistical analysis on big SVEs
of hundreds of micrometers in a efficient way, a multi-level homogenization pro-
cedure is used in this work. The computational homogenization is applied in a
hierarchy model: i) A micro-structure generator produces Small SVEs (SSVEs)
which are homogenized computationally; and ii) Big SVEs (BSVEs) are con-
structed from the SSVEs and the homogenized properties of SSVEs are used as
material properties of the BSVEs. During this analysis, two aspects are studied
in details to assess the accuracy of the method. On the one hand, the effects of
boundary conditions during the computational homogenization are studied, and
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periodic boundary conditions are shown to minimize the error. On the other
hand, in some applications the homogenized properties are spatially correlated
on distances larger than the SVEs, which requires the use of overlapping SVEs to
define the homogenized random field [32, 37]. However, for UD composites the
numerical analysis shows that more accurate homogenized results of the BSVEs
are provided by using non-overlapping SVEs, which allows considering material
properties as random vectors during the stochastic analysis at the structural
level.

The paper is organized as follows. In Section 2 SEM images of UD cross-
sections are statistically characterized through the spatial point pattern descrip-
tion functions. In particular the dependency between spatial parameters is in-
vestigated. Section 3 describes the generator developed to produce SVEs, which
respect the statistical characteristics experimentally observed. The stochastic
homogenization is performed in Section 4, in which the accuracy of the two-level
homogenization process is investigated. Finally, simple composite ply stochas-
tic analyzes are conducted in Section 5 to illustrate the applicability of the
stochastic multiscale methodology.

2. Statistical analysis of the micro-structure of the UD-fiber rein-
forced epoxy cross section

The spatial and geometric information of UD-fiber reinforced epoxy cross-
section are obtained by SEM. The spatial point pattern description functions of
the cross section’s micro-structures are then extracted from the SEM images.
The statistical analysis of the spatial point pattern is then used to describe the
cross-section of UD composites. Moreover, the radii of the fibers, which also
possess uncertainty, can be taken into account in a marked point process.

2.1. Image acquisition

On the one hand, the resolution of a SEM image is limited by the instrument.
On the other hand, the required resolution is governed by the material system.
For example, in the case of SEM images with an amplification of 500×, one
pixel corresponds to a distance of about 0.22 µm and the shape of the fibers’
cross-section cannot be captured accurately. Therefore, only SEM images with
a high amplification ratio, such as 3000× or 2000×, can be used to extract the
information of fibers’ cross section and their relative distances. This means
that the point process in a large observation window, which contains at least
hundreds of fibers, cannot be obtained accurately from a direct SEM image
process. Therefore, based on the assumption of the stationary or homogeneity
of the point process, the solution for large observation windows is obtained by
the sum of information from several small windows.

2.2. Image processing

In this work, 103 SEM images of amplification ratios 3000× and 2000×
were used. These SEM images of the material system were processed using
MATLABTM image processing toolbox by successively:
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(a) Original

 

(b) Processed

Figure 3: A SEM image of a polished cross section sample with an amplification ratio of
2000×: (a) Original image, the square represent zero-distance fibers; (b) Processed image
with the detected fibers, the dashed squares represent the over/under-estimated fiber circles.

1. Using unsharp masking to sharpen the original SEM images and cropping
off the part of images with operation information;

2. Converting the enhanced images into black and white images and removing
all connected components (objects) that correspond to less than a given
pixels number;

3. Identifying the fibers with a circles detection tool.

Figure 3 gives an example of an original SEM image, Fig. 3(a), and of the
processed image with the detected circles, Fig. 3(b).

2.3. Basic geometric information of fibers’ cross sections

Figure 4: The histograms of fiber radius obtained from SEM images of amplification ratios
3000× and 2000× and from the generated micro-structures.

When we use the circles detection function to extract the geometric infor-
mation of the fibers, because the cross sections of real fibers are not perfectly
round, the radii of the fibers might be over or underestimated, as being shown
in the dashed blue squares in Fig. 3(b). However, using the SEM images ob-
tained with an amplification ratio of 3000× or 2000×, we can get more detailed
information on the shape of a fiber’s cross section. The study of few hundreds
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fibers gives an average fibers’ roundness of 1.045 with a standard deviation of
0.0111. This result proves that the use of circles to represent the fibers’ cross
section is a reasonable assumption. Moreover, only a few fiber radii are over or
underestimated and these over or underestimated ones are easily seen and can
be modified manually. Figure 4 shows the histograms of fiber radius R based
on the analysis of the SEM images and this result will be used in Section 3 to
generate random fiber radii in the Stochastic Volume Elements (SVE).

We need to note that the penetration of neighboring fibers, that could pos-
sibly arise during the circle detection process, cannot be permitted, but that
a zero-distance between them is acceptable, see the red squares in Fig. 3(a).
When a penetration happens between the detected neighboring fibers, a mini-
mum distance, dmin, is set at the boundaries of these fibers, and the two fibers
radii are reduced to satisfy this minimum distance. This random minimum dis-
tance has the highest probability to be zero and its upper limit is defined by
the resolution of the images. Since in the images with an amplification ratio
of 2000×, one pixel corresponds to a distance of about 0.057 µm, we assume
dmin follows a Beta distribution Beta(1.0, 5.0) on [0, 0.1µm], which leads to a
probability higher than 98% to have dmin < 0.057 µm.

2.4. Basic spatial information of fibers

The cross section of UD-fiber reinforced matrix is studied based on the sta-
tistical analysis of spatial point patterns. We first explain the statistical char-
acteristics that are considered and then illustrate them on the studied material
system.

2.4.1. The statistical characteristics of micro-structures for SVEs generator
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Figure 5: The first and second nearest-neighbor net distances and their orientations.

Some of the often used statistic functions are the point density, λ, the
nearest-neighbor distance distribution function D(r), the J-function, J(r), the
Ripleys K-function, K(r), and so on [52]. In this work, the purpose of the spa-
tial analysis is to be able to generate the SVEs, which have the same statistical

1In this work the roundness is evaluated from the perimeter p and the cross-section area

A of the fibers following roundness = p2

4πA
and characterizes how close the cross-section is

from a circle. Practically, the image analysis software Leica QWinTM was used to measure
the perimeter and area parameters (the perimeter of the fibres taken as the total length of
the boundary of fibres) from the SEM measurements.
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characteristics as the micro-structures of the real material. To this end, besides
the distribution of fiber radius pR(r), we consider four other statistic functions
related to the fibers spatial organization:

1. The nearest-neighbor net distance distribution function, which can be
written as pd1st(d), with l = (d1st + R0 + R1), where R0 and R1 are
the two neighboring fibers’ radii, respectively and l the distance between
the fibers’ centers; By using the net distance, the effect of fiber’s radius
on the nearest-neighbor distance can be excluded, which allows us to use
independent variables to represent the fibers radii and their neighbor dis-
tances;

2. The distribution of the orientation of the un-directed line connecting the
center points of a fiber and of its nearest neighbor, pϑ1st

(θ) on (−π, π]; The
distribution of orientation is a relevant issue for anisotropic point patterns,
which might be the case in composite laminates; This orientation together
with the net distance can have a critical effect on the mechanical response
of volume elements;

3. The distribution p∆d(d) of the difference between the net distances to the
second and to the first nearest-neighbors with ∆d = d2nd − d1st; Since
∆d ≥ 0 by definition, using the distribution p∆d(d) ensures that the gen-
erated random variables satisfy d2nd ≥ d1st;

4. The distribution p∆ϑ(θ) on (0, 2π] of the difference ∆ϑ = ϑ2nd−ϑ1st of the
orientations ϑ2nd and ϑ1st of the second and the first nearest-neighbors;
Therefore, the second nearest-neighbor is located referring to the first
nearest-neighbor.

The first and second nearest-neighbor net distances and their orientations are
illustrated in Fig. 5.

2.4.2. The statistical analysis results based on SEM images

The information of the first and second nearest-neighbor net distances and
their orientations are extracted from the SEM images obtained with the am-
plification ratios of 2000× and 3000×. The histograms of their distributions
pd1st(d), pϑ1st

(θ), p∆d(d), and p∆ϑ(θ) are presented in Fig. 6. The correlation
matrix of the four random variables, d1st, ϑ1st, ∆d, and ∆ϑ, reads

Cor =


d1st ϑ1st ∆d ∆ϑ

d1st 1.0 0.014 0.205 0.022
ϑ1st 1.0 0.002 0.020
∆d symmetric 1.0 −0.005
∆ϑ 1.0

 , (1)

where, each entry of Cor is the Pearson’s correlation coefficient, i.e. Cor (X, Y ) =
E[(X−E(X))(Y−E(Y ))]

σXσY
the covariance of two variables divided by the product of

their standard deviations σ·, with E (·) the expectation.
Figure 6 shows that the distributions of the four spatial parameters d1st, ϑ1st,

∆d, and ∆ϑ all exhibit non-Gaussianity. Therefore, the statistical dependence
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(a) Nearest-neighbor net distance (b) Nearest-neighbor orientation

(c) Net distances difference (d) Difference between nearest-neighbor
orientations

Figure 6: The comparison of histograms of the four parameters characterizing the fiber spatial
pattern obtained from the SEM images and the generated micro-structures (initial fibers/seeds
number N = 4 and maximum trying times nmax = 5): (a) Nearest-neighbor net distance
d1st distributions; (b) Nearest-neighbor orientation ϑ1st distribution; (c) Difference between
the net distances to the second and to the first nearest-neighbors ∆d distribution; and (d)
Difference between nearest-neighbor orientations ∆ϑ distribution.

of these random variables can only be measured by their distance correlations
matrix which reads for the four random variables

dCor =


d1st ϑ1st ∆d ∆ϑ

d1st 1.0 0.040 0.273 0.075
ϑ1st 1.0 0.048 0.046
∆d symmetric 1.0 0.064
∆ϑ 1.0

 . (2)

Each entry of dCor (X, Y ) is the distance covariance divided by the product of
their distance standard deviations, whose detailed expressions can be found in
reference [53].

