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PRODUCT FORM PARAMETRIC REPRESENTATION
OF THE SOLUTIONS

TO A QUADRATIC BOOLEAN EQUATION (*)

by Y. CRAMA (X), P. L. HAMMER (*),

B. JAUMARD (2) and B. SIMEONE (2) (3)

Abstract. — A parametric représentation of the solutions to a consistent quadratic boolean
équation in n variables is obtained. Each variable (or its complement) is expressed as a product of
free boolean parameters or their compléments. These expressions provide a complete description of
the solution set of the équation. An O (n3) algorithm is proposed to produce such a représentation.
An application to the maximization of some classes of pseudoboolean functions is discussed.

Keywords : Quadratic boolean équation, parametric représentation, implication graph, transi-
tive closure, complexity.

Résumé. — On obtient une représentation paramétrique de l'ensemble des solutions d'une
équation booléenne quadratique à n variables. Chaque variable (ou son complément) s'exprime
comme un produit de paramètres booléens indépendants éventuellement complémentés. L'ensemble
de ces expressions décrit complètement Tensemble des solutions de Xèquation. On présente un
algorithme en O (n3) pour obtenir une telle représentation. Une application à la maximisation de
différentes classes de fonctions pseudo-booléennes est proposée.
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288 Y. CRAMA et al

1. INTRODUCTION

Let X~{xi9 x2, . . . , xn} dénote a set of n = \X\ boolean variables and

%={xu ic2, . . . , x j the set of their compléments. A literal is either a variable

or its complement. Literals will be denoted by Greek letters \x, r\, . . .

A quadratic boolean équation (E) over X has the form:

T l V T 2 v . . . vT m = 0, (1)

where each term Tj can be written as [i or |ar|, i. e. as either a single literal
or a product (conjunction) of two literals. Without loss of generality, we shall
assume that all terms are products of exactly two literals.

Different graph algorithms have been proposed to check in polynomial
time the consistency of a quadratic boolean équation (see e. g. Even, Itai and
Shamir [1976], Aspvall, Plass and Tarjan [1979], Petreschi and Simeone
[1980], Johnson and Padberg [1982], and Simeone [1985]). On the other hand,
a quadratic équation can have an exponential number of solutions, and
enumerating all of them is in gênerai a prohibitive task. In fact, Valiant
[1979] has proved that even determining the number of such solutions is
iVP-complete, and hence probably very difficult.

Nevertheless, as shown in this paper, one can obtain a concise product
form parametric représentation for the set of solutions to an arbitrary qua-
dratic boolean équation. The représentation uses no more than n free boolean
parameters for an équation in n variables. Each variable (or its complement)
is expressed as a product of these parameters or their compléments, and these
expressions provide a complete description of the solution set of the équation.
Furthermore, such représentation can be computed in O (n3) time.

In fact, algebraic methods for determining parametric représentations in
the case of gênerai boolean équations [i. e. équations of the form (1) with an
arbitrary number of literals in each term] have been known for a long time
(see Löwenheim [1908, 1910] and Rudeanu [1974]). When specialized to
quadratic équations, Löwenheim's method produces (in polynomial time) a
parametric représentation of the solution set, where each variable is associated
with some boolean expression of the parameters. The resulting expressions
are generally neither in disjunctive nor in conjunctive normal form, and
reducing them to such a convenient format can be computationally expensive.
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PRODUCT FORM PARAMETRIC REPRESENTATION 289

This is to be contrastée with the very simple form of the représentation
proposée hère.

The proposée parametric représentation is présentée in the next Section,
and an algorithm to produce it is described in Section 3. The algorithm relies
on the concepts of implication graphe defined by Aspvall, Plass and Tarjan
[1979], and of mirror graph, introduced by Hansen and Jaumard [1985].
Section 4 contains an example. The combinatorial structure of the représenta-
tion is explored in Section 5, and some applications to 0-1 optimization
problems are given in Section 6. Finally, we discuss in Section 7 some proper-
ties of the représentation.

2. PRODUCT FORM PARAMETRIC REPRESENTATION

For ease of présentation, let us temporarily assume that the quadratic
équation (E) given by (1) is pure, i. e. all its terms are positive (they involve
only uncomplemented variables) or mixed (they involve exactly one comple-
mented and one uncomplemented variable). This assumption is not very
restrictive, since every consistent boolean équation can always be cast into a
pure one, by simply renaming some of its variables (see Section 3).

