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Abstract

We investigate a novel database of 10,217 extreme operational losses from the Italian

bank UniCredit. Our goal is to shed light on the dependence between the severity

distribution of these losses and a set of a set of macroeconomic, financial and firm-

specific factors. To do so, we use Generalized Pareto regression techniques, where

both the scale and shape parameters are assumed to be functions of these explanatory

variables. We perform the selection of the relevant covariates with a state-of-the-art

penalized-likelihood estimation procedure relying on L1-penalty terms. A simulation

study indicates that this approach efficiently selects covariates of interest and tack-

les spurious regression issues encountered when dealing with integrated time series.

Lastly, we illustrate the impact of different economic scenarios on the requested cap-

ital for operational risk. Our results have important implications in terms of risk

management and regulatory policy.
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1 Introduction

Understanding the relationship between the severity distribution of operational losses and

economic variables is particularly important for the banking industry, especially for risk

management and regulatory purposes. Indeed, if we identify economic factors that explain

variations in the severity distribution of these losses, we could improve the estimation of

the associated risk measures and requested capital charge.

Operational losses are defined by the Basel Committee for Banking Supervision (BCBS)

as “direct or indirect losses resulting from inadequate or failed internal processes, people

and systems or from external events” [Basel Committee on Banking Supervision (BCBS),

2004]. In the Advanced Measurement Approach (AMA) proposed by the BCBS, the total

operational loss Lt over the time period ]t− 1, t] is given by

Lt =

Nt∑
i=1

Zt,i, (1)

where Nt is the number of losses1 and Zt,i the size of the ith loss during the tth period.

From this representation, the operational risk capital charge is established as a function

of the 99.9% quantile of Lt [Basel Committee on Banking Supervision (BCBS), 2010],

denoted Q0.999(Lt) and defined such that P(Lt ≤ Q0.999(Lt)) = 0.999. This quantity

heavily depends on the distribution of Zt,i (i.e. the distribution of the loss size), referred

under the term severity distribution in the banking literature. Hence, if we link properly

this distribution with the economic context, we could obtain better estimates of Q0.999(Lt).

Moreover, we would be able to assess the impact of adverse scenarios on expected capital

requirements [Petrella and Resti, 2013]. Instead of using over-the-cycle risk measures,

we could compute point-in-time or stressed risk measures related to specific economic

conditions and construct more realistic forecasts.

Starting from the representation of the operational loss phenomenon given by equation

(1), we study in detail the severity distribution of a novel sample of 10,217 extreme oper-

ational losses from the Italian bank UniCredit, over a ten-year period (2005Q1-2014Q2)

and across seven event types2. This is a unique feature of the present paper, as such a

huge amount of private data is unusual and extremely difficult to obtain for academics

[Chavez-Demoulin et al., 2016]. The lack and the poor quality of data have been obstacles

in most empirical studies looking at the dependence between operational losses and eco-

nomic factors. Indeed, confidentiality, heterogeneity and small sizes of public databases

make it difficult to associate covariates to losses, and to analyse the data properly. To

the best of our knowledge, the only exception is the research of Cope et al. [2012] who

studied a database of 57,000 operational events across many firms and countries. Here, we

focus on a single bank due to data availability. This is clearly a limitation that does not

allow us to generalize our conclusions to the whole banking sector. However, our analysis

1Often assumed to be larger than a given threshold.
2The latter referring to an internal classification of the losses based on their physical process.
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brings many insights on the relationship between economic factors and the loss generation

process in a typical financial institution.

We focus on the distribution of large values of Zt,i since these extreme events are the

main drivers of Q0.999(Lt)
3. As covariates, we use a mix of firm-specific, macroeconomic

and financial indicators, in addition to the event type. The choice of these variables is

motivated by a number of theoretical reasons discussed in Chernobai et al. [2011], Cope

et al. [2012] and Wang and Hsu [2013]. The main argument is that the sizes of operational

losses are by nature subject to the economic environment: on one side, economic conditions

influence the physical process of the losses because of the incentives they create. On the

other side, the economic conditions influence the allocation of resources inside banks,

which has then a direct impact on the way risks are measured, detected and mitigated.

This paper fills an important gap since no studies investigate the dependence between

the severity distribution of large losses and economic factors. Early studies [Moscadelli,

2004, Chapelle et al., 2008, Soprano et al., 2009] focus on modelling the operational losses

independently from the economic conditions with a model given by equation (1). More

recently, the attention of researchers shifts towards the conditional distribution (i.e. condi-

tional on the economic situation) of operational losses [Chernobai et al., 2011, Cope et al.,

2012, Wang and Hsu, 2013, Chavez-Demoulin et al., 2016]. However, Chernobai et al.

[2011] and Wang and Hsu [2013] focus on the frequency process only (i.e. the distribution

of Nt), using Poisson and logistic regressions. Cope et al. [2012] study the dependence

between the expected values of the loss size and macroeconomic covariates using a log-

normal regression approach, but they do not focus on extreme events. Chavez-Demoulin

et al. [2016] model the severity and frequency distribution of large losses but only using

the time and the event type as covariates.

We conduct our analysis using Generalized Pareto (GP) regression techniques, in the

idea of the Extreme Value Theory (EVT) and Peak-over-Threshold (POT) approach. More

precisely, we model the distribution of the loss size Zt,i above some threshold τ , given a

vector of covariates xt,i. We assume that the cumulative distribution function (cdf) of Zt,i

given xt,i is a Generalized Pareto distribution (GPD). To introduce a dependence with

xt,i, we assume the scale and shape parameters of the GPD to be additive functions of xt,i.

As a consequence, the scale and shape parameters are also time-varying. This modeling

approach can be related to the so-called Generalized Additive Model for Location, Scale

and Shape (GAMLSS) introduced in Rigby and Stasinopoulos [2005]. Chavez-Demoulin

et al. [2016] use a similar approach, considering both fully parametric and semiparametric

models. In the present paper, we restrict our attention to the parametric case. An

alternative way to introduce time-variation is through the score mechanism of Creal et al.

[2012] and Harvey [2013]. This procedure is used, e.g. in Massacci [2017] to model the tail

dynamics of stock returns. However, Massacci [2017] only considers dynamic equations

that are pure autoregressive processes and no economic variables are included. At the

contrary, our approach has the advantage to allow identifying the economic sources of

3In Appendix A, the interested reader can find a short simulation study supporting this claim.
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time-variation.

In this complex distributional regression framework, an important issue is to select

the relevant covariates among a large number of potential predictors. However, testing

and comparing all combinations of covariates is rapidly computationally infeasible, whereas

stepwise regression is not particularly efficient in finding the optimal set of predictors [Tib-

shirani, 1996]. To overcome this issue, we develop a state-of-the-art penalized-likelihood

estimation procedure adapted to the GP regression case and inspired by the local-quadratic

approximations presented in Oelker and Tutz [2017]. We focus our attention on penalties

based on the L1-norm of the regression coefficients.

In a simulation study, we investigate the ability of this technique to select the true

set of covariates when performing the regression on both distribution parameters. We

find that our approach identifies well informative and uninformative covariates and is

particularly useful to escape the spurious regression trap [Granger and Newbold, 1974]

when some covariates are nonstationary integrated time series. Applying this technique

to UniCredit’s data, our results show that only a limited number of economic variables

have a significant association with the severity distribution. These results are important

contributions of the present paper, since apart from stepwise regression and boosting

[Mayr et al., 2012], no automatic variable selection procedures have been investigated in

GP regression problems. The development and the use of a variable selection procedure

are also novelties compared with previous empirical studies on operational losses, where

this question is neglected [Chernobai et al., 2011, Wang and Hsu, 2013, Cope et al., 2012].

Our main findings regarding the determinants of operational loss severity are the fol-

lowing: a high GDP growth rate in the European Union, a low Italian unemployment rate

and a high value of the VIX are associated with an increased likelihood of extreme losses

at UniCredit. In addition, we find that imminent deleveraging periods are associated with

a decrease in this likelihood. Using a model with interaction variables, we also find that

the severity distribution of specific event types is impacted by changes in housing price

and deposit growth rate. In terms of regulatory policy, these results indicate heavily that

there is a need for setting a level of regulatory capital in accordance with the economic

conditions.

Lastly, we illustrate the effects of different economic scenarios, and their consequences

in terms of requested capital. To this end, we fit an additional inhomogeneous Poisson

process on the frequency data and fix the relevant covariates to some values reflecting

plausible economic scenarios. The resulting estimated parameters are used to simulate

the total loss distribution and to compute estimates of the 99.9% quantile. Subsequently,

we compare and discuss the values obtained in the different scenarios.

The rest of the paper is organized as follows: in Section 2, we describe the loss data

and the covariates. Then, in Section 3 we introduce the models used for the study of these

extreme losses. Practical considerations like estimation, inference and model selection are

discussed in Sections 3.1 and 3.2. In Section 4, we study the finite sample properties of

the proposed regularization method. We present the results of the regression analyses in
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Section 5. In Section 6, we illustrate the effects of different economic scenarios on the

requested capital charge obtained with the proposed approach. Lastly, we discuss and

conclude in Section 7.

2 Data

In this section, we discuss the loss data as well as the economic covariates used in the

regression analysis.

2.1 Description of the losses

We have initially at our disposal 41,871 operational losses provided by UniCredit opera-

tional risk department. Due to data collection procedures, only losses above 2, 000e are

available. For anonymity reasons, the losses are scaled by an unknown factor. Even though

scaling prevents us from any conclusion regarding the level of the losses, relationships with

potential variables are not affected. UniCredit is one of the largest European commercial

banks, and suffered heavily from the subprime and sovereign crises. It operates in 17

countries with over 143,000 employees. Around 50% of UniCredit’s revenues come from

its Italian activities.

As in Cope et al. [2012] and Chavez-Demoulin et al. [2016], losses are adjusted by

means of the Italian consumer price index (CPI). The losses are dispatched into seven

risk categories - called event types and referring to the physical process causing the loss.

Descriptions and abbreviations are given in Table 1. The collection period ranges from

January 2005 to June 2014. We have at our disposal the exact registration date of the

event but we work on a quarterly basis since many macroeconomic variables are only

available at this frequency. Figure 1 shows the raw data. Figure 2 shows the total loss

and the number of losses, over time and across event types. The number of losses varies

substantially for some categories, e.g. for the CPBP category.

Table 2 gives descriptive statistics of the losses per categories. Losses belong mainly

to the CPBP and EDPM categories, as well as to the fraud categories (IFRAUD and

EFRAUD). CPBP and IFRAUD losses exhibit a mean, median, standard deviation and

third quartile particularly larger than the other categories. Looking at the values of these

statistics over time, we observe several huge variations, indicating potential changes in

the severity distribution over time (see, e.g. Figure 14 in Appendix B for the standard

deviation).

To further investigate this supposition, we compute pairwise bootstrap Kolmogorov-

Smirnov (KS) two-sample statistics between time periods. We reject the null hypothesis

that the observed samples at each time period are drawn from the same distribution,

either splitting the losses per event types or pooling all losses. Since in our empirical

analysis we only study a sample of losses above a given threshold, we also apply the KS

test to subsamples of the losses. We consider losses larger than the median, the third

quartile and the 85% quantile, respectively. It reveals several significant variations in the
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severity distribution over time. The detailed results of these tests and additional technical

information can be found in Appendix B. The choice of our final threshold is discussed in

the next section.

Lastly, we use a bootstrap likelihood ratio test to investigate the homogeneity of the

frequency process. This assumption is rejected for all categories and all thresholds, in-

dicating that the frequency rates also change over time. The results of the tests as well

as some technical details can be found in Appendix C. These results indicate that if one

wants to model the total loss distribution (as done in Section 6), inhomogeneity in the

frequency process should be taken into account as well.

Both results are in line with the findings of Cope et al. [2012] for the severity dis-

tribution, and Chernobai et al. [2011] for the frequency process. They motivate us to

investigate if changes in economic conditions could be associated with changes in the

severity distribution.

2.2 Threshold selection

We focus our analysis on losses larger than some threshold τ , in the framework of the

POT. Several authors proposed automatic threshold selection techniques [see Wadsworth

and Tawn, 2012, for a review], but not in a regression context. Thus, these techniques

are not applicable in our framework.

Here, we use instead a threshold derived from quantiles of the unconditional loss dis-

tribution, as proposed, e.g. in Chavez-Demoulin et al. [2014] or Chavez-Demoulin et al.

[2016]. To ensure a good balance between correct specification of the GPD and low vari-

ance of the estimates, we set τ equal to the third quartile, giving us a final sample of

10, 217 observations. To avoid creating a bias towards event types with fatter tails, we

use event type-specific thresholds, namely the empirical third quartiles for losses from the

same event type. Only losses exceeding these thresholds are kept for the regression anal-

ysis. This relatively low threshold is motivated by evidence from our simulation study,

suggesting that a large sample size is needed to ensure a good model selection4. An addi-

tional motivation is that, in terms of total loss, this threshold allows us to consider losses

that amount to a significant proportion of the quarterly total loss (on average, 87%).

Therefore, this threshold allows us to incorporate most of the useful data when modelling

the total loss distribution in Section 6. Figure 1 displays the thresholds and the losses

included in the final sample.