The non-zero distance correlation coefficients of two statistical independent
random variables may come from the limited number of samples. Hence, two
random variables with a distance correlation coefficient smaller than 0.1 are
treated independently. However, accordingly to the distance correlation ma-
trix (2), the dependency between the net distance to the first nearest neighbor,
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d1st, and the difference between the net distances to the second and first near-
est neighbors, ∆d, cannot be neglected; they need to be treated as statistical
dependent random variables.

3. Numerical micro-structures generation

In order to be able to study SVEs of arbitrary number and size in the
next section, numerical micro-structures are generated in this section. In this
work, the micro-structure is characterized by the five random variables R, d1st,
ϑ1st, ∆d and ∆ϑ, which were described in Sections 2.3 and 2.4. The generator
of the numerical micro-structures is thus based on the numerical sampling of
these random variables combined with a fibers additive process. The statistical
characteristics of the generated micro-structures is then compared to the one
evaluated directly from the SEM images.

3.1. Generation of the random variable R, d1st, ∆d, ϑ1st, and ∆ϑ

Pseudo-random samples of an independent random variable X can be gen-
erated easily from its cumulative distribution function FX(x) =

∫ x
−∞ pX(s)ds =

P{X ≤ x}. Using the pseudo-random samples of a random variable U , which
has a uniform distribution on [0, 1], a simple generating process can be expressed
as

X = F−1
X (U) . (3)

The independent random variables R, ϑ1st, and ∆ϑ are thus generated following
the process (3). Because the cumulative distributions of these three random
variables are arbitrary and extracted from SEM measurements, the empirical
cumulative distributions FR(r), Fϑ1st

(θ) and F∆ϑ(θ) are used.
The pseudo-random samples of the two dependent random variables d1st and

∆d can be generated by using their copula [54]. Using the empirical distribu-
tions Fd1st(d) and F∆d(d) of the random variables d1st and ∆d, considering the
probability integral transform of each variable leads to

(U1, U2) = (Fd1st(d), F∆d(d)) , (4)

where the components of the random vector (U1, U2) have a uniform marginal
distribution on [0, 1]. The copula of (d1st,∆d) is defined as the joint cumulative
distribution function of (U1, U2), which reads

C(u1, u2) = P{U1 ≤ u1, U2 ≤ u2} . (5)

Pseudo-random samples of (U1, U2) are generated from the copula distribution
C(u1, u2) and the required samples are then constructed following

(d1st,∆d) = (F−1
d1st

(U1), F−1
∆d (U2)) . (6)

The data-driven methodology described here above avoids the need of as-
suming a distribution type. The implementation of the method follows closely
the copula method described in [54]. The main difficulty from an implementa-
tion point of view is the hash table search algorithm required in Eq. (6), which
is however well documented.
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3.2. Micro-structures generation

Using numerical samples of R, d1st, ∆d, ϑ1st, and ∆ϑ, a fibers additive
procedure is developed to generate numerical micro-structures of UD compos-
ites. The generation process is first described before evaluating the effect of its
parameters on the statistical content of the generated micro-structures.

3.2.1. Generation procedure
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 Generate seed fibers for N fiber clusters, 
 current number of fibers in each cluster is nk = 1  (k = 0, 1,…,N-1), 
 initialize cluster index k = 0 and central fiber ik = 0 in cluster k  

 

Consider center fiber ik in fiber cluster k, set ntry = 0 

If ik = nk : stop generating in cluster k and set N= N-1 

Figure 7: Flowchart of the micro-structure generation process.
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(c) After step 5, (k + 1)th loop iteration
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(d) After step 3, (N + k)th loop iteration

Figure 8: The micro-structure generation process in a square window. (a) After initialization,
N seed fibers are generated with their corresponding first and second nearest-neighbor net
distances d1st and d2nd; (b, c) After Step 5 of the (k)th(b) and (k+1)th (c) loop iterations, for
each current central fiber in gray –here the seed fibers– the first and second nearest-neighbors,
respectively in orange and blue, are generated from their respective orientations ϑ1st and
ϑ1st + ∆ϑ along with their corresponding first and second nearest-neighbor net distances d1st
and d2nd; (d) At step 6, the previous central fibers (in red) are not considered anymore to
generate new fibers and the newly generated fibers become the new current central fibers (in
gray) used to generate the neighboring fibers, here the first one in orange after Step 3 of the
(N + 1)th loop iteration.

The fibers additive process is described by the following steps, see also the
flowchart of Fig. 7.

1. Initialize fibers generation conditions:

• Set the size of the window and the target fiber volume fraction VI
2.

Set the current fiber volume fraction vI to zero and define nmax the

2If the target fiber volume fraction VI is set to 1, the achieved volume fraction will depend
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maximum number of attempts.

• In the target window, generate N initial fibers which are called the
seed fibers. The realizations of random variables for one fiber include
the radius Ri, (i = 0, 2, ..., N − 1) of the fiber, its center (xi, yi),
d1sti and ∆di, which gives d2ndi = d1sti + ∆di. These seed fibers are
illustrated in Fig. 8(a). Since each of these N seed fibers will have
their own first and second neighbors at the end of the generation
process, the distance between any two fibers i and j needs to satisfy

di,j =
√

(xi − xj)2 + (yi − yj)2 ≥ Ri +Rj + max(d2ndi, d2ndj) , (7)

or in other words, their net distance cannot be smaller than the net
distance to the second neighbor of any fiber.

• The generated fibers are divided into N groups according to their
corresponding seed fibers. The number of fibers in each group is
initially nk = 1 and the initial central fiber ik = 0 of group k, from
which the remaining fibers are generated, is the seed fiber.

2. Loop on the N groups of fibers until the volume fraction of fibers reaches
its target value VI or until no more fiber can be added:

Step 1 For the fibers group k, k ∈ [0, N − 1], consider the central fiber ik
which has its center located at (x0, y0), a radius R0, and the net
distance functions d1st0, ∆d0 and d2nd0 (we omit the subscript k for
conciseness), see Fig. 8(b). Set the trying times counter ntry = 0.

Step 2 Generate the first neighbor of the current present central fiber along
with its four random variables, the fiber radius R1, the orientation
ϑ1st referring to the central fiber, and the net distances d1st1 and
d2nd1 for its own two nearest neighbors that will be created later on.
These random variables are generated from their empirical distribu-
tions and copula described in Section 3.1.

Step 3 Check the validity of the temporary fiber of radius R1 centered at
(x1, y1), where x1 = x0 + lcos(ϑ1st), y1 = y0 + lsin(ϑ1st) and l =
R0 +R1 + d1st0.

a. If this fiber is at least partially inside the window, and if with
respect to any other generated fiber j at the exception of its
corresponding central fiber it satisfies

d1,j =
√

(x1 − xj)2 + (y1 − yj)2 ≥ R1 +Rj +max(d2nd1, d2ndj) ,

(8)
then this fiber is accepted and nk = nk + 1.

on the statistical description only. However a lower volume fraction can be enforced in the
generation process through this parameter.

15



∗ If the volume fraction vI < VI, set ntry = 0 and goto the next
step (Step 4).

∗ Else, stop.

b. Else the fiber is rejected and

∗ If ntry < nmax, with nmax the maximum trying times, then
ntry = ntry + 1 and go back to Step 2.

∗ If ntry = nmax, then goto Step 6.

Step 4 Generate the second neighbor of the current central fiber along with
its four random variables, the fiber radius R2, its orientation ∆ϑ, and
the net distances d1st2 and d2nd2 for its own two nearest neighbors
that will be created later on.

Step 5 Check the validity of the temporary fiber of radius R2 centered at
(x2, y2), where x2 = x0 + lcos(ϑ1st + ∆ϑ), y2 = y0 + lsin(ϑ1st + ∆ϑ)
and l = R0 +R2 + d1st + ∆d.

a. If this fiber is at least partially inside the window, and if with
respect to any other generated fiber j at the exception of its
corresponding central fiber it satisfies

d2,j =
√

(x2 − xj)2 + (y2 − yj)2 ≥ R2 +Rj +max(d2nd2, d2ndj) ,

(9)
then this fiber is accepted and nk = nk+1. An illustration of the
fibers generated at the end of this step after the (k)th iteration
of the loop can be seen in Fig. 8(b).