Now, for any pair of boolean variables xk, xp the following properties are
easily seen to hold:

xkXj = 0 if and only if xk^xp

xkXj = 0 if and only if xk^xr

Therefore, (E) can be rewritten (usually in more than one way) as a System
of boolean inequalities of the form:

xk^xj (xjGDk) (2)

xk^xj (xjeDk) (3)

where Dk^X{JX(k = 1, 2 , . . ., n). We will also assume that xk$Dk, that Dk

does not contain both a variable and its complement, and that xk$Dj if
Xj6Dk, for fc, je{\, . . ., n] (these last conditions essentially mean that, in
the solution set of the équation, no Variable assumes a fixed value, and no
two variables can be identified; we will show in Section 3 that there is no
loss of generality in assuming so).

The System (2)-(3) is in turn equivalent to the following one:

k j j k j ) (k = l9 2, . . . , n) (4)
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290 Y. CRAMA et al

and hence also to the System of équations:

xk = xk(UXj6DkXj)(U,.eDkXj) (fc = 1, 2, . . . , fi). (5)

The expression (5) of the équation (E) suggests the following construction.
Let p = (pl9 p2, - • -, Pn) dénote a vector of independent boolean parameters,
and define:

gk(P)=gk(Pu • • ->Pn)=Pk(nj:XjeDkPj)(nj:ïjeDkPj) (6)

for fc = l, 2, . . ., n. Let:

Q = {(gl(pl...,gn(p)):pe{O,l}n}, (7)

and dénote by S the set of solutions of (E). Then:

PROPOSITION 1: S^Q.

Proof. ~ If (x! x J e S , then x^g^x^ . . ., xn) for ï = l n-
Hence, (xl9 . . ., xn)eQ. D

The next Proposition states a necessary and sufficient condition on (E)
under which equality holds between S and Q. We first introducé some more
notations. We use throughout this paper the graph-theoretic terminology of
Berge [1973]. All the graphs we consider are directed. With the formulation (5)
of (E), we associate the graph H = (X\JX, A) defined as follows: for all xk in
X and JLI in X{J X, the are (xk, ju) is in A if and only if \i£Dk. We say that H
is transitive if the are (xk, |i) is in A whenever (xk, x3) and (xp ji) are in A,
for some j e{ l , . . ., n}.

PROPOSITION 2: S = Q if and only if H is transitive.

Proof — Assume first that H is transitive. By Proposition 1, we only have
to prove that e ver y vector (gt (p), . . ., gn(p)) in Q is a solution of (2)-(3).

Let XjGDk. If gk(p)=l, then ^ = 0, and hence gj(p) = 0. This shows that
the inequalities (3) are satisfied by (g1 (/?), . . ., gn(p)).

Let XjGDk. If gJ(p) = 0, then either (i) Pj = 0, or (ii) pt = 0 for some i such
that xteDp or (iii) pt = l for some i such that xtGDj. In case (ii), xieDk by
transitivity of H. Similarly, in case (iii), xteDk. Hence, in all cases, gk(p) = Q9

and the inequalities (2) are satisfied by (gx (p% . . ., g„ (/?)).

Conversely, assume now that S = g, and that H is not transitive. This
means that, for some xk, XJEX and iieX\JX, (xk, Xj) and (xp p,) are in A9

but (xk, \i) is not in A. Assume for instance that \xeX, Le. \i = xt for some

R.A.I.R.O. Recherche opérationnelle/Opérations Research



PRODUCT FORM PARAMETRIC REPRESENTATION 2 9 1

î e{ l , . . . , » } (the proof is similar if \xeX). So, XjeDk, and xteDp but x{$Dk.
Notice that i + k, by our assumptions on the system (2)-(3).

Let p = {p1, . . ., pn\ where pk = l, ^ = 0, pt = \ if xteDk, and /?/ = 0 else (it
is easy to check that this is a valid assignment of values to the parameters).
Then, gk(p)=\ and g}(p) = 0. So (gx (p), . . ., gn(p)) is not a solution of (2)-(3),

So, when H is transitive, the expressions gk(p) (fe = l, . . ., n) defined by
(6) yield a parametric représentation of the solutions of (E). Notice that,
even if H is not transitive, (E) can always be transformed into an equivalent
équation for which the associated graph is transitive, by adding to it the
necessary missing terms. More precisely, if xk^Xj and Xj^\x are two inequali-
ties in the system (2)-(3), then inequality xk^\i is redundant, and can always
be added to the system. Iterating this opération until the resulting graph is
transitive is clearly equivalent to Computing the transitive closure of H.
We describe in Section 3 an efficient algorithm to compute a parametric
représentation of the form (6) for the solutions of an arbitrary quadratic
équation.