This relatively low threshold might be responsible for detecting associations in our

empirical analysis that do not relate clearly to extreme losses. To stress this issue, we also

conducted an analysis using a threshold based on the 90% quantile (see supplementary

material) and found similar results, at least regarding the main effects of the regression

4Even with samples of size n = 4, 000 in the simulations, we tend to miss important explanatory

variables when nonstationary variables are used in the regression. Conducting additional simulations,

presented in the supplementary material, we found that a sample of size n = 10, 000 reduces this issue.
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analysis5. In Section 5, we only report and discuss results with τ chosen as the third

quartile.

2.3 Description of the explanatory variables

As explanatory variables we use a set of 20 economic indicators computed at a quarterly

frequency. We only consider lagged values of the variables to reduce potential two-way

causality issues and to ease prediction. Since operational losses registration suffers regu-

larly from a reporting delay, this set-up also avoids using variables that followed rather

than preceded the losses. Extended descriptions can be found in Appendix D.

We consider three types of explanatory variables: firm-specific, macroeconomic and

financial ones. The complete list can be found in Table 3 whereas time series are displayed

in Figure 3. Firm-specific variables consist mostly in the event type and performance

ratios. They bring information regarding the health of the financial institution, the profit

generation as well as the size of the activity. Macroeconomic variables are related to

GDP, unemployment rate, money supply and interest rates. They capture the effect of the

general state of the economy. Lastly, financial variables measure the uncertainty, volatility

and stock log-return. They account for the specific state of financial markets. We use a

mix of indicators at the Italian, European and global level. In addition, we consider event

type-specific effects, meaning that we use as covariates interactions between the binary

event type variables and the economic factors.

Notice that we do not investigate the possible nonstationarity of the considered time

series. Indeed, those are short (38 time periods) and would not allow us to conduct

unit root tests with a sufficient power. Non-stationarity of the variables is, however, well

handled by means of the regularization procedure as shown by the simulation study.

3 Methodology

In this section, we present first the regression model used to conduct our analysis, be-

fore detailing the estimation and regularization procedures. Lastly, we discuss penalty

parameter selection and inference.

3.1 Model

We define here a regression model for the distribution of extreme losses, i.e. losses larger

than a threshold τ . Indeed, in practice small losses are neglected. Consequently, Nt in

equation (1) refers to the number of losses Zt,i larger than τ . We denote by nt the observed

value of Nt. Similarly to Beirlant and Goegebeur [2004], let us define the exceedances

5Additionally, since the data already received a POT treatment via the collection threshold, we might

also follow Guillou et al. [2015] and use the smallest observed loss as threshold. We conducted a regression

analysis using this strategy, but final QQ-plots suggested a misspecification problem in the lower tail,

indicating that a higher threshold should be used. Thus, we settled for the third quartile. Associated

results can be found in the supplementary material.
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Yt,i = Zt,i − τ given that Zt,i ≥ τ and i = 1, . . . , nt. Thus, the index i refers to the index

of the ith exceedance6. Relying on the EVT and the POT approach, we use the GPD to

model the distribution of Yt,i. The cumulative distribution function (cdf) of the GPD is

given by

GPD(y; γ, σ) =

 1−
(

1 + γ
y

σ

)−1/γ
, γ 6= 0

1− e−y/σ, γ = 0
(2)

with y ≥ 0. γ ∈ R and σ > 0 are the shape and scale parameters, respectively. For

γ < 0, then 0 < y < −σ/γ and y is bounded. In the case of γ = 0, we observe an

exponential decay. We restrict our attention here to the case where γ > 0, i.e. the heavy-

tail case. Indeed, this assumption is in accordance with most of operational loss data [see,

e.g. Moscadelli, 2004, Chavez-Demoulin et al., 2016]. This GPD approximation stems

from fundamental results in extreme value analysis, known under the names Gnedenko

and Pickands-Balkema-De Haan theorems [Gnedenko, 1943, Balkema and de Haan, 1974,

Pickands, 1975]. The GPD approximation holds when the cdf of Z, F (z), is of the type

F (z) = (z)−1/γG(z), (3)

for some measurable, slowly varying function G : (0,∞)→ (0,∞) so that

lim
z→∞

G(ωz)

G(z)
= 1, (4)

for ω > 0. This condition, known as the regular variation property, implies that the tail

of the loss distribution decays at a power rate of Z and that the GPD is the limiting

distribution of the exceedances [see, e.g. Embrechts et al., 1997, Beirlant et al., 2005,

Davison and Smith, 1990, for theoretical details]. Therefore, in practice, it is usually

assumed that the severity distribution of these large losses is effectively GPD and the

regression analysis is performed on Yt,i [Aue and Kalkbrener, 2006, Moscadelli, 2004, Dutta

and Perry, 2006, Chapelle et al., 2008, Soprano et al., 2009, Chavez-Demoulin et al., 2016].

In addition, notice that for γ ∈ (0, 1), it can be shown that Y has a finite first moment

[Chavez-Demoulin et al., 2016]. This is often a desirable property from a methodological

perspective (e.g. for moment-based inference) as well as for applications involving the

computation of a conditional expectation. Indeed, point estimates of γ that are larger

than one are often discarded by practitioners. Here, we don’t impose this additional

restriction and discuss estimated values of γ with respect to their associated confidence

intervals. More details are given at the end of Section 5.4.

Applying the POT method in a nonstationary context, we assume that the severity

distribution of the exceedances is GPD, but with γ and σ depending on economic factors.

Thus, for the ith loss larger than τ taking place over the time period ]t− 1, t], we assume

that

Yt,i ∼ GPD(Yt,i; γ(xγt,i), σ(xσt,i)), (5)

6Notice that due to the threshold condition, the losses come from a larger set. Therefore, the index

related to this larger set - left undefined here for simplicity - and index i can differ for a given loss.
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with Yt,i ≥ 0, γ(xγt,i) > 0, σ(xσt,i) > 0, and where these parameters can be characterized

by structures of the type

log(γ(xγt,i)) = αγ0 +

pγ∑
l=1

αγl x
γ
t,i(l), (6)

log(σ(xσt,i)) = ασ0 +

pσ∑
l=1

ασl x
σ
t,i(l), (7)

where xθt,i(l) denotes the lth component of the vector of covariates xθt,i associated to Yt,i

for θ ∈ {γ, σ}, and pγ (resp. pσ) denoting the number of covariates for γ (resp. σ). In

the rest of the paper, boldface refers to vectors. We use a logarithmic link function to

ensure positivity of the parameters. Such a model is categorized as a parametric GAMLSS

under the particular case of a GPD response distribution [Rigby and Stasinopoulos, 2005].

Parameters of this model are consistently estimated with a likelihood maximization pro-

cedure. We denote an observed sample of losses over T time periods by y = (y1, · · · ,yT ).

The observed number of exceedances at each period is given by the vector (n1, · · · , nT ),

such that the total sample size is given by n =
T∑
t=1

nt. Then, under the assumptions of the

conditional GPD model, the likelihood function is given by

L(y; Θ,x) =
T∏
t=1

nt∏
i=1

gpd(yt,i; γ(xγt,i), σ(xσt,i)), (8)

where gpd denotes the probability density function (pdf) of the GPD, Θ is the set of

all parameters of the model; x a design matrix of all observed covariates, and γ(xγt,i) and

σ(xσt,i) are the shape and scale parameters for the severity distribution of the ith exceedance

in period t. The log-likelihood function is given by

L(y; Θ,x) = log(L(y; Θ,x)) =
T∑
t=1

nt∑
i=1

log(gpd(yt,i; γ(xγt,i), σ(xσt,i))). (9)

An estimator Θ̂ is obtained by maximizing equation (9) with respect to Θ:

Θ̂ = arg max
Θ
{L(y; Θ,x)}. (10)

Notice that we wrote equations (6) and (7) in a very general way, not explicitly accounting

that we use lagged values of the covariates. Such a feature is included in a straightforward

way by defining xt,i = x̃t−1,i, where x̃t,i denotes the observed time series.

3.2 Regularization procedure

As discussed in Section 1, a recurrent issue when conducting GP regression is to iden-

tify the optimal subset of influential predictor variables (i.e. the variables that effectively

enter the true model). We perform this task via a penalized-likelihood approach. In

this approach, estimation and variable selection are performed simultaneously since the
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penalization shrinks some coefficients down to zero, thus excluding some covariates from

the final model. In particular, Tibshirani [1996] suggests the use of the L1-norm of the

coefficients as regularization penalty, leading to what is known as the LASSO (least abso-

lute shrinkage and selection operator) regression (see Efron et al. [2004], Zou [2006], Park

and Hastie [2007] and Goeman [2010] for theoretical considerations and Fan and Tang

[2012] for a broad overview). However, these studies mostly stayed in the framework of

exponential family response distributions.

In the present paper, we rely on the same concept but in the GP regression case. More

precisely, we consider the following penalized log-likelihood function:

Lpen(y; Θ,x) = L(y; Θ,x)− nPν(Θ), (11)

where Pν(Θ) is the penalty with vector of penalty parameters ννν = (νσ, νγ). In particular,

we use the following penalty:

Pν(Θ) = νσ

pσ∑
l=1

aσl |θσl |+ νγ

pγ∑
l=1

aγl |θ
γ
l |, (12)

where θσl (resp. θγl ), l = 1, . . . , pσ (resp. pγ) consists of the lth parameter associated to the

equation of σ (resp. γ). νσ and νγ are the penalty parameters associated to the coefficients

of the predictors for σ and γ, respectively. In the classical LASSO case, aσl ≡ aγl ≡ 1

if corresponding coefficients are regularized, 0 otherwise. In the adaptive LASSO case

(adLASSO), these weights are based on the inverse of the unpenalized estimates, such

that aσl = 1/|θ̂σl | (resp. aγl = 1/|θ̂γl |) if regularized, 0 otherwise. This weighted penalty has

been found to provide more stable model selection in a variety of cases [Zou, 2006]. The

final penalized-likelihood estimator is given by

Θ̂pen = arg max
Θ
{Lpen(y; Θ,x)}. (13)

In the present case, no analytical solution to this problem exists and (13) needs to be

solved numerically. An additional difficulty arises due to the non-differentiability of the

penalty term. To overcome this issue, Oelker and Tutz [2017] developed a general frame-

work for the approximation of different penalty types ensuring continuity, differentiability

as well as sparsity of the final solution. They only considered the exponential family case,

though.

Here, we follow Zou and Li [2008] and Oelker and Tutz [2017], and use a local quadratic

approximation of the penalty terms within the estimation procedure. Relying on this ap-

proximation, the maximization problem can be linearized and solved with usual Newton

methods. Technical details of our implementations are deferred to Appendix E. Addi-

tional theoretical considerations regarding the approximation of the penalized gradient

and Hessian can be found in Oelker and Tutz [2017].

In our application, we consider the particular case of interactions of continuous and

binary covariates. For dummy-encoded categorical covariates usually the group LASSO
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[Meier et al., 2008] is used, which penalizes the whole group of the corresponding coeffi-

cients. In this way, either all dummies are included in the model or not. However, in our

special situation, the categorical covariate reflects the event type (ET) and is a central

aspect of the analysis: here, for each ET category it should be decided separately which

corresponding interactions are selected. Therefore, we restrict ourselves to the conven-

tional LASSO case only7.

For the selection of the vector of penalty parameters ννν, usually AIC or BIC are used.

In several studies [see, for example Fan and Tang, 2012, Groll and Tutz, 2014], the BIC

criterion turned out to be more effective than AIC in selecting adequate penalty parameters

and in ensuring a better sparsity of the final solution. Since we have both a scale and

a shape parameter, we use a different penalty parameter for their respective subsets of

covariates. The search is performed over a two-dimensional grid. The degrees of freedom

(DF) can be estimated either by the trace of the product of the information matrix for

the unpenalized likelihood function and the inverse of the information matrix for the

penalized likelihood function [Gray, 1992], or by the number of non-zero coefficients in

the final solution [Zou et al., 2007]. The BIC criterion, for a given vector ννν of tuning

parameters, is given by

BIC(Θ̂pen;ννν) = −2L(y; Θ̂pen,x) + log(n) df(ννν), (14)

where n is the sample size and df(ννν) are the estimated DF for the estimated model. For

AIC, simply replace the factor log(n) by 2. The optimal ννν then minimizes (14). Alter-

natively, one could use cross-validation (CV) techniques, but these are computationally

expensive. In Section 4, we show that BIC with estimated DF chosen as in Zou et al.

[2007] is more suited than AIC to enable a good selection of the penalty parameters. In

particular, it ensures simultaneously a low selection rate of uninformative covariates and

a good selection rate of the informative ones.

To build confidence intervals, we have two approaches at our disposal. On the one

side, we can use a bootstrap procedure but this is computationally expensive. On the

other side, as an alternative, researchers proposed to use the regularization procedure as

a covariate selection tool only. Then, the model corresponding to the non-zero coefficients

is re-estimated without penalization (see, for example, Groll and Tutz [2014]). In that

framework, asymptotic normality should hold and confidence intervals can be built using

the inverse of the Fisher information matrix. Another advantage is that the resulting

estimates are less biased, which is beneficial with regard to prediction. Hence, in the

empirical analysis, we choose to follow this approach to obtain our final estimates of the

coefficients, as well as for statistical inference8.

