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Abstract
The first passage time refers to the time required for a dynamical system to reach a target energy level
for the first time, departing from a known initial state. Analytical studies of the first passage time of a
linear Mathieu oscillator under stochastic forced and parametric excitations defined asδ-correlated Brownian
noises identified three behavioral regimes for the first passage time. The current work describes the design
and use of an experimental set-up in order to validate the existence of the regimes. This paper successively
describes the design and the finite element modeling of the set-up consisting in a pre-stressed steel strip,
the reduction of the system to a single-degree-of-freedom system to match the framework of the theory,
numerical studies on the influence of the frequency bands of the excitations on the first passage time and
the experimental tests. Qualitatively, two of the three regimes are successfully observed in the experiment.
Quantitatively, a good match is observed between the experimental and model results.

1 Introduction

The dynamics of many systems can be described by the Mathieu equation

z′′ + 2ξz′ + [1 + u(τ)] z = w(τ), (1)

wherez is the dependent state variable,τ is a dimensionless time andξ is the damping coefficient of the
system. The right-hand sidew(τ) represents an external force applied to the system and will be referred to as
the forced excitation in the following. By contrast, the functionu(τ) is a parametric excitation, as it induces
variation in time of the stiffness of the oscillator. This equation can for instance model the oscillations of
a pendulum in the gravity field when its support is subjected to a vertical motion, the parametric vibrations
of cables subjected to axial oscillations at one extremity or the rotative equilibrium of a crane in a turbulent
wind [4, 5, 8].

Equation (1) has been widely studied in the deterministic case,i.e. when the forced and parametric excita-
tions have known deterministic analytical expressions, inparticular in the harmonic case, with the aim of
characterizing its steady-state solution and its stability [1, 6]. However, in most realistic applications, the
system is slightly damped and the forced and parametric excitations are stochastic processes, so that the
system spends most of its time in a stochastic transient regime. In the stochastic context, the classical sta-
bility theories are no longer relevant and the theory of firstpassage time has been developed as an efficient
alternative. It consists in determining the statistics of the first passage time, defined as the time required for
a stochastic process to leave a domain for the first time when starting from a given initial state inside the
domain.



Closed-form expressions of the first and second order moments of the first passage time have been derived
when both the forced and parametric excitationsw andu areδ-correlated Brownian noises [9, 10]. These
analytical developments, based on a multiple-scale approach, have highlighted the influence of some dimen-
sionless groups impacting the dynamics and the existence ofthree different behavioral regimes, namely the
additive, the incubation and the multiplicative regimes.

The aim of this paper is to design an experiment with an intrinsically multi-degree-of-freedom system to
relate the equivalent linear Mathieu equation to the physical parameters of the system and to provide new
experimental evidence of the existence of the three regimesidentified in [9].

This paper starts with the description of the experimental set-up. Then, a finite element model of the structure
is built and experimental modal analysis techniques are used to update this model. The multi-degree-of-
freedom governing equations are then reduced to a set of decoupled single-degree-of-freedom equations
to fit in the framework defined by the theory. The conditions under which an efficient use of the reduced
model can be done are determined. They naturally lead to a numerical study of the first passage time of
systems subjected to narrow-band excitations for which analytical results are not yet available. Eventually,
first passage time maps are built experimentally and compared with the predicted results.

2 Experimental set-up description

The experimental part of the work is conducted in the “LTAS - Vibrations et Identification des Structures”
(LTAS-VIS) laboratory unit of the Department of Aerospace and Mechanical engineering at the University
of Liège. The experimental set-up consists in a vertical strip pre-stressed by a massm = 1.816 kg. A
schematic representation of the set-up is given in Fig. 1. The strip is characterized by a lengthℓ = 0.501 m,
a widthw = 25 mm and a thicknesst = 0.4 mm. The structure is made of carbon steel (Young’s modulus
E = 206 GPa and densityρ = 7767 kg/m3). The strip is clamped at its top end while a lateral guide
constrains the bottom end of the strip to move only in the vertical direction.
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Figure 1: Schematic view of the designed experimental set-up. Figure 2: Experimental set-up.

