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Abstract

The first passage time refers to the time required for a dycelnsiystem to reach a target energy level
for the first time, departing from a known initial state. Ayiadal studies of the first passage time of a
linear Mathieu oscillator under stochastic forced and m&taic excitations defined ascorrelated Brownian
noises identified three behavioral regimes for the firstagesdime. The current work describes the design
and use of an experimental set-up in order to validate tretemge of the regimes. This paper successively
describes the design and the finite element modeling of thapseonsisting in a pre-stressed steel strip,
the reduction of the system to a single-degree-of-freedgstes) to match the framework of the theory,
numerical studies on the influence of the frequency bandhetxkcitations on the first passage time and
the experimental tests. Qualitatively, two of the threamesg are successfully observed in the experiment.
Quantitatively, a good match is observed between the expatal and model results.

1 Introduction

The dynamics of many systems can be described by the Matgieatien
24262 + 1 +u(t)] 2z = w(r), D)

wherez is the dependent state variablejs a dimensionless time argdis the damping coefficient of the
system. The right-hand side(r) represents an external force applied to the system andeviéferred to as
the forced excitation in the following. By contrast, the étion «(7) is a parametric excitation, as it induces
variation in time of the stiffness of the oscillator. Thisuatjon can for instance model the oscillations of
a pendulum in the gravity field when its support is subjected vertical motion, the parametric vibrations
of cables subjected to axial oscillations at one extremitshe rotative equilibrium of a crane in a turbulent
wind [4, 5, 8].

Equation (1) has been widely studied in the deterministgedae. when the forced and parametric excita-
tions have known deterministic analytical expressiongpdrticular in the harmonic case, with the aim of
characterizing its steady-state solution and its stghilit 6]. However, in most realistic applications, the
system is slightly damped and the forced and parametridatixmis are stochastic processes, so that the
system spends most of its time in a stochastic transientne2glin the stochastic context, the classical sta-
bility theories are no longer relevant and the theory of fiedsage time has been developed as an efficient
alternative. It consists in determining the statisticshef first passage time, defined as the time required for
a stochastic process to leave a domain for the first time wtating) from a given initial state inside the
domain.



Closed-form expressions of the first and second order manudrihe first passage time have been derived
when both the forced and parametric excitatianand v are j-correlated Brownian noises [9, 10]. These

analytical developments, based on a multiple-scale apprdeave highlighted the influence of some dimen-
sionless groups impacting the dynamics and the existentteasd different behavioral regimes, namely the
additive, the incubation and the multiplicative regimes.

The aim of this paper is to design an experiment with an igicadly multi-degree-of-freedom system to
relate the equivalent linear Mathieu equation to the playgp@arameters of the system and to provide new
experimental evidence of the existence of the three regidegsified in [9].

This paper starts with the description of the experimergalp. Then, a finite element model of the structure
is built and experimental modal analysis techniques ard tseipdate this model. The multi-degree-of-
freedom governing equations are then reduced to a set ofidlecb single-degree-of-freedom equations
to fit in the framework defined by the theory. The conditionslemwhich an efficient use of the reduced
model can be done are determined. They naturally lead to ariceh study of the first passage time of
systems subjected to narrow-band excitations for whiclytoal results are not yet available. Eventually,
first passage time maps are built experimentally and cordpaith the predicted results.

2 Experimental set-up description

The experimental part of the work is conducted in the “LTASIbretions et Identification des Structures”
(LTAS-VIS) laboratory unit of the Department of Aerospacel dechanical engineering at the University
of Liege. The experimental set-up consists in a verticap gire-stressed by a mass = 1.816 kg. A
schematic representation of the set-up is given in Fig. & Sthp is characterized by a lengtk= 0.501 m,

a widthw = 25 mm and a thickness = 0.4 mm. The structure is made of carbon steel (Young’s modulus
E = 206 GPa and density = 7767 kg/m?). The strip is clamped at its top end while a lateral guide
constrains the bottom end of the strip to move only in theic@rtirection.
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Figure 1: Schematic view of the designed experimental get-u Figure 2: Experimental set-up.