3. ALGORITHM AND COMPLEXITY

The graph-theoretic algorithm we propose for obtaining a parametric
représentation of the form (6) for the set of solutions follows the steps
outlined in the previous Section and proceeds in five stages:

stage 1: check the équation for consistency;

stage 2: identifications of variables;

stage 3: réduction to a pure équation;

stage 4: fixations of variables;

stage 5: computation of a product form parametric représentation.

Stage 1

To represent the quadratic boolean équation (£), we use the concept
of implication graph introduced by-Aspvall, Plass and Tarjan [1979]. The
implication graph G = (X\JX, U) contains two arcs, (\x, ï}) and (t\9 jl), for
each term |ar| of (1). If the literal associated with the initial vertex of an arc
has value 1 in a solution of the quadratic équation, then the literal associated
with its terminal vertex must take the value 1, too. Hence the name of the
graph.

vol. 21, n° 4, novembre 1987



292 Y. CRAMA et al.

We record the following obvious fact for future référence:

PROPOSITION 3: If all literals are complemented and the orientation of all
arcs is reversed in G, then the same graph is obtained.

Moreover, Aspvall, Plass and Tarjan [1979] proved:

PROPOSITION 4: The équation (E) is consistent if and only if no vertex xeX
is in the same strongly connected component of G as Us complement x.

We will assume from now on that (E) is consistent, so that the condition
in Proposition 4 holds.

Stage 2

The reduced implication graph of (E) is obtained by shrinking each strongly
connected component of G into a single vertex. This opération corresponds
to identifying all literals in each strongly connected component of G: in fact,
ail such literals must take the same value in every solution to (E). Observe
that, for every strongly connected component C of G, there is a "mirror"
strongly connected component C formed by the compléments of the literals
in C. If we dénote by ji and jl the new vertices corresponding to C and C,
respectively, then the reduced implication graph is seen to retain the "mirror"
property of G described in Proposition 3.

Stage 3.

Essentially, this stage consists of an efficient procedure for renaming
(renumbering and/or switching) the variables, so that the équation becomes
pure.

An important property of the reduced implication graph is the absence of
circuits. It is well known that any circuit-free graph D = (V, A) admits a
topological linear ordering, i . e . a b i j e c t i o n r : V - * { l , 2 , . . . , | F | } s u c h t h a t
r(ü)<r(v) for each are (u, v)eA. The integer r(u) is called the rank of
vertex u.

If the number of vertices of the reduced implication graph (or, equiva-
lently, the number of strongly connected components of the implication
graph) is 2nR, we have (see Hansen and Jaumard [1985]):

PROPOSITION 5: There exists a topological linear ordering r of the reduced
implication graph such that, for every vertex x:
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Given a topological linear ordering of the reduced implication graph as in
Proposition 5, we rename yl9 y2, . . ., ynR the vertices of rank less than or
equal to nR, so that yk is the new vertex of rank k. We let
y = {y» yi,-->, ynR} and Y= {yl9 y2, . . . , ynR}. The graph GM on Y \J Y we

obtain in that way is called mirror graph. So, GM is isomorphic to the reduced
implication graph.

Define now (ER) as the "reduced" quadratic boolean équation over Y whose
implication graph is GM. Clearly, (ER) is a pure équation (see Section 2).

Notice that, once a parametric représentation of the solutions to (ER) has
been obtained, it is straightforward to dérive from it a similar parametric
représentation for the solutions to (£), using the same set of parameters.
Therefore, we may now concentrate on the équation (ER) only.

Stage 4

Let us associate with (ER) a graph H = (Y\J Y, A) satisfying the following
conditions:

(i) the arc (yk, yt) is in H if ykyx is a mixed term of (ER) (observe that

(ii) exactly one of the arcs (yk9 yt) or (yl9 yk) is in H if yk yl is a positive
term of (ER).

