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Bimatroidal Independence Systems 

By Y. Crama I and P. L. Hammer  2 

Zusarnmenfassung." Ein Unabh~ingigkeitssystem 2 = (X, F)  heil~t bimatroidal, wenn zwei Matroide 

M = (X, F M) und N = (X, F N) existieren, so dais F = F M u F N. In diesem Falle heigt {M, N } eine 
bimatroidale Zerlegung yon ~. In dieser Arbeit werden erstmals bimatroidale Systeme untersucht. 
Ist die Klasse aller Kreise eines beliebigen Unabhimgigkeitssystems 2 (oder sind gquivalent damit 

die Restriktionen eincs Mengentiberdeckunsproblems) gegeben, so stellt sich folgende Frage: er- 

laubt :~ eine bimatroidale Zerlegung (3//. N), und wenn, wie k6nnen die Kreise yon M und N erzeugt 

werden? Fiir dieses Problem werden eine Reihe yon Resultaten gezeigt. Ferner wird ein zeitpolyno- 

mialer Algorithmus fiir dieses Problem in dem Fall angegeben, dag je zwei verschiedene Kreise von 

h6chstens ein Element gemeinsam haben. Auf~erdem schlagen wir verschiedene zeitpolynomiale 
Algorithmen ftir MengenUberdeckungsprobleme vor, die iiber der Klasse der Kreise bimatroidaler 
Systeme derfiniert sind. 

Abstract:  An independence system 2: = (X, F) is called bimatroidal if there exist two matroids 

M = (X, F M) and N = (X, F N) such that F = F M u F N. When this is the case, {M, N } is called a 
bimatroidal decomposition of Z. This paper initiates the study of bimatroidal systems. Given the 

collection of circuits of an arbitrary independence system 2 (or, equivalently, the constraints of a 
set-covering problem), we address the following question: does ~ admit a bimatroidal decomposi- 

tion {M, N} and, if so, how can we actually produce the circuits of M and N? We derive a number 

of results concerning this problem, and we present a polynomial time algorithm to solve it when 

every two circuits of 2 have at most one common element. We also propose different polynomial 
time algorithms for set covering problems defined on the circuit-set of bimatroidal systems. 
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1 I n t r o d u c t i o n  

An independence system is a pair 2 = (X, F) ,  where X is a finite set, and F is a collec- 

tion of subsets of X closed under inclusion: 

if A E F  and B C A ,  then B ~ F .  

A subset of X is called independent if it is in F, and dependent otherwise. A basis of 2; 

is a maximal independent subset of X, and a circuit of 2; is a minimal dependent sub- 

set of X (where "maximal" and "minimal" are understood inclusion-wise). The set of 

circuits of 2; is denoted C(~;). 

The union of two independence systems Z1 = (X, F1) and 2;2 = (X, F2) is the in- 

dependence system 2;1 U Y~2 = (X, F1 U F z ) - W e  say that Z 1 is included in 22,  and 

we write 2; 1 C 2 ; 2 , i f F  1 C F 2. 

The set covering problem has as input the complete list of  circuits of  an indepen- 

dence system 2; = (X, F), and a nonnegative weight function w : X ~ R. It is formu- 

lated as: 

max w(B)= ~ w(J') 
jEB 

subject to B EF .  (1) 

Notice that, even though the formulation given here is slightly unusual, problem (I )  is 

precisely equivalent to the "classical" set-covering problem (since the set-theoretic 

complements of the independent sets are exactly the covers of  the collection of cir- 

cuits). Therefore, and despite the fact that the length of the input can be exponential- 
ly large in the size of X, the set covering problem is NP-hard. 

By contrast, the set covering problem turns out to be especially easy to solve over 

matroids, i.e. over independence systems satisfying the following circuit-axiom: if 

C1, C2 are distinct circuits, and x E C1 (3 C2, then there exists a circuit C3 such that 
C 3 C C 1 U C 2 - x .  Indeed, the straightforward greedy algorithm always yields an 

optimal solution to the set covering problem over a matroid (see e.g. Lawler 1976, 

Welsh 1976, and Section 3). 
Now, if 2; is not a matroid, but is expressed as a union of matroids MI,  342, ..., Mk, 

then a maximum weight independent set of I; can be obtained by successively solving 

the set covering problem over each of M1,342 . . . .  , Mk (observe that, with the defini- 
tion we adopted for the union of  independence systems, the union of two matroids 

is generally not a matroid). 