The forced and parametric excitationy, and F,, are applied by means of two electrodynamic vibration
exciters. The first shaker is mounted horizontally and isluseexcite the strip out of its plane close to its
bottom fixation. This force constitutes the forced exaitatof Mathieu equation (1). The second shaker is
mounted vertically at the bottom of the structure, belowrttgss. This force modifies the pre-stress of the
strip and therefore induces variation in time of the strifiress, giving rise to the parametric excitation of
Mathieu equation. A picture of the physical prototype ofs$heicture with the two shakers is given in Fig. 2.



Besides the two shakers, the structure is also instrumenitibdtwo impedance heads located at the two
points where the shakers act and used to measure the fordbeandceleration at these points. A Polytec
MSA-400 OFV-552 laser transducer is used to measure themsspf the structure in term of velocity at a
single point. Data acquisition and signal processing amethout using the.MS Test.Lab software and
theLMS SCADAS Lab acquisition system [11].

3 Numerical modeling

In order to build an accurate numerical model of the physieglup, both theoretical and experimental modal
analyses are followed. The modal properties identified witse two approaches are then compared and
the experimental results are used to update the finite ekemedel. As a first step, a model of the non-
instrumented structure (without the shakers) is built. i Hie influence of the shakers on the dynamics of
the structure is modeled.

3.1 Non-instrumented structure

On the one hand, the steel strip is modeled/iATLAB using Bernoulli beam elements. The pre-stress is
taken into account by the means of a geometrical stiffnessxn@aded to the usual linear stiffness matrix [3].
This numerical model is used to obtain a first estimate ofiths/er natural frequencies and corresponding
mode shapes of the strip.

On the other hand, experimental modal analysis is carri¢douhe real non-instrumented structure. The

structure is excited close to its bottom fixation with an iastented impact hammer and the response is
successively measured at 8 other points equally spaced #ierwhole strip. The “Least Square Complex

Exponential” (LSCE) and “Least Square Frequency Domail¥$KD) methods are used to identify the modal

properties of the structure [2].

The two sets of modal parameters obtained with the theatetind experimental modal analyses are then
compared. The natural frequencies obtained with the n@ademodel systematically overestimate the cor-
responding natural frequencies identified with the expental modal analysis by 3-4%, which leaves room
for improvement. The model is more rigid than the real strreet This can be ascribed to the modeling of
the supports as perfect clampings. The finite element medbkerefore corrected by introducing a stiffness
in rotation about thg-axis (Fig. 1) at both ends of the strip. To simplify the ais#ythe stiffness coefficient
is assumed to be the same on both sides. The rigidity of thepifey is determined in such a way that it min-
imizes the difference (in a least-square sense) betweematiieal frequencies obtained with the numerical
and experimental modal analyses. An optimum valuk ef 3.83 Nm/rad is found.

This modification of the finite element model allows to deseethe relative errors on the natural frequencies
below 0.2%. The Modal Assurance Criterion (MAC) [2] is usedjtiantify the correlation between the two
sets of modes as represented in Fig. 3.

3.2 Instrumented structure

While the above derived model provides an accurate degmnripf the dynamics of the strip itself, the shakers
mounted on it have a non-negligible influence on the dynandibeir influence has to be taken into account.

Experimental modal analysis is carried out by exciting tinecsure with the horizontal shaker located near
the bottom fixation. The vertical shaker does not excite thectre but is mounted on it in such a way
that its interaction with the structure is taken into acdodime identification of the modal parameters of the
structure is performed with the “Stochastic Subspace ifigation” (SSI) method [7].
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Figure 3: MAC matrix (non-instrumented structure). Figure 4. MAC matrix (instrumented structure).