Clearly, H is one of the graphs associated with (ER) as explained in
Section 2, and will be called a half mirror graph of (ER).

We dénote by H* = (YU Y, v4*) the transitive closure of H: an arc (|x, r|)
is in A* if and only if there is a path from \i to i] in H. The set of successors
of the vertex yk in H* is denoted by Dk (equivalently, Dk is the set of
descendants of yk in H).

PROPOSITION 6: 4̂ variable ykeY is equal to zero in ail solutions to (ER) if
and only ifeither ykeDk or [yb yt}^Dk, for some l>k.

Proof. — The "if" part of the statement is obvious.

For the "only if" part, assume that yk takes a fixed value in ail solutions
of (ER) (this value can only be zero, since (ER) is pure). It is known (see
Hansen, Jaumard and Minoux [1986])-that a variable x is fixed in ail solutions
to a quadratic équation if and only if there exists a path from x to x9 or
from x to x, in the implication graph of the équation. So, in our case, there
exists a path P from yk to yk in the mirror graph GM. Let yt be the last
vertex of P which belongs to Y, and y} be the first vertex of P which belongs
to Y. From the définition of GM, k ^ i and k ^j. Also, all the vertices preceding
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yt on P belong to Y, all the vertices following ys on P belong to Y, and
therefore there is an arc from yt to y3 in GM.

If i=j = k, then ykeDk. If i=j^k, then {yt, yt}^Dk. So, we may assume
that IVJ, and we have P = (yfc, . . ., yi9 yp . . ., Jk). By Proposition 3, there
must exist in GM another path P = (yk, . . ., yp yi9 . . ., ^fe). By symmetry, we
may as well assume now that the arc (yi9 jjj) is in H. Therefore, the "subpath"
<X> • • •» yi> yj) o f P a n d t h e "subpath" (yfc, . . ., yj) of P are paths in H.
Hence, {^, j ^ } s D k . D

So, detecting ail fixed variables can be done easily once the transitive
closure H* of H is known. We will assume from now on that the vertices
associated with such variables have been removed from H*. For simplicity,
we will keep the same notations to describe the new graph we obtain in that
way.

Stage 5

Now, let p = (pl9 pl9. . ., pnR) dénote a vector of independent boolean
parameters. Since H* is transitive, we deduce immediately from Proposition 2:

PROPOSITION 7: A parametric représentation of the solutions to the quadratic
équation (ER) is given by:

yk = gk(Pk> • • ',PnR)=Pk (Uj.yjeDu

for fe = l, 2, . . ., nR.
In summary, the following procedure produces a product-form parametric

représentation of the solutions to the quadratic boolean équation (E) given
by(l).

Step 1 (Implication graph). — Construct the implication graph G of (E):

9 U).

Step 2 (Strongly connected components). — Détermine the strongly con-
nected components of G.

Step 3 (Consistency). — Check if, for some xeX, x and x belong to the
same strongly connected component of G.

If so, stop: (E) has no solution.

Step 4 (Mirror graph). — Construct a mirror graph GM: shrink each
strongly connected component of G into a single vertex; détermine a topogical

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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linear ordering of the new vertices satisfying the condition in Proposition 5;
rename the vertices according to their rank.

Step 5 (Halfmirror graph). — Select a half mirror graph H associated with
(ER), as explained above.

Step 6 (Transitive closure). Compute the transitive closure H* of H.

Step 1 (Fixation). — Détermine the fixed variables for (ER\ using
Proposition 6; delete the corresponding vertices from H*.

Step 8 [Parametric représentation for (ER)]. — Dérive a product form
parametric représentation of the solutions to (ER), using Proposition 7.

Step 9 [Parametric représentation for (E)]. — Dérive a product form
parametric représentation of the solutions to (E).

PROPOSITION 8: The above procedure can be implemented to run in
O (max {m, nR}) time.

Proof — Steps 1 and 2 require O (m) opérations, using Tarjan's depth-first
search algorithm [1972]. In step 3, checking for all xeX whether both x and
x belong to a same strongly connected component, takes overall O (n) time.
Step 4 can be implemented to run in O (m) time, and step 5 takes O (mR)
time, where mR is the number of arcs in GM (mR^m). Hence, this part of
the procedure runs in 0 (m) time. In fact, steps 1 through 4 can be executed
simultaneously as shown by Jaumard [1986].