The forced and parametric excitationsFw andFu are applied by means of two electrodynamic vibration
exciters. The first shaker is mounted horizontally and is used to excite the strip out of its plane close to its
bottom fixation. This force constitutes the forced excitation of Mathieu equation (1). The second shaker is
mounted vertically at the bottom of the structure, below themass. This force modifies the pre-stress of the
strip and therefore induces variation in time of the strip stiffness, giving rise to the parametric excitation of
Mathieu equation. A picture of the physical prototype of thestructure with the two shakers is given in Fig. 2.



Besides the two shakers, the structure is also instrumentedwith two impedance heads located at the two
points where the shakers act and used to measure the force andthe acceleration at these points. A Polytec
MSA-400 OFV-552 laser transducer is used to measure the response of the structure in term of velocity at a
single point. Data acquisition and signal processing are carried out using theLMS Test.Lab software and
theLMS SCADAS Lab acquisition system [11].

3 Numerical modeling

In order to build an accurate numerical model of the physicalset-up, both theoretical and experimental modal
analyses are followed. The modal properties identified withthese two approaches are then compared and
the experimental results are used to update the finite element model. As a first step, a model of the non-
instrumented structure (without the shakers) is built. Then, the influence of the shakers on the dynamics of
the structure is modeled.

3.1 Non-instrumented structure

On the one hand, the steel strip is modeled inMATLAB using Bernoulli beam elements. The pre-stress is
taken into account by the means of a geometrical stiffness matrix added to the usual linear stiffness matrix [3].
This numerical model is used to obtain a first estimate of the six lower natural frequencies and corresponding
mode shapes of the strip.

On the other hand, experimental modal analysis is carried out on the real non-instrumented structure. The
structure is excited close to its bottom fixation with an instrumented impact hammer and the response is
successively measured at 8 other points equally spaced along the whole strip. The “Least Square Complex
Exponential” (LSCE) and “Least Square Frequency Domain” (LSFD) methods are used to identify the modal
properties of the structure [2].

The two sets of modal parameters obtained with the theoretical and experimental modal analyses are then
compared. The natural frequencies obtained with the numerical model systematically overestimate the cor-
responding natural frequencies identified with the experimental modal analysis by 3-4%, which leaves room
for improvement. The model is more rigid than the real structure. This can be ascribed to the modeling of
the supports as perfect clampings. The finite element model is therefore corrected by introducing a stiffness
in rotation about they-axis (Fig. 1) at both ends of the strip. To simplify the analysis, the stiffness coefficient
is assumed to be the same on both sides. The rigidity of the clamping is determined in such a way that it min-
imizes the difference (in a least-square sense) between thenatural frequencies obtained with the numerical
and experimental modal analyses. An optimum value ofk = 3.83 Nm/rad is found.

This modification of the finite element model allows to decrease the relative errors on the natural frequencies
below 0.2%. The Modal Assurance Criterion (MAC) [2] is used to quantify the correlation between the two
sets of modes as represented in Fig. 3.

3.2 Instrumented structure

While the above derived model provides an accurate description of the dynamics of the strip itself, the shakers
mounted on it have a non-negligible influence on the dynamics. Their influence has to be taken into account.

Experimental modal analysis is carried out by exciting the structure with the horizontal shaker located near
the bottom fixation. The vertical shaker does not excite the structure but is mounted on it in such a way
that its interaction with the structure is taken into account. The identification of the modal parameters of the
structure is performed with the “Stochastic Subspace Identification” (SSI) method [7].



Figure 3: MAC matrix (non-instrumented structure). Figure 4: MAC matrix (instrumented structure).

The natural frequencies identified appear to differ by up to 20% from the natural frequencies computed with
the original finite element model. The interaction of the shakers with the structure has therefore to be taken
into account to get a reliable model.