The natural frequencies identified appear to differ by upd#2rom the natural frequencies computed with
the original finite element model. The interaction of theksna with the structure has therefore to be taken
into account to get a reliable model.

The horizontal shaker, the stinger and the impedance head gb the strip (Fig. 5) are modeled by a spring-
mass system as shown in Fig. 6. The influence of the impedaramkis modeled by adding a concentrated
mass equal to the mass of the impedance hegdq = 3 - 1072 kg where the horizontal shaker acts. The
aluminum stinger connecting the shaker to the strip is neatley a spring of stiffnessinger = 4.5-10% N/m.
The shaker itself is modeled by two masses connected byraysfghe massishaker= 1.7 kg represents the
main body of the shaker and the masgoving = 1.5 - 102 kg corresponds to the small moving mass. The
spring of stiffnessisuspensior= 4 - 103 N/m represents the moving mass suspension. This modificatithe
finite element model reduces the relative errors on the alafiaguencies below 5%.
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Figure 5: Horizontal shaker picture. Figure 6: Horizontal shaker modeling.

The impedance head glued to the strip where the horizontéddestacts prevents the strip from exhibiting

significant curvature near the clamping. To reduce the grtbe stiffness of the finite elements in contact
with the impedance head is artificially increased by 2%. Tigseased stiffness is adjusted to minimize the
errors on the first six bending natural frequencies of thectitre in a least square sense.

As a result of these two new modifications of the numericaldialement model of the structure, the relative
errors on the natural frequencies are less than 1.2%. Thesponding MAC matrix is represented in Fig. 4
and shows a good correlation between the mode shapes aratitbgponding frequencies. It is checked that
the modes identified experimentally are real. A damping imn#tat guarantees diagonal modal damping is
built from the identified damping ratios using the assumptbproportional damping as proposed in [3].



4 From multiple-degree-of-freedom to single-degree-of-f reedom
eguations of motion

The studied structure subjected to an external excitdtionis governed by the general equation of motion
Mx(t) + Cx(t) + K(t)x(t) = £(¢), 2

wherex is the vector of generalized coordinat®d, the mass matrixC the damping matrix an& (¢) the
time-varying stiffness matrix. The stiffness matrix candeeomposed into its constant and time-varying
partsK(t) = Ko + Kprestresét), WhereKj is the constant stiffness matrix abthrestresét) Characterizes the
time modulation of the stiffness induced by the zero meaarpatric excitatior¥,, (¢). The multi-degree-of-
freedom structure is therefore governed by a multi-dinerediversion of the Mathieu equation.

The analytical results related to first passage time deeel@ap[9] apply to single-degree-of-freedom Math-
ieu oscillators subjected to broadband forced and par&retcitations. In order to fit in the particular
framework of the analytic model, several adaptations ayeired. This section focuses on the single-degree-
of-freedom system model assumption. The multi-degrekeegfdom governing equations are reduced to a
set of uncoupled single-degree-of-freedom Mathieu eqgnati The conditions under which a profitable use
of this model reduction can be done are then identified.

4.1 Model reduction

The response of the structuxét) can be written in the modal basisa&) = ®q(t), where® is the modal
matrix andq(t) is the vector of modal coordinates. Pre-multiplying theatyical equation (2) by ™ and
defining modal matrices and vectors as the projections gbllysical structural matrices and vectors on the
modal basis, the equation governing the dynamics of the hvodadinates can be written as

M*q(t) + C*q(t) + [K* + FU(t)K;restress,}Lq(t) = £*(1), 3

*
Whererrestress,

In the ideal case wherBI*, C*, K* and K . yess 12r€ diagonal, theV equations of system (3) can be
decoupled and the dynamics of the structure in the differerde shapes can be studied separately. In such
a case, the system o&f coupled equations behaves liRé single-degree-of-freedom uncoupled equations.
By definition, matricedM* andK* are diagonal. MatrixC* is also diagonal due to the assumption of modal
damping. By contrast, there is no reason for makix..ss £0 be perfectly diagonal. Actually, it can be
verified that its diagonal elements are only one order of ritada larger than its out-of-diagonal elements.
As long as the product of,(¢) by the out-of-diagonal elements B .5 1iS Well below the diagonal
elements ofK*, the coupling between modes remains small. In the followparametric excitations of
small amplitudes will be considered in order to limit the itadion of nonlinearities and to keep a quasi-

Hamiltonian system. It is therefore expected that this damrwill be met to good approximation.

denotes the modal stiffness matrix due to the applicaticmwfditary parametric force.