Bimatroidal Independence Systems 151 

Motivated by this observation, Benzaken and Hammer (1985) define the matroidal 

number of an independence system 2; as the smallest number of matroids whose union 

is 2; (this number is always well-defined). They call matroidal component of 2; any 

matroid included in 2;, and a matroidal component is said to be prime if it is maximal 
with respect to inclusion. It is easy to see that 22 is equal to the union of its prime 

components. A general procedure, called obstruction removal technique, is proposed 

by Benzaken and Hammer (1985) for finding all prime matroidal components of an 

independence system (described by a list of its circuits). 

Clearly, the decomposition approach outlined above is likely to be successful only 

when applied to independence systems with small matroidal number. In particular, let 

us call an independence system bimatroidal if its matroidal number is two. The pur- 

pose of this paper is to initiate the study of bimatroidal systems. 

If Y~ is bimatroidal, and M, Ware two matroids satisfying 2; = M U N, then {M, N} 

is a bimatroidal decomposition of 22. This decomposition is called prime if both M and 

W are prime matroidal components of 2;. We do not know the complexity of recogniz- 

ing or decomposing general bimatroidal systems. In Section 2, we suggest that this 
problem might be difficult, by exhibiting a class of independence systems having a 

unique, exponentially long, prime bimatroidal decomposition. We also present a poly- 

nomial-time recognition and decomposition procedure for linear bimatroidal systems, 

i.e. bimatroidal systems in which every two circuits have at most one common element 

(see Berge 1987). 

In Section 3, we establish that bimatroidal systems belong to a "good" class of 

independence systems, over which the set covering problem is solvable in polynomial 
time. We also present a specialized polynomial algorithm, which, we conjecture, is 

guaranteed to find an optimal solution of the set covering problem if and only if it is 
applied to a bimatroidal system. 

2 B ima t ro ida l  D e c o m p o s i t i o n  

2.1 The Length of a Bimatroidal Decomposition 

Consider the following question: is there a polynomial P(u, v) such that every bi- 
matroidal system 2; = (X, F )  admits a bimatroidal decomposition {M, N)  for which 
the number of circuits of M and N is bounded by P(IXi, I C(2;)1)? 

Proposition 1 below provides a negative answer to this question if we restrict our 

attention to prime bimatroidal decompositions. For k <~ p ~ n, denote by Un.p. k the 
matroid on { 1 . . . .  , n ) whose circuits are exactly the subsets of { 1 . . . . .  p } of cardinali- 
ty k. Then: 
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Proposition 1." For p >/2, if M = U2p,2p,p and N = U2p,p,p-1, then: 

(a) the independence system 22(p)= M U N on { 1, ..., 2p} admits the unique prime 

bimatroidal decomposition (M, N}; 

Mhas  (2P t circuits, and E(p)  haspa  + 1 circuits. 

/ ~ 

(b) 
\ / P 

P r o @  (a) For p ~> 2, the rank of M (i.e., the cardinality of  a basis of M) i sp  - 1, and 

the rank of N is 2p - 2. So, Z(p) has bases of two distinct cardinalities, and it follows 

easily that N must be present in any bimatroidal decomposition of 2;(p). In particular, 

N is prime. Moreover, the second component  used in such a decomposition must have 

rank p - 1. But M includes all matroids of rank p - 1 on { 1, ..., 2p }. So, M is prime, 

and (M, N} is the unique prime bimatroidal decomposition of 1s 

(b) We leave it to the reader to check that the circuits of  E(p)  are exactly those sub- 
sets of {1, ..., 2p)  of size p containing zero or one element from {p + 1 . . . .  ,2p} .  Part 

(b) of  the statement easily follows from this fact. Q.E.D. 

Proposition 1 implies that the independence systems 2;(p) have no polynomially 

bounded prime bimatroidal decomposition. By contrast, it should be noticed that 
2;(p) can be alternatively written as N u Q, where N is as in Proposition 1, and the 

circuits of  Q are ( i  . . . . .  2p}, (p + I }, (p + 2} .... (2p}. Since Q is a matroid, (N, Q} 
is a (non-prime) bimatroidal decomposition of 2;(p), involving only a total number of 

2p + 1 circuits. 

2.2 Admissible Decompositions and Strong Obstructions 

Assume the independence system 2; is not a matroid. Let C1, C2 denote distinct 

circuits of 2;, and x E C1 (3 C2. The triple (C1, C2 ;x) is called an obstruction of ~; if 

C 1 U C2 - x is independent in 2; (i.e., if CI,  C2 and x do not satisfy the circuit axiom 
for matroids). By abuse of language, we shall sometimes say that (C1, C2 ; x)  is an ob- 
struction of C(2;), or that (C1, C2) itself is an obstruction. The set V= {v E C1 C~ C2 : 
(C1, C2 ; v) is an obstruction of 2} is then called the obstructing set of (C1, C2). 

