
With the increase in computational resources, numerical modeling has grown expo-
nentially these last two decades. From structural analysis to combustion modeling and
electromagnetics, discretization methods–in particular the finite element method–have
had a tremendous impact. Their main advantage consists in a correct representation
of dynamical and nonlinear behaviors by solving equations at local scale, however
the spatial discretization inherent to such approaches is also its main drawback. In-
deed, it usually leads to (very) large systems of equations—requiring abundance of
computational resources, usually far too much for quasi-real time simulations.
In this dissertation, model order reduction of numerical models from finite element
discretization is analyzed to efficiently and accurately downsize the number of degrees
of freedom in static and dynamic, linear and nonlinear electromagnetic applications.
In particular, an in-depth review of state of the art model order reduction methods is
performed in view of the aforementioned problems. To this end, the proper orthogonal
decomposition is considered to limit the number of unknowns in the resolution process.
Nonlinear sampling methods such as: the missing point estimation approach and
discrete empirical interpolation method, are compared to reduce the assembly phase.
The parametric dependencies are taken into account by resorting to global reduced
basis and nonlinear interpolation on manifolds techniques. Finally, a novel decoupled
approach for the reduction of a coupled nonlinear magnetodynamic three-phase energy
converter with external electric circuits is proposed and analyzed by combining all the
aforementioned methods—impressively reducing the computational cost by 95%.
This dissertation is genuinely geared towards the application of a priori known meth-
ods on a variety of different numerical models of electromagnetic devices. Additional
automatic algorithms which eliminate the arbitrary choices of numerical reduction
parameters are proposed and compared to reference methods proposed in the litera-
ture. The following applications have been considered: a 2D inductor-core system to
first illustrate and provide understanding of the proposed methods, a 2D single phase
transformer, a 2D three-phase transformer and a 3D microwave antenna.
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Abstract

With the increase in computational resources, numerical modeling has grown expo-
nentially these last two decades. From structural analysis to combustion modeling and
electromagnetics, discretization methods–in particular the finite element method–have
had a tremendous impact. Their main advantage consists in a correct representation
of dynamical and nonlinear behaviors by solving equations at local scale, however
the spatial discretization inherent to such approaches is also its main drawback. In-
deed, it usually leads to (very) large systems of equations—requiring abundance of
computational resources, usually far too much for quasi-real time simulations.

In this dissertation, model order reduction of numerical models from finite element
discretization is analyzed to efficiently and accurately downsize the number of degrees
of freedom in static and dynamic, linear and nonlinear electromagnetic applications.
In particular, an in-depth review of state of the art model order reduction methods is
performed in view of the aforementioned problems. To this end, the proper orthogonal
decomposition is considered to limit the number of unknowns in the resolution process.
Nonlinear sampling methods such as: the missing point estimation approach and
discrete empirical interpolation method, are compared to reduce the assembly phase.
The parametric dependencies are taken into account by resorting to global reduced
basis and nonlinear interpolation on manifolds techniques. Finally, a novel decoupled
approach for the reduction of a coupled nonlinear magnetodynamic three-phase energy
converter with external electric circuits is proposed and analyzed by combining all the
aforementioned methods—impressively reducing the computational cost by 95%.

This dissertation is genuinely geared towards the application of a priori known meth-
ods on a variety of different numerical models of electromagnetic devices. Additional
automatic algorithms which eliminate the arbitrary choices of numerical reduction
parameters are proposed and compared to reference methods proposed in the litera-
ture. The following applications have been considered: a 2D inductor-core system to
first illustrate and provide understanding of the proposed methods, a 2D single phase
transformer, a 2D three-phase transformer and a 3D microwave antenna.





Résumé

Avec l’augmentation des puissances de calcul informatique au cours des deux
dernières décénnies, la modélisation numérique s’est développée de manière expo-
nentielle. De l’analyse structurelle en passant par la modélisation des réactions de
combustions jusqu’à l’études des lois électromagnétiques, les méthodes de discrétisa-
tion–en particulier celle des éléments finis–ont eu un impact majeur. Leur avantage
principal consiste en une représentation correcte des comportements dynamique et
non linéaire en résolvant les équations au niveau local; cependant l’inhéherente dis-
crétisation spatiale obtenue par ces méthodes représente leur principal désavantage.
En effet, elle mène habituellement à des systèmes d’équations (très) larges—nécessitant
d’importantes ressources de calcul, habituellement bien trop élévées pour des résolu-
tions en temps (quasi) réel.