According to these assumptions, the equations of motiorbeagtecoupled for each modal coordinate. The
single-degree-of-freedom equation governing:ttie modal coordinate takes the form

Megz(t) + ceq?(t) + [keq + Fu(t)kpedz(t) = p(t), (4)

wherez(t) = ¢;(t), the equivalent parameteiseq, ceq, keq @andkp eqare the generalized parameters of mode
i defined according to [2] as the diagonal elements of the modalices normalized by® (x;, i)]2, where
x; is the coordinate of an antinode of vibration of madandp(t) is the participation factor of the forced

excitation to mode, 3( )
Loy 1 B
p(t) = me(t) = aF,(t), (5)

wherez,, is the coordinate where the forced excitation is applied.



In conclusion, for parametric excitations of sufficientiyal amplitude, the modal responses of the structure
are uncoupled. If the structure is excited in such a way thasponds only (or mainly) in a unique mode,
then the response of the structure at a given point is théi@olaf an equivalent single-degree-of-freedom
equation of the form (4), which is a linear Mathieu equatioattcan be rewritten in the dimensionless form
of Equation (1). Indeed, introducing the characteristioeti charact= 1/ Meq/keq @and the dimensionless time

T = t/Ttharactdnd defining

B Ceq = . @ = aFy,(7)
5_ 2\/m’ u( )_Fu( ) keq and w( )_ keq ) (6)
Equation (4) becomes
(1) + 22 (1) + [1 4+ u(1)]2(7) = w(T), 7

wherez’(7) denotes the first derivative efwith respect to the dimensionless time

4.2 Validity of the single-degree-of-freedom governing eq uation

Different aspects of the problem have to be taken into adcmuselect the mode used for the reduction.
First, the equivalent parameters of the selected mode osti@ cover the largest possible part of the first
passage time map in a limited amount of time. Then, to endiatetie other modes have little influence on
the dynamics, the selected mode must be such that the alidgdnal terms oK prestress,are much smaller
than the diagonal elements. The chosen natural frequensyiadar enough from other natural frequencies
in order to avoid multi-modal excitation of the structuread®d on these remarks, the second bending mode
is selected. It is characterized by the equivalent paramete

kpeq=39M 1, keq=3273NM™, ceq=0.08 N[m/s]™! and mieq= 0.05kKg. (8)

The frequency of this second bending modéis= 39.3 Hz.

In order to identify the conditions under which an efficiesewf the reduction of the multi-degree-of-
freedom system can be done, both single-degree-of-freesmhmulti-degree-of-freedom equations of mo-
tion are integrated forward in time using a Newmark intégrascheme. On the one hand, the equations of
motion of the multi-degree-of-freedom system (2) subgdtegiven stochastic forced and parametric exci-
tations are solved and the response at an antinode of dbratithe studied mode is extracted. On the other
hand, the reduced single-degree-of-freedom equation tbm) is solved for the same excitations. The
objective is the determination of excitation charactarssthat provide a satisfying superposition of the two
responses. The modal responses are compared at an antfndol@ton in order to minimize the influence
of the other modes.

The forced excitation needs to be defined on a limited frequéxand centered ofyy, otherwise, several
modes are excited and the single- and multi-degree-otlfn@egoverning equations provide qualitatively
different solutions. When the system is subjected to a tbeeitation only, a good match is observed be-
tween the responses of the single- and multi-degree ofdreegbverning equations as long as the frequency
band is contained if0.8fy; 1.2fy]. When the frequency interval is expanded beyond f{0;81.2f,], the
closest modes are excited in such a way that the reductiast iegitimate anymore.