Proposition 2: Let X be an independence system, (CI,  C2;x) be an obstruction of 2; 
with obstructing set V, and M be any matroid included in E. Then, either C 1 U C2 - x  

or V is dependent in M. 
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P r o @  Assume by contradiction that C 1 U C 2 - x  and V are both independent in M. 

Since I C1 u C 2 - x l > I V I ,  and M is matroid, there exists a subset Z of C1 UC2 

such that: 

(a) I V U Z I = I C 1 U C 2 - x l ;  

(b) V U Z is independent in M; 

(see Welsh 1976, Thin. 1.5.1). By (a), VU Z either contains C1, or contains Cz, or is 

of the form C1 U C 2 - y ,  where yE(C1 A C 2 ) - V .  Hence, in either case, V U Z  is 

dependent in 2;. But this contradicts (b), since M is included in 2;. Q.E.D. 

If G 1, G 2 are two collections of sets, then G1 v G2 is by definition the collection of 

minimal members of  G1 o G2. We use the shorthand G v Cfor  G v {C}. 

With an obstruction (C1, (72 ;x),  we associate two independence systems 2;1 and 

2;2, defined as follows: 

C(2;1) = c(2;) v v, 

c (~2 )  = c(2;) v (c l  u c2 - x ) .  

We say that 21 and 1;2 are the independence systems obtained by removing the ob- 
struction (C1, C2 ; x) from 2; (clearly, (C1, C2 : x)  is an obstruction of neither 1; 1 nor 
1;2). The next result was proved by Benzaken and Hammer (1985). 

Proposition 3: If 2; is not a matroid, and if 2;1, 2;2 are obtained by removing any ob- 
struction from 2;, then 2; 1 C 2;, ~;2 C 2; and E = I; I U 1~2. Moreover, every matroidal 

component  of  2; is a matroidal component  of either 1;I or 2;2. 

Proof: Follows easily from Proposition 2. Q.E.D. 

From this, it follows that the successive determination of the independence systems 

2;1,2;2, 2;11,1;12, 2;21,1;22, ..., results in the determination of all prime matroidal 
components of  2; (plus possibly some non-prime matroidal components).  This proce- 
dure goes by the name of  obstruction removal technique, or ORT. 

The ORT immediately suggests a simple-minded procedure to solve the bimatroidal 
decomposition problem: list all prime matroidal components of the given independence 
system 2;, and check if any pair of  them makes up a bimatroidal decomposition of 2;. 
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Clearly, this method becomes rapidly prohibitive, even for very small problems. 
On the other hand, it can in some cases be streamlined considerably, by dropping early 
in the ORT those independence systems which cannot possibly be used in any bima- 
troidal decomposition of 2. This idea can be expressed more formally as follows. 

A pair { I?, A } of independence systems such that ~; = P U A constitutes an admis- 
sible decomposition of ~ if: either Y~ is not bimatroidal, or there exists a bimatroidal 

decomposition (M, N} of Z such that MC_ F and NC_ A. Notice that, if 21, 22 are 

obtained by removing some obstruction from 2, then {El,  I~ 2 } is an admissible de- 

composition of 2;. 

Suppose now that {Y, A} is an admissible decomposition of 2; such that A is not 

a matroid, and suppose that (C1, C2;x ) is an obstruction of A. Denote by A 1, A2 the 

independence systems obtained by removing (C1, C2; x) from A. A simple way of 
generating another admissible decomposition of ~ is sometimes provided by the 

following observation. Say that (C1, C2;x) is a strong obstruction of A if either 
P U A x  C 2 ; o r I ' U A 2 C E .  Then: 

Proposition 4: If ~, F, A, AI, A2 are as described above, and F • A1 C E, then 

{F, A2 } is an admissible decomposition of 2;. 

Proof." Assume that 2 is bimatroidal. Then, there exists a bimatroidal decomposition 

{M, N} of 1~ such that M _C I ~ and N C_ A. By Proposition 3, N C A 1 or N C A 2. But 

i f N  C_ A1, then ~ = M U N C P U A1 C ~;: contradiction. So, N C A2. Q.E.D. 

It is not true in general that, in every admissible decomposition of a bimatroidal 

system, one of the components presents a strong obstruction. But we present in the 
next Section a large class of independence systems, for which the concepts introduced 

above have proved useful. 