∗ If the volume fraction vI < VI, then goto Step 6.

∗ Else, stop.

b. Else the fiber is rejected and

∗ If ntry < nmax, then ntry = ntry + 1 and go back to Step 4.

∗ If ntry = nmax, goto Step 6.

Step 6 Change the current central fiber of the treated group k with ik = ik+1
and move to the next group of fibers with k = k + 1 (an illustration
of the fibers generated at the end of Step 5 for (k + 1)th iteration of
the loop can be seen in Fig. 8(c)).

a. If k = N then reset the loop on groups with k = 0. Because
the central fiber of a treated group k was changed, the fibers will
be added from a newly added fiber (an illustration of the fibers
generated at the end of Step 3 for the (N + k)th iteration of the
loop can be seen in Fig. 8(d)).

b. If ik = nk, all the fibers of group k were considered as central
fiber so stop adding fibers in group k and decrease the total
number of groups to loop on with N = N − 1.

If N = 0, no more fiber can be added, stop. Else, go back to Step 1.

Regarding to the additive procedure above, we draw the following remarks:
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1. Because of the assessment of the overlap criteria (8) and (9), the loca-
tions of the first and second nearest fibers are guaranteed to follow their
statistical descriptions.

2. In the fibers additive procedure, only the location information of the two
nearest neighboring fibers are used, therefore, the clustering phenomenon
of fibers cannot be captured when considering only one seed. However,
with N > 1 initial/seed fibers, we have the possibility to represent this
fibers clustering effect.

3. By increasing the maximum trying time nmax, we increase the probability
of obtaining higher volume fraction of fibers.

The effects of the two generator parameters N and nmax are studied through
generated micro-structure samples in the following section.

3.2.2. The effects of the initial fibers number N and of the maximum trying
times nmax.

Since the values of N and nmax mainly have effect on the fiber volume
fraction obtained by the presented micro-structure generation procedure, this
characteristic is studied in this section. The reference fiber volume fraction
of VI = 0.502 is an average value obtained from 103 SEM images. Therefore,
the generated average fiber volume fraction is computed from 104 numerical
micro-structure realizations.

 

(a)

 

(b)

 

(c)

Figure 9: Cross section’s micro-structures of UD-fiber reinforced composite: (a) one SEM im-
age with an amplification ratio of 500×; (b) and (c) two numerical micro-structure realizations
(N = 4 and nmax = 5).

Firstly, 26 large windows of 200×200 µm2 were generated. To generate these
large windows (200× 200 µm2), different numbers of initial fibers N = 1, 2, 3,
and 4 are successively considered along with different numbers of maximum
trying times, nmax = 3, 4, 5, 6, and 7. Figure 9 displays two large window
numerical realizations obtained for the pair (N, nmax) = (4, 5) along with an
original SEM cross-section. Secondly, 4 non overlapping small windows were cut
out from each large window. The size of these 104 small windows is 58×37 µm2,
which is of comparable size to that of the SEM images with an amplification
ratio of 3000×. We then study the average fiber volume fractions obtained
from the 104 small windows (58 × 37 µm2) for each pair of (N, nmax). This
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process is repeated three times for each pair (N, nmax) in order to ascertain the
convergence of the statistical parameters.

Figure 10: The average fiber volume fractions of generated micro-structures for different values
of N and nmax.

Figure 10 shows that the three average fiber volume fractions reached for
each pair (N, nmax) almost overlap each other for the higher values of nmax.
Moreover, the reached average volume fraction is governed by nmax, and in-
creases with the increase of nmax. Although locally, such as in a small window,
the fiber volume fraction can be found to be more than 0.6, the average fiber
volume fraction has an upper limit which is about 0.52 in our case. This upper
limit of the average volume fraction is defined by the spatial statistical charac-
teristics of the fibers. As an example, with N = 4 and nmax = 5, if we replace
the generated neighboring fiber distances d1st and ∆d by respectively α × d1st

and α×∆d during the fibers additive process, the average fiber volume fraction
can reach 0.54 with α = 0.5 and 0.59 with α = 0.1, respectively. However, if one
wants to reach a higher fiber volume fraction by increasing the value of nmax,
this will not only require a long generation time, but also to change the spatial
statistical characteristics of the fibers by rejecting the higher values of d1st and
∆d.

The effect of N on the average fiber volume fraction is not obvious when
nmax ≥ 4, since the results for different values of N overlap each other. This
is explained by the fact that the existence of fibers clustering corresponds to a
low fiber volume fraction, while obvious gaps appear between the fibers clusters.
If the phenomenon of fibers clustering is expected, the value of N needs to be
chosen depending on the size of the generated windows.

3.3. The statistical characteristics of the generated micro-structures

Since 103 SEM images were used to perform the spatial statistical analysis,
the same spatial statistical analysis is also performed on the 104 generated
micro-structures for each pair of (N, nmax).

The statistical characteristics of R, d1st, ϑ1st, and ∆d is well recovered by the
generated micro-structures for any values of N and nmax (≤ 7). As an example,
using the results for N = 4 and nmax = 5, the histograms of R, d1st, ϑ1st and
∆d, and of ∆ϑ are plotted in Figs. 4, and 6, respectively, and compared to the
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Figure 11: The histograms of ∆ϑ of the generated micro-structures for N = 3 and different
values of nmax = 3, 4, 5, 6, 7.

histograms built from the SEM images. The only obvious difference can be seen
for ∆ϑ in Fig. 6(d). Indeed, the generated ∆ϑ for the second nearest neighbor
can be rejected during the overlapping check and regenerated for several times
(≤ nmax). Therefore, the resulting distribution of ∆ϑ is affected by the value
of nmax. Figure 11 shows the histograms of ∆ϑ obtained for different values of
nmax = 3, 4, 5, 6, 7 and for N = 3. The probability for ∆ϑ to have a value around
π increases with the increase of nmax. However, we assume that the differences
between the histograms obtained from the SEM images and from the generated
micro-structures are still acceptable for the further mechanical analyzes, since
in the presented micro-structures generation procedure, to reach a reasonable
fiber volume fraction, the constraint from this empirical distribution must be
relaxed.

3.4. Comparison of the second order characteristics Ripleys K-function

The second-order Ripleys K-function, K(r), is regarded as one of the most
important tool for point pattern analysis [52]. Therefore we compare the K-
functions evaluated from a SEM image and a generated micro-structure.

Figure 12: Comparison between the Ripleys K-functions evaluated from the SEM measure-
ment and two numerical cross section realizations.
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Let λ denotes the intensity or point density, which is the mean number of
points per unit area. λK(r) is the average number of the other points found
within the distance r from the typical point. Let n be the number of points in
the observation window, and let ni(r), (i = 1, 2, ..., n), be the number of points
within distance r from the point xi, excluding xi itself. Therefore, an estimator
of λK(r) reads

λK(r) =
1

n

n∑
i=1

ni(r) , (10)

and for the Poisson process, the K-function has a simple form,

K(r) = πr2 . (11)

Considering the SEM image and the two micro-structure realizations illustrated
in Fig. 9, a good agreement of their K-functions can be seen in Fig. 12, in
which the K-function of Poisson point process is also presented as a reference.

In Fig. 9, it can be seen that the main features of the real micro-structure
(Fig. 9(a)) are well represented by the generated micro-structures (Figs. 9(b)
and 9(c)). However, in the generated micro-structures, the fiber distribution
is more regular than in the SEM image. This difference comes from the as-
sumption of stationary or homogeneous point process. The spatial statistical
information, the distributions of the random variables d1st, ϑ1st, ∆d, and ∆ϑ,
was obtained from the analysis of 103 SEM images, in the sense of average. In
fact, the point patterns are inhomogeneous for small observation windows and
become more homogeneous with the increase of the windows size. This trend
can be seen in Fig. 12, in which with the increase of r, the function K(r) of
the micro-structures become closer to that of the Poisson point process. The
inhomogeneous point process can also be generated under the presented gen-
erating procedure. However, more detailed spatial statistical descriptions are
required, such as random field descriptions for d1st, ϑ1st, ∆d and ∆ϑ instead
of considering them as random variables. A simple example of inhomogeneous
point process is given in Appendix A.

In addition, the real micro-structure of UD fiber reinforced composites’ cross-
section does not follow a stationary spatial point pattern when the observation
scale increases [55]. There always exists resin rich area, especially at the interface
of two laminates. In order to have a complete statistical spatial description of the
real micro-structures, not only the distributions of the fibers are required, but
also the information related to micro-defects and resin rich areas. This means
that a large amount of digital images at different length scales are needed.