The horizontal shaker, the stinger and the impedance head glued to the strip (Fig. 5) are modeled by a spring-
mass system as shown in Fig. 6. The influence of the impedance head is modeled by adding a concentrated
mass equal to the mass of the impedance headmhead= 3 · 10−2 kg where the horizontal shaker acts. The
aluminum stinger connecting the shaker to the strip is modeled by a spring of stiffnesskstinger= 4.5·106 N/m.
The shaker itself is modeled by two masses connected by a spring. The massmshaker= 1.7 kg represents the
main body of the shaker and the massmmoving = 1.5 · 10−2 kg corresponds to the small moving mass. The
spring of stiffnessksuspension= 4 · 103 N/m represents the moving mass suspension. This modification of the
finite element model reduces the relative errors on the natural frequencies below 5%.

Figure 5: Horizontal shaker picture.
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Figure 6: Horizontal shaker modeling.

The impedance head glued to the strip where the horizontal shaker acts prevents the strip from exhibiting
significant curvature near the clamping. To reduce the errors, the stiffness of the finite elements in contact
with the impedance head is artificially increased by 2%. Thisincreased stiffness is adjusted to minimize the
errors on the first six bending natural frequencies of the structure in a least square sense.

As a result of these two new modifications of the numerical finite element model of the structure, the relative
errors on the natural frequencies are less than 1.2%. The corresponding MAC matrix is represented in Fig. 4
and shows a good correlation between the mode shapes and the corresponding frequencies. It is checked that
the modes identified experimentally are real. A damping matrix that guarantees diagonal modal damping is
built from the identified damping ratios using the assumption of proportional damping as proposed in [3].



4 From multiple-degree-of-freedom to single-degree-of-f reedom
equations of motion

The studied structure subjected to an external excitationf(t) is governed by the general equation of motion

Mẍ(t) +Cẋ(t) +K(t)x(t) = f(t), (2)

wherex is the vector of generalized coordinates,M the mass matrix,C the damping matrix andK(t) the
time-varying stiffness matrix. The stiffness matrix can bedecomposed into its constant and time-varying
partsK(t) = K0 +Kprestress(t), whereK0 is the constant stiffness matrix andKprestress(t) characterizes the
time modulation of the stiffness induced by the zero mean parametric excitationFu(t). The multi-degree-of-
freedom structure is therefore governed by a multi-dimensional version of the Mathieu equation.

The analytical results related to first passage time developed in [9] apply to single-degree-of-freedom Math-
ieu oscillators subjected to broadband forced and parametric excitations. In order to fit in the particular
framework of the analytic model, several adaptations are required. This section focuses on the single-degree-
of-freedom system model assumption. The multi-degree-of-freedom governing equations are reduced to a
set of uncoupled single-degree-of-freedom Mathieu equations. The conditions under which a profitable use
of this model reduction can be done are then identified.

4.1 Model reduction

The response of the structurex(t) can be written in the modal basis asx(t) = Φq(t), whereΦ is the modal
matrix andq(t) is the vector of modal coordinates. Pre-multiplying the dynamical equation (2) byΦT and
defining modal matrices and vectors as the projections of thephysical structural matrices and vectors on the
modal basis, the equation governing the dynamics of the modal coordinates can be written as

M∗q̈(t) +C∗q̇(t) + [K∗ + Fu(t)K
∗

prestress,1]q(t) = f∗(t), (3)

whereK∗

prestress,1denotes the modal stiffness matrix due to the application ofa unitary parametric force.

In the ideal case whereM∗, C∗, K∗ andK∗

prestress,1are diagonal, theN equations of system (3) can be
decoupled and the dynamics of the structure in the differentmode shapes can be studied separately. In such
a case, the system ofN coupled equations behaves likeN single-degree-of-freedom uncoupled equations.
By definition, matricesM∗ andK∗ are diagonal. MatrixC∗ is also diagonal due to the assumption of modal
damping. By contrast, there is no reason for matrixK∗

prestress,1to be perfectly diagonal. Actually, it can be
verified that its diagonal elements are only one order of magnitude larger than its out-of-diagonal elements.
As long as the product ofFu(t) by the out-of-diagonal elements ofK∗

prestress,1is well below the diagonal
elements ofK∗, the coupling between modes remains small. In the following, parametric excitations of
small amplitudes will be considered in order to limit the excitation of nonlinearities and to keep a quasi-
Hamiltonian system. It is therefore expected that this condition will be met to good approximation.