7It should also be noted that the presented approach could be extended to the case of the elastic net

penalty [Zou and Hastie, 2005]. This would be particularly preferable in situations with highly correlated

features where LASSO might behave erratically. Nevertheless, it implies selecting two additional penalty

parameters - namely one per distribution parameter - which increases drastically the computational com-

plexity of the problem and renders this task extremely challenging in practice. For this reason, we did not

follow this path in the present paper.
8However, it has been argued in Goeman [2010] that the computed p-values tend to underestimate
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4 Simulation

In this section, we study the finite sample properties of the proposed regularization pro-

cedure, both with LASSO and adLASSO penalties. We investigate the quality of the

estimated parameters in terms of MSE and correct classification rate. In addition, since

this is a critical step in the application, we consider different criteria for the selection of

the penalty parameter.

4.1 Simulation with i.i.d. N(0, 1) covariates

Firstly, we generate N = 200 samples of size n = {1000; 2000; 4000} and n =
T∑
t=1

nt with

nt = 1,∀t, leading to T = n. All covariates are assumed to follow independent standard

Gaussian distributions N(0, 1). We use p = {15, 25, 50} covariates for both distribution

parameters (i.e. overall 30, 50 and 100 covariates plus two constants). The number of

active covariates is set to 3 for each corresponding linear predictor. We investigate the

case where the covariate selection is performed on both linear predictors simultaneously.

The selection of the penalty parameters is performed over a two-dimensional grid, using

either BIC or AIC as defined in Section 3.2 with the degrees of freedom obtained either from

Gray [1992] (subscript 1 ) or from Zou et al. [2007] (subscript 2 ) formulas. As a penalty,

we use equation (12) with LASSO or adLASSO weights. The grids for the selection of

the penalty parameters are defined between [0.0025; 0.045] for LASSO, and
[
10−5; 0.009

]
for adLASSO. The values of the regression parameters for the active covariates are the

following: αααγ = (−.9,−.3, .2, .2), ααασ = (4, .6, .4,−.3). To asses the quality of the estimates,

we compute the ratio of mean squared error (RMSE) between penalized and unpenalized

estimates, obtained with the different selection methods for the penalty parameters (a

ratio below one is in favour of the penalized approach). We also compute the RMSE

obtained with an additional unpenalized estimation step (superscript +). In that case,

the reference MSE is obtained from the model with the covariates for which the p-values

are lower than 0.05. To asses the ability of the regularization procedure to discriminate

between informative and non-informative covariates, we compute three measures: the

false positive rate (f.p.) that denotes the average proportion of selected uninformative

covariates; the true positive rate (t.p.) that denotes the average proportion of selected

informative covariates; and eventually the correct classification rate (CCR) that gives the

global proportion of covariates correctly classified as informative or non-informative.

Detailed results are diplayed in Tables 4 to 6. We focus on penalized LASSO estimates.

Our results indicate that AIC1 and AIC2 ensure a low RMSE. However, it comes at

the price of a poor regularization: we select on average between 45% and 56% of the

uninformative covariates for AIC1, as indicated by f.p. Hence, the low RMSE of AIC1

the overall level of uncertainty in the estimates as the uncertainty coming from the foregone selection

procedure is ignored. We totally agree and stress the fact that, indeed, these p-values should be regarded

with caution. Nevertheless, in a simulation set-up at least, our results suggest that this technique helps to

decrease the mean squared error (MSE) of the final solution compared to the direct LASSO solution.
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is achieved by shrinking the coefficients that should be zero but it is not sufficient to

ensure a sparse solution. On the contrary, the method based on BIC2 provides a better

regularization procedure: we select on average between 0.4% to 7.1% of the uninformative

covariates. BIC2 also allows a good selection of informative covariates, as indicated by t.p.:

it reaches 100% constantly for covariates associated to σ whereas it varies between 46.5%

and 99.8% for covariates associated to γ. When n increases, we reach very high selection

rates comparable to the other approaches. Moreover, the CCR obtained with BIC2 varies

between 91.5% and 98.9%, which is better than all other methods, except for p = 15 and

n = 1, 000. Hence, the important shrinkage leads to a good regularization but also to a

large bias of the estimated coefficients, reflected in the relatively high RMSE. However,

performing the additional estimation step reduces the RMSE (column RMSE(+)). This

approach becomes particularly useful when the number of covariates is very large. In that

case, the best RMSE(+) obtained with BIC2 is between 50% and 80% lower than the one

obtained with Unpen.+, and is reduced compared to RMSE. The additional estimation

step corrects for the bias of the active covariates, which in turn decreases the RMSE.

The results associated with adLASSO are qualitatively similar: whereas BIC1 provides

good estimates in terms of RMSE, selection rates improve with BIC2, and the additional

estimation step reduces the RMSE. Compared with the LASSO penalty, RMSE and correct

classification rates are slightly better.

4.2 Simulation with alternative models

To assess the proposed procedure in more complex frameworks, we consider four realistic

extensions of the present set-up: firstly, we assume that the same covariates enter the

structural equations of γ and σ, introducing collinearity. Secondly, we relax the Gaussian

assumption of the covariates and use instead a t-distribution with the degrees of free-

dom equal to 5. Thirdly, we relax the independence assumption on the realizations of a

given covariate in assuming that all covariates follow stationary AR(1) processes, with an

autoregressive parameter of 0.7. Lastly, we relax the stationarity assumption of the covari-

ates. We assume either that only the uninformative ones are nonstationary (specification

denoted RW1), or that all covariates follow a random walk (specification denoted RW2).

Associated results can be found in Table 7. For space considerations, we only present

results for n = 4, 000 and p = 50. We see that the results obtained with these more

realistic models confirm the superiority of BIC2 over the unpenalized approach to obtain

good final estimates. Interestingly, when we add non-informative nonstationary predic-

tors (panels RW1), the penalization procedure tackles efficiently the classical spurious

regression issue [Granger and Newbold, 1974]: we select very few uninformative covari-

ates, whereas p-values constantly select a lot of them. A similar result is observed when

the informative predictors are also nonstationary time series (panel RW2), even though

in this configuration we observe a lower CCR for γ. Thus, not being able to take care a

priori of stationarity issues does not impact much the final conclusions when using the

regularization procedures. Again, we observe qualitatively similar results with adLASSO
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penalties, and slightly better results in terms of CCR and RMSE, but also lower t.p. for γ

(panel RW2). Nevertheless, even if the use of adLASSO might improve a bit the RMSE,

it comes at the price of potentially worse t.p. rates when non-stationary covariates are

included.

Finally, we investigate if higher levels of collinearity impact our results. We consider

a last set-up where nt 6= 1 and T is small. To generate the covariates, we use different

multivariate time series models, including stationary, non-stationary and non-Gaussian

effects with a dependence structure in the error terms. Indeed, in practice we observe

several losses during a given time period and only short time series. Therefore, we assume

nt ∈ {80, 200}, ∀t, and T = 50, such that we obtain final sample sizes n ∈ {4, 000; 10, 000}
similar to the one in our empirical application. Results are presented in Table 8. Conclu-

sions regarding the p-value-based technique are similar. In this configuration, it is clear

that LASSO provides equivalent or better results than adLASSO in terms of RMSE, CCR

and t.p. rates. We make the hypothesis that in this configuration the nonstationarity

and collinearity of the covariates lead to highly variable weights 1/|θ̂| that deteriorate the

adLASSO solution9.

Overall, these results suggest that, selecting the penalty parameters with BIC2 and

performing the additional re-estimation step, one achieves a good trade-off between spar-

sity, adequacy of the selected variables and MSE of the final solution. These findings are

consistent with previous works that emphasize the good performance of BIC over AIC

[Fan and Tang, 2012, Groll and Tutz, 2014]. We see that, even in more realistic frame-

works, this technique allows to exclude the non-informative covariates. The counterpart is

that we tend to regularize too much the informative covariates for γ when the collinearity

level is high (especially for adLASSO). Thus, we can reasonably assume in our empirical

applications that if a variable is included in the optimal model, the likelihood of a false

detection is very low. We might not be able to identify all important variables if their

effect is low, but at least we bear a very low risk of false associations.

For these reasons, we focus in the empirical analysis on the LASSO solution. The re-

sults of the empirical analysis obtained with adLASSO can be found in the supplementary

material.

5 Empirical analysis

In this section we present the results of the regression analyses. As explained in Section

2.2, we only consider losses larger than the third empirical quartile, conditional on the

event type. All covariates are standardized. We consider three different regression models:

Model 1: log(θ(xθt)) = αθ0 +
C−1∑
c=1

αθcET (c),

9In the supplementary material, the interested reader finds technical details related to this simulation,

as well as additional simulations using a mix of the different time series model considered here with nt = 1.
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Model 2: log(θ(xθt)) = αθ0 +
C−1∑
c=1

αθcET (c) +
pθ∑
l=1

βθl x
θ
t (l),

Model 3: log(θ(xθt)) = αθ0 +
C−1∑
c=1

αθcET (c) +
pθ∑
l=1

βθl x
θ
t (l) +

q∑
s=1

δθsINT (s),

for θ ∈ {σ, γ}, where ET (c) denotes the cth binary variable coded from the C modalities

of the event type variable, xθt (l) is the lth economic covariate, l = 1, . . . , pθ and INT (s)

the sth interaction variable, s = 1, . . . , q. INT (s) is the interaction between category and

continuous covariates10.

5.1 Model estimation

Table 17 in Appendix F displays the results of the unregularized regressions for Model

1 and Model 2. For each model, we find that the event type is a strongly significant

predictor for both parameters. For Model 2, almost all economic covariates exhibit sig-

nificant effects: we find 42 out of 54 parameters to be significant at the 5% test level.

From a theoretical perspective, these results are hardly interpretable and we would pre-

fer a more parsimonious model. Moreover, as shown in our simulation study, potential

nonstationarity and collinearity can distort the size of the tests11.

Table 9 shows the estimated coefficients obtained with the regularized approach based

on LASSO for Model 2. Most variables are not included in the final model. For σ, beside

the event type, only the Italian GDP growth rate and the PRF are selected. For γ, we

find that the Italian unemployment rate, the VIX and the leverage ratio are selected12.

The results obtained with the penalization method for Model 2 are appealing but

rely on the over-simplistic assumption of similar effects across event types. To investigate

potential interactions between event types and other economic factors, we fit Model 3 to the

data. In the rest of this section we focus on this model. Overall, we have 294 parameters

(147 for each distribution parameter) including 1 constant, 6 categories, 20 main effects

and 120 category-specific effects. Relying on the unpenalized approach (Tables 18 and

19 in Appendix F), most interactions exhibit coefficients significantly different from zero,

making this model impossible to interpret since 282 parameters are found to be significant.

At the contrary, using the penalized approach, we obtain a sparser model where only a

limited number of interactions are included.

Table 10 displays the estimated coefficients. For the clarity of the presentation, only

interaction variables with non-zero coefficients have been included. For σ, we see that the

main effect of the PRF disappears. In addition, two interaction variables enter the final

model: one variable related to CPBP13 and the EU GDP growth rate, and the other one

10For clarity, we use different notations for the coefficients of the different types of variables: α for

categorical, β for continuous and δ for interactions.
11As additional evidence, we re-run the regression adding 5 uninformative time series of i.i.d. T(5)

random variables to the equations of the parameters, and repeat the operation 500 times. We see that

67% of the time, we select between 1 and 5 of these variables (results are available upon demand).
12Using BIC1 instead of BIC2, we select the same model plus the LT rate in the equation of γ.
13Customer, Product and Business Practices
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related to EPWS14 and the housing price index growth rate. For γ, we see that only one

new variable enters the final model: the interaction variable between EFRAUD15 and the

deposit growth rate (DGR). This model is way more parsimonious and interpretable than

the unpenalized one.

As shown in the simulation study, the regularization procedure based on BIC2 might

be too stringent. Using BIC1 instead might provide insights on important covariates that

are potentially omitted. Table 11 displays these results. Several new interactions enter the

final model, suggesting additional dependencies with the short term rates, MIB returns,

Italian GDP and VFTSE index. However, almost all of these new variables exhibit very

small regression coefficients (close to the rounding level), suggesting that some of them

might be excluded from the final model with few consequences. Similarly, the selection of

highly correlated covariates indicates that there is redundant information. For example,

VIX and VFTSE are both included in this model, whereas their correlation coefficient is

.956.

5.2 Model comparison

To compare the different models, we first look at the generalized information score (IS)

proposed by Nishii [1984]:

IS(k) = −2L(y; Θ̂,x) + k df(ννν), (15)

with k ∈ [2; 10]. For k = 2 and k = log(n) ≈ 9.29, we obtain the AIC and the BIC,

respectively. Secondly, we look at the in-sample predictive ability of the selected subsets

of variables by computing cross-validated likelihood scores. We do that in a time series

fashion by setting aside all the losses from a given quarter (the validation set) and using

the rest of the data (the training set) to estimate the parameters of the GPD models with

the different subsets of covariates. Then, we compute the sum of the log-likelihood (LLF)

and censored log-likelihood score (CLS) across validation sets. CLS has been proposed by

Diks et al. [2011] to compare the goodness-of-fit in the tail when models have different tail

probabilities. For a given validation set t, the CLS is given by

CLSt = −
nt∑
i=1

{
1(yt,i > κi) log(gpd(yt,i; γ̂(xγt,i), σ̂(xσt,i)))

+ 1(yt,i ≤ κi) log(GPD(κi; γ̂(xγt,i), σ̂(xσt,i)))
}
,

(16)

with 1(·) being an indicator function, and γ̂(xγt,i) and σ̂(xσt,i) are the distribution parame-

ters estimated from the training set. As threshold κ we use the empirical quantile at levels

between .5 and .99, for a given event type. This operation is repeated for the 38 time pe-

riods and we report the total predicted negative log-likelihood and censored log-likelihood

over the validation samples. These quantities are denoted CV (LLF ) and CV (CLS).