4. Stochastic study of composite materials from the generated SVEs

In this section, the elastic properties of UD fiber reinforced composites are
studied in a probabilistic way. First, the computational homogenization the-
ory is summarized. Stochastic homogenization is then applied on generated
SVEs of reduced dimensions. In particular, the effects of the SVEs size and
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of the boundary conditions applied during the homogenization process on the
homogenized elastic behavior are studied. One advantage of the micro-structure
generator is the ability to generate an arbitrary number of SVEs of arbitrary
sizes having a non-constant volume fraction of fibers. Finally, with a view to the
use of macro-scale stochastic finite elements, different stochastic interpolations
methods are studied in order to represent the probabilistic behavior of large
SVEs of dimensions corresponding to the size of macro-scale finite elements.

4.1. Evaluation of the apparent elastic properties of the meso-scale homogenized
material
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Figure 13: Examples of meso-scale volume elements ω: (a) geometry of a 10×10×1µm3 SVE
realization; (b) finite element discretization of the 10 × 10 × 1µm3 SVE; (c) geometry of a
25 × 25 × 1µm3 SVE realization; and (d) finite element discretization of the 25 × 25 × 1µm3

SVE.

The apparent –or homogenized– meso-scale material tensor is estimated from
the finite element resolution of the meso-scale boundary value problem (BVP)
[23, 56]. In the following, we summarize the scale transition equations in the
context of linear elasticity. In particular, we define the different kinds of bound-
ary conditions that can be applied on the meso-scale volume element with a
particular emphasis on the extraction of the homogenized material operators
following the multiple-constraint projection method [57] detailed in [58].
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4.1.1. The micro-scale problem

The micro-scale problem is defined on the meso-scale volume element, here
an SVE, ω of boundary ∂ω, see Fig. 1. The SVE is built as a 3D model
extruded as a parallelepiped from the cross-section generated in Section 3. The
z-direction refers to the longitudinal direction “L” of the fibers, and the x- and
y-directions refer to the transverse directions “T” and “T’ ” of the fibers with
y along the thickness direction of the laminate, see Fig. 13.

If the SVE is small enough for the time of the strain wave to propagate in the
SVE to remain negligible, the equivalence of the micro-strain to the macro-strain
is instantaneous and the equilibrium equations read{

∇m · σm = 0 ∀x ∈ ω ,
nm · σm = tm ∀x ∈ ∂ω ,

(12)

where the subscript ’m’ refers to the local value at the micro-scale, σm is the
Cauchy stress tensor, and tm is the surface traction on the boundary of outward
unit normal nm.

The micro-scale problem is completed by the local constitutive laws of the
different materials. In this work we assume (possibly anisotropic) linear elastic-
ity leading to

σm = Cm (x) : εm , (13)

where Cm (x) is a fourth-order material tensor, which depends on the micro-scale
material point location x, and εm = 1

2 (∇m ⊗ um + um ⊗∇m) is the small-
deformation strain tensor evaluated in terms of the micro-scale displacement
um.

4.1.2. The scale transition

Homogenized values are defined as the volume average of a micro-scale field
on the meso-scale volume-element ω by

·M =< ·m >=
1

V (ω)

∫
ω

·mdV , (14)

where the subscript ’M’ refers to the homogenized value, 〈·〉 is the volume aver-
age of the field ·, and V (ω) is the volume of the meso-scale volume element ω.
In particular, in the context of linear elasticity, the homogenized stress tensor
σM and strain tensor εM respectively read{

σM =< σm >=< Cm : εm >= CM : εM ,

εM =
(∇M⊗uM+uM⊗∇M

2

)
=< εm > ,

(15)

where CM is the apparent fourth-order material tensor and uM is the macro-
scale displacement field.

In general CM, the apparent fourth-order material tensor, is not the volume
average of Cm. Instead, it should be defined in order to ensure the energy con-
sistency at the different scales, which corresponds to the Hill-Mandel condition

σM : δεM = δεM : CM : εM =< δεm : Cm : εm > . (16)
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The scale transition problem is completed by the definition of the boundary
conditions applied on the meso-scale volume element ω. To this end, the micro-
scale displacement field is written under the form

um(x) = (uM ⊗∇M) · (x− xref) + u′(x) , (17)

where u′ is the perturbation field and xref a reference point of ω. In order to
satisfy Eq. (15) this perturbation field should satisfy

0 =< u′(x)⊗∇m >=
1

V (ω)

∫
∂ω

u′ ⊗ nmdS . (18)

Moreover, the Hill-Mandel condition can be rewritten by substituting Eq. (17)
in Eq. (16), integrating by parts, and using the equilibrium Eqs. (12), which
lead to

σM : δεM =< σm : δεm >= σM : δεM +
1

V (ω)

∫
∂ω

(σm · n) · δu′dS , (19)

or again to

0 =

∫
∂ω

tm · δu′dS . (20)

4.1.3. Definition of the constrained micro-scale finite element problem

The weak form associated to the micro-scale equations (12) reads∫
ω

σm : (δu′ ⊗∇m) dV = 0 , ∀δu′ ∈ U , (21)

where U is the admissible kinematic field defined as a subset of the kinematic
field satisfying (18). In that case the Hill-Mandel condition (20) is always ver-
ified [58–60]. Therefore, the admissible kinematic field U is defined by specific
boundary conditions whose constraint is to satisfy (18). In this work we consider
the following kinds

1. The Periodic Boundary Conditions (PBCs) read{
um(x+)− um(x−) = (uM ⊗∇M) · (x+ − x−) ,

∀x+ ∈ ∂ω+ and corresponding x− ∈ ∂ω− ,
(22)

where the parallelepiped SVE faces have been separated in opposite sur-
faces ∂ω− and ∂ω+. Equation (22) satisfies (18).

2. The Static Uniform Boundary Conditions (SUBCs) are formally written

tm = nm · σM ∀x ∈ ∂ω , (23)

and allow rewriting the Hill-Mandel condition (20) as

0 =

∫
∂ω

tm · u′mdS = σM :

∫
∂ω

nm ⊗ u′dS . (24)
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This condition is satisfied by considering the Zero Average Fluctuation
Boundary Conditions (ZAFBCs) on each face S of the meso-scale volume
element ∫

S

u′dS = 0 , (25)

which also satisfy Eq. (18) for meso-scale volume elements having flat
faces. In this work we consider the constraint (25) and use the SUBC
denomination by abuse of language.

3. The Kinematic Uniform Boundary Conditions (KUBCs) for which there
is no fluctuation on the boundary, i.e.

u′ = 0 ∀x ∈ ∂ω , (26)

which directly satisfy (18). However, when considering a 3D meso-scale
volume element of UD composite material, in which the fibers are oriented
along the z-direction, applying KUBCs on the two opposite faces S+

L and
S−L perpendicular to the fibers results in an overstiff Voigt assumption.
Therefore we apply the following conditions

u′ = 0 ∀x ∈ S+
T , S

−
T , S

+
T’, S

−
T’ ,

u′z = 0 ∀x ∈ S+
L , S

−
L ,∫

S+
L
u′xdS =

∫
S−
L
u′xdS =

∫
S+
L
u′ydS =

∫
S−
L
u′ydS = 0 .

(27)

4.1.4. Resolution of the constrained micro-scale finite element problem

The numerical resolution of the meso-scale BVP relies on the discretization
of the meso-scale volume element ω in finite elements ωe, see Figs. 13(b) and
13(d). The finite element discretizations of (21) and of the constraints (22), (25)
or (27) respectively lead to the set of coupled equations{

Kmum −CTλ = 0 , and

Cum − SEM = 0 ,
(28)

where Km is the stiffness matrix of the unconstrained meso-scale BVP, um is
the vector of the nodal displacement, λ is the vector of the Lagrange multipliers,
which enforce the constraints, EM represents the macro-scale kinematic variable
εM written under a vector form, and where C and S are the so-called constraints
matrix and kinematic matrix, respectively, built from the constraints (22), (25)
or (27). In particular, in order to apply the PBCs on non-periodic micro-
structures, and thus on a non-periodic mesh, we have recourse to a polynomial
interpolation of the unknowns fields on the boundary, as detailed in [61]. The
stiffness matrix of the meso-scale finite element discretization (28) reads

Km =
∧
ωe

∫
ωe

(Be)
T CmBedV , (29)
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where Cm is the matrix notation of the fourth-order tensor Cm, Be is the el-
ementary matrix of the shape functions gradient, and where

∧
ωe is used to

symbolize the assembly process.
Following the Lagrange multiplier elimination approach summarized in Ap-

pendix B, the apparent elasticity tensor in the matrix form CM is obtained
as

CM = DK̃−1
m

(
CT −QTKmCT

(
CCT

)−1
)

S . (30)

In this equation Q = I − CT
(
CCT

)−1
C, K̃m = CTC + QTKmQ, and D =(

1
V (ω)

∧
ωe

∫
ωe CmBedV

)
, see details in [58].