According to these assumptions, the equations of motion canbe decoupled for each modal coordinate. The
single-degree-of-freedom equation governing thei-th modal coordinate takes the form

meqz̈(t) + ceqż(t) + [keq+ Fu(t)kp,eq]z(t) = p(t), (4)

wherez(t) = qi(t), the equivalent parametersmeq, ceq, keq andkp,eqare the generalized parameters of mode
i defined according to [2] as the diagonal elements of the modalmatrices normalized by[Φ(xi, i)]

2, where
xi is the coordinate of an antinode of vibration of modei, andp(t) is the participation factor of the forced
excitation to modei,

p(t) =
Φ(xw, i)

[Φ(xi, i)]
2
Fw(t) = αFw(t), (5)

wherexw is the coordinate where the forced excitation is applied.



In conclusion, for parametric excitations of sufficiently small amplitude, the modal responses of the structure
are uncoupled. If the structure is excited in such a way that it responds only (or mainly) in a unique mode,
then the response of the structure at a given point is the solution of an equivalent single-degree-of-freedom
equation of the form (4), which is a linear Mathieu equation that can be rewritten in the dimensionless form
of Equation (1). Indeed, introducing the characteristic timeTcharact=

√

meq/keq and the dimensionless time
τ = t/Tcharactand defining

ξ =
ceq

2
√

keqmeq
, u(τ) = Fu(τ)

kp,eq

keq
and w(τ) =

αFw(τ)

keq
, (6)

Equation (4) becomes
z′′(τ) + 2ξz′(τ) + [1 + u(τ)]z(τ) = w(τ), (7)

wherez′(τ) denotes the first derivative ofz with respect to the dimensionless timeτ .

4.2 Validity of the single-degree-of-freedom governing eq uation

Different aspects of the problem have to be taken into account to select the mode used for the reduction.
First, the equivalent parameters of the selected mode must allow to cover the largest possible part of the first
passage time map in a limited amount of time. Then, to ensure that the other modes have little influence on
the dynamics, the selected mode must be such that the out-of-diagonal terms ofKprestress,1are much smaller
than the diagonal elements. The chosen natural frequency must be far enough from other natural frequencies
in order to avoid multi-modal excitation of the structure. Based on these remarks, the second bending mode
is selected. It is characterized by the equivalent parameters

kp,eq= 39 m−1, keq = 3273 Nm−1, ceq = 0.08 N[m/s]−1 and meq = 0.05 kg. (8)

The frequency of this second bending mode isf0 = 39.3 Hz.

In order to identify the conditions under which an efficient use of the reduction of the multi-degree-of-
freedom system can be done, both single-degree-of-freedomand multi-degree-of-freedom equations of mo-
tion are integrated forward in time using a Newmark integration scheme. On the one hand, the equations of
motion of the multi-degree-of-freedom system (2) subjected to given stochastic forced and parametric exci-
tations are solved and the response at an antinode of vibration of the studied mode is extracted. On the other
hand, the reduced single-degree-of-freedom equation of motion (4) is solved for the same excitations. The
objective is the determination of excitation characteristics that provide a satisfying superposition of the two
responses. The modal responses are compared at an antinode of vibration in order to minimize the influence
of the other modes.

The forced excitation needs to be defined on a limited frequency band centered onf0, otherwise, several
modes are excited and the single- and multi-degree-of-freedom governing equations provide qualitatively
different solutions. When the system is subjected to a forced excitation only, a good match is observed be-
tween the responses of the single- and multi-degree of freedom governing equations as long as the frequency
band is contained in[0.8f0 ; 1.2f0]. When the frequency interval is expanded beyond [0.8f0 ; 1.2f0], the
closest modes are excited in such a way that the reduction is not legitimate anymore.