14Employee practices and Workplace Safety
15External Fraud
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Our reference model is Model 3 based on BIC2. We compare it to models involving

the additional estimation step and covariates being selected either by means of p-values

or relying on the penalization approach. According to the IS (Figure 4), Model 3 based

on BIC2 is the best for k ∈ [3.5, 8]. Thus, our reference model seems to achieve a good

trade-off between sparsity and complexity. At the contrary, using either the log-likelihood,

the AIC or the BIC (Table 12), we end up selecting Model 3 based on p-values, Model 2

based on p-values or Model 1, respectively. However, these three models have important

shortcomings, namely over-parametrization, absence of interactions and misspecified time-

homogeneity. Their selection indicates that these information criteria penalize either too

few or too much the complexity of the models.

Eventually, considering cross-validated likelihood and censored likelihood scores, the

reference model performs best at all levels (Table 12). CV(LLF) and CV(CLS) are the

smallest among the seven models. Figures 5 and 6 show score ratios and score differences

based on different censoring thresholds. In particular, the reference model performs way

better than Model 3 based on p-values, and reasonably better than Models 1 and 2. These

results indicate also that the fit in the tail of the predicted density is the best with our

reference model16.

Thus, in light of these indicators, we can safely conclude that Model 3 based on BIC2

combines adequately sparsity and a good fit. This result holds both globally and in the

far end of the tail. In the next sections, we focus on this reference model. In Section 5.3

we discuss its economic interpretation and subsequently illustrate the effect of different

economic scenarios on the distribution of Lt in Section 6.

5.3 Economic interpretation of the dependence structure

We draw several economic interpretations from the signs of the estimated regression co-

efficients. Firstly, the signs of the coefficients indicate that an increase in the EU GDP

growth rate is associated with an increase in σ. It suggests that in good economic times

the likelihood of large losses increases. We observe the same effect for γ: a decrease in

the Italian unemployment rate (i.e. an improvement of the general state of the economy)

is associated with an increase in γ. These observations are explained by the fact that in a

booming economy, the size of the transactions increases and so does the potential amount

of money to be lost in case of failure of these transactions. Considering losses related to

court settlement, it has been observed that the amounts of fines and compensation claims

in lawsuits tend also to increase in good economic times [Cope et al., 2012]. In addition,

booming economic conditions may also create incentives to commit frauds [Povel et al.,

2007], increasing the likelihood of large losses related to fraud events. Overall, our findings

are in line with the ones made by Cope et al. [2012].

Secondly, a positive regression coefficient related to the VIX implies that increasing values

of the VIX are associated with larger values of γ, hence with an increased likelihood of

16Results for the adLASSO models can be found in the supplementary material. For a censoring level

above 0.8, Model 3 obtained with LASSO also exhibits the best fit.
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extreme severities. The VIX is considered to convey information on the expected stock

market volatility (i.e. the uncertainty around stock returns) as well as on risk aversion

through a variance premium component [Bekaert et al., 2013]. As shown in Bekaert and

Hoerova [2014], the VIX has a high predictive power on the future level of financial in-

stability through its uncertainty component. In particular, a high level of the VIX is

indicative of a future high level of financial instability. Since most operational losses are

related to financial transactions, it appears coherent that their severity distribution is

impacted by financial instability. For example, losses related to execution, delivery and

process management (EDPM) or to clients, products and business practices (CPBP) con-

sist mostly of losses associated to derivatives and other financial products. A high future

financial instability on the financial markets might be associated with potentially large

unexpected variations of the price of these products. In case of failures related to delivery,

pricing, selling or IT systems, it might easily lead to huge losses. Nevertheless, high values

of the uncertainty component of the VIX are also indicative of a future decrease in eco-

nomic activity [Bekaert and Hoerova, 2014] and, thus, might be indicative of a decrease in

the likelihood of extreme events. However, the effect of the economic activity is already

captured through the GDP and the unemployment rate. Therefore, the observed positive

regression coefficient might reflect mostly the predictive content of the VIX for financial

instability. Lastly, Bekaert et al. [2013] notice that high uncertainty and high risk aversion

lead to a looser monetary policy stance as measured by lower real interest rates. Such

a policy has been shown to incentivize financial actors towards more volatile investment

strategies, opening the door for increasingly costly operational mistakes (see, e.g. Delis

and Kouretas [2011] and Boubaker et al. [2017]). Indeed, when market volatility is high,

huge adverse market movements tend to be more likely. Consequently, operational events

generating market timing issues for both the bank and its customers are aggravated by

these sudden market changes and translate into larger losses.

Thirdly, a negative regression coefficient related to the leverage ratio suggests that an

increase in the leverage ratio during one quarter is associated with a decrease in γ the

next quarter. This result seems counter-intuitive since an increase in leverage is usually

associated with more risks and more risky behaviors of a bank [Bhagat et al., 2015].

However, there is evidence in the literature that leverage ratios are often mean-reverting

[Löffler and Maurer, 2011]. Indeed, banks exhibit a long-run constant leverage ratio,

sometimes altered by structural breaks [Koch, 2014]. Examining UniCredit’s time series

of the leverage ratio, we find evidence of a mean-reverting process. Fitting an AR(1) model

to this time series, we find a significant autoregressive parameter, suggesting a long-term

expected value around 18, which corresponds to a Tier-I capital ratio - with respect to

the total assets - of 5.5%. This dynamic indicates that high values of the leverage ratio

at the end of a period are likely followed by deleveraging actions during the next period,

which corresponds to a less risky situation. Conversely, a low leverage ratio indicates

an important likelihood of increasing the leverage the next period, which corresponds

to a riskier situation in the future. In addition, it has been shown that banks suffering
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from a huge degree of uncertainty regarding future losses tend to self-insure by holding

more capital, i.e. decreasing their leverage ratio [Valencia, 2016]. Hence, a decrease in the

leverage ratio seems to be indicative of a higher probability of large losses in the future,

which is consistent with the negative regression coefficient observed17.

Looking at interactions, we observe first an additional effect of the EU GDP on losses

belonging to the CPBP event type. CPBP losses are directly related to the commercial

activities of the bank, especially the ones concerned with derivatives and other financial

instruments. Thus, this additional sensitivity of CPBP losses towards the economic condi-

tions is likely due to a stronger relationship between the size of the commercial transactions

and the severity of the losses. Secondly, we observe a positive effect of the HPI growth

rate on the likelihood of extreme EPWS losses. Those losses are mostly concerned with

employee litigations. As pointed out by Cope et al. [2012], severance payments awarded

to employees during lawsuits often depend on the economic conditions, the general level

of the wages and past pay level. In periods of growth of the HPI, these three factors are

particularly good in financial institutions and might increase the likelihood of large EPWS

losses.

Lastly, we observe a large positive regression coefficient related to the deposit growth

rate for losses related to EFRAUD (i.e. frauds committed by outsiders, like hacking or

credit card frauds). The sign of this coefficient indicates that when the size of the trans-

actions (here flows of deposits) increases, the size of the related losses increases as well,

in particular the extreme ones. A similar effect has been discovered for internal frauds

by Povel et al. [2007]. Our result is also consistent with Cope et al. [2012] who found a

positive effect of GDP per capita on expected size of EFRAUD losses18.

5.4 Time series perspective

Figures 8 and 9 show the estimated shape and scale parameters, as well as the associ-

ated confidence intervals obtained with parametric bootstrap procedures. We see that σ

decreases drastically in all categories between 2008Q2 and 2009Q2, which coincides with

17Notice also that for Model 2 and some of the alternative models studied in the supplementary material,

we observe that an increase in the PRF is associated with increasing values of σ. This result can be related

to findings in the banking literature [Williams, 2016, Laeven and Levine, 2007], indicating that banks rely-

ing heavily on non-interest incomes are more likely to suffer from agency problems. In particular, Laeven

and Levine [2007] noticed that “insiders may expand the range of financial activities if this diversification

enhances their ability to extract private benefits from the financial institution”, thus leading to an increased

likelihood of large fraud losses from the said insiders. However, when including interactions, this is not

found to be significant anymore.
18In the supplementary material, the interested reader finds the results obtained when using the empirical

90% quantile as the threshold. With this smaller sample, the model is heavily regularized and few covariates

are selected, which could indicate a lack of power as suggested by the simulations. Essentially, we select

the main effect of the VIX for γ and three interactions variables for σ, all related to the EFRAUD event

type (among them DGR x EFRAUD). Using adLASSO, we select similar variables (VFTSE and Italian

unemployment rate for γ, EU GDP x CPBP for σ) but also new ones (unemp. EU x BDSF and VFTSE

x CPBP for γ).
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the peak of the financial crisis. For this time period, we observe a highly negative EU

GDP growth rate. Later, σ increases briefly, in parallel with the economic recovery. Then,

the decrease in the GDP during the Great Recession is synonym of a second important

decrease in σ. We also observe noticeable differences for EPWS and CPBP event type,

due to the additional dependencies with the HPI and the GDP. Thus, during the crisis we

observe a larger decrease in σ, whereas after the crisis we observe smaller increases in σ

for these two event types.

Considering γ, we observe an increase in this distribution parameter during the finan-

cial and Euro crises (from 2008Q1 to 2011Q2), indicating a larger probability of extreme

severity (all other things equal). This increase is linked to the the enormous surge of the

VIX (whose value was multiplied between two and four times in three years) and to a

decrease in the leverage ratio. Afterwards, when the VIX decreases to a more reasonable

level, we observe a steady decrease in γ due to high unemployment rates. The large drop

in γ at the end of 2007 is associated to a large increase in the leverage ratio following Uni-

Credit’s merger with Capitalia. Moreover, we also see a different pattern for the EFRAUD

event type, driven by important variations in the deposit growth rate.

In light of these results, γ and σ seem to follow opposite paths, especially during the

financial and Euro crises: σ exhibits first a huge decrease followed by an increase. At the

contrary, γ displays first a large increase followed by a steady decrease.

To investigate how the severity distribution, as a whole, is influenced far in the tail by

these variations, we plot the estimated 99% quantile over time (Figure 10). For comparison

purposes, we also plot the quantile obtained from Model 1. However, since the losses have

been scaled by an unknown factor, the absolute amount cannot be interpreted and only

relative comparisons are relevant. We see that the IFRAUD event type is particularly

risky compared with other categories. These results also indicate that variations can

be important from one period to another compared to what is implied by Model 1. In

particular, during the financial and the Euro crisis (period 2007Q4-2012Q4), Model 3

exhibits substantially larger estimated quantiles than Model 1, except for EFRAUD: on

average, the differences range between 12% and 27%. These differences highlight the

importance of including dependence features in operational loss models. Variations from

one period to another are, however, limited. We observe median (resp. mean) absolute

variation of the estimated quantile, from one period to another, between 6% and 11%

(resp. 10% and 23%). This relative stability over time is appealing from a practical point

of view to establish the requested operational risk capital19.

Lastly, we see that several estimated values for γ are larger than 1 (especially for

the IFRAUD, EDPM and DPA classes). Practitioners might often consider these results

implausible, since it implies an infinite expectation for the losses exceeding τ . However,

those values are point estimates and need to be associated with confidence intervals. For

IFRAUD, BDSF and DPA at least, the lower bounds of the confidence intervals are almost

always lower than 1, so that we cannot firmly conclude that γ > 1 (see Figure 9). For

19The interested reader can find estimated 95% quantiles in the supplementary material
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EDPM, losses often relate to pricing and delivery issues of derivatives and complex finan-

cial instruments. A value of γ > 1 reflects therefore that the expected loss in this category

is likely to be extremely large, which has been the case in practice. In addition, whereas

Model 1 suggests that γ is constantly larger than 1 for IFRAUD, EDPM and DPA, our

conditional approach suggests that this is the case only in transitory crisis episodes. Over-

all, values of γ > 1 must be read as additional warnings that extreme losses might cause

the bankruptcy of the bank. Given the systemic importance of UniCredit (it was ranked

8th at the global level, in February 2017), the associated global cost of a bankruptcy tends

surely to infinity, as demonstrated by Lehman’s bankruptcy20.

6 Scenario analysis

Lastly, we investigate the implications of using Model 3 as a conditional severity model, to

establish the total operational risk capital charge. Regulatory capital for period t is defined

as Q.999(Lt;xt) s.t. P(Lt ≤ Q.999(Lt;xt)) = .999, i.e. the quantile at the 99.9% level of

the total loss distribution given some explanatory variables xt. Here, xt encompasses all

covariates related to both the severity and the frequency distributions. To obtain estimates

of this quantity, we make the additional assumption that the frequency process of the

exceedances follows an inhomogeneous Poisson process [Embrechts et al., 1997, Chernobai

et al., 2011, Chavez-Demoulin et al., 2016]. More formally, the number of exceedances Nt

over period ]t− 1, t], conditional on a set of covariates xλt , has the following distribution:

Nt|xλt ∼ Poisson(λ(xλt )), (17)

where λ(xλt ) is the expectation of Nt given xλt . We assume the following dependence

structure between λ(xλt ) and xλt :

log(λ(xλt )) = αλ0 +

pλ∑
l

αλl x
λ
t (l). (18)

Using the variables found to be relevant in Model 3 (Italian unemployment rate, EU

GDP growth rate, VIX, leverage ratio, DGR and HPI), we estimate the parameters in

equations (17)-(18) with the penalization procedure. Estimated parameters can be found

in Table 13. Estimated values of λ over time are displayed in Figure 11. We see an

important negative effect of the unemployment rate and the VIX on the frequency rate,

coherent with previous observations. A high DGR is associated with a high frequency of

operational events, especially for IFRAUD and CPBP event types. We also observe an

important impact of the HPI across event types. Over time, the frequency rate displays

high values before the crisis with a surge at the end of 2007, before decreasing until 2014.