The homogenized material property can be treated as orthotropic, and the
nine material parameters Ex, Ey, Ez –the three Young’s moduli, νxy, νxz, νyz –
the three Poisson coefficients, and µxy, µxz, µyz –the three shear moduli– can be
extracted from CM of each SVE, where the z direction refers to the longitudinal
direction “L” of fibers, and where x and y directions refer to the transverse
directions “T” and “T’ ” of fibers with y along the thickness direction of the
laminate.

4.2. Apparent elastic properties of Small SVEs (SSVEs)
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Figure 14: Extraction of SSVEs from a large micro-structure window; the two SSVE centers
are separated by a vector τ .

In order to study the effect of the SVE size and of the boundary conditions,
in this section we consider parallelepiped SVEs of two different lengths: lSSVE =
10µm and lSSVE = 25µm, see examples of realizations in Fig. 13. The SVEs of
reduced length are denoted as Small SVEs (SSVEs). All the SSVEs are cut from
a larger micro-structure Big SVEs (BSVE) with an overlap with their neighbors
by half of their length, see Figure 14, in order to capture the correlation effect.

The applied elastic properties of matrix and fibers have been identified in
[48] for a similar material system and are:
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• Matrix: Elastic Young’s modulus Eel
0 = 3.2 GPa; Poisson ratio ν0 = 0.3.

• Inclusions (fibers): Longitudinal Young’s modulus Eel
L I = 230 GPa; trans-

verse Young’s modulus Eel
T I = 40 GPa; transverse Poisson ratio νTTI =

0.2; longitudinal-transverse Poisson ratio νLTI = 0.256; transverse shear
modulus GTTI = 16.7 GPa; longitudinal-transverse shear modulus GLTI =
24 GPa.

4.2.1. Statistic and stochastic characteristics

On the one hand, one hundred BSVEs of size 50× 50× 1µm3 are generated
and from each of them 81 overlapping SSVEs of length lSSVE = 10µm are
extracted, which leads to totally 8100 SSVEs. On the other hand, one hundred
BSVEs of size 100 × 100 × 1µm3 are generated and from each of them 49
overlapping SSVEs of length lSSVE = 25µm are extracted, which leads to totally
4900 SSVEs. In the following, since the depth of the SSVEs is always 1µm, the
information is no longer repeated and the apparent elastic properties of the
SSVEs are evaluated with the computational homogenization scheme described
in Section 4.1.

In this section we study the correlation information between neighboring
SSVEs and we thus apply only PBCs on the SSVEs. The spatial cross-correlation
RRRrs (τ ) between two properties r and s of two SSVEs, whose centers are sepa-
rated by a vector τ , is extracted using the window technique illustrated in Fig.
14 assuming the random fields of the apparent elasticity tensor field CM (x) and
of the volume fraction Vf are stationary, with

Rrs(τ ) =
E [(r(x)− E [r]) (s(x+ τ )− E [s])]

σrσs
. (31)

The associated correlation length of the stationary random field is defined by
[62]

lrs =

∫∞
−∞Rrs(τ)dτ

Rrs(0)
. (32)

Note that in Eq. (31) we have assumed that the apparent properties are
stationary since the generated micro-structures are such. We have however
applied periodic boundary conditions on a non-periodic structure. Nevertheless,
since we evaluate Eq. (31) considering several (one hundred) initial BSVEs from
which the windows are extracted, we recover a stationary apparent property
random field as well. More studies and discussions on the effect of different
boundary conditions will be presented in the next section.

The histograms of the three in-plane apparent elastic properties of the SSVEs,
Ex, vxy, µxy and of the fiber volume fraction Vf are presented in Figs. 15 and
16, respectively. The fitted normal distributions of the histograms are reported,
with the corresponding mean and variance and with the Kolmogorov-Smirnov
goodness-of-fit of the normal distribution. From Figs. 15 and 16 we can see
that, with the increase of the SSVE size, not only the variances of the elastic
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Figure 15: The histograms of the extracted SSVEs’ apparent elastic properties: the left column
(a), (c) and (e) refer to lSSVE = 10µm and the right column (b), (d) and (f) to lSSVE = 25µm;
fitted normal distributions are plotted for indication purpose with the mean value E, standard
deviation σ, and with the resulting Kolmogorov-Smirnov goodness-of-fit K-S.

properties and of the volume fraction distributions decrease, but also their dis-
tributions are getting closer to normal distributions as shown by the evolution
of the goodness-of-fit. It bears emphasis that in this study we do not assume a
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Figure 16: The histograms of the extracted SSVEs’ fiber volume fraction: (a) refers to lSSVE =
10µm and (b) to lSSVE = 25µm; fitted normal distributions are plotted for indication purpose
with the mean value E, standard deviation σ, and with the resulting Kolmogorov-Smirnov
goodness-of-fit K-S.

normal distribution and we do not use the mean and variance values of the fitted
normal distributions, which are provided here for the sole indication purpose.
Instead the meso-scale random fields are obtained from the data resulting from
the stochastic homogenization as it will be discussed in Section 4.4.

Some spatial auto/cross-correlations (31) of the SSVEs’ apparent elastic
properties and volume fractions are presented in Fig. 17. For both SSVE
lengths lSSVE = 10µm and lSSVE = 25µm, these auto-correlations show that
the apparent elastic properties and fiber volume fraction are only correlated
when the two SSVEs are overlapping, i.e. when the distance ‖τ‖ is lower than
lSSVE. Figs. 17(a) and 17(b) indicate that for two SSVEs side by side, al-
though they may share some common fibers, their apparent elastic properties
and fiber volume fractions are not correlated. When considering the distance
‖τ‖ = 0, strong correlations between the elastic properties can be seen through
their cross-correlations, Figs. 17(c) and 17(d). In particular, as expected, strong
correlations exist between the elastic properties and the fiber volume fraction
as between Ez and Vf .

An important feature from this analysis, with a view to the resolution of
macro-scale stochastic finite elements, is that the auto- and cross-correlations
reach zero for adjacent SSVEs. In particular, for lSSVE = 25µm, since the ap-
parent elastic properties and fiber volume fraction follow nearly normal distri-
butions, spatially uncorrelated properties means independent random variables.
As a result the apparent elastic properties at the macro-scale can be treated as
random variables instead of random fields.

4.2.2. Effect of boundary conditions

In the context of the computational homogenization method described in
Section 4.1, the meso-scale finite element problem is solved by applying kine-
matically admissible boundary conditions. In this section, we study the effect of
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Figure 17: The auto/cross-correlations of SSVEs’ apparent elastic properties and fiber volume
fraction: the left column refers to lSSVE = 10µm and the right column to lSSVE = 25µm.

the boundary conditions on the apparent SSVEs’ elastic properties by consid-
ering successively KUBCs, SUBCs and PBCs. In particular, we are interested
in the properties in the x − y plane and we focus the analysis on the apparent
values of Ex.

The histograms of the apparent Ex are displayed in Fig. 18 for the different
boundary conditions, i.e. for KUBCs, SUBCs and PBCs. It appears that
the distribution of Ex obtained under different boundary conditions are quite
different. Theoretically, for the same SVE, the apparent elastic property follows
the property

ESUBC
x ≤ EPBC

x ≤ EKUBC
x , (33)

which is recovered on average in the histograms of Ex. With the increase of
the SSVE size, from Fig. 18(a) to Fig. 18(b), we can see that the scatter in
the apparent Ex decreases, on the one hand for different SSVEs with the same
applied boundary condition kind, and on the other hand when applying different
boundary conditions on the same SSVE. Furthermore, for lSSVE = 10µm, Fig.
18(a) shows that

min{ESUBC
x } = min{EPBC

x } = min{EKUBC
x } = Eel

0 , (34)
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Figure 18: The histograms of SSVEs’ apparent Ex for different boundary conditions: (a)
refers to lSSVE = 10µm and (b) to lSSVE = 25µm.

which indicate a homogeneous SSVE. It turns out that the fiber volume fraction
Vf could be 0 for small SVEs. The effect of the boundary conditions reveals
the uncertainty resulting from the in-homogeneously distribution of the fibers
in the SVEs. The other source of uncertainty is the fiber volume fraction in the
SVEs.

When considering the response of a small material window, in a real struc-
tural analysis, the apparent properties of the SSVE will barely be equal to those
obtained from the computational homogenization under any of the three bound-
ary condition kinds. In fact, the material window response is not unique and
depends on the properties of the surrounding material:

• If the surrounding material is stiffer than in the SSVE, e.g. because the
SSVE has a lower fiber volume fraction, strong constraints are applied
on this SSVE and its response will be close to the results obtained under
KUBCs.

• If the surrounding material is more compliant than in the SSVE, e.g.
because the SSVE has a higher fiber volume fraction, weak constraints
are applied on this SSVE and its response will be close to the results
obtained under SUBCs.

• Finally, if the stiffness of the surrounding material is comparable to that
of the SSVE, it response will be close to the results obtained under PBCs.