The uncoupling of the equation remains valid as long as the diagonalization of the equations is valid.Fu

should therefore remain sufficiently small so that the out-of-diagonal elements ofFu(t)K
∗

prestress,1 remain
small with respect to the diagonal elements ofK∗.

The well known theory of the deterministic Mathieu equationhighlights that parametric instabilities occur for
parametric excitation frequencies close to2f0/k (k integer) [1], even if the instability becomes less critical
when damping increases. In this stochastic context, the frequency bandwidth of the parametric excitation
must be sufficiently small to avoid triggering the other modes of the structure. It is numerically observed that
the frequency interval should not include the second harmonics of the other bending modes, unless they are
sufficiently damped.



5 Influence of narrow-band excitations on first passage time

The analytical results about first passage time of systems governed by Equation (7) rely on the assumption
of broadband white noise excitations. The forced and parametric excitationsw andu are characterized by
constant power spectral densitiesSw andSu. The Hamiltonian of the quasi-Hamiltonian system (w, u and
ξ ≪ 1) is defined as

H =
z2

2
+

[z′]2

2
. (9)

The analytical studies conducted in the case of broadband excitations allowed to derive closed-form expres-
sions of the mean first passage timeU1 [9]. They revealed that the reduced average first passage timeU1Su/4
only depends on the reduced initial energy and energy increment

H∗

0 =
H0Su

2Sw

and ∆H∗ =
∆HSu

2Sw

(10)

and on the damping factora = 8ξ/Su. This suggests to represent the results by maps of the reduced average
first passage timeU1Su/4 as a function ofH∗

0
and∆H∗. For instance, Fig. 7 (dotted lines) represents

the analytical results for an undamped system and highlights the three regimes. ForH∗

0
≪ 1, U1Su/4 is

independent fromH∗

0
. This is called the additive regime. ForH∗

0
≫ 1, the curves show constant slope

and the first passage time depends on by how much the initial energy level is multiplied to obtain the target
energy level, which corresponds to the multiplicative regime. The incubation regime in whichU1Su/4 scales
linearly with∆H∗ is identified for∆H∗

≪ 1 +H∗

0
.

In the current case, it was shown to be necessary to limit the frequency bands of the excitations for the
response of the multi-degree-of-freedom system to be approximated by the response of an equivalent single-
degree-of-freedom system. This section is therefore devoted to the numerical study of the influence of such
limitations on the frequency band on the first passage time ofthe single-degree-of-freedom oscillator. The
forced and parametric excitationsw andu are defined as narrow-band random processes of constant power
spectral densitiesSw andSu.

5.1 Influence of the frequency band of the forced excitation

As a first step, the system is studied for broadband parametric excitations and several different narrow fre-
quency bands for the forced excitation (including the natural frequencyf0 of the oscillator or not). The
first passage time maps are obtained numerically using MonteCarlo simulations. The HamiltonianH of the
single-degree-of-freedom system is computed at each time step. When it reaches a given maximal value, the
simulation is stopped and a new simulation is initiated. Theaverage first passage time is eventually obtained
by averaging the results of a large set of simulations.

The three incubation, additive and multiplicative regimescan only be recovered if the frequency band of the
forced excitation includes the natural frequency of the system. Fig. 7 compares the analytical map obtained
under the assumption of broadband excitations with the numerical map built by Monte Carlo simulations of
the oscillator subjected to broadband parametric excitation and narrow-band forced excitation in the interval
[0.8f0 ; 1.2f0] (a = 0, Su = 10−3, Sw = 5 · 10−4). For limited frequency intervals around the natural
frequency of the oscillator, a nearly perfect match betweenthe numerical (i.e. for narrow-band excitations)
and analytical (i.e. for broadband excitations) results is observed in the wholemap. The results are only
significantly different in the bottom left corner corresponding to small values ofH∗

0
and∆H∗. This is not

surprising since the bottom left corner corresponds to the limit case where there is no parametric excitation;
the forced excitation therefore has a dominant influence in this zone.