2.3 Linear Independence Systems 

The independence system Z is linear if, for every pair of circuits (C1, 6'2 } of 2, 
[C1 • C2I ~< 1 (i.e. if the hypergraph H(E) = (X, C(E)) is linear in the sense of Berge 

(1987)). 

Remark: The collection of stable sets of a graph G defines an independence system EG, 
whose circuits are the edges of the graph. Hence, Y'G is linear, provided that G is 
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simple. Benzaken and Hammer (1985) characterized the class of graphs G for which 

2;c is bimatroidal. 
Consider now the following procedure. 

Decomposition algorithm 

Input: the circuit-set C(2) of a non-matroidal linear independence system 2. 

Output: the circuit-sets C(2;1) and C(22) of two independence systems Y~I and 22, 
such that I; is bimatroidal if and only if {~;I, 2;2 } is a bimatroidal decomposition of 

Step l: Find an obstruction (K1 Ux, K2 U x ; x )  of 2;. Let: 

C(2;1)*-C(Z)v {x), ccc2)~c(z)v(/-(1 UK2), x2 *-x, k~2 .  

Step 2: If C(2k) has an obstruction of type (it/1 Uy, H 2 U y ; y )  with xk CH1 - / / 2 ,  
let: 

c(~,~) ~ c(zk) v {y}. 

Repeat Step 2 until C(2k) has no more such obstructions. 

Step 3: If C(Zk) has an obstruction of type (H 1 U Xk, H2 U xx; xk) , let: 

c(zk) ~ c(zk) v (d, uH2). 

Repeat Step 3 until C(Y~k) has no more such obstructions. 

Step 4: If C(Zk) has an obstruction of type ({y, v}, {y, u};y)  and (xx, u, v} is a 
circuit in C(2;k), let: 

CCCk) *- cCC~,) v {u, v}. 

Repeat Step 4 until C(2;k) has no more such obstructions. 



156 Y. Crama and P. L. Hammer 

Step 5: I f k  = 1, output  C(2;1) and stop. I f k  = 2, output C(s  and continue. 

Step 6: If, for some z, {z} is a circuit of 2;2 but not of Y. (i.e., if C(2;2) has been up- 
dated at least once in Step 2), then let xl +-z, k ~ 1, and go to Step 2. Else, continue. 

Step 7: If C(2;x) has an obstruction of type (H 1 Uy, H2 Uy;y )  let: 

C(2; 1) <--- C(2; 1 ) v {y}. 

Repeat Step 7 until C(Z 1 ) has no more such obstructions. 

Step 8: Output C(2;1) and stop. 

The correctness of  this algorithm follows from our next Proposition: 

Proposition 5: If s is a bimatroidal linear independence system, and the decomposi- 

tion algorithm outputs the circuit-sets C(2; 1) and C(Z 2), then { 2; 1,2;2 } is the unique 
prime bimatroidal decomposition of 2;. 

Proof." Since the proof  of  this result is rather long and tedious, we only sketch here its 

main steps, and we refer the interested reader to Crama (1987) for a more detailed 

description. 

Assume that 2; is bimatroidal, and consider the outputs ~;1,2;2 of the algorithm. 

The proof  is in three steps: first, we show that all the obstructions removed from 2;2 

in the course of  the algorithm are strong; next, we show that 2; 2 is a matroid; finally, 
we show that the same conclusions hold for 2;1- The result follows then easily, by 
repeated applications of  Proposition 4. 

1. So, we claim first that the obstructions of  2; 2 considered in Steps 2, 3, 4 of  the 

algorithm are strong. 

Case 1: If (H I t)y, 92 Uy;y)  is as described in Step 2 of  the algorithm, then its 
removal from 2;2 produces Y~21 and I;22 , with: 

C(2;21) = C(2;2 ) v {y }, 

C(2;=) = C(:C2) v (H1 U Hz).  
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Notice that H1 U/ /2  is independent in 2;2, and hence in 23. But H1 LJ H 2 is dependent 

in 231 and in 2;z2, and so: E; 1 U 2~22 C 23. This shows that (Hi U y , / / 2  U y ; y )  is a 
strong obstruction. 

Case 2: A similar reasoning shows that the obstructions of  2;2 considered in Step 3 of  

the algorithm are strong. 

Case 3." Let ({y, v}, {y, u } ; y )  be an obstruction and {x, u, v} a circuit of  E 2. Then, 

{x, y }  is independent in 1;2, else the obstruction ({x, y ) ,  {y, v} ;y )  would have been 
removed in Step 2, thus making {y ) a circuit of  Z2. Define: 

C(~21 ) = C(232) v (y},  

C(2322) = C(232) v (v, u) .  