Therefore, for the SVEs with compliant apparent properties that can be seen
at the left side of the histogram in Fig. 18, their in situ apparent properties
are more likely to approach the properties obtained under KUBCs, and vice
versa. Furthermore, because of the non uniqueness of the SSVEs’ apparent
properties, any given values are just approximated responses of the SSVE in
a real structure. However, practically, the apparent elastic properties of the
SSVEs obtained under PBCs provide a reasonable approximation of the elastic
properties distributions as it can be seen in Fig. 18.
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4.3. Apparent elastic properties of Big SVEs (BSVEs)
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𝑦 SSVE 

𝐿BSVE 
𝑙SSVE 

Figure 19: Illustration of the two-step computational homogenization: the mesh of a BSVE of
length LBSVE = 100µm and the window corresponding to a SSVE of length lSSVE = 25µm.
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Figure 20: Illustration of the two-step computational homogenization considering non-
overlapping SSVEs.

In a real finite element analysis of composite structures, the computationally
acceptable element size is around the millimeter. If we want to use the material
properties extracted from the computational homogenization in this structural
analysis, the SVEs, on which the homogenization is performed, should have a
comparable size with the macro-scale element size of the structural analysis in
order to capture the probabilistic characteristics.

Although performing a homogenization in linear elasticity on a single realiza-
tion is achievable, in the context of stochastic homogenization and anticipating
on the further developments, which include non-linear responses, the required
computational time would become too important for practical applications. We
thus study the possibility, in the context of linear elasticity in this work, to
consider the stochastic response of the SSVEs to deduce the stochastic behavior
of a larger one.
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Figure 21: Illustration of the two-step computational homogenization considering overlapping
SSVEs: (a) material property interpolation grid based on the homogenization of overlapping
SSVEs, (b) bi-linear interpolation, and (c) nearest-neighbor interpolation.

4.3.1. Two-step computational homogenization process for Big SVEs

In order to reduce the computational time of the homogenization process
of BSVEs, we apply a two-step homogenization as illustrated in Fig. 19. At
the first level (level I), the BSVE is divided into a number of SSVEs, on which
the computational homogenization is carried out in order to extract their ho-
mogenized elastic properties following the method described in Section 4.2. At
the second level (level II), the homogenization is performed on a BSVE, whose
finite element discretization, see Fig. 19, is finer than the size of the SSVEs
as justified in the next Section 5, and whose material properties at different
integration points correspond to the homogenized properties of the SSVEs.

In order to evaluate the material properties at the different integration points
of the BSVEs, two approaches are developed:

1. By considering non-overlapping SSVEs (Fig. 20):
In this case denoted by “N-Intpl”, during the homogenization at level II,
the BSVE is divided into a number of small cells corresponding to non-
overlapping SSVEs, and each cell has a uniform material property, which
is obtained from its corresponding SSVE.

2. By considering overlapping SSVEs (Fig.21(a)):
A 2D grid is built from the center points of the overlapping SSVEs, and
to each of these points is associated the homogenized properties of their
corresponding SSVE. At the homogenization of level II in the BSVE, the
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material properties of the integration points are obtained by interpolation
from the 2D grid. In this section we consider two interpolation methods:
bi-linear denoted by “IntplB” (Fig. 21(b)) and nearest-neighbor denoted
by “IntplN” (Fig. 21(c)) interpolations.

4.3.2. Verification of the two-step computational homogenization

To verify the accuracy of the two-step computational homogenization, a
BSVE is first generated and a direct one-step computational homogenization is
applied on it in order to extract its apparent elastic properties, which will serve
as the reference result. Then the two-step homogenization is performed on
this BSVE by (i) dividing the BSVE into SSVEs whose apparent properties are
computed by the level I computational homogenization, and (ii) using the SSVEs
apparent properties to perform the level II computational homogenization on the
BSVEs. Several sizes of BSVEs of length LBSVE, and of SSVEs of length lSSVE,
are successively considered and both cases of overlapping and non-overlapping
SVEs are studied.

In order to assess the accuracy of the method, the elastic apparent properties,
Ex, Ey, Ez, νxy, νxz, νyz, µxy, µxz and µyz, of the BSVEs obtained from direct
and two-step computational homogenization resolutions are compared, and the
relative error is defined as

err· = (·TS − ·dir)/·dir , (35)

where · is one of the nine material parameters (Ex, Ey, Ez, νxy, νxz, νyz, µxy,
µxz, and µyz), ·dir is obtained from direct homogenization of the BSVE and ·TS

from the two-step process.
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Figure 22: Relative errors of BSVEs’ apparent Ex and Ez for the different 2-step homoge-
nization methods.

Errors related to the interpolation methods. The three methods described in
Section 4.3.1, i.e. “N-Intpl” using non-overlapping SSVEs, “IntplB” using over-
lapping SSVEs with bi-linear interpolation, and “IntplN” using overlapping
SSVEs with nearest neighbor interpolation, are successively applied with SSVEs
of length lSSVE = 25µm and on BSVEs of length LBSVE = 100µm. 20 BSVE
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realizations are considered. In this section, Periodical Boundary Conditions
(PBCs) are adopted during the computational homogenization processes.

The relative errors on the BSVE apparent Ex and Ez, which are defined in
Eq. (35), are reported in Fig. 22, where it can be seen that, all over all, the “N-
Intpl” method gives more accurate results for Ex and Ez than when considering
overlapping SSVEs. In the latter case, the two interpolation methods “IntplB”
and “IntplN” lead to comparable errors for both Ex and Ez. Therefore in what
follows we only consider the interpolation “IntplB” type when using overlapping
SSVEs.
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Figure 23: Relative errors of BSVEs’ apparent Ex and Ez for the different ratios of BSVEs
and SSVEs lengths LBSVE/lSSVE: the left column refers to lSSVE/LBSVE = 2 and the right
column to lSSVE/LBSVE = 4.

More comparisons between “N-Intpl” and “IntplB” methods are carried out
by considering different ratios between the SSVEs and BSVEs lengths. The
studied SSVEs lengths are successively lSSVE = 10, 12.5, 15, 20 and 25µm, and
the corresponding LBSVE are set to be successively 2.0× and 4.0× lSSVE. For
each pair (lSSVE, LBSVE) 20 realizations of BSVEs are considered.

The relative errors on the BSVE apparent properties, which are defined in
Eq. (35), are reported in Figs. 23(a) and 23(b) for the apparent Ex, and in Figs.
23(c) and 23(d) for the apparent Ez. As for the previous study, the “N-Intpl”
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method always leads to an accurate apparent Ez of BSVE. With the increase of
lSSVE, the errors on the apparent Ex of the BSVEs obtained by the “N-Intpl”
and “IntplB” methods become comparable. Therefore, for the further analyses
we consider only the “N-Intpl” method.

Errors related to the BSVEs length LBSVE and to the SSVEs length lSSVE.
Using the “N-Intpl” method, we deepen the study related to the effect of the
BSVEs and SSVEs lengths on the homogenization error. We consider the two
SSVEs lengths lSSVE = 10 and 25µm. For the SSVEs length of lSSVE = 10µm
(lSSVE = 25µm), the BSVEs length LBSVE is successively set to be 2×, 3×,
4×, and 5× (respectively 2×, 3×, and 4×) the SSVEs length lSSVE. As in
the previous analysis, for each pair of (lSSVE, LBSVE) 20 BSVE realizations are
considered.

(a) lSSVE = 10µm (b) lSSVE = 25µm

Figure 24: Relative errors of BSVEs’ apparent Ex for different BSVEs lengths LBSVE: (a)
lSSVE = 10µm and (b) lSSVE = 25µm.

Since the relative error on Ex has been shown to be the higher in the previous
analysis, only this apparent elastic properties is studied. Figure 24 shows that
the errors on Ex obtained through the two-step homogenization process decrease
with the increase of LBSVE. When comparing Figs. 24(a) and 24(b) for LBSVE =
50µm, it can be seen that the increase of lSSVE also leads to a decrease of the
errors. Moreover, the combined effects of LBSVE and lSSVE on the accuracy of
the two-step process can also be studied from Fig. 23 and explained as follows:

• With the increase of lSSVE, the scatter in the SSVEs’ apparent elastic
properties decreases, leading to a reduced properties contrast between
the neighboring SSVEs. As a result, the applied PBCs on SSVEs become
closer to the real constraints on the volume elements in the larger window.

• When a BSVE includes more SSVEs, the errors, resulting from the use of
approximated properties at the integration point of the BSVEs, become
less prominent in the result of BSVE.
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Errors related to the boundary conditions. When increasing the size of the
BSVEs, the scatter in their elastic properties decreases. An adequate stochas-
tic homogenization process should ensure that the scatter in the BSVEs’ elastic
properties is not covered by the error introduced by the homogenization process.
In the presented two-step homogenization process, up to now the PBCs were
used to approximate the real boundary conditions on the SSVEs as discussed
in Section 4.2.2.