Figure 7: Reduced average first passage time
U1Su/4. Comparison of the maps obtained nu-
merically for broadbandu and narrow-bandw on
[0.8f0 ; 1.2f0] and analytically for broadband exci-
tations (a = 0, Su = 10−3, Sw = 5 · 10−4).

Figure 8: Reduced average first passage time
U1Su/4. Comparison of the maps obtained numeri-
cally for narrow-band excitations (u on [0.1f0 ; 3f0]
andw on [0.8f0 ; 1.2f0]) and analytically for broad-
band excitations (a = 0, Su = 10−3, Sw = 5·10−4).

5.2 Influence of the frequency band of the parametric excitat ion

Fig. 8 compares the maps obtained numerically for narrow-band excitations (Fu on [0.1f0 ; 3f0] andFw on
[0.8f0 ; 1.2f0]) and analytically for broadband excitations in the absenceof damping (a = 0, Su = 10−3,
Sw = 5 · 10−4). Visual inspection of the maps reveals that the analyticalresults are not recovered when the
system is subjected to narrow-band random processes. Although the additive, multiplicative and incubation
regimes can still be clearly identified, the curves do not superimpose. This means that the analytical results
obtained for broadband excitations do not simply transfer to narrow-band random processes. Here, the
frequency band is limited and the corresponding first passage times are larger than those computed with
broadband excitations. A more systematic study is requiredto characterize the influence of the parametric
excitation.

The undamped system (a = 0) is studied. The parametric excitation is defined as a narrow-band process
of constant power spectral densitySu = 10−3 on the frequency interval[f1 ; f2] and the boundsf1 andf2
are varied. The forced excitation is defined as a narrow-bandprocess of constant power spectral density
Sw = 5 · 10−4 on the frequency interval[0.8f0 ; 1.2f0], in agreement with the conclusions of the previous
section.

An indicatorI is introduced and defined as

I =

∣

∣

∣

∣

UMC
1

− U th
1

U th
1

∣

∣

∣

∣

, (11)

whereUMC
1

andU th
1

are respectively the mean first passage time obtained from Monte Carlo simulations
with narrow-band processes at some observation point of themap and the corresponding analytical mean
first passage time for broadband processes. Based on the comments of the previous section, the initial
energyH∗

0
and the energy increment∆H∗ are chosen far from the bottom left corner of the map where the

influence of the narrow band of the forced excitation is largeand for moderate values ofH∗

0
and∆H∗ to

limit the computation time.



Fig. 9 shows the value of the indicatorI (11) as a function of the lower and upper frequenciesf1 andf2
(normalized by the natural frequencyf0) that define the parametric excitation at the observation point of the
map characterized byH∗

0
= 10−1.5 and∆H∗ = 100. This figure shows that it is necessary to include the

second harmonic of the natural frequency,2f0, in the frequency interval to be close enough to the analytical
results for broadband excitations. In fact, when the secondharmonic of the natural frequency does not belong
to the frequency interval of the parametric excitation, thefirst passage time map looks completely different;
even the three regimes do not appear. By contrast, it is not necessary to include the natural frequency itself in
the frequency interval[f1 ; f2]. This can be supported by the deterministic theory of Mathieu equation [1].
Instabilities occur at frequency2f0/k (k integer). While the instability fork = 1, i.e. atf = 2f0, is the most
critical, the other instabilities do not develop when forced excitation or damping is introduced in the system
unless the amplitude of the parametric excitation is large.

Figure 9: IndicatorI (11) at pointH∗

0
= 10−1.5 and∆H∗ = 100 as a function of the lower and upper

frequency of the bandwidth of the parametric excitation (a = 0, Su = 10−3, Sw = 5 · 10−4).

It should be noted that, even if this study is based on a singlepoint of the map located in the additive
regime, the same exercise has been performed at other pointslocated in other regimes and the same general
conclusions have been drawn. The numerical study of systemscharacterized by other values ofa, Sw and
Su also lead to the same general conclusions.