The uncoupling of the equation remains valid as long as thgatialization of the equations is valid-,
should therefore remain sufficiently small so that the didiagonal elements of, (1)K esresg Femain
small with respect to the diagonal elementof.

The well known theory of the deterministic Mathieu equatiighlights that parametric instabilities occur for
parametric excitation frequencies closefy /k (k integer) [1], even if the instability becomes less critical
when damping increases. In this stochastic context, tlguémecy bandwidth of the parametric excitation
must be sufficiently small to avoid triggering the other modéthe structure. It is numerically observed that
the frequency interval should not include the second haitsaf the other bending modes, unless they are
sufficiently damped.



5 Influence of narrow-band excitations on first passage time

The analytical results about first passage time of systemarged by Equation (7) rely on the assumption
of broadband white noise excitations. The forced and patr&srexcitationsw andw are characterized by
constant power spectral densiti€s and S,,. The Hamiltonian of the quasi-Hamiltonian system ¢ and
¢ <« 1) is defined as
oo 22 [z’]2 9
=3 + 5 9)

The analytical studies conducted in the case of broadbarithézns allowed to derive closed-form expres-
sions of the mean first passage tithe[9]. They revealed that the reduced average first passagéfisy, /4
only depends on the reduced initial energy and energy inemém

Hy = ];IOSS“ and AH* = AQZS“

(10)

and on the damping factar= 8¢/S,,. This suggests to represent the results by maps of the rédweeage
first passage timé/;.S,, /4 as a function ofH; and AH*. For instance, Fig. 7 (dotted lines) represents
the analytical results for an undamped system and higlsliite three regimes. Fdij; < 1, U;5,/4 is
independent fron¥{;. This is called the additive regime. Féf; > 1, the curves show constant slope
and the first passage time depends on by how much the inigatyeevel is multiplied to obtain the target
energy level, which corresponds to the multiplicative megji The incubation regime in whidh S, /4 scales
linearly with AH* is identified forAH* < 1 + Hj.

In the current case, it was shown to be necessary to limit ibguéncy bands of the excitations for the
response of the multi-degree-of-freedom system to be appated by the response of an equivalent single-
degree-of-freedom system. This section is therefore deviat the numerical study of the influence of such
limitations on the frequency band on the first passage tintbeokingle-degree-of-freedom oscillator. The
forced and parametric excitatiomsandw are defined as narrow-band random processes of constant powe
spectral densities,, and.S,,.

5.1 Influence of the frequency band of the forced excitation

As a first step, the system is studied for broadband pararetaitations and several different narrow fre-
guency bands for the forced excitation (including the ratérequencyf, of the oscillator or not). The
first passage time maps are obtained numerically using Moatk simulations. The HamiltoniaH of the
single-degree-of-freedom system is computed at each tiepe ¥hen it reaches a given maximal value, the
simulation is stopped and a new simulation is initiated. dVerage first passage time is eventually obtained
by averaging the results of a large set of simulations.

The three incubation, additive and multiplicative regiman only be recovered if the frequency band of the
forced excitation includes the natural frequency of theéesys Fig. 7 compares the analytical map obtained
under the assumption of broadband excitations with the nigadlenap built by Monte Carlo simulations of
the oscillator subjected to broadband parametric exoitaind narrow-band forced excitation in the interval
[0.8f0; 1.2fo] (@ = 0, S, = 1073, S, = 5-10~%). For limited frequency intervals around the natural
frequency of the oscillator, a nearly perfect match betwbemumericali(e. for narrow-band excitations)
and analytical i(e. for broadband excitations) results is observed in the whw@. The results are only
significantly different in the bottom left corner corresplorg to small values off; and AH*. This is not
surprising since the bottom left corner corresponds toithi tase where there is no parametric excitation;
the forced excitation therefore has a dominant influenchigzione.
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Figure 7: Reduced average first passage timEigure 8: Reduced average first passage time
U1S,/4. Comparison of the maps obtained nu-U;S, /4. Comparison of the maps obtained numeri-
merically for broadband: and narrow-bandv on  cally for narrow-band excitations.©n [0.1f ; 3 fo]
[0.8f0; 1.2fy] and analytically for broadband exci- andw on [0.8fy ; 1.2fy]) and analytically for broad-
tations ¢ =0, S, = 1073, S, = 5-107%). band excitationsq = 0, S, = 1073, S,, = 5-107%).