Then, {x, y}  is independent in 2;, but dependent in 2;21 and 231. It follows again that 

the obstruction is strong. 

2. A lengthy case-by-case analysis of  the potential remaining obstructions shows that 

the output  13 z is a matroid. We omit here this part of  the proof. 

3. (a) Consider now ~;1. If, for some z, (z} is a circuit of  N2, but not of  2;, then 

one checks as in part 1 that the obstructions removed from 23 1 are strong, and that the 

final output  231 is a matroid (see Step 6 of  the algorithm). 

(b) If there is no such z, then let us write: 

C ( ~ 1 )  = G 1 U (x ) ,  

C(~;2 ) = G2 U D2 

where G 1 is the set of  circuits of !; (or, equivalently, of  Y~I) not containing x, and G2 
is the set of  circuits of  !; 2 not containing x. 

Let us now define the independence system M by: 

C(M)=G2 U {x}. 



15 8 Y. Crama and P. L. Hammer 

Because 232 is a matroid, it is obvious that M is a matroid too. Moreover, it is very easy 
to check that M C Y'I, since !2 z c I;. So, by definition, M is a matroidal component of 

El .  
Now, let (H 1 Uy, H 2 U y ; y )  be an obstruction of 2; 1 (as in Step 7 of the algo- 

rithm). The independence systems obtained by removing this obstruction from 23 1 are 
defined by: 

C(2311) = G1 v {y} v (x}, 

C(2312)= G1 v(H 1 U H 2 ) v  (x) .  

By Proposition 3, either MC_ 2311 or MC_ s IfMC_ 211 , then {y) is dependent in 
M, and hence (by definition of M), (y} is dependent in 232. But this contradicts our 
previous assumption (b). 

So, M C_ 212. It follows that (H I U 92)  is dependent in M, and hence in 22. Since 
(H1 UH2) is dependent in 212 and 22, but not in 2, we have: 212 U 22 =/:~, and 
(H 1 Oy, H 2 Uy;y)  is a strong obstruction of 2; 1. Therefore, by Proposition 4, 
{ s } is an admissible decomposition of 2. 

This reasoning can be repeated until 2; 1 has no more obstructions, i.e. is a matroid. 

Q.E.D. 

We can now easily conclude: 

Proposition 6: Linear bimatroidal independence systems can be recognized and decom- 
posed in polynomial time. 

Proof: Indeed, the decomposition algorithm described above runs in time polynomial 
in hC(Z) l and LXI (the number of elements occurring in C(E)), since no step is executed 
more than I C(2;)[ 2 times. Q.E.D. 

Remark: For a linear independence system with circuit-set C(2) = {C1 . . . .  Cm }, the 
following inequality is easily proved to hold (see Berge 1987): 

m 

]=l 
kcjl(',cji-1)<<.lxI (LXl-1), 

and so m = IC(23)1 -- 0(IX12). Hence, our decomposition algorithm for linear indepen- 
dence systems actually runs in time polynomial in IXI (the size of the ground-set). 
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3 O p t i m i z a t i o n  O v e r  B i m a t r o i d a l  I n d e p e n d e n c e  S y s t e m s  

Even when 12 is a bimatroidal independence system, the result described in Section 2.1 
suggests that a decomposition approach may not yield an optimal solution of the set 

covering problem over 2; in polynomial time. On the other hand, we are going to prove 

in this Section, by a more direct approach, that the set covering problem can be solved 

in polynomial time over bimatroidal independence systems. 

We first establish a result that will be repeatedly used: 

Proposition 7.' Let ~ be a bimatroidal independence system, and {M, N } be a matroidal 

decomposition of  22. If (C1,6'2) is an obstruction of N with obstructing set V, then 

(up to the names o f M a n d  N): 

(a) Vis independent in N a n d  is a circuit of  M; 

(b) for al lx E V, C 1 U C2 - x  is independent in Mand  is dependent inN. 

Proof." Since Vis independent in 12, we may assume without loss of  generality that Vis in- 

dependent in iV. Then, it follows from Proposition 2 that, for every x in V, C 1 U C2 - x  

is dependent in N; thus, Ca U C2 - x is independent in M, and V must be dependent 

in M. 

Moreover, for every x in V, V - x  is a subset of  C1 u C2 - x ,  and hence is in- 

dependent in M. So, Vis a circuit of  M. Q.E.D. 