Dans cette dissertation, la réduction d’ordre de modèles numériques obtenus après
discrétisation par la méthode des éléments finis est analysée pour diminuer de manière
efficace et précise le nombre de degrés de liberté dans les cas électromagnetiques sta-
tiques et dynamiques, linéaires et non linéaires. En particulier, une étude approfondie
de l’état de l’Art est proposée en regards des problèmes énoncés. A cette fin, la proper
orthogonal decomposition est utilisée pour limiter le nombre d’inconnues lors de la
résolution du problème. Ensuite, les méthodes d’échantillonage non linéaires telles
que missing point estimation et discrete empirical interpolation method sont comparées
pour réduire la phase d’assemblage des matrices. Les dépendences paramétriques
sont prises en compte selon deux méthodes: la construction d’une base globale et
l’interpolation non linéaire sur variétés. Finalement, une nouvelle approche découplée
pour la réduction d’un transformateur triphasé couplé à des circuits électriques externes
est proposée et analysée en combinant toutes les méthodes précitées—permettant une
réduction de 95% des coûts originaux.

Cette dissertation est délibéremment orientée vers l’utilisation des méthodes a
priori connues sur un ensemble de différents modèles numériques décrivant des ap-
plications électromagnétiques. Des algorithmes automatiques éliminants les choix
arbitraires des paramètres de réduction sont proposés et comparés aux méthodes de
références proposées dans la litérature. Les applications suivantes ont été considérées:
un système noyau-inducteur 2D en premier lieu pour l’illustration et la compréhension
des méthodes, ensuite un transformateur monophasé 2D, un transformateur triphasé
2D et une antenne micro-ondes 3D.
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Introduction

Since the understanding of electromagnetism–formulated in equations by Maxwell
between 1860 and 1871–a tremendous vast variety of advanced devices have been
engineered based on those principles and have profoundly changed mankind’s lifestyle:
i.e. from first dynamo and radio in 19th century to the latest very efficient electric drives,
cars and smartphones in 21st century.

To understand and improve these applications, mathematical models have been de-
veloped and studied in both academia and industry. In the mid-20th century, equivalent
models based on simple electric equations were investigated. Those equivalent models
were often tuned by hand and did not present sufficient robustness. At the end of the
20th century, the emergence of the computer sciences changed the modeling process
rapidly. As a consequence to the growth in computational power, numerical models can
be constructed to solve increasingly larger systems of equations. Since then, the number
of transistors in CPUs and GPUs has continuously increased, following Moore’s law and
allowing an outstanding development of available computational resources. Along with
it came detailed models that rely on Maxwell’s equations at the local scale instead of
equivalent electric circuits. Those numerical models are more accurate than the original
ones. However, the time required to solve them may not have decreased throughout the
years by considering more complex models that require more computational power.

In this work, we are interested in providing models that are approximately as ac-
curate as the detailed ones while maintaining a computational speed comparable to
the equivalent ones. In order to achieve this particular aim, we are investigating the
topic of Model Order Reduction (MOR) for electromagnetic applications. For the last
two decades, researchers have been developing reduction techniques in numerous
areas such as chemical reactions, structural analysis and fluid dynamics—leading to
real-time simulations. Lately, those methods have been applied in electromagnetics
and showed very promising results in linear and static cases. As the logical next step,
we are interested in reducing nonlinear, dynamic and coupled models of such electro-
magnetic applications, some of them are considered in this dissertation by including an
inductor-core system, 2D single-phase and three-phase transformers and a microwave
antenna.

Dissertation goals

This work contributes to the development and investigation of model order reduction
techniques for (practical) applications which involve nonlinear, dynamical and coupled
conditions. The work is mainly focused on the following topics:
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2 Introduction

• Understanding previously developed model order reduction techniques

An extensive number of reduction techniques have been developed during the
last three decades. Integrating these methods is one of the main components
of this work and will determine the development of alternative approaches for
the considered applications. This first part is crucial for the correct use of model
order reduction techniques, and for understanding their limitations.

• Automating the reduction procedure for linear electromagnetic applications

Model order reduction of linear electromagnetic problems has been partially
treated in the literature. Indeed, some parts of the reduction process still require
human expertise and do not lead to automatic reduction. We are interested in pro-
viding concrete methods and/or procedures to deal with linear applications. One
of them consists in proposing algorithms that automate the reduction process
which is still often based on arbitrary user-defined parameters.