Computing the transitive closure of H, in step 6, can be done in O (nR)
opérations (see e.g. Roy [1959], Warshall [1962] and Mehlhorn [1977]).
Determining the fixed variables in step 7 takes O (nR) opérations. A parame-
tric représentation of the solutions to (ER) can then be derived in O (nR) time.
So, this part of the procedure can be executed in O (nR) time.

Finally, step 9 takes O (n) time.

Thus, the overall time complexity of the procedure is O (max {m, nR}). •

4. Example

Consider the quadratic boolean équation:

xx x2 vxxx3v xx x5 vx2x7v x3 x4 v x 3 x 8 v x4 x5

x v x 4 x 7 v x 5 x 6 v x 6 x 7 v x 6 x 8 v x 7 x 8 = O (8)

The associated implication graph G is represented in Figure 1.
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Figure 1. - Implication graph G of the équation (8).

Ail strongly connectée components of G consist of exactly one vertex.
Hence, équation (8) is consistent. Moreover, a topological linear ordering of
the vertices of G satisfying Proposition 5 is given by:

r(xk) = k, r(xk)=ll-k = l, 2, . . . ,

So, we can regard G as being the mirror graph GM. Then, a half mirror
graph H associated with G is shown in Figure 2 and its transitive closure H*
in Figure 3.

At this point, we notice that x3 must be equal to zero in ail solutions of
(8), since x8 and xs are successors of x3 in H*.

We are now able to dérive a parametric représentation of the solutions to
(8), under the form:

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Figure 2. — Half mirror graph H of the équation (8).

Figure 3. - Transitive closure H* of H.

Because the mirror graph and the half mirror graph of a given équation
are not unique in gênerai, it is usually possible to obtain different parametric
représentations of the solutions to a given quadratic équation.

For instance, another half mirror graph W associated with the équation
(8) is represented in Figure 4.

The product form représentation derived from H' is the following:

x2=plp2

vol. 21, n° 4, novembre 1987
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Figure 4. — Half mirror graph H' of the équation (8).

5. PRODUCT FORM REPRESENTATION: COMBINATORIAL STRUCTURE AND RECO-
GNITION

Throughout this section, and without loss of generality, we assume that
the quadratic boolean équation (E) under considération satisfies the following
conditions: (i) (E) is pure, (ii) there are no fixed variables, (iii) there are no
identifications of variables.

In Section 2, it was shown that one can associate with (E) a product form
parametric représentation:

*k=Zk (P) =Pk ( n , : Xj e DkPj) (Tij : ; . 6 Dkpj) (9)

Conversely, in this Section we deal with the following récognition problem:

given: a list of products

(10)hk(p) = UpjeAkpjU-.eAkpj (fc = 1, 2, . . . , n)

question: is there a quadratic équation (E) of the form (5), and a permuta-
tion a of {1, 2, . . ., n } such that

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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and Q = {(gi(p)9 g2ip\ • • •> gn(P)) '• ̂ ^ { 0 , 1}"} is the set of solutions of
(£)?

Observe that as far as the récognition problem is concerned, we may as
well assume that the number of parameters is equal to the number of
expressions in (10) and that A1? A2, . . ., A„ are all distinct.

The answer to such récognition problem is interesting for different reasons:

(a) it will give us some insights on the combinatorial structure of the
hypergraph {A1? A2, . . ., A„};

(b) it will directly lead to a method for recognizing a new class of pseudo-
boolean functions that can be maximized in polynomial time (cf. Section 6.2).

Given the expression (10), we introducé the following notations:

P={Pi,P2> • • -,Pn}> F={Pi>P2> • • ->Pn}- F o r a s e t A £ pUF, w e le t

PROPOSITION 9: The answer to the récognition problem is affirmative if and
only if:

(Cl) PlGAk^p^Ak, (i, fc = l, 2, . . . , n ) ;

(C2) the hypergraph {A^, A^, . . ., A* } has a unique set of distinct repré-
sentatives (SDR), i.e. there exists a unique permutation a of {1, 2, . . ., n}
such thatpG(l)eA+ 0 = 1, 2, . . ., n);

(C3) if a is as in (2), then

K-{pa(l)}=Uj A , . A A + 0 = 1 , 2, . . . , n ) .