5.2 Influence of the frequency band of the parametric excitat ion

Fig. 8 compares the maps obtained numerically for narromdtecitations £, on [0.1fy; 3 fo] and Fy, on
[0.8f0; 1.2fo]) and analytically for broadband excitations in the absesfagamping ¢ = 0, S, = 1073,

Sw = 5-107%). Visual inspection of the maps reveals that the analytiesililts are not recovered when the
system is subjected to narrow-band random processes. uglthibhe additive, multiplicative and incubation
regimes can still be clearly identified, the curves do noesinmpose. This means that the analytical results
obtained for broadband excitations do not simply transéendrrow-band random processes. Here, the
frequency band is limited and the corresponding first passiages are larger than those computed with
broadband excitations. A more systematic study is requezharacterize the influence of the parametric
excitation.

The undamped system (= 0) is studied. The parametric excitation is defined as a nabramd process
of constant power spectral density, = 10~2 on the frequency intervdlf; ; f»] and the boundg; and f,

are varied. The forced excitation is defined as a narrow-lmndess of constant power spectral density
S, = 5-10~% on the frequency intervald.8 fo ; 1.2fo], in agreement with the conclusions of the previous
section.

An indicator [ is introduced and defined as

MC th
U - ul

al v

r-|

where U{V'C and U{h are respectively the mean first passage time obtained fromiéviGarlo simulations
with narrow-band processes at some observation point ofnge and the corresponding analytical mean
first passage time for broadband processes. Based on theemimuof the previous section, the initial
energyH; and the energy incremeXH* are chosen far from the bottom left corner of the map where the
influence of the narrow band of the forced excitation is laagd for moderate values &f; and AH* to

limit the computation time.



Fig. 9 shows the value of the indicatér(11) as a function of the lower and upper frequendiesnd f,
(normalized by the natural frequengy) that define the parametric excitation at the observationt jpd the
map characterized b¥f; = 10~1° and AH* = 10°. This figure shows that it is necessary to include the
second harmonic of the natural frequery, in the frequency interval to be close enough to the anallytic
results for broadband excitations. In fact, when the sebamnchonic of the natural frequency does not belong
to the frequency interval of the parametric excitation, first passage time map looks completely different;
even the three regimes do not appear. By contrast, it is matssary to include the natural frequency itself in
the frequency intervdlf; ; f2]. This can be supported by the deterministic theory of Matleiguation [1].
Instabilities occur at frequendyfy /k (k integer). While the instability fok = 1, i.e.at f = 2f, is the most
critical, the other instabilities do not develop when farexcitation or damping is introduced in the system
unless the amplitude of the parametric excitation is large.
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Figure 9: Indicator! (11) at pointH; = 10~%5 and AH* = 10" as a function of the lower and upper
frequency of the bandwidth of the parametric excitation=(0, S, = 1073, S, = 5-107%).

It should be noted that, even if this study is based on a sipgiet of the map located in the additive
regime, the same exercise has been performed at other pmiated in other regimes and the same general
conclusions have been drawn. The numerical study of systherscterized by other values of S,, and

S, also lead to the same general conclusions.