20Interestingly, if we look at the Marginal Expected Shortfall of UniCredit over time, e.g. on V-Lab

website, https://vlab.stern.nyu.edu, we find a correspondence between periods of extremely large MES

values and γ > 1. An interesting discussion related to this idea and referring to the dismal theorem of

Weitzman [2009] can be found in Chavez-Demoulin et al. [2016].
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With this full model at hand, we are now able to simulate N = 106 realizations of Lt,

using equation (1). Then, our estimator Q̂.999(Lt;xt) is given by the empirical quantile of

these realizations. The simulation is repeated 100 times for each event type to quantify the

uncertainty around these estimates. Notice that to make comparisons across categories,

we add to the severity of each loss its corresponding threshold τ . We also obtain estimated

quantiles using Model 1 and refer to these estimates as the constant scenario.

For the conditional model, we consider the following values of the explanatory variables

reflecting plausible economic scenarios:

Crisis scenario: 15% Italian unemployment rate, -4% GDP EU growth rate, VIX at

37.5, leverage ratio at 12, HPI growth rate at -5% and a deposit growth rate of -15%.

Moderate scenario: 10% Italian unemployment rate, 1.5% GDP EU growth rate, VIX

at 15, leverage ratio at 20, HPI growth rate at 1% and a 5% deposit growth rate.

Expansion scenario: 7% Italian unemployment rate, 3.5% GDP EU growth rate, VIX

at 20, leverage ratio at 25, HPI growth rate at 10% and a 20% deposit growth rate.

Table 14 gives estimated values of σ, γ and λ associated with these scenarios. We see

that Model 1 provides larger values of γ for all event types, and larger values of λ for

IFRAUD and EDPM compared with Model 3.

Figure 12 shows boxplots of the estimated quantiles for the different configurations.

We see that the constant scenario gives the largest estimates. This is due to γ and σ taking

simultaneously large values. At the contrary, our regression framework allows accounting

for the opposite effects of the financial instability on the one side (responsible for an

increase in the risk) and bad macroeconomic conditions on the other side (responsible for

a decrease in the risk). Discrepancies with respect to the expansion scenario vary from

5% (for EFRAUD) to 350% (for EDPM). Pooling all event types, the expansion scenario

implies a 70% reduction in requested capital compared with the constant approach.

Overall, IFRAUD, EDPM and CPBP appear to be the main contributors to the total

risk. The risk increases for all event types shifting from the crisis scenario to the expansion

scenario. For IFRAUD, a large quantile of the total loss is due to the severity distribution

exhibiting a particularly fat tail (γ close to 1, σ between 2 to 4 times larger than the

other event types). It leads to a huge requested capital, despite a low frequency of events

(between 2 and 10 events per quarter, on average). EDPM associates a high γ with a

high frequency rate, whereas CPBP combines a high σ with even higher frequency rates.

Across scenarios, a shift from the crisis scenario to the moderate scenario leads to a 50%

increase in the total requested capital, whereas a shift from the moderate scenario to the

expansion scenario doubles the requested capital.

These results suggest that the conditional approach achieves more reasonable capital

charges than an approach based on the event type only. It also indicates that in good

22



economic times, a company should set aside more capital to cover itself, especially against

operational losses related to selling and producing financial products (i.e. EDPM and

CPBP event types), and to losses related to internal frauds. In times of crisis, however,

even if IFRAUD losses have a severity distribution exhibiting a larger γ, their scale pa-

rameter and expected frequency rate are drastically reduced, leading to a smaller capital

charge. Thus, this conditional framework avoids procyclicality in the considered crisis

scenario.

7 Conclusion

In this paper, we detail a complete statistical procedure to study and model the severity

distribution of extreme operational losses, given a particular economic context. To do so,

we develop a Generalized Pareto (GP) regression framework, where relevant variables are

automatically selected by means of a penalized-likelihood approach. The important choice

of the penalty parameter is investigated in a simulation study, which suggests that the

BIC is an adequate criterion to perform this selection. It also reveals that the penalized

approach prevents us from spurious findings when some covariates are integrated time

series. Subsequently, this procedure is applied to a novel dataset of operational losses from

the bank UniCredit, with the objective to shed light on potential economic determinants

of the severity distribution.

Our empirical study highlights interesting associations between the parameters of the

severity distribution and several economic factors. Thanks to the proposed regulariza-

tion procedure, our analysis selects a limited number of predictors and facilitates the

interpretation of the results. We observe a strong association with the VIX, the Italian

unemployment rate, the EU GDP growth rate and the leverage ratio. In addition, the de-

posit growth rate and the change in EU residential housing prices were found relevant for

external frauds (EFRAUD) and employee practices and workplace safety (EPWS) event

types, respectively. In view of our findings, higher unemployment rate and lower GDP

growth rate imply a lower likelihood of extreme severities. At the contrary, higher uncer-

tainty, risk aversion and future financial instability on the financial markets are synonyms

of a higher likelihood of extreme losses. Higher deposit growth rates as well as higher

housing prices are also associated with a larger likelihood of extreme losses for EFRAUD

and EPWS event types. Eventually, we face the puzzling discovery that a low leverage

ratio at the beginning of a period is associated with a high likelihood of extreme losses

during that period. To explain this relation, we suggest that a low leverage ratio indicates

an imminent leveraging phase or a self-insurance mechanism against risk taking, both

situations leading to larger losses.

A cross-validation procedure suggests that selecting this small - but adequate - number

of predictors provides the best fit. Focusing on the tail of the distribution with the help of

a censored likelihood score [Diks et al., 2011], we find that our model with interactions is

superior to the considered alternatives. In terms of risk management, it suggests that our
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model should deliver a superior performance to compute good predicted risk measures,

like quantiles far in the tail.

To study the total loss distribution, we fit an additional inhomogeneous Poisson model

to the frequency process. This model is combined with the severity model to simulate

the total loss distribution via Monte Carlo simulations, allowing us to compute the re-

quested operational risk capital for three economic scenarios. This exercise suggests that

IFRAUD, CPBP and EDPM event types are by far the biggest consumers of regulatory

capital. We notice that taking into account the heterogeneity in the data reduces the cap-

ital charge compared to a model with constant parameters. It also highlights the fact that

in good economic times (e.g. times exhibiting high GDP growth rate, low unemployment

rate, strong deposit growth and an increase in housing prices), the implied capital charge

increases drastically, especially for event types related to the commercialization of finan-

cial products and to internal frauds. In terms of regulatory consequences, this framework

avoids unnecessary procyclicality and might be used to streamline the Advanced Measure-

ment Approach, an important topic in the current operational risk literature [Peters et al.,

2016].

Regarding extensions of the present work, the combination of the proposed procedure

with copulas as in Brechmann et al. [2014] to take into account the intrinsic correlation

across event types might provide a more general set-up. In addition, investigating a larger

dataset covering several banks might also be of interest to generalize our empirical find-

ings. Then, considering other types of penalties (e.g. fused LASSO or elastic net) in the

regularization procedure might allow studying more complex regression frameworks, espe-

cially regarding interactions. Lastly, notice that the detailed econometric procedure might

be used for analyzing different data with a GP regression approach. Among others, appli-

cations in climatology [Kharin et al., 2013], medicine [Das et al., 2010] or scientometrics

[van Zyl, 2013] may benefit from the proposed technique.
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Appendix A Sensitivity analysis

This appendix illustrates the claim made in Section 1 regarding the importance of γ. To do

so, we perform a small simulation study to show the effect of a variation in the frequency

parameter (λ) or in the severity parameters (γ and σ) on the 99.9% quantile of Lt as given

by equation (1). To do so, we generate 100,000 realizations of Lt with Nt
iid∼ Poisson(λ)

and Zt,i
iid∼ GPD(γ, σ) with λ = 10, γ = .35 and σ = 5 (configuration I). We take the

99.9% empirical quantile as a quantile estimate. This operation is repeated 30 times. A

similar operation is performed in changing the parameters in the following way: λ = 15

(50% increase), other parameters stay the same (configuration II), and γ = .42, σ = 6

(20% increase in both parameters), λ stays equal to 10 (configuration III). Figure 13 shows

the boxplot of the estimated quantiles in the three different configurations. Clearly, 20%

variations in the severity parameters cause way bigger changes compared to a 50% increase

in the quantile’s value. This suggests that the severity parameters are the main drivers of

the total loss distribution.

Appendix B Testing for nonstationarity of the losses

In this Appendix, we discuss the nonparametric bootstrap approach used in Section 2 to

test if T samples come from the same distribution. Our goal is to avoid relying on existing

tests that make particular assumptions on the conditional distributions of the considered

variable (e.g. normality, equality of variance, symmetry), as well as to correct the test level

for the multiple comparison issue. Our reasoning is the following:

(I) Under the null hypothesis of no difference among conditional distributions over time,

the loss sizes in each group t = 1, . . . , T are independently drawn from a single un-

known distribution F . Consequently, the expected value of the Kolmogorov-Smirnoff

(KS) statistics should be close to zero.

(II) Under assumption (I), the empirical distribution obtained by pooling together losses

from different quarters is a good estimator F̂ of F .

(III) The number of losses in each group is assumed constant and equal to nt, for t =

1, . . . , T .

Thus, under these conditions, a suitable strategy to test if at least one group has a different

distribution than the T − 1 other groups is the following:

1. For t = 1, . . . , T , draw a bootstrap sample y∗t of size nt from y = (y1, . . . ,yT ).

2. Compute the bootstrap vector δ∗ = (δ∗1 , . . . , δ
∗
T !/(2!(T−2)!)) of all pairwise KS statistics.

3. Repeat steps 1 and 2 a large number of times B (e.g. B = 2, 000) to obtain the bootstrap

multivariate distribution of the vector δ (i.e. the vector of true pairwise KS statistics under

the null of no differences among conditional distributions).

4. Compute a bootstrap estimator V̂ ∗ of Var(δ), and use its square root to standardized the B

vectors δ∗.
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5. Obtain m∗ = max
i
δ∗i /
√
V̂ ∗, i.e. the largest difference among all pairwise standardized statis-

tics, for all bootstrap samples.

6. We reject the null hypothesis of no difference with a test level α if at least one element of

δ̂ (i.e. the vector of observed differences from the original sample) is not in
[
0; q∗1−α · V̂ ∗

]
,

where q∗1−α is the 1− α quantile of the bootstrap distribution of m∗.

This procedure takes into account the fact that the null hypothesis is a multiple hypothesis.

References about the least favourable alternative principle are Scholz and Stephens [1987],

White [2000] and Saadoghi-Alvandi and Malekzadeh [2014]. The results of this test can

be found in Table 15. Notice that this test is likely to exhibit a low power, due to the use

of the least favourable alternative. Power issues are also frequent with tests based on the

KS test statistic [White, 2000]. Another possibility to test for a constant distribution over

time consists in using a moment-based hypothesis test. As an example, we compute 95%

confidence intervals over time, for the null hypothesis of a constant variance (Figure 14).

This assumption is rejected for all event types.

Appendix C Frequency process

In this Appendix, we detail first the likelihood ratio test used to test the homogeneity

hypothesis of the Poisson process in Section 2. More formally, the null hypothesis of the

test is the following:

H0 : Nt ∼ Poisson(λt), λ1 = λ2 = · · · = λT = λ+,

for t = 1, · · · , T . We have at our disposal a sample ΛΛΛ = (n1, · · · , nT ). Following Feng et al.

[2012], under the null hypothesis the maximum likelihood estimator (MLE) λ̂+ of λ+ is

given by the sample mean Λ̄, whereas under the alternative, the MLEs (λ̂t, i = 1, · · · , T )

are given by ΛΛΛ. Then, the likelihood ratio test statistics is given by

LRT = 2

T∑
t=1

nt log
(nt

Λ̄

)
.

We use a parametric bootstrap procedure to obtain the rejection region. We use the

following algorithm:

1. Compute Λ̄.

2. For b = 1, · · · , B, with B sufficiently large (e.g. 2,000), draw a bootstrap sample Λ∗b of size

T from a Poisson(Λ̄) distribution.

3. For b = 1, · · · , B, compute Λ̄∗b and LRT ∗b , i.e. the MLE under the null and the corresponding

likelihood ratio statistics in the bootstrap world, respectively.

4. We reject the null hypothesis if LRT is greater than the 1− α empirical quantile of Λ̄∗b .

With this framework, we take into account the size of our sample (T = 38), as well as

the estimation error on λ+. Results of this test can be found in Table 16, with different

thresholds defining different realizations of Nt.
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Second, we provide the detailed numerical results of the regression analysis for the

frequency process done in Section 6. Table 13 provides the estimated coefficients whereas

Figure 11 displays the estimated λ over time and across event types.