Proof - (only if) Assume that (E) is a quadratic équation, that hk(p)=gk(p)
for ail k (this is without loss of generality) and that Q is the set of solutions
to (E). Let \={Pj : x^eDj U { A } a n d l e t H t h e graph associated with (E)
as in Proposition 2. Then, (Cl) holds by our assumptions on (E); (C2) holds
since pteA^ for ail i, and the uniqueness of this (SDR) follows easily from
the acyclicity of H; (C3) holds since H is transitive.

(if) Assume that (Cl), (C2) and (C3) hold and assume for simplicity that
a (i) = i, (i = 1, 2, . . ., n). Let us built a graph H = (XKJX, A) in the following
way: for i, j= 1, 2, . . ., n,

(i) (xl9 XJ)GA iî AjŒAt;

(ii) (xl9 x)eA if j^eA,.

We dénote by Dk the set of descendants of vertex xk in H.

We look at if as a graph associated with some quadratic boolean équation
(E). One easily vérifies that (E) satisfies ail simplifying assumptions made at
the beginning of this section.
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Also, H is transitive since ail arcs in A are defined by inclusion relations.
Therefore, by Proposition 2, Q is the set of solutions to (E) and we only
have to show that:

jeDkpj (fc = l, 2, . . ., n) (11)

We prove this by induction on 5(fc)= | {; : A} c Ak} |. If ô(fe) = 0, then by
condition (C3), Afe

+ - {pk} = 0 , i. e. Ak
+ = {pk}. Hence:

Assume now that (11) holds whenever 5(fc)<i. In particular, this implies
that:

Pi H,' : Xj e DlPj = np j . 6 V Pj (12)

for ail / such that S(/)<i.

If ô(/c) = /, weget :

gk (P) =Pk ( n * : Xl e DkPl) (H/ : x" e DkPi)

* :xieDk (PI Tij. Xj e Dlpj)) (np - e A -

(this is true by transitivity of H).

Since 8(/)<i for ail / in Dk, we can use the identity (12) to obtain :

gk (p) =Pu (n^ : Xl e Dk uPj G AI+ pj) (np - e A- pu

=pk ( n f : Al c Ak n p . 6 AI+ ̂ ) (np - e A - ^ ) .

So, by (C3) :

f̂c ( p ) = ( n P I e A k+ P O (n p - e A - ̂ i ) = h k (p)f

and we are done. •

Observe that Proposition 9 yields an immédiate polynomial time algorithm
for the solution of the récognition problem.
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6. SOME APPLICATIONS

6 .1. Degree-two inequalities and maximization of pseudoboolean functions

Johnson, Padberg [1982] and Bourjolly [1983] have investigated "degree-
two inequalities" in binary variables, i. e. inequalities of the form Xj + x ^ l ,
xt + Xj^\9 xt^xr Clearly the problem of maximizing a linear function
c(x) = c1x1+c2x2+ . . . +cnxn subject to a set of degree-two inequalities is
equivalent to maximizing c(x) subject to a quadratic boolean équation (E).

Let the product form parametnc représentation of the solutions of (E) be
given by:

where 7 U / = { 1 , 2, . . ., n} a n d / p | / = 0 .
Now, replacing each variable in c(x) by its product form parametric

représentation yields a pseudoboolean function f(p) (real-valued function of
binary variables) :

2.6jc in j x^^PjTlj ;jeDi(\-Pj)

and then maximizing c(x) over the solution set of (E) is equivalent to
maximizing the pseudoboolean function ƒ(/?) over {0, 1}". Notice that this
transformation does not increase the number of variables.

6 .2. A new class of pseudoboolean functions that can be maximized in poly-
nomial time

An interesting special case of the construction given in Section 6.1 occurs
when all the degree-two inequalities are order constraints:

where U g FxFwith V={1, 2, . . ., n).
Picard [1976] (see also Hammer and Simeone [1987]) has shown that

maximizing a linear function of binary variables under such constraints is
reducible to a minimum eut problem in a network, and hence is solvable in
polynomial time.
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From Section 6.1 and the discussion in Section 2, it follows that:

Max{cixi+c2x2 + . . . +cnxn : x^xp (iJ)eU; xe{0, 1}"}

= Max {ƒ(/?):;> e {0, 1}W} (13)

where

and

f(p)= £ cjl^p,, (14)
i=l,n

Notice that, using the results described by Proposition 9, we can easily
recognize in polynomial time those pseudoboolean functions maximization
problems arising as described above from the maximization of some linear
function subject to a set of order constaints. Indeed, these are exactly the
pseudoboolean functions of the form (14), such that A1? . . ., A„ satisfy the
conditions (C2) and (C3) in Proposition 9 (with Ai

+=Af, î = l , . . ., n). This
provides a new class of pseudoboolean functions that can be maximized in
polynomial time, distinct from other such classes previously introduced e. g.
in Barahona [1986], Billionnet and Minoux [1985] or Hansen and Simeone
[1986].