Remark: Proposition 7 provides a simple solution to the problem of finding a maximum 

cardinality independent set of  a bimatroidal system 2;. Indeed, i fB  1 is any basis of  2; 

containing V, and B2 is any basis of  2; containing C 1 U C 2 - x ,  then B 1 is a basis of  

N a n d  B 2 is a basis of  M. Hence, either B 1 or B 2 has maximum cardinality in N. 

Consider an independence system 2; = (X, F),  a nonnegative weight function w on 

X, and an independent subset A of X. We assume, for simplicity, that the elements of  

X are labeled Xl, x 2 . . . .  , Xn, in such a way that w(xi)>~ w ( x j ) i f / < j .  We call Greedy 
(2, w, A)  the following procedure: 

Greedy (2, w, A)  

Step 1: Let: G +-A; 

Step 2." Repeat for i = 1, ..., n: if G U x i E F, then G +- G U xi; 

Step 3: Return G, and stop. 
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The set G returned by this procedure will be called the greedy extension of A in E. If 
A = qS, then G is simply called greedy solution. Observe that Greedy (E, w, ~b) (or, for 

short, Greedy) is the classical greedy heuristic, and hence always yields an optimal 
solution of the set covering problem over ~ when 22 is a matroid. The next Proposition 

describes more precisely what happens when the greedy solution is not optimal. 

Proposition 8: If the greedy solution G is not an optimal solution of the set covering 

problem over 2;, then there exists an optimal solution B, and an obstruction (Cl, 

C2;x) of 22, such that: 

(a) x E a;  

(b) C1UC2 - x C B .  

Proof. Let G = {gl, -.., gp ), and suppose that G is not an optimal solution of the set 
covering problem over E. Let B= (b 1 ..... bs} denote an optimal solution of this 

problem. We assume that the elements of G and B are ordered as those of X. Define 

the index k by: k = rain (j :gj vabj}, and assume that B has been chosen among the 
optimal solutions of the set covering problem so that k be maximum. 

One easily checks that w(gk)>~w(bk) , and gk S B  (else bk would have been 

picked in G before gk). 

Since gk ~ B and w(gk) >1 O, B U gk includes at least one circuit (else, B U g~ is 
an optimal solution of the set covering problem, contradicting the choice of B). As- 

sume first that B U g  k includes exactly one circuit, say C. Since G is independent, 
there is at least one element bj in C -  G. By definition of k, j ~> k. Hence, w(b/) ~< 

w(bk) <- w(gk). Now, B U gk - bj is independent in E, and: 

w(/~ u gk - bj )  = w ( a )  + w(gk)  - w(bj )  > w(~) .  

But this contradicts the choice of B. 

So, B U g  k includes at least two circuits, say C1 and (72. Since CI U C2 - g k  is 
included in B (and hence is independent), (Ca, C2 ;gk) is an obstruction of Y~ satisfy- 

ing the required conditions (a) and (b). Q.E.D. 

We introduce now the following definition: if Y~ = (X, F) is an arbitrary independence 

system, and A C_X, then Y~/A is the independence system on X - A  whose circuits 

are exactly the minimal members of ( C - A  : C is a circuit of 2;}. Equivalently, it is 

easy to check that s = ( X - A ,  F/A), where: 

F / A = { J : J C X - A  and J U A E F } .  
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In the special case where 23 is a matroid and A is independent in 23, 23/A is the contrac- 

tion of 2 to X - A ,  and is well-known to be a matroid (see Welsh 1976). 

Now, fix 2 = (X, F) ,  and let: 

{O1 . . . . .  Or} = (Ct U C2 - x : (Ct,  C2 : x)  is an obstruction of  2; }. 

For a given weight function w on X, we denote by Gi the greedy extension of  Oi in 

2~ (for some linear ordering of  X compatible with w) (i = 1, ..., t). We also let G denote 

a greedy solution of  the set covering problem over 2;. With these notations, we can 

now state: 

Proposition 9: If Z/Oi is a matroid, for i = i, ..., t, then there is an optimal solution of  

the set covering problem over 2; among G, G1, ..., G t. 

P r o @  By Proposition 8, all we have to prove is that, for i = 1, ..., t, Gi is an optimal 

solution of: 

max w(A)  (2) 

subject to A ~ F, Oi C_ A. 

Fix i. It is clear that G i - 0 i is produced by a correct application of  the greedy algo- 

rithm to the matroid 2;/0i and hence Gi - Oi is an optimal solution of: 

max w(A ) 

subject to A ~ F/O;. 