In order to verify the accuracy of applying PBC on the SSVEs, direct com-
putational homogenization resolutions are carried out on 20 BSVEs of size
100×100µm2 successively using KUBCs and PBCs in order to provide reference
results. The two-step homogenization process is then considered for the same
20 BSVE realizations. In the two-step process, KUBCs, PBCs, and SUBCs are
successively applied on the SSVEs of size of 25× 25µm2. The non-overlapping
“N-Intpl” method is used during the level II homogenization to compute the
apparent properties of the BSVEs.
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Figure 25: Apparent Ex of different BSVE realizations obtained through the two-step pro-
cess for different boundary conditions applied on the SSVEs when considering (a) PBCs and
(b) KUBCs on the BSVEs: “Direct-PBC” and “Direct-KUBC” refer to the results obtained
through direct computational homogenization on BSVEs; “SSVE-X” refer to the boundary
condition type “X” applied on the SSVEs during the two-step process.

The comparison between the BSVEs’ apparent Ex obtained through the
direct homogenization and through the two-step homogenization processes is
presented in Fig. 25. Using PBCs or KUBCs on the BSVEs for the two-
step process does not significantly change the BSVEs’ apparent properties: the
apparent Ex obtained using KUBCs on the BSVEs (Fig. 25(b)) are just slightly
higher –within 0.3%– than those obtained using PBCs on the BSVEs (Fig.
25(a)). However, the effect of the boundary condition types applied on the
SSVEs is obvious. On the one hand, when applying KUBCs (SUBCs) on the
SSVEs, the two-step process leads to unacceptable stiff (respectively compliant)
apparent properties of the BSVEs. On the other hand, when applying PBCs
on the SSVEs, the two-step homogenization process leads to results in between
the apparent elastic properties obtained by the direct homogenization of the
BSVEs with KUBCs and PBCs. This means that PBC applied on the SSVEs
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are representative to the real constraints on this material windows within the
BSVEs.

4.3.3. Conclusion on the two-step homogenization process

According to the error studies conducted in Section 4.3.2, it can be concluded
that for sufficiently high sizes of SSVEs (lSSVE ≥ 25.0µm in this work), when
applying PBCs during the SSVEs homogenization, the error induces by the two-
step homogenization process is within the error introduced by the boundary
conditions.

Moreover, as shown in Fig. 25, the difference in the apparent elastic proper-
ties between the two-step process and the direct homogenization is of the same
order for the different BSVE realizations, and is lower than the scatter between
the apparent properties of the different BSVEs. The two-step method can thus
be applied during a stochastic homogenization process to define the apparent
properties of BSVEs.

4.4. Generation of apparent meso-scale properties

The study of Section 4.3.2 shows that a better accuracy is obtained by using
the properties of non-overlapping SSVEs during the two-step homogenization
process. Moreover, it has been shown in Section 4.2 that the elastic properties of
two adjacent SSVEs are uncorrelated random vectors. Finally, when the SSVEs
size increases, it has also been shown that their elastic properties get closer
to a normal distribution. Hence, we can assume that the elastic properties
of two SSVEs without overlap are independent random vectors. This means
that a random vector field can be created by generating a series of independent
random vectors, which represent the random apparent properties of the SSVEs.
The obtained random vector field exhibits a unit-correlation for two points lying
in the same SSVE and a zero-correlation for two points lying in different SSVEs.
These random vectors can thus be used as material properties in a stochastic
finite element analysis.

Using apparent properties obtained from a given amount of SSVE realiza-
tions, a random vector generator can thus be constructed using the method of
copula [54] presented in Section 3.1 and the data-driven sampling method [63].
If a random vector field was required, the spectral representation method, which
has been used in [48] to generate Gaussian random vector fields and in [33] to
generate non-Gaussian random vector fields, can also be used. In this work,
the apparent elastic properties, are random vectors generated using the copula
method [54] with as input the nine elastic properties obtained by the stochastic
homogenization performed on the SSVEs. Since we are dealing with 9 compo-
nents, the copula method requires a high number of samples to be accurate. A
principal component analysis is thus combined to an order reduction to reach 5
variables and 10000 samples are thus enough for the copula method to converge.

In order to evaluate the computational efficiency of the stochastic homog-
enization method, stochastic apparent properties of a BSVE are successively
obtained through three different processes:
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• In the first process, direct computational homogenizations, i.e. discretiz-
ing explicitly the volume element up to the micro-structure level, are car-
ried out on BSVEs.

• In the second process, the two-step homogenization, discussed in Section
4.3.1, is applied by applying computational homogenization on succes-
sively the SSVEs (at level I) and the BSVEs (at level II).

• In the third process, the two-step homogenization is performed in a dif-
ferent ways. From a set of SSVE realizations, a random vector generator
is constructed using the copula method. The level II homogenization is
thus performed using random apparent material properties, associated to
the SSVEs, obtained by the generator, which avoids to conduct the step I
homogenization.

Table 1: Computational efficiency of the stochastic homogenization methods: the reported
CPU time corresponds to the time requires to obtain the homogenized properties of one BSVE
realization.

Homogenization method SSVE/BSVE CPU times [s]
of BSVE mesh sizes [µm]
One-step -/1.5 ≈ 1250
Two-step homogenization 1.5/5 25× 3.6 + 4 = 93
Random vector generator & -/5 4
computational homogenization

A volume element of 125× 125µm2 is used here to test the efficiency of the
three proposed processes. When considering the second and third processes, this
volume element corresponds to the BSVE, and is partitioned into 25 SSVEs of
size 25× 25µm2. The CPU times required to extract the apparent properties of
a 125×125µm2 BSVE are presented in Table 1 for the three different processes.
In Table 1, it can been seen that performing the two-step homogenization is
computationally efficient in particular when using a random vector generator.
In fact, the random vector generators rely on the fact that only a reduced set
of SVE realizations is needed to generate as many samples as required. Of
course obtaining these realizations and building the generator requires a CPU
time, but this corresponds to a one-time off-line computation whose time was
not reported in Table 1. Random vector generators are commonly used in the
stochastic finite element analyzes, and data-driven random variables generator
becomes popular along with the huge improvement of the ability of computers.

Finally the apparent properties of a set of BSVE realizations can also be
used to build another random vector generator in order to be able to gener-
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ate stochastic apparent properties for the macro-scale stochastic finite element
analyzes.

5. Application to stochastic finite element analyzes

In a stochastic finite element analysis, two kinds of discretization need to
be carried out. The first one is the discretization of a continuous structure into
finite elements. The second one is the discretization of the random material
properties field, which provides the random properties at each integration point
of the finite elements. In this work, the random vector generator described
in Section 4.4 is used to generate stochastic apparent elastic properties, which
are in turn used as input stochastic finite element analyzes. To ensure the
convergence of the stochastic finite element analysis, the characteristic finite
element size needs to be smaller than the correlation length of the applied
random field. Therefore, the finite element size needs to be lower than the
size of the SVEs used to create the random vector field. This justifies the use
of finer mesh in the BSVEs than the size of the SSVEs in Section 4.3.1.

In this Section, we first illustrate how to apply the methodology on a simple
ply tensile test. However since we consider only elasticity, tensile tests yield a
non-uniform stress distribution within the ply but the ply response remains de-
terministic because statistical representativity is recovered at the loading length
scale. Therefore we then perform a stochastic finite element simulation on a ply
under bending yielding a distribution in the bending response and in the maxi-
mum bending stress of the ply.

5.1. Stochastic tensile samples

As an illustration example we perform here below a simple stochastic finite
element analysis of a ply cross-section using the material properties random
vectors.

 

Figure 26: Tensile stochastic finite element analyzes: discretizations of the random field (top)
and of the finite element structure (bottom).
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A composite cross-section of 1000×250µm2 is loaded in the transverse direc-
tion with plane strain condition along the z-direction and plane stress condition
along the y-direction. An illustration of the detailed micro-structure corre-
sponding to a ply of the same width can be found in Fig. 31(a). The random
vector generator described in Section 4.4 is used to generate stochastic apparent
elastic properties corresponding to SSVEs of sizes 25 × 25µ × 1m3, which are
in turn used as input stochastic finite element analyzes. The discretizations of
the random field and of the finite element are shown in Fig. 26 along with the
boundary and loading conditions that are applied on the structure.
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Figure 27: Examples of apparent properties (the properties are not realistic but chosen with
a high contrast for illustration purpose) interpolated at the boundaries of the random field
grid using a smooth step function The boundaries of the random field grid correspond to the
coordinates x = 1 or y = 1.

The random field of the material properties is discretized into squares of 25×
25µm2. Therefore, the transition of the material properties in the random field
discretization follows a step function. However, a strong contrast of material
properties could exist at the boundary of the material properties random field
discretization, which would introduce unexpected stress concentrations in the
finite element resolution. In order to avoid this artificial stress concentration,
smooth-step functions, see Fig. 27, are used to describe the transition of material
properties at the internal boundaries of the random field discretization.