Appendix D Explanatory variables

In this section, we provide detailed descriptions of the covariates introduced in Sec-

tion 2. Firm-specific variables are internal ratios and have been provided by the op-

erational risk department of UniCredit. Macroeconomic and financial variables have

been downloaded from Thomson Reuters Datastream for S&P500, TRSI, MIB, VIX,

VFTSE and the unemployment rate, from EUROSTAT website for the GDP growth rates

(http://ec.europa.eu/eurostat/data/database), from FRED, the database of the Federal

Reserve Bank of St. Louis (https://fred.stlouisfed.org) for the housing price index and

the Italian interest rates (notice that FRED also aggregates data from the OECD website

- http://stats.oecd.org - where detailed definitions of the time series are provided). Last,

the monetary aggregate M1 and the consumer loans rates have been downloaded from

ECB database.

Event type (ET): internal classification of the recorded event, indicating a difference in terms of the

physical process of the loss formation. There are 7 different types of events, based on the Basel classifi-

cation [Basel Committee on Banking Supervision (BCBS), 2016]. Regulators explicitly expect banks to

model the operational losses according to this internal classification. The event type is coded into 6 binary

variables and the reference category is DPA.

Tier-I capital ratio (TCR): ratio between the core capital of the bank (equity capital, disclosed reserves,

preferred stocks) and the total asset. The Basel framework focuses on this ratio, with the goal to ensure

that the risk exposure of the bank is backed by sufficient capital [Basel Committee on Banking Supervision

(BCBS), 2010].

Leverage ratio (LR): total value of the assets divided by the value of the equity. A low leverage ratio

indicates a balanced investment policy, relying on internal funds. At the contrary, a highly leveraged bank

relies heavily on external debts. The revised Basel III framework plans a mandatory leverage ratio for

the 2018 horizon, with the goal to limit the probability of a bank run and to compensate for imperfect

information about the asset’s quality of a bank [Dermine, 2015].

Percentage of the revenue coming from fees (PRF): proportion of non-interest income. This quan-

tity conveys information about the economic well-being and the risk-taking behavior in the bank, especially

related to agency issues [Williams, 2016].

Deposit growth rate (DGR): proportional variation of total deposits from one quarter to another (in

%). This quantity can be seen as a measure of the bank’s funding dynamic.

Unemployment rate (UR IT and UR EU): proportion of people searching for work among the active

population. This quantity provides information about the general state of the economy. We consider both

the unemployment rate in Italy and in the European Union (EU).

Gross domestic product (GDP) growth rate: measure of the variation of wealth, over time (in yearly
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%). It can be a determinant of fine amounts in lawsuits [Cope et al., 2012], beside measuring also the

health of an economy. The data have been adjusted for seasonality. As for the unemployment rate, we

consider the GDP in Italy and in the EU.

Housing price (HPI) growth rate: growth rate of residential property prices index for the Euro area,

in yearly %. It measures the dynamics of the prices on the housing market, mortgage lending being an

important business for banks.

Monetary aggregate (M1) growth rate: Average monthly growth rate (in yearly %) over the quar-

ter of Euro M1 aggregate (defined as currency, i.e. banknotes and coins, as well as balances which

can immediately be converted into currency or used for cashless payments, i.e. overnight deposits, see

https://www.ecb.europa.eu). It provides information regarding money supply dynamics and monetary

policy.

3-month Italian interbank rate: short term interest rate for Italy, computed by OECD. This rate refers

to the three month interbank offer rate attaching to loans given and taken amongst banks for any excess

or shortage of liquidity over several months. This quantity indicates the price of its short-term borrowing.

It conveys information about the liquidity and the general state of the financial system.

10-year Italian government bond yield: long-term interest rate for Italy, computed by OECD. As

defined by the OECD website, such interest rates are the ones implied by the prices at which the govern-

ment bonds are traded on financial markets. Long-term interest rates influence investment expenses. Low

long-term interest rates encourage investment in new equipment and high interest rates discourage it.

Consumption loan rate (LOR): Floating rate or initial rate fixation of up to one year, for Euro-

denominated consumption loans made by Euro-area households (in yearly percentage, on new business).

It provides information regarding the cost of consumption goods. As for GDP and UR, we use LOR at

the Italian and the EU level.

VIX: Volatility index, computed from a panel of S&P500 options prices. Also known as a fear index, it

was shown to be a good proxy for risk aversion [Bekaert et al., 2013]. It also reflects the uncertainty on

stock markets [Bekaert and Hoerova, 2014].

VFTSE: Volatility index, based on options of the FTSE100 index. Contrary to the VIX based on Ameri-

can stocks, VFTSE is based on UK stocks and reflects the uncertainty on European markets. Similarly to

the VIX, it might also convey information regarding risk aversion. VFTSE has been preferred to VSTOXX

due to data accessibility reasons and its important use among practitioners.

S&P500 returns: Quarterly log-returns of S&P500 stock index, based on 500 large capitalizations in the

U.S, used as a measure of the overall dynamic of financial markets.

Thomson Reuters European stock index (TRSI) log-returns: Quarterly returns of TRSI index,

based on around 2,000 capitalisations in Europe, used as a measure of the dynamic of European financial

markets.

Milano Italia Borsa (MIB) returns: Quarterly log-returns of MIB index, based on the largest 40

capitalisations on Milan stock exchange, and used as a measure of the dynamic of Italian financial markets.

UniCredit stock returns (SR): Quarterly log-returns of UniCredit stock price at Milan stock exchange.

It measures the evolution of UniCredit’s value in the eyes of the financial market.
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Appendix E Regularization procedure

In the present situation of conventional LASSO, suitable approximations for the penalty

and its first derivative are the following:

|ξ| ≈
√
ξ2 + c, (19)

∂|ξ|/∂ξ ≈ (ξ2 + c)−1/2ξ, (20)

where c is a small constant21. Throughout the paper, we use c = 10−7 (Oelker and Tutz

[2017] recommend to use at least c = 10−5). Then, the linearized problem

spen(Θ(k)) + Hpen(Θ(k))(Θ−Θ(k)) = 0 (21)

can be solved linearly, where spen and Hpen denote the gradient and Hessian of the

penalized-likelihood function. It consists in computing the sequence

Θ̂(k+1) = Θ̂(k) −Hpen(Θ̂(k))
−1spen(Θ̂(k)) (22)

until convergence22. Starting values are obtained, e.g. from unpenalized regression. For

more technical details, especially how Hpen and spen can be approximated, see Oelker and

Tutz [2017]. Note that due to the imposed penalty from equation (12) the inversion of the

Hessian in equation (22) is unproblematic as long as νσ and νγ are chosen large enough.

Appendix F Unpenalized estimation

In this section, we provide the estimated parameters of the unpenalized estimates, for

Models 1 to 3 (Tables 17 to 19) .

21Note that due to the quadratic approximation of the penalty in (19) and (20), coefficient estimates

cannot be set exactly to zero. Instead, coefficients that should be zero differ from zero in some rear

decimals. For this reason, one usually uses rounded coefficients with the consequence that estimates very

close to zero are simply set to zero and the corresponding covariates are excluded from the model (see, for

example, Table 1 in Schauberger and Tutz [2017]). In the present work, we rounded coefficient estimates

to the third decimal, see Table 9.
22In terms of stopping conditions, we perform up to 200 iterations or stop the algorithm if we observe

proportional variations lower than 10−8 for the vector of parameters and the objective function.
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Figure 1: For each event type, registered (log) operational losses over time. Red: third quartile.
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across all event types, over the period 01/2005 - 06/2014.
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are expressed in %.
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3. Dashed: Model 2. ♦ (resp. �): selection based on BIC2 (resp. BIC1). H: selection based on

p-values. Model 3 based on p-values has been omited for clarity.
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Figure 7: QQ-plots of the (pseudo-)residuals for Model 1, and penalized Models 2 and 3 with BIC2.

Dashed: quantiles of U(0,1); Diamond: quantiles of the residuals. The residuals are obtained applying

the probability integral transform to the exceedances.
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Figure 8: Solid: estimated scale parameter σ over time and across categories, for Model 3 with penal-

ization approach and re-estimation step. Dotted: 95% confidence intervals. Dashed: estimation from

Model 1.
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Figure 9: Solid: estimated shape parameter γ over time and across categories, for Model 3 with penal-

ization approach and re-estimation step. Dotted: 95% confidence intervals. Dashed: estimation from

Model 1.
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Figure 10: Solid: estimated quantile at level 99% of the severity distribution, over time, for Model 3

(penalized estimate based on BIC2 with re-estimation step). Dotted: 95% confidence interval obtained

with parametric bootstrap (B = 5, 000). Dashed: estimated quantile for Model 1.
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Figure 11: . Solid: Estimated frequency parameter λ(x) over time, for Model 3. Dotted: 95% bootstrap

confidence interval.
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different event types. From left to right: constant, crisis, moderate and expansion scenarios.
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Figure 14: Solid line: standard deviation over time and per categories. Dotted: bootstrap 95% confidence

interval under the null of a constant variance, obtained with B = 2, 000.

Tables

Main text

Table 1: Abbreviations for the different event types.

Event type Description

IFRAUD Internal frauds

EFRAUD External frauds, related to payments and others

EPWS Employment practices and workplace safety

CPBP Clients, products and business practices, related to derivatives, financial instruments and others

DPA Damages to physical assets

BDSF Business disruptions and system failures

EDPM Execution, delivery and process management,related to financial instruments, payments and others
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Table 2: Descriptive statistics of the losses (adjusted for inflation), per event type and pooled together.

Quantities other than skewness and number of losses are in 1,000e. Upper panel: complete dataset.

Lower panel: losses larger than the third quartile only.

No threshold

ET Mean Std. Dev. Median 3rd quartile Skewness # losses

IFRAUD 151.83 1,143.28 13.64 53.03 21.28 1,271

EFRAUD 21.93 490.36 4.77 10.59 73.51 6,391

EPWS 39.01 343.46 6.99 19.48 37.57 2,292

CPBP 77.53 1,587.18 10.36 27.11 48.71 16,138

BDSF 15.73 42.99 4.83 11.2 7.66 674

EDPM 40.31 495.05 5.43 12.74 40.51 13,209

DPA 10.94 70.50 3.47 5.75 23.35 896

All 54.48 1,076.86 6.75 18.63 64.85 40,871

τ = Q(0.75)

ET Mean Std. Dev. Median 3rd quartile Skewness # losses

IFRAUD 568.05 223.7 143.48 350.62 10.83 318

EFRAUD 74.62 978.98 25.87 46.54 36.81 1,598

EPWS 136.66 678.02 49.23 100.41 19.14 573

CPBP 282.99 3,165.96 56.5 105.55 24.36 4,034

BDSF 49.06 77.09 21.51 51.58 3.99 168

EDPM 146.21 982.65 28.31 61.79 20.4 3,302

DPA 33.97 138.69 8.99 15.42 11.82 224

All 197.55 2,147.51 41.67 84.2 32.51 10,217

Table 3: Summary of the explanatory variables. See Appendix D for a full description.

Firm-specific Macroeconomic Financial

Event type (ET) Italian unemployment rate (UR IT) S&P 500 returns

Leverage ratio (LR) EU unemployment rate (UR EU) TR EU Stock Index returns (TRSI)

Tier-I capital ratio (TCR) Italian GDP growth rate (GDP IT) FTSE MIB index returns (MIB)

% revenue coming from fees (PRF) EU GDP growth rate (GDP EU) VIX

Deposit growth rate (DGR) EU housing price growth rate (HPI) VFTSE

UniCredit stock returns (SR) Monetary aggregate M1 growth rate (M1) 3-month Italian interbank rate

Consumer loans rate < 1 year in Italy (LOR IT) 10-year Italian government bond yield

Consumer loans rate < 1 year in EU (LOR EU)
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Table 4: Ratio of Mean Squared error (RMSE) between penalized and unpenalized estimates, false

positive rate (f.p.), true positive rate (t.p.) and correct classification rate (CCR). Predictor variables are

i.i.d. N(0,1) distributed, p = 15 and the penalty is either LASSO or adLASSO. The lines p-val. relate to

f.p. and t.p. when the selection is performed with Wald tests at the 5% test level. CCR is defined as the

number of active covariates selected plus the number of uninformative covariates not selected, divided

by the total number of covariates.