It follows then easily that Gi is optimal for (2). Q.E,D, 

As a consequence of Proposition 9, the set covering problem is solvable in polynomial 

time over those independence systems Z such that 2;/0i is a matroid, for i = 1, ..., t. 

Notice that this sufficient condition can also be tested in polynomial time, since the 

number of  circuits of  N/A is bounded by the number of  circuits of 2;, for all A C_ X. 

Returning now to the bimatroidal case, we prove: 

Proposition lO: The set covering problem over bimatroidal independence systems can 

be solved in polynomial time. 
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Proof." Let {M, N} be a bimatroidal decomposition of 2;, with 2; = (X, F ) a n d  M = 

(X, FM). Let (C1, C2 ; x) be an obstruction of  2~, and O = C1 U C 2 - x. By Proposi- 
tion 7, we can assume that O is dependent in N. So, 

F/O= {J : J C X - O ,  J U O E F }  

= { J : J C X - O ,  J U O E F M }  

= FM/O, 

or, equivalently, 2;/0 = M/O. But Mis a matroid, and hence M/O is a matroid too. The 
claim follows now directly from Proposition 9. Q.E.D. 

It might be interesting to point out that if 2;/0i is a matroid for i = 1, ..., t, then 2; is 

not necessarily bimatroidal. More precisely, one can show that, for every integer m >~ 1, 

there is an independence system 2; m with matroidal number m, and such that 2;m/Oi 
is a matroid, for i = 1, ..., t (this is for instance the case if the bases of  Zm are the 

edges of  a perfect matching on 2m vertices; see Crama 1 987). 

This remark shows that we did not yet exploit much of  the structure of  bima- 

troidal independence systems, in our quest for an efficient optimization algorithm over 

such a system. In particular, the procedure suggested by Proposition 10 may a priori 

require a large number of  applications of  the greedy algorithm, whereas we know that 

two applications of  Greedy are in principle enough if a bimatroidal decomposition of  

the independence system is available. Our goal in the remainder of this Section is to 

sharpen some of  the general results we have obtained so far, and to present a more 

specialized algorithm for the set covering problem over bimatroidal systems. 

To this effect, we first state a refined version of  Proposition 8, valid for bima- 
troidal independence systems (in this statement, the term "last" is meant with respect 

to the ordering of  the ground set used for the greedy algorithm): 

Proposition 11." If 22 is bimatroidal, and the greedy solution G is not optimal for the 

set covering problem over 22, then there exists an optimal solution B, and an obstruc- 
tion (C1,6"2 ;gk) of  22 with obstructing set V, such that: 

(a) VC_G; 

(b) C 1 U C 2 - gk ~ B; 

(c) gk is the last element of V; 

(d) if W is another obstructing set included in G, and gt is the last element of W, then 

k < t .  
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Proof." 1. Repeat the proof of Proposition 8, but in the last-but-one sentence, let 

CI, C2 . . . . .  C s denote the circuits of 2; contained in B U g  k. For 1 <~i</<~s, 

(Ci, Ci; gk) is an obstruction of E, with obstructing set Vii. We claim that Vii = V12, 
for 1 <<.i < /  <<.s. 

2. It is enough to show that V12 = V13. Let (M, N} denote a bimatroidal decomposi- 
tion of E, and assume without loss of generality that B is independent in M. Then, 

C1 U C2 - g x  and C1 U 6'3 - g k  are independent in M, and it follows from Proposi- 

tion 7 that Vlz and VI3 must be circuits of M. If V12 and V13 are distinct, then, M 
being a matroid, V12 W V13 - g k  is dependent in M. But V12 U V13 - g k  is contained 
in B, and hence this contradicts the assumption that B is independent in M. Therefore, 

V I 2  --- V13 , 

3. Now, i f x E  V12 -G ,  t h e n x E B - G ,  and hence w(x) <. w(gk). S i n c e x E C  1 c3Cz 

N.. .  • Cs, B U g  k - x  is independent in E, and is optimal for the set covering problem. 

But this contradicts the choice of B. So, V12 C G, and (C1, C2 ;gk) satisfies (a), (b). 

4. Assume gi E V12 , where i > k. Then again, w(gi) <~ w(gk) , and B U gk - g i  is inde- 
pendent in E : contradiction. This proves (c). 

5. Suppose now that W and gt are as described under (d). From the assumptions in 

part 2 of the proof, it follows that Wis a circuit of M. If t < k, then W C_ G N B, and this 
contradicts the assumption that B is independent in M. If t = k, then V12 U W - g k  C_ B. 