6 Experimental study of first passage time

The above numerical studies provide useful informationrepare the experimental study of first passage
time. The forced excitatiott;,, and the parametric excitatiafi, applied to the experimental set-up (Fig. 1)
must be such that the conditions for the model reduction tedhe are verified and the influence of the
narrow bands remains limited.

The forced excitation?, is defined as a narrow-band process of constant power spdefrsity S, =
5 - 1072 N2/Hz on the frequency intervdd.87fy; 1.13fo] = [34; 44] Hz. This frequency interval does
not cover any of the other natural frequencies of the setdie parametric excitatiolt’, is defined as a



narrow-band process of constant power spectral dessity= 5 - 1072 N2/Hz on the frequency interval
[0.77 fo; 2.57f9] = [30; 100] Hz. This frequency interval covers the natural frequeligyand its second
harmonic. It can be regretted that the second harmonic dirgtdoending mode and the natural frequency
of the third bending mode are also included. But, this is moisaue thanks to the high damping ratios of
these modes.

Equation (6) shows that the dimensionless parametefs and.S,, are related to the dimensional parameters
through

Aceqh » 2 Su [ kpeq)’
o= Yedtea _yg9 g S <ﬁ> —95.10-1 ands, = —> <ﬂ“> —1.8-107% (12)
k‘%’quu Teharact \ Keq Teharact \ Keq

The force intensitiesS,, and S,, are much smaller than one, as required by the theory to hawesi-q
Hamiltonian system. The high value @tloes not mean that damping is intrinsically high= 4-10~3 < 1)
but, merely, that damping is high with respect to the amgétaf the parametric excitation.

The structure is excited by the horizontal and vertical srakor 30 minutes and the velocity of the structure
is measured at a vibration antinode with the laser transdutke response is humerically integrated to
compute the evolution of the position with time. It is therecked that the structure responds only in its
second bending mode by analyzing the response in the freguemmain. The dimensionless Hamiltonian
corresponding to Equation (7) is eventually computed byafqua (9).

The average first passage time map corresponding to thetiewvolf the Hamiltonian of the system with
time can be built from the experimental results (solid limeBig. 10). If the time signal is sufficiently long,
the same level of energy is reached several times and thensysisses many times from initial energies
Hj to higher energied¢l, = Hy + AH. Both energy axes are discretized in a finite number of vallibe
intervals between these values are chosen with uniforns simea logarithmic scale as this is the physical
scaling suggested by the stochastic model. The mean firsagadime corresponding to each point of the
map {.e. each combination of initial energy; and energy incremem H*) is obtained by averaging all the
first passage times corresponding to the transitions betttmse levels of energy [8].
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Figure 10: Reduced average first passage img, /4 as a function ofd; and AH*. Comparison of the
maps obtained experimentally and numerically for narr@amebexcitations £, on [0.77 fq ; 2.57 fo] and Fy,
on[0.87fy; 1.13f,]) and analytically for broadband excitations 132, S,, = 2.5-10719, 5, = 1.8:107%).



Fig. 10(a) compares the experimental results with the #inalymap obtained under the assumption of broad-
band excitations. The results are qualitatively similadt ttre general trend of the average first passage time
is recovered experimentally but, as expected, the curve®tsuperimpose.

Fig. 10(b) compares the experimental results with the mdpimmdd by Monte Carlo simulations of the
numerical system subjected to the same narrow-band emoiahs in the experimental tests. Globally, a
good match between the maps is observed and the global bebétlie mean first passage time is recovered.
The different regimes can be analyzed separately.

The additive regime is well represented. In the left partigf EO(b), the experimental curves tend towards
horizontal asymptotes, at least for sufficiently large ealof the incremenf H*. The incubation regime
can be highlighted by considering cross-sections of the ataypnstant values af;. Fig. 11 shows the
evolution of the average first passage time as a functiah&f for H; = 2-10~2 and2 - 10~3. As hinted

by the linear trends represented as a guide, the averagedssage times (cross markers) are fairly well
aligned, which is the specific feature of the incubation magi
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Figure 11: Cross-sections of the reduced average first gaggsae map (Fig. 10) in the incubation regime
for H; =2-10"2 andH; = 2 - 10~3. Experimental data (crosses) and linear trend (lines).