iid N(0,1) predictors, p = 15, αγ = {−.9;−.3; .2; .2}, ασ = {4; .6; .4;−.3}

Sample size Penalty Selection method RMSE RMSE(+) f.p.(σ) t.p(σ) f.p.(γ) t.p.(γ) CCR

n = 1000 none p-val. 1 0.50 0.066 1 0.068 0.763 0.928

LASSO AIC1 0.37 0.89 0.571 1 0.556 0.972 0.584

AIC2 0.42 0.75 0.36 1 0.311 0.892 0.744

BIC1 0.42 0.63 0.254 1 0.184 0.87 0.827

BIC2 0.65 0.56 0.071 1 0.014 0.465 0.915

adLASSO AIC1 0.42 0.82 0.351 1 0.382 0.953 0.727

AIC2 0.41 0.66 0.158 1 0.224 0.878 0.848

BIC1 0.36 0.5 0.064 1 0.082 0.807 0.928

BIC2 0.43 0.47 0.011 1 0.017 0.592 0.949

n = 2000 none p-val. 1 0.51 0.062 1 0.07 0.943 0.946

LASSO AIC1 0.49 0.93 0.562 1 0.565 0.998 0.587

AIC2 0.54 0.82 0.349 1 0.385 0.988 0.73

BIC1 0.61 0.69 0.235 1 0.197 0.98 0.84

BIC2 0.91 0.62 0.045 1 0.035 0.805 0.951

adLASSO AIC1 0.47 0.83 0.323 1 0.339 0.993 0.757

AIC2 0.47 0.68 0.136 1 0.202 0.977 0.874

BIC1 0.46 0.50 0.047 1 0.06 0.943 0.955

BIC2 0.54 0.52 0.006 1 0.021 0.828 0.973

n = 4000 none p-val. 1 0.48 0.055 1 0.061 1 0.957

LASSO AIC1 0.545 0.93 0.542 1 0.525 1 0.609

AIC2 0.591 0.86 0.379 1 0.42 1 0.707

BIC1 0.71 0.70 0.238 1 0.189 1 0.843

BIC2 1 0.47 0.047 1 0.055 0.99 0.962

adLASSO AIC1 0.51 0.74 0.243 1 0.282 1 0.808

AIC2 0.48 0.62 0.115 1 0.186 1 0.89

BIC1 0.41 0.44 0.041 1 0.054 0.998 0.965

BIC2 0.46 0.34 0.001 1 0.015 0.988 0.993
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Table 5: RMSE, f.p. rate, t.p. rate and CCR when predictor variables are i.i.d. N(0,1) distributed, p = 25

and the penalty is either LASSO or adLASSO.

iid N(0,1) predictors, p = 25, αγ = {−.9;−.3; .2; .2}, ασ = {4; .6; .4;−.3}

Sample size Penalty Selection method RMSE RMSE(+) f.p.(σ) t.p(σ) f.p.(γ) t.p.(γ) CCR

n = 1000 none p-val. 1 0.4 0.079 1 0.081 0.765 0.919

LASSO AIC1 0.28 0.83 0.508 1 0.489 0.953 0.578

AIC2 0.29 0.63 0.285 1 0.247 0.855 0.768

BIC1 0.26 0.48 0.206 1 0.144 0.862 0.845

BIC2 0.38 0.36 0.06 1 0.012 0.408 0.934

adLASSO AIC1 0.34 0.77 0.342 1 0.349 0.932 0.706

AIC2 0.31 0.59 0.156 1 0.211 0.873 0.839

BIC1 0.22 0.38 0.064 1 0.077 0.783 0.928

BIC2 0.27 0.29 0.01 1 0.016 0.542 0.962

n = 2000 none p-val. 1 0.4 0.071 1 0.063 0.937 0.94

LASSO AIC1 0.34 0.89 0.505 1 0.498 0.998 0.579

AIC2 0.36 0.70 0.301 1 0.266 0.987 0.762

BIC1 0.38 0.56 0.191 1 0.15 0.978 0.855

BIC2 0.66 0.43 0.03 1 0.012 0.718 0.965

adLASSO AIC1 0.37 0.79 0.308 1 0.34 0.997 0.728

AIC2 0.32 0.57 0.126 1 0.182 0.983 0.87

BIC1 0.28 0.38 0.045 1 0.065 0.955 0.951

BIC2 0.39 0.36 0.003 1 0.012 0.763 0.979

n = 4000 none p-val. 1 0.38 0.057 1 0.052 0.995 0.954

LASSO AIC1 0.40 0.91 0.509 1 0.504 1 0.575

AIC2 0.45 0.73 0.29 1 0.299 0.998 0.753

BIC1 0.49 0.57 0.172 1 0.143 1 0.868

BIC2 0.75 0.28 0.024 1 0.018 0.982 0.982

adLASSO AIC1 0.41 0.69 0.211 1 0.263 1 0.8

AIC2 0.35 0.56 0.1 1 0.18 1 0.882

BIC1 0.26 0.37 0.035 1 0.057 1 0.961

BIC2 0.33 0.25 0.003 1 0.01 0.972 0.993
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Table 6: RMSE, f.p. rate, t.p. rate and CCR when predictor variables are i.i.d. N(0,1) distributed, p = 50

and the penalty is either LASSO or adLASSO.

iid N(0,1) predictors, p = 50, αγ = {−.9;−.3; .2; .2}, ασ = {4; .6; .4;−.3}

Sample size Penalty Selection method RMSE RMSE(+) f.p.(σ) t.p(σ) f.p.(γ) t.p.(γ) CCR

n = 1000 none p-val. 1 0.25 0.116 1 0.131 0.752 0.879

LASSO AIC1 0.06 0.3 0.483 1 0.439 0.952 0.574

AIC2 0.04 0.13 0.195 1 0.143 0.765 0.837

BIC1 0.04 0.11 0.155 1 0.112 0.81 0.871

BIC2 0.05 0.05 0.055 1 0.004 0.353 0.954

adLASSO AIC1 0.09 0.32 0.343 1 0.332 0.902 0.687

AIC2 0.06 0.18 0.161 1 0.166 0.81 0.844

BIC1 0.03 0.08 0.06 1 0.065 0.738 0.934

BIC2 0.04 0.05 0.006 1 0.023 0.59 0.975

n = 2000 none p-val. 1 0.29 0.074 1 0.071 0.927 0.931

LASSO AIC1 0.21 0.79 0.468 1 0.449 0.993 0.578

AIC2 0.18 0.44 0.195 1 0.165 0.945 0.833

BIC1 0.17 0.37 0.144 1 0.111 0.955 0.882

BIC2 0.29 0.19 0.012 1 0.008 0.687 0.981

adLASSO AIC1 0.27 0.71 0.306 1 0.328 0.982 0.708

AIC2 0.18 0.45 0.132 1 0.166 0.967 0.862

BIC1 0.12 0.24 0.044 1 0.055 0.937 0.953

BIC2 0.17 0.16 0.002 1 0.006 0.72 0.988

n = 4000 none p-val. 1 0.31 0.066 1 0.059 0.992 0.942

LASSO AIC1 0.27 0.86 0.453 1 0.489 1 0.567

AIC2 0.24 0.54 0.222 1 0.181 0.995 0.815

BIC1 0.24 0.43 0.125 1 0.115 0.995 0.889

BIC2 0.4 0.15 0.01 1 0.011 0.972 0.989

adLASSO AIC1 0.23 0.57 0.238 1 0.183 0.997 0.806

AIC2 0.19 0.43 0.107 1 0.12 0.993 0.895

BIC1 0.13 0.28 0.04 1 0.052 0.992 0.958

BIC2 0.17 0.13 0.001 1 0.005 0.96 0.996
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Table 7: RMSE, f.p, t.p. and CCR when predictor variables are collinear, follow either a t-distribution

with 5 degrees of freedom (T(5)), a Gaussian AR(1) process with parameter .7 and no constant, a mix

between AR(1) and a Gaussian random walk (RW1) or a Gaussian random walk only (RW2). n = 4000

and p = 50. The penalty is either LASSO or adLASSO.

Alternative models, n = 4000, p = 50, αγ = {−.9;−.3; .2; .2}, ασ = {4; .6; .4;−.3}

Model Penalty Selection method RMSE RMSE(+) f.p.(σ) t.p(σ) f.p.(γ) t.p.(γ) CCR

Collinear none p-val. 1 0.36 0.120 1 0.116 0.995 0.891

LASSO AIC1 0.25 0.66 0.453 1 0.436 0.998 0.589

AIC2 0.28 0.45 0.272 1 0.217 0.977 0.774

BIC1 0.35 0.35 0.14 1 0.127 0.945 0.876

BIC2 0.66 0.42 0.016 1 0.010 0.593 0.976

adLASSO AIC1 0.2 0.47 0.194 1 0.196 0.997 0.821

AIC2 0.18 0.35 0.109 1 0.13 0.985 0.89

BIC1 0.17 0.2 0.031 1 0.045 0.977 0.964

BIC2 0.25 0.18 0.001 1 0.006 0.835 0.992

T(5) none p-val. 1 0.31 0.064 1 0.060 1 0.943

LASSO AIC1 0.27 0.86 0.451 1 0.470 1 0.576

AIC2 0.24 0.53 0.207 1 0.183 1 0.821

BIC1 0.23 0.42 0.121 1 0.108 1 0.895

BIC2 0.37 0.16 0.009 1 0.013 0.972 0.989

adLASSO AIC1 0.24 0.57 0.217 1 0.192 1 0.812

AIC2 0.18 0.42 0.094 1 0.114 1 0.904

BIC1 0.13 0.28 0.038 1 0.051 0.997 0.959

BIC2 0.17 0.13 0.001 1 0.007 0.97 0.995

AR(1) none p-val. 1 0.32 0.062 1 0.061 0.993 0.943

LASSO AIC1 0.27 0.84 0.435 1 0.443 1 0.596

AIC2 0.27 0.53 0.203 1 0.178 0.995 0.825

BIC1 0.27 0.44 0.124 1 0.116 0.997 0.890

BIC2 0.45 0.17 0.012 1 0.010 0.953 0.989

adLASSO AIC1 0.24 0.56 0.208 1 0.182 0.997 0.821

AIC2 0.21 0.44 0.098 1 0.123 0.993 0.898

BIC1 0.15 0.29 0.038 1 0.053 0.992 0.958

BIC2 0.2 0.14 0.001 1 0.005 0.952 0.996

RW1 none p-val. 1 0.96 0.710 1 0.710 0.997 0.347

LASSO AIC1 0.01 0.075 0.315 1 0.235 1 0.747

AIC2 0.01 0.02 0.103 1 0.094 1 0.909

BIC1 0.01 0.01 0.060 1 0.049 1 0.950

BIC2 0.01 0.00 0.012 1 0.008 0.997 0.991

adLASSO AIC1 0.08 0.25 0.262 1 0.259 1 0.76

AIC2 0.03 0.1 0.09 1 0.146 0.997 0.891

BIC1 0.01 0.01 0.02 1 0.053 0.987 0.966

BIC2 0.01 0.01 0.006 1 0.025 0.917 0.983

RW2 none p-val. 1 0.96 0.717 1 0.729 0.847 0.330

LASSO AIC1 0.04 0.1 0.364 1 0.237 0.730 0.715

AIC2 0.03 0.06 0.203 0.982 0.148 0.647 0.827

BIC1 0.04 0.04 0.150 0.963 0.105 0.613 0.870

BIC2 0.04 0.04 0.109 0.938 0.040 0.380 0.911

adLASSO AIC1 0.122 0.3 0.265 0.988 0.279 0.652 0.739

AIC2 0.09 0.2 0.145 0.982 0.193 0.6 0.832

BIC1 0.06 0.05 0.05 0.975 0.078 0.488 0.925

BIC2 0.06 0.04 0.021 0.963 0.039 0.353 0.952
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Table 8: RMSE between penalized and unpenalized estimates, f.p., t.p. and CCR when the penalty is

either LASSO or adLASSO, for a mix of time series models, with T = 50 and nt ∈ {80; 200}, leading to

final sample size n ∈ {4000; 10000}. See supplementary materials for more details.

Alternative model (mixed), p = 50. αγ = {−.9;−.3; .2; .2}, ασ = {4; .6; .4;−.3}

Sample size Penalty Selection method RMSE RMSE(+) f.p.(σ) t.p(σ) f.p.(γ) t.p.(γ) CCR

n = 4000 none p-val. 1 1.058 0.873 0.97 0.91 0.925 0.177

LASSO AIC1 0.004 0.009 0.34 1 0.312 0.875 0.693

AIC2 0.003 0.006 0.216 1 0.209 0.832 0.8

BIC1 0.003 0.004 0.142 1 0.145 0.783 0.862

BIC2 0.005 0.004 0.059 0.998 0.05 0.465 0.934

adLASSO AIC1 0.009 0.019 0.321 0.975 0.319 0.695 0.695

AIC2 0.009 0.015 0.23 0.968 0.223 0.618 0.779

BIC1 0.006 0.007 0.131 0.942 0.13 0.508 0.864

BIC2 0.007 0.007 0.086 0.925 0.096 0.412 0.897

n = 10000 none p-val. 1 1.051 0.868 0.99 0.881 0.918 0.193

LASSO AIC1 0.006 0.011 0.357 1 0.238 0.988 0.726

AIC2 0.006 0.009 0.231 1 0.205 0.985 0.799

BIC1 0.007 0.006 0.139 1 0.157 0.962 0.863

BIC2 0.009 0.006 0.072 1 0.099 0.848 0.917

adLASSO AIC1 0.023 0.047 0.266 0.988 0.355 0.848 0.71

AIC2 0.028 0.048 0.173 0.988 0.304 0.837 0.775

BIC1 0.014 0.015 0.084 0.982 0.139 0.663 0.887

BIC2 0.015 0.016 0.053 0.977 0.096 0.573 0.918

Table 9: Results of the regularized regressions for Model 2, using LASSO penalties. Selection of the

penalty parameters is performed over a grid ([0.005; 0.01], using BIC2 as criterion. Coefficients are

rounded to the third decimal; those that equal zero after rounding are treated as exactly zero (see

Footnote 21) and are marked by a “-”. α̂σ denotes the penalized estimates, whereas α̂σ+ denotes the

solution obtained with the re-estimation step.