But, since V12 and W are circuits of the matroid M, this leads again to a contradiction, 
and (d) is proved. Q.E.D. 

Consider now the following algorithm for the set covering problem (where, as usual, 

we assume that w(xi) >~ w(x]) if i < j ) :  

Bigreedy (E, w) 

Step 1." Let: G +-O;B +-dp; 

Step 2." Repeat for i = 1, ..., n : if G U xi C F, then G ~- G U xi; 

Step 3: If G contains no obstructing set of E, then return G and stop: else, let V be 
the obstructing set uniquely defined by (a), (c) and (d) in Proposition 1 1 ; let x be the 
last element of V, and let: 

(O1, ..., 0 , )  

= { C  1 ~.J C 2 - x  : ( e l ,  C2;x ) is an obstruction of X with obstructing set V}; 
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Step 4: Repeat for i = 1, ..., n:  if there exists some ] E {1, ..., r} such that B 0 xi 0 
O~ EF, then B ~-B Oxi; 

Step 5: If w(G) >~ w(B), then return G and stop; else, return B and stop. 

The idea in Step 4 is to build, in a greedy fashion, a basis B of 2; including at least one 

of  the sets O1, ..., Or. The validity of this procedure is asserted by the next Proposi- 

tion: 

Proposition 12: If 2; = (X, F )  is bimatroidal, then Bigreedy (s w) returns an optimal 

solution of  the set covering problem over 22. 

Proof." We already know that, if Bigreedy stops (at Step 3) because G contains no 

obstructing set, then G is an optimal solution of the set covering problem over 2.  So, 

assume that G contains some obstructing set. Let {M, N} denote a bimatroidal de- 

composition of 2;. By Proposition 7, we may as well assume that G is a basis of N and 
Bis  a basis of  M. 

The basis G is an optimal solution of the set covering problem over N. Hence, if 

G is not optimal for the set covering problem over 2~, it must be the case that some 

basis of  M is optimal for this problem: say A is such a basis. By Proposition 11, we can 

assume without loss of  generality that one of the sets O1 . . . .  , Or is included in A. 

For the simplicity of  the argument, it is convenient to assume, at this point of 

the proof, that the weight function w is injective on X, i.e.: for all x, y EX, i fx  vey, 

then w(x)~  w(y) (if this is not  the case, then w(xi) can be "perturbed" by a small 

quantity, say ei; details are left to the reader). 

Let A = {al,  ...,ap) and B = (bl . . . . .  bp}, where i <] implies w(ai)>w(aj) and 

w(bi) > w(b/). Clearly, A is an optimal solution of  the set covering problem over M. 

Hence, w(ai)>~ w(bi)for/= 1, ..., p (see e.g. LaMer 1976, Thm. 7.6.2). I fA 4: B, then 

there is a smallest index j E { 1 . . . . .  p } such that w(ai)> w(b/). But then, by injectivity: 

{al ,  . . . ,a/_x } = (b l ,  ...,b/_ 1 } and a] should have been placed in B before bi, in 

Step 4 of  Bigreedy: contradiction. 

So A = B and B is an optimal solution of  the set covering problem over s This 

proves the Proposition. Q.E.D. 

From the proof of  Proposition 12 one sees that Bigreedy comes very close to the 

"ideal" algorithm for the bimatroidal set covering problem, as sketched in the Intro- 

duction of  the paper: in a greedy fashion, and without requiring the explicit knowledge 

of the numerical weights, or of a bimatroidal decomposition {M, N}  of  2;, Bigreedy 

produces optimal solutions of  the MWI problems over M and iV, respectively. This ob- 
servation leads us to formulate the following conjecture: 
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Confecture: Let 2; be an independence system on X. If, for all nonnegative weight 
functions w on X, Bigreedy (~, w) returns an optiaml solution of the set covering 

problem over !;, then 2; is bimatroidal. 

References 

Benzaken C, Hammer PL (1985) Boolean techniques for matroidal decomposition of independence 
systems and applications to graphs. Discrete Mathematics 56:7-34 

Berge C (1987) Hypergraphes. Gauthier-Villars, Paris 
Crama Y (1987) Recognition and solution of structured discrete optimization problems. PhD thesis, 

RUTCOR, Rutgers University, New Brunswick, NJ. Published by University Microfilms Inter- 
national, Ann Arbor, MI 

Lawler EL (1976) Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston, 
New York 

Welsh DJA (1976) Matroid theory. Academic Press, London New York San Francisco 

Received May 1988 