The multiplicative regime cannot be rigorously observedrig. 10(b). In the right part of the figure, the
curves show the same negative slope but the multiplicadigeme is not yet reached since the highest value
of H is of the order ofl0~1® while the multiplicative regime appears féf; > 1. On the one hand, such
high values ofH; must be avoided here since it can cause the excitation ofneamities in the system.
On the other hand, for damped systems subjected to broadbanitions, the asymptotic slope in the
multiplicative regime equal® — a. This result is certainly not directly valid in the narrowssd excitations
case but suggests that, given the high value ef 132, the part of the multiplicative region reachable in
a limited amount of time reduces to the bottom right corneecdiise this corner is characterized by high
coefficients of variation [10], very long time signals wolld required to get a smooth map in this region.

The differences between the numerical and experimentaltsesan be ascribed to different factors. The
experimental conditions never match exactly the numeooak. For instance, the power spectral densities
of the excitations are not perfectly constant on the frequdrand of definition, and do not drop to zero
outside this interval. Then, the structure is inherentlyudtindegree-of-freedom system and it is not possible
to excite a single mode of the structure. Structure nontitiea can also be a source of differences between
the numerical and experimental results. Indeed, even iintemsities of the excitations have been chosen
extremely small to limit the excitation of the nonlineae#j those are inherent to the structure.



7 Conclusions and perspectives

This work aims at designing and testing an experimentaliget illustrate and provide empirical evidence
of the main analytical results of the theory of first passage tescribed in [9]. The current theory applies
to quasi-Hamiltonian linear single-degree-of-freedomstams subjected to broadband forced and parametric
excitations §-correlated Brownian processes).

The selected structure consists in a vertical steel stepsfressed by a mass. First, a finite element model
of the structure is built. The inherently multi-degreefiifedom system is reduced to match the assumption
of a single-degree-of-freedom system behind the theorysiffiassage time. This is done by defining the
forced and parametric excitations as narrow-band randamepses triggering only one bending mode of
the structure. Since analytical results are not availabtetfe first passage time of systems subjected to
narrow-band excitations, a numerical study is performed some general conclusions are drawn about
the influence of the frequency bands of the forced and parametcitations on the first passage time.
The global behavior of the average first passage time is ezedvin the whole map as long as the natural
frequency of the oscillator is included in the frequencydahnthe forced excitation and the frequency band
of the parametric excitation contains the second harmadhileeonatural frequency. When these conditions
are met, small quantitative differences can be observea Wwieadband or narrow-band excitations are used
but the dynamics remains qualitatively similar.

The previous steps provide a rationale for selecting theogpjate parameters of the experimental testing.
The experimental first passage time map is built and compaitbdhe theoretical and model results. A good
guantitative match is observed between the experimentaland the numerical results obtained with Monte
Carlo simulations with narrow-band excitations. The ekpental results are also qualitatively similar to the
theoretical ones for broadband excitations. Both the agd#tnd incubation regimes are clearly identified.
Only the beginning of the multiplicative regime can howelverobserved.

This study contributes to broadening the scope of the firstguge time theory introduced in [9, 10] beyond
the context of single-degree-of-freedom linear systerbgested to broadband excitations considered so far
by numerical and experimental studies of oscillators subgkto narrow-band processes. It is also a first
physical evidence that the first passage time of real maljree-of-freedom mechanical systems can be
characterized with the physical properties of the stractur

This study also suggests that work is still needed to go éarivith analytical, numerical and experimental
studies of systems subjected to narrow-band excitatianpaiticular, analytical studies of the first passage
time of systems subjected to colored excitations, and itiquéer to narrow-band excitations, could be
conducted to get a better insight into the phenomena.
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