• Developing robust reductions of nonlinear magnetodynamic systems

Based on the work developed for linear applications, we consider the nonlinear
magnetodynamic problem, which describes most low frequency electromagnetic
power conversion applications. This is a very active research area, as no single
“silver bullet” solution has yet been found. Here, we explore ideas from other
research fields (e.g. thermodynamics and aerodynamics) that present the same
kind of mathematical or numerical structures for which solutions or reduction
procedures have been proposed.

• Dealing with reduction strategies of parametrized problems

Similarly to the situation described for nonlinear applications, model order reduc-
tion of parametric problems has hardly been investigated in electromagnetism,
whereas the mechanical community already developed robust solutions. In this
work, we are interested in considering those methods in the electromagnetic
research area.

• Constructing a general approach for a practical application coupled to external
electric circuits

Being able to reduce a real application such as a three-phase power transformer
and integrate it in an electric network simulator is of great interest for both
industry and academia. To conclude this dissertation, this practical application is
considered as the final demonstrator of our model order reduction investigation.

Dissertation outline

This dissertation is divided into six chapters that follow a logical sequence by adding
additional features. The same philosophy is applied to the chosen applications, as the
same models are reused and complexified accordingly.

After this introduction, the first chapter introduces numerical modeling techniques
for electromagnetic problems. It contains a review of both equivalent circuit approaches
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and high fidelity modeling and presents the problem statement leading to the original
large systems of equations that we will eventually try to reduce.

In chapter 2, we present an in-depth review of the model order reduction methods
considered during our investigation. For all of them, a theoretical description and an
academic example are presented to help the reader grasp the different concepts. The
differentiation between linear and nonlinear problems is explained and the general
procedures to adopt in such cases are explained. A particular attention is also given
to the separation of online and offline stages that are characteristic of model order
reduction techniques. Finally, a more refined outline is proposed according to the
choice of the model order reduction technique for each of the following chapters.

Chapter 3 deals with linear electromagnetic problems in both time and frequency
domain. In this first application chapter, linear model order reduction is illustrated on
simple and real applications such as transformers and antennas. Several algorithms are
proposed to automate the reduction processes and are validated on the aforementioned
applications.

Then, in chapter 4, nonlinear permeability of magnetic materials is introduced to
better depict the actual behavior of real devices. The linear and nonlinear methods are
investigated and results show the difficulty to find robust methods for dynamic prob-
lems. In this section, a three-phase power transformer is considered as an application.

In chapter 5, the nonlinear problems are parametrized by considering multiple
inputs and outputs which actively affect the system dynamics. Two intrinsically different
strategies are investigated to efficiently reduce an inductor-core system.

Then, the coupling between the reduced order model of a nonlinear parameterized
three-phase transformer with external electric coupling is detailed in chapter 6. A novel
decoupled procedure is proposed to stabilize the overall reduced system.

Finally, general conclusions are drawn and future prospects are pointed out.

Original contributions

Hereafter is a list of contributions (including collaborative works) that we consider to
be (at least partly) original:

1. The elaboration of three automatic reduction algorithms based on local and
global quantities for quasi-linear applications in frequency domain (particular
application to a 3D finite element model of a microwave antenna), in section
3.3.1.3.

2. The development of an automatic reduction algorithm in time domain based on
local and global quantities for linear magnetodynamic applications (particular
utilization on a 2D finite element model of a transformer), in section 3.3.1.4.

3. The comparison between Proper Orthogonal Decomposition method and Krylov-
based approaches for magnetodynamic devices in the frequency domain using
uniform selection or using the aforementioned algorithmic detection of snapshots
(application to a 2D finite element model of a transformer), in section 3.3.1.4.

4. The review of resolution and assembling reductions for nonlinear magnetody-
namic applications and external circuit coupling, in chapters 4 and 6.
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5. The nonlinear interpolation of parametric reduced bases using manifold theory in
magnetodynamics (application to a 2D finite element model of an inductor-core
system), in section 5.4.

6. A novel decoupled approach between local and global quantities in coupling of
nonlinear magnetodynamic devices and external electric circuits using Proper
Orthogonal Decomposition and Missing Point Estimation, in section 6.8.

These contributions have been presented in the following peer-reviewed journals
and conference proceeding.

Journals

• Yannick Paquay, Olivier Brüls, and Christophe Geuzaine. “Model Order
Reduction of Nonlinear Eddy Current Problems with Parametric Electric Cir-
cuit Coupling.”, International Journal for Numerical Methods in Engineering,
In review (2017).