6.3. Stable sets in graphs

On the other end of the spectrum, when all degree-two inequalities are of
the type xtr + Xjf g 1, ( {i, j} e U), the problem stated in Section 6.1 is the well
known weighted stability problem for the graph G = (V, U), where
7 = {1,2, . . . , n } .

Let us define the pre-neighborhood of vertex i to be:

Specializing the procedure of Section 2, we see that the parametric expres-
sions:

Xi^PittjePiPj (15)

describe precisely the characteristic vectors of the stable sets og G. This
construction provides an immédiate translation of the weighted stability
problem into an unconstrained maximization problem, similar to that used
by Ebenegger et al [1984].
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7. PROPERTIES OF THE REPRESENTATION

For a consistent quadratic équation (E), the procedure described in
Section 2 provides a parametric représentation of the solutions to (E)9 in
which every variable or its complement is expressed as a product of free
parameters. We discuss now some properties of this product form repré-
sentation.

1. One might wonder whether such a product form parametric représen-
tation exists for boolean équations of order higher than two. The next
proposition provides a négative answer to this question.

PROPOSITION 10: The solution set of a non-quadratic boolean équation cannot,
in gênerai, be given a parametric représentation in product form.

Proof. — Suppose for instance that such a représentation exists for the
équation:

x1x2x3 v x1x2x3 = Q. (16)

By symmetry, we can assume that the représentation is either of the form:

Xl = Pl9 x2 = P2, x 3 = P 3 (17)

or of the form

Xl=Pl9 x2 = P2, x3 = P3 (18)

where Pl9 P2 and P3 dénote products of some parameters and their complé-
ments.

If the représentation is given by (17), then PlP2P3 must be identically
zero. So, we can assume without loss of generality that some parameter/?
appears uncomplemented in Px and complemented in P2. But then, the
solution (1, 1, 0) of (16) is not generated by (17).

So, the représentation must be of the form given by (18). Since (0, 0, 1) is
a solution of (16), there must exist some literal, say Il2 , that appears in P2

and not in Pv Similarly, there must be some literal TT3 that appears in P3

and not in Pv Because P1P2P3 is identically zero, Px TL2 TL3 must be identi-
cally zero too. But, by choice of II2 and II3 , this is only possible if IÏ2 = n 3 ,
and then the solution (0, 1, 1) of (16) cannot be generated by (18). •

2. For the sake of simplicity, suppose that no variable takes a constant
value, and that no pair of variables take only identical or complementary
values, in ail solutions of (£). Then:

PROPOSITION 11: There exists a parametric représentation of the solutions to
(E) in which every uncomplemented variable is expressed as a product offree
parameters if and only if(E) is a pure équation.
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Proof. - The "if' part of the statement is an immédiate corollary of
Proposition 2.

For the "only if' part, assume by contradiction that xx x2 is a term of
(£), and that a product form représentation of the solutions to (E) is given
by:

xt = Pt (Ï = 1, 2, . . . , n ) ,

where Pt (i= 1, 2, . . ., n) is a product of parameters.

From the identity Px P2 = 0, one easily deduces that:

Px =/? and P2 =p,

for some parameter p. Hence, x1 = x2 in all solutions to (E): contra-
diction. •

3. Although the particular parametric représentation obtained by the proce-
dure of Section 3 dépends on the arbitrary choices made in steps 4 and 5 of
the algorithm, the number of parameters used is independent of those choices,
and is in fact always equal to nR minus the number of fixed variables for
(ER). It is probably worth pointing out that the solution set of some quadratic
équation admits a product form parametric représentation using a smaller
number of parameters.

For instance, our procedure yields a représentation using three parameters
for the équation:

x1x2 v x1x3 v x2x3 = 0

whereas the following représentation uses only two:
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