Four realizations of the 1000 × 250µm2 samples are put under transverse
loading to reach a macro-strain of 0.006. The homogenized stress distribution
σMxx in the samples are presented in Fig. 28 for the four realizations. The
resulting average macro-stress (the resultant force along the x-direction divided
by the transverse section) varies from 53.5 MPa to 54.4 MPa for the four re-
alizations. However, the maximum homogenized stresses σMxx –which is not
the maximum stress reached in the different phases of the composite material–
reached in the different four realizations are 63.4, 65.8, 67.3 and 66.8 MPa, re-
spectively. To emphasize the uncertainty at the ply level, we consider in the
next application a ply under bending.
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𝜎M𝑥𝑥 [Mpa]

43.5 53.4 63.4

(a)

𝜎M𝑥𝑥[Mpa]

43.8 54.8 65.8

(b)

𝜎M𝑥𝑥[Mpa]

43.1 55.2 67.3

(c)

𝜎M𝑥𝑥[Mpa]

43.0 54.9 66.8

(d)

Figure 28: Meso-scale stress distributions in four 1000×250µm2 realizations under transverse
loading.

5.2. Stochastic bending samples

 

F,   

Figure 29: Bending stochastic finite element analyzes: discretizations of the random field
(top) and of the finite element structure (bottom).

A composite cross-section of 875 × 250µm2 is under three-point bending,
see Fig. 29. A displacement δ is applied at the upper mid-length resulting
in a loading force F along the y-direction. The sample is under plane-strain
condition along the z-direction (fiber direction). We study the effect of material
uncertainties on the loading force F and the maximum tensile stress σMxx.

The discretizations of the random field and of the finite elements are shown,
along with the boundary and loading conditions, in Fig. 29. The random
field at the two ends of the sample is discretized into eight domains of size
125 × 125µm2. In the middle part of the sample, the random field of material
properties is discretized into squares of 25 × 25µm2. In this last part, the
random vector generator described in Section 4.4 is used to generate stochastic
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apparent elastic properties corresponding to SSVEs of sizes 25× 25µm3. In the
coarser part, the random apparent properties of the 125 × 125µm2 BSVEs are
obtained through the two-step homogenization using random vectors for the
SSVEs material properties, i.e. using the third process described in Section
4.4. The newly obtained random vector field exhibits a unit-correlation for two
points lying in the same BSVE and a zero-correlation for two points lying in
different BSVEs. As a result the mesh of the structure can be coarser at the
ply extremities as illustrated in Fig. 29 and finer in the middle of the sample to
ensure an accurate resolution, while the finite element size remains lower than
the size of SVEs everywhere. 800 bending realizations are computed to ensure
the convergence of the ply behavior distribution.
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Figure 30: The histograms of the stochastic bending test for a displacement δ = 8.0µm: (a)
the maximum tensile stress σMxx reached in each sample and (b) the applied loading F per
unit thickness; the mean value E and standard deviation σ are also reported.

The histograms of the homogenized tensile stress σMxx at the mid-length
lower face –which is the maximum homogenized tensile stress but which is not
the maximum stress reached in the different phases of the composite material–
reached in each sample and the applied loading F per unit thickness are pre-
sented in Fig. 30 for a maximum displacement δ = 8.0µm at the loading point.
Uncertainty in the results can be seen in the histograms, especially for the
reached maximum tensile stress σMxx, which shows more scatter and explains
the discrepancy observed during failure analysis of composites.

However, we need to note that this maximum homogenized tensile stress
cannot be used directly for the failure analysis. Indeed, this does not give a di-
rect information on the stress in the phases; the latter could be obtained using a
localization step. Moreover, the discrepancy in the maximum homogenized ten-
sile stress also depends on the size of the SVEs considered to define the random
vector of apparent properties. Since all the analyzes are based on a stochastic
multi-scale process, the critical failure stress at each material point is an un-
certain value too, which could be extracted in a probabilistic way from SVEs
simulations as in [49, 50]. In particular, probabilistic macro-failure criteria, such
as Drucker Prager, have been extracted from SVE realizations in [50].
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6. Conclusions

In order to carry out a stochastic multiscale analysis for UD fiber reinforced
composites, two important issues are studied in this work. First, based on
the SEM images of UD fiber reinforced composites’ cross-section, the micro-
structure is statistically characterized. Using the obtained empirical statistical
descriptors and their correlation information, a micro-structure generator is con-
structed to provide virtual micro-samples for numerical analyzes. Although in
this work, only the random distribution of fibers is considered, micro-defects,
such as micro-voids and micro-cracks, can also be accounted for if their descrip-
tions, which include the geometries and distributions, are available.

Second, a multi-level computational homogenization is presented to extract
the meso-response of large SVEs in an efficient way. The effects of different ap-
plied boundary conditions during the computational homogenization are studied
and it was shown that periodic boundary condition is an accurate choice for the
multi-level computational homogenization. Since a large gap exists between the
micro-structure scale and the structure scale of UD composites, the presented
multi-level process makes the stochastic multiscale analysis computationally af-
fordable.

For illustration purpose of the method efficiency, two stochastic multiscale
finite element analyzes are performed on relatively large random samples, lead-
ing to a nonuniform homogenized stress distribution and to an uncertain ply
behavior as the results of a non-uniform micro-structure distribution.

Although the work is limited to elastic analysis, the presented procedure
has the potential to be extended to the nonlinear regime and failure analy-
sis. Nevertheless, combining computational homogenization on SVEs to MC
simulations can lead to a prohibitive costs in the context of non-linear materi-
als. In [64], the stochastic homogenization of UD composite cell was achieved
by using a modified version of the meso-scale stochastic finite element method
(SFEM), leading to a more efficient solution. Relying on the use of SVEs,
stochastic multiscale analyzes were developed to account for fine-scale material
properties as random variables –and random fields in particular cases– using
an order reduction method combined to an asymptotic homogenization [65]. In
the context of finite elasticity, a Reduced Order Model (ROM) was built from
the resolution of SVEs, which are called composite material elementary cells, by
defining a meso-scale potential capturing the uncertainties related to the fibers
geometry/distribution in composites [66, 67]. In a more general way, the use of
Reduced Order Models (ROMs) in data-driven non-linear stochastic analyzes is
discussed in [68]. Therefore, in order to extend this work to non-linear analyzes,
the definition of an adequate ROM will be investigated in the future to ensure
its computational efficiency.
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Appendix A. Generation of inhomogeneous micro-structures

 

(a)

 

(b)

 

(c)

Figure A.31: Generated inhomogeneous micro-structures for a cross-section of 700 × 250µm2

with (a) α = 1.0, (b) α(x) increasing from the window center line to the upper and lower
boundaries, and (c) α(x) decreasing from the window center line to the upper and lower
boundaries.

In this micro-structure generation procedure, ϑ1st and ∆ϑ are still considered
as random variables and we consider the spatially non-stationary random vari-
able d̃1st and ∆d̃ to replace d1st and ∆d, respectively. As a way of illustration,
the non-stationary random variable is expressed as

d̃1st(x) = α(x)d1st and ∆d̃(x) = α(x)∆d , (A.1)

where α(x) is a coefficient function depending on the locations of central fibers,
and d1st and ∆d are the former random variables. The generated micro-structures
are presented in Fig. A.31 for different functions α, leading to different spatial
distributions.
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Appendix B. Resolution of the constrained meso-scale BVP

The set of equations (28) is solved by the multiplier elimination method with

λ = CT
(
CCT

)−1
Kmum, allowing to rewritten the set of equations (28) under

the residual form{
rm = Kmum −CTλ = QTKmum = 0 , and

rc = Cum − SEM = 0 ,
(B.1)

with Q = I−CT
(
CCT

)−1
C, see details in [58]. Linearizing the system (B.1)

with respect to both the displacement field and the macro-scale kinematic field
leads to{

rm + QTKmQδum −QTKmCT
(
CCT

)−1
[rc − SδEM] = 0 , and

rc + Cδum − SδEM = 0 .
(B.2)

The solution of the meso-scale BVP is obtained by considering δEM = 0 in
(B.2) and the solution reads

δum = −K̃−1
m r̃m , (B.3)

with {
K̃m = CTC + QTKmQ , and

r̃m = rm +
(
CT −QTKmCT

(
CCT

)−1
)

rc .
(B.4)

The homogenized stress tensor (15) can be expressed under the vector form
SM as

SM =

(
1

V (ω)

∧
ωe

∫
ωe

CmBedV

)
um = Dum . (B.5)

The apparent elasticity tensor in the matrix form CM is then obtained by
derivation of (B.5) with respect to the macro-scale kinematic variable EM. In
order to evaluate ∂um

∂EM , we set rm = 0 and rc = 0 in the system (B.2), which
results in

CM = DK̃−1
m

(
CT −QTKmCT

(
CCT

)−1
)

S . (B.6)

The details of the method can be found in [58]. The advantage of the method
is that the same matrix K̃m is inverted to solve the meso-scale BVP (B.3) and
to evaluate the apparent tensor (30). As a result the evaluation of the apparent
tensor is achieved at negligible cost contrarily to other condensation method,
which is of particular interest when stochastic homogenization is performed.
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