Pen. Model 2, LASSO, BIC2 (ννν = (0.008; 0.0054))

Covariate α̂σ α̂σ+ (p-value) α̂γ α̂
γ
+ (p-value)

(Intercept) 10.001 10.004 (0.00) -0.199 -0.206 (0.00)

IFRAUD 0.573 0.572 (0.00) -0.019 -0.019 (0.28)

EFRAUD 0.587 0.585 (0.00) -0.274 -0.271 (0.00)

EPWS 0.528 0.527 (0.00) -0.107 -0.106 (0.00)

CPBP 1.103 1.104 (0.00) -0.195 -0.197 (0.00)

BDSF 0.165 0.163 (0.00) -0.041 -0.038 (0.04)

EDPM 0.722 0.723 (0.00) -0.037 -0.037 (0.03)

GDP EU 0.021 0.041 (0.01) - - -

PRF 0.005 0.023 (0.16) - - -

Unemp. IT - - - -0.053 -0.106 (0.00)

VIX - - - 0.027 0.041 (0.02)

LR - - - -0.044 -0.105 (0.00)
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Table 10: Results of the regularized regressions for Model 3, using LASSO penalty. Selection of the

penalty parameters is performed over a grid using BIC2 as criterion.

Model 3, LASSO, BIC2 (ννν = (0.0101, 0.0097))

Covariate α̂σ α̂σ+ (p-value) α̂γ α̂
γ
+ (p-value)

(Intercept) 10.001 10.006 (0.00) -0.198 -0.214 (0.00)

IFRAUD 0.574 0.574 (0.00) -0.020 -0.019 (0.28)

EFRAUD 0.590 0.591 (0.00) -0.283 -0.302 (0.00)

EPWS 0.522 0.502 (0.00) -0.111 -0.113 (0.00)

CPBP 1.100 1.095 (0.00) -0.195 -0.197 (0.00)

BDSF 0.166 0.165 (0.00) -0.042 -0.040 (0.03)

EDPM 0.722 0.723 (0.00) -0.036 -0.037 (0.04)

GDP EU 0.002 0.0192 (0.24) - - -

Unemp. IT - - - -0.023 -0.105 (0.00)

VIX - - - 0.023 0.041 (0.02)

LR - - - -0.014 -0.104 (0.00)

GDP EU x CPBP 0.0172 0.0394 (0.01) - - -

HPI x EPWS 0.0137 0.0524 (0.00) - - -

DGR x EFRAUD - - - 0.019 0.0724 (0.00)

Table 11: Results of the regularized regressions for Model 3, using LASSO penalty. Selection of the

penalty parameters is performed over a grid using BIC1 as criterion.

Model 3, LASSO, BIC1 (ννν = (0.0109, 0.008))

Covariate α̂σ α̂σ+ (p-value) α̂γ α̂
γ
+ (p-value)

(Intercept) 10.001 10.009 (0.00) -0.200 -0.227 (0.00)

IFRAUD 0.574 0.576 (0.00) -0.020 -0.029 (0.09)

EFRAUD 0.590 0.595 (0.00) -0.286 -0.410 (0.00)

EPWS 0.525 0.468 (0.00) -0.118 -0.152 (0.00)

CPBP 1.100 1.094 (0.00) -0.195 -0.194 (0.00)

BDSF 0.166 0.166 (0.00) -0.039 -0.022 (0.26)

EDPM 0.722 0.722 (0.00) -0.036 -0.032 (0.07)

GDP EU 0.002 0.019 (0.23) - - -

Unemp. IT - - - -0.037 -0.092 (0.00)

VIX - - - 0.023 0.131 (0.00)

VFTSE - - - 0.002 -0.081 (0.00)

LR - - - -0.029 -0.103 (0.00)

GDP EU x EFRAUD - - - -0.002 -0.044 (0.04)

GDP EU x CPBP 0.014 0.042 (0.01) -

GDP IT x EDPM - - - -0.006 0.027 (0.12)

HPI x EPWS 0.004 -0.007 (0.66) 0.014 0.049 (0.01)

HPI x BDSF - - - -0.006 -0.048 (0.03)

ST rates x EFRAUD - - - 0.001 0.141 (0.00)

ST rates x EPWS 0.014 0.081 (0.00) - - -

DGR x IFRAUD - - - 0.003 0.025 (0.13)

DGR x EFRAUD - - - 0.027 0.053 (0.02)

MIB x EPWS - - - 0.002 0.056 (0.02)
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Table 12: CV(LLF ) consists in the sum of the cross-validated predicted negative log-likelihood, obtained

from using sequentially the losses from one time period as validation set and the others as training set.

CV(CLS) denotes the cross-validated CLS using empirical 99% quantiles in each event type for κ.

p-val. LASSO (BIC2) LASSO (BIC1)

Model 1 Model 2 Model 3 Model 2 Model 3 Model 2 Model 3

DF 14 42 282 19 21 20 30

LLF 121,050.7 120,989.6 120,825.0 121,029.2 121,020.4 121,028.7 121,004.6

AIC 242,129.4 242,063.3 242,214.1 242,096.4 242,082.7 242,097.4 242,069.2

BIC 242,230.7 242,367.0 244,253.5 242,233.9 242,234.6 242,242.1 242,286.1

CV(LLF) 121,073.4 121,072.5 122,463.8 121,070.7 121,061.2 121,073.3 121,072.9

CV(CLS(0.99)) 781.7 777.2 1,097.2 775.8 772.1 777.0 779.5

Table 13: Results of the regularized regressions for λ, using the variables selected with LASSO for

Model 3. CV(LLF) has been obtained using the same partioniong procedure as for the analysis of the

severity distribution.

Model 1 Model 2 (ν = 0.0159) Model 3 (ν = 0.2857)

Covariate λ̂+ (p-value) λ̂+ (p-value) λ̂+ (p-value)

(Intercept) 2.996 (0.00) 2.962 (0.00) 2.938 (0.00)

IFRAUD 0.123 (0.00) 0.123 (0.00) 0.073 (0.00)

EFRAUD 0.688 (0.00) 0.689 (0.00) 0.646 (0.00)

EPWS 0.329 (0.00) 0.329 (0.00) 0.306 (0.00)

CPBP 1.013 (0.00) 1.014 (0.00) 1.028 (0.00)

BDSF -0.102 (0.00) -0.101 (0.00) -0.145 (0.00)

EDPM 0.943 (0.00) 0.943 (0.00) 0.959 (0.00)

GDP EU - - - - - -

Unemp. IT - - -0.302 (0.00) -0.259 (0.00)

HPI - - -0.040 (0.00) - -

VIX - - -0.085 (0.00) -0.045 (0.00)

DGR - - 0.065 (0.00) 0.038 (0.00)

LR - - -0.023 (0.01) - -

GDP EU x CPBP - - - - 0.025 (0.00)

GDP EU x EDPM - - - - -0.006 (0.16)

HPI x IFRAUD - - - - 0.041 (0.00)

HPI x EFRAUD - - - - 0.072 (0.00)

HPI x EPWS - - - - 0.026 (0.00)

HPI x CPBP - - - - -0.046 (0.00)

HPI x BDSF - - - - 0.007 (0.00)

HPI x EDPM - - - - -0.020 (0.00)

DGR x IFRAUD - - - - 0.014 (0.04)

DGR x CPBP - - - - 0.023 (0.00)

AIC 3,037.08 2,405.45 2,278.07

BIC 3,062.16 2,448.45 2,349.74

CV(LLF) 1,567.15 1,312.98 1,256.84
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Table 14: Parameters of the total loss distribution for the different scenarios.

Constant Crisis scenario Moderate scenario Expansion scenario

λ1 γ1 σ1 λ+
3 γ+3 σ+

3 λ+
3 γ+3 σ+

3 λ+
3 γ+3 σ+

3

IFRAUD 8.38 1.032 89,863 2.27 0.91 80,910 6.12 0.85 93,133 10.14 0.88 98,022

EFRAUD 42.06 0.538 16,744 12.80 0.37 15,151 30.41 0.43 17,440 45.76 0.53 18,355

EPWS 15.08 0.72 32,941 4.86 0.62 26,289 11.54 0.58 30,354 17.34 0.60 32,095

CPBP 106.16 0.778 31,583 22.62 0.67 20,336 109.91 0.63 36,274 220.31 0.65 44,770

BDSF 4.42 0.828 12,167 1.34 0.74 10,902 3.19 0.69 12,549 4.80 0.71 13,208

EDPM 86.89 1.07 15,450 35.38 0.93 13,966 70.93 0.87 16,076 99.89 0.90 16,920

DPA 5.88 1.15 3,331 2.03 1.01 2,975 4.82 0.94 3,424 7.22 0.98 3,604

Appendix

Table 15: Results of the KS tests. The rejection regions have been computed with B = 2, 000. The

second row indicate the proportion of significant differences, among all comparisons.

% rejected. IFRAUD EFRAUD EPWS CPBP BDSF EDPM DPA All

τ0 1.99 % 8.68% 7.82% 17.78% 0.14% 4.41% 0% 30.4%

τ.5 - - - - - - - 3.13%

τ.75 - - - - - - - 1.14%

τ.85 - - - - - - - 0.43%

Table 16: Likelihood ratio test statistics (LRT). The boostrap bound of the rejection region at the 95%

confidence level (denoted Q∗1−α) and obtained with B = 10, 000 is 52.58. ∗ indicates a rejection of H0

at the 5% test level. When we don’t have any extreme during one of the time periods, the period is

excluded from the test.

τ IFRAUD EFRAUD EPWS CPBP BDSF EDPM DPA All

τ0 137.33∗ 726.87∗ 269.4∗ 1,778.5∗ 318.6∗ 931.39∗ 108.12∗ 2,713.9∗

τ.5 150.22∗ 569.83∗ 238.98∗ 1,074.99∗ 184.01∗ 610.73∗ 97.36∗ 2,092.5∗

τ.75 138.65∗ 292.86∗ 220.46∗ 579.11∗ 93.69∗ 358.88∗ 67.37∗ 1,197.7∗

τ.85 104.14∗ 195.86∗ 173.58∗ 427.4∗ 55.64∗ 284.35∗ 47.67 910.6∗
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Table 17: Results of the unpenalized estimation for Model 1 and 2.

Unpen. Model 1 Model 2

Covariate α̂σ (p-value) α̂γ (p-value) α̂σ (p-value) α̂γ (p-value)

(Intercept) 10.000 (0.00) -0.19 (0.00) 10.010 (0.00) -0.223 (0.00)

IFRAUD 0.573 (0.00) -0.02 (0.26) 0.569 (0.00) -0.018 (0.29)

EFRAUD 0.589 (0.00) -0.28 (0.00) 0.586 (0.00) -0.276 (0.00)

EPWS 0.529 (0.00) -0.11 (0.00) 0.526 (0.00) -0.111 (0.00)

CPBP 1.103 (0.00) -0.19 (0.00) 1.103 (0.00) -0.200 (0.00)

BDSF 0.165 (0.00) -0.04 (0.02) 0.162 (0.00) -0.044 (0.02)

EDPM 0.721 (0.00) -0.03 (0.05) 0.725 (0.00) -0.041 (0.02)

Unemp. EU - - - - 0.576 (0.00) 0.126 (0.00)

Unemp. IT - - - - -0.266 (0.00) -0.119 (0.00)

GDP EU - - - - 0.100 (0.00) -0.104 (0.00)

GDP IT - - - - -0.065 (0.00) 0.075 (0.00)

HPI - - - - -0.018 (0.25) 0.069 (0.00)

M1 - - - - -0.122 (0.00) 0.026 (0.15)

LOR EU - - - - 0.129 (0.00) 0.141 (0.00)

LOR IT - - - - 0.136 (0.00) -0.222 (0.00)

LT rates - - - - -0.019 (0.25) 0.026 (0.16)

ST rates - - - - 0.169 (0.00) 0.029 (0.12)

Stock returns - - - - -0.047 (0.00) -0.065 (0.00)

TRSI - - - - -0.047 (0.00) 0.172 (0.00)

S&P500 - - - - 0.057 (0.00) -0.119 (0.00)

VIX - - - - -0.021 (0.19) 0.162 (0.00)

VFTSE - - - - -0.054 (0.00) -0.019 (0.28)

MIB - - - - 0.024 (0.14) 0.084 (0.00)

PRF - - - - 0.048 (0.00) 0.082 (0.00)

DGR - - - - -0.016 (0.30) 0.032 (0.08)

TCR - - - - 0.020 (0.19) -0.058 (0.00)

LR - - - - -0.059 (0.00) -0.062 (0.00)
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Table 18: Results of the unpenalized estimation for Model 3, for σ
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Table 19: Results of the unpenalized estimation for Model 3, for γ
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G. Löffler and A. Maurer. Incorporating the dynamics of leverage into default prediction.

Journal of Banking & Finance, 35(12):3351–3361, 2011.

D. Massacci. Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy and

Global Markets Connectedness. Management Science, 63(9):3072–3089, 2017.

A. Mayr, N. Fenske, B. Hofner, and T. Kneib. Generalized additive models for location,

scale and shape for high dimensional data a flexible approach based on boosting. Journal

of the Royal Statistical Society. Series C: Applied Statistics, 61(3):403–427, 2012.
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