6 Experimental study of first passage time

The above numerical studies provide useful information to prepare the experimental study of first passage
time. The forced excitationFw and the parametric excitationFu applied to the experimental set-up (Fig. 1)
must be such that the conditions for the model reduction to bevalid are verified and the influence of the
narrow bands remains limited.

The forced excitationFw is defined as a narrow-band process of constant power spectral density S̃w =
5 · 10−3 N2/Hz on the frequency interval[0.87f0 ; 1.13f0] = [34 ; 44] Hz. This frequency interval does
not cover any of the other natural frequencies of the set-up.The parametric excitationFu is defined as a



narrow-band process of constant power spectral densityS̃u = 5 · 10−3 N2/Hz on the frequency interval
[0.77f0 ; 2.57f0] = [30 ; 100] Hz. This frequency interval covers the natural frequencyf0 and its second
harmonic. It can be regretted that the second harmonic of thefirst bending mode and the natural frequency
of the third bending mode are also included. But, this is not an issue thanks to the high damping ratios of
these modes.

Equation (6) shows that the dimensionless parametersa, Sw andSu are related to the dimensional parameters
through

a =
4ceqkeq

k2p,eqS̃u

= 132, Sw =
S̃w

Tcharact

(

α

keq

)2

= 2.5 · 10−10 andSu =
S̃u

Tcharact

(

kp,eq

keq

)2

= 1.8 · 10−4. (12)

The force intensitiesSw andSu are much smaller than one, as required by the theory to have a quasi-
Hamiltonian system. The high value ofa does not mean that damping is intrinsically high (ξ = 4·10−3

≪ 1)
but, merely, that damping is high with respect to the amplitude of the parametric excitation.

The structure is excited by the horizontal and vertical shakers for 30 minutes and the velocity of the structure
is measured at a vibration antinode with the laser transducer. The response is numerically integrated to
compute the evolution of the position with time. It is then checked that the structure responds only in its
second bending mode by analyzing the response in the frequency domain. The dimensionless Hamiltonian
corresponding to Equation (7) is eventually computed by Equation (9).

The average first passage time map corresponding to the evolution of the Hamiltonian of the system with
time can be built from the experimental results (solid linesin Fig. 10). If the time signal is sufficiently long,
the same level of energy is reached several times and the system passes many times from initial energies
H0 to higher energiesHc = H0 +∆H. Both energy axes are discretized in a finite number of values. The
intervals between these values are chosen with uniform sizes on a logarithmic scale as this is the physical
scaling suggested by the stochastic model. The mean first passage time corresponding to each point of the
map (i.e. each combination of initial energyH∗

0
and energy increment∆H∗) is obtained by averaging all the

first passage times corresponding to the transitions between these levels of energy [8].

(a) (b)

Figure 10: Reduced average first passage timeU1Su/4 as a function ofH∗

0
and∆H∗. Comparison of the

maps obtained experimentally and numerically for narrow-band excitations (Fu on [0.77f0 ; 2.57f0] andFw

on [0.87f0 ; 1.13f0]) and analytically for broadband excitations (a = 132, Sw = 2.5·10−10,Su = 1.8·10−4).



Fig. 10(a) compares the experimental results with the analytical map obtained under the assumption of broad-
band excitations. The results are qualitatively similar and the general trend of the average first passage time
is recovered experimentally but, as expected, the curves donot superimpose.

Fig. 10(b) compares the experimental results with the map obtained by Monte Carlo simulations of the
numerical system subjected to the same narrow-band excitations as in the experimental tests. Globally, a
good match between the maps is observed and the global behavior of the mean first passage time is recovered.
The different regimes can be analyzed separately.

The additive regime is well represented. In the left part of Fig. 10(b), the experimental curves tend towards
horizontal asymptotes, at least for sufficiently large values of the increment∆H∗. The incubation regime
can be highlighted by considering cross-sections of the mapat constant values ofH∗

0
. Fig. 11 shows the

evolution of the average first passage time as a function of∆H∗ for H∗

0
= 2 · 10−2 and2 · 10−3. As hinted

by the linear trends represented as a guide, the average firstpassage times (cross markers) are fairly well
aligned, which is the specific feature of the incubation regime.

Figure 11: Cross-sections of the reduced average first passage time map (Fig. 10) in the incubation regime
for H∗

0
= 2 · 10−2 andH∗

0
= 2 · 10−3. Experimental data (crosses) and linear trend (lines).

The multiplicative regime cannot be rigorously observed inFig. 10(b). In the right part of the figure, the
curves show the same negative slope but the multiplicative regime is not yet reached since the highest value
of H∗

0
is of the order of10−1.5 while the multiplicative regime appears forH∗

0
≫ 1. On the one hand, such

high values ofH∗

0
must be avoided here since it can cause the excitation of nonlinearities in the system.

On the other hand, for damped systems subjected to broadbandexcitations, the asymptotic slope in the
multiplicative regime equals2 − a. This result is certainly not directly valid in the narrow-band excitations
case but suggests that, given the high value ofa = 132, the part of the multiplicative region reachable in
a limited amount of time reduces to the bottom right corner. Because this corner is characterized by high
coefficients of variation [10], very long time signals wouldbe required to get a smooth map in this region.

The differences between the numerical and experimental results can be ascribed to different factors. The
experimental conditions never match exactly the numericalones. For instance, the power spectral densities
of the excitations are not perfectly constant on the frequency band of definition, and do not drop to zero
outside this interval. Then, the structure is inherently a multi-degree-of-freedom system and it is not possible
to excite a single mode of the structure. Structure nonlinearities can also be a source of differences between
the numerical and experimental results. Indeed, even if theintensities of the excitations have been chosen
extremely small to limit the excitation of the nonlinearities, those are inherent to the structure.



7 Conclusions and perspectives

This work aims at designing and testing an experimental set-up to illustrate and provide empirical evidence
of the main analytical results of the theory of first passage time described in [9]. The current theory applies
to quasi-Hamiltonian linear single-degree-of-freedom systems subjected to broadband forced and parametric
excitations (δ-correlated Brownian processes).

The selected structure consists in a vertical steel strip pre-stressed by a mass. First, a finite element model
of the structure is built. The inherently multi-degree-of-freedom system is reduced to match the assumption
of a single-degree-of-freedom system behind the theory of first passage time. This is done by defining the
forced and parametric excitations as narrow-band random processes triggering only one bending mode of
the structure. Since analytical results are not available for the first passage time of systems subjected to
narrow-band excitations, a numerical study is performed and some general conclusions are drawn about
the influence of the frequency bands of the forced and parametric excitations on the first passage time.
The global behavior of the average first passage time is recovered in the whole map as long as the natural
frequency of the oscillator is included in the frequency band of the forced excitation and the frequency band
of the parametric excitation contains the second harmonic of the natural frequency. When these conditions
are met, small quantitative differences can be observed when broadband or narrow-band excitations are used
but the dynamics remains qualitatively similar.

The previous steps provide a rationale for selecting the appropriate parameters of the experimental testing.
The experimental first passage time map is built and comparedwith the theoretical and model results. A good
quantitative match is observed between the experimental map and the numerical results obtained with Monte
Carlo simulations with narrow-band excitations. The experimental results are also qualitatively similar to the
theoretical ones for broadband excitations. Both the additive and incubation regimes are clearly identified.
Only the beginning of the multiplicative regime can howeverbe observed.

This study contributes to broadening the scope of the first passage time theory introduced in [9, 10] beyond
the context of single-degree-of-freedom linear systems subjected to broadband excitations considered so far
by numerical and experimental studies of oscillators subjected to narrow-band processes. It is also a first
physical evidence that the first passage time of real multi-degree-of-freedom mechanical systems can be
characterized with the physical properties of the structure.

This study also suggests that work is still needed to go further with analytical, numerical and experimental
studies of systems subjected to narrow-band excitations. In particular, analytical studies of the first passage
time of systems subjected to colored excitations, and in particular to narrow-band excitations, could be
conducted to get a better insight into the phenomena.
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