• Yannick Paquay, Olivier Brüls, and Christophe Geuzaine. “Nonlinear In-
terpolation on Manifold of Reduced-Order Models in Magnetodynamic
Problems.” IEEE Transactions on Magnetics 52.3 (2016): 7204804.

• Yannick Paquay, Christophe Geuzaine, Md. Rokibul Hasan, and Ruth V.
Sabariego. “Reduced-Order Model Accounting for High-Frequency Effects
in Power Electronic Components.” IEEE Transactions on Magnetics 52.3
(2016): 7202904.

Proceedings

• Yannick Paquay, Olivier Brüls, and Christophe Geuzaine. “Model Order
Reduction of Nonlinear Eddy Current Problems using Missing Point Esti-
mation.” Model Reduction of Parametrized Systems. Springer, Cham, 2017.
439-454.

• Yannick Paquay, Olivier Brüls, and Christophe Geuzaine. “Nonlinear Re-
duced Order Model of a 3-Phase Transformer for Electric Network Simulator
Coupling.” Proceedings of 17th Biennal Conference on Electromagnetic Field
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• Yannick Paquay, Olivier Brüls, and Christophe Geuzaine. “Coupling Reduced
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CHAPTER 1
Problem statement

1.1 Introduction

In this work, we investigate the model order reduction of numerical models of elec-
tromagnetic devices. Those models can originally be constructed in several manners
following different philosophies. In this chapter, the numerical modeling of such ap-
plications is discussed. Two general (a priori ) opposite methodologies are presented
to model such systems. First, in section 1.2, Maxwell’s equations are presented and
derived to form very detailed and accurate models with a local description of the un-
derlying physics—conducting to the high fidelity modeling method. Then, contrary to
first method, in section 1.3, an equivalent circuit is determined thanks to the global
observation of the system where comparable parameters are chosen to fit the expected
results—leading to the so called lumped parameter modeling method. In section 1.4,
the advantages and limitations of both approaches are listed and a choice is made on
the philosophy to adopt for the modeling of electromagnetic devices in this disserta-
tion. Finally, in section 1.5, the technical objectives of the present work are adjusted
according to the chosen modeling method and its inherent limitations.

1.2 Electromagnetic equations

In this section, the developments of electromagnetic formulations (i.e. magnetostatic,
magnetodynamic and full wave equations) in both time and frequency domains are
derived. Since 1980s, computational resources have increasingly emerged—allowing
the resolution of the aforementioned discretized equations at local scale with numerous
degrees of freedom (e.g. millions of spatial points). By solving Maxwell’s equations,
very detailed models–later denoted High Fidelity Models (HFMs)–characterizing the
underlying physical phenomena are obtained.

7
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1.2.1 Continuous formulations

Let us consider Maxwell’s equations [135]:
curl h = j+∂t d,

curl e+∂t b = 0,
div b = 0,
div d = q,

(1.1)

where h,e,b,d are the vectors of magnetic field, the electric field, the magnetic flux
density and the electric flux density respectively. The source term vectors are the current
density j and the electric charge density q. These relations represent the generalized
forms of the Ampère’s law, Faraday’s law, the magnetic Gauss’s law and the electric
Gauss’s law and compose a mathematical representation of the electromagnetic field
[104, 194]. For an isotropic medium, system (1.1) is uniquely determined at any time
[32, 56] by choosing proper initial values for h and e, boundary conditions and including
the following constitutive relations

j = σe+ j
s
,

d = εe,
h = νb,

(1.2)

where σ, ε and ν are the conductivity, permittivity and the inverse of the permeability
respectively. j

s
is the imposed current source.

1.2.1.1 Magnetostatic formulation

First, at low frequency and when no dynamic (i.e. no variation in time) occurs in the
magnetic domain, systems (1.1) and (1.2) form the mathematical formulation

curl h = j,
curl e = 0,
div b = 0,

h = νb,

(1.3)

that ensures a unique determination at any time instant. Here, j = j
s
. Since div b = 0,

the magnetic flux density can be derived from a vector potential a such that

b = curl a. (1.4)

and then leads to the magnetostatic equation

curl
(
ν curl a

)= j
s
. (1.5)

Considering a finite domain Ω with boundary Γ, the solution a ∈ H(curl ,Ω) , {a ∈
L2(Ω); curl a ∈ L2(Ω)} has to fulfill equation (1.5) inΩ and the boundary relation

a×n = 0 (1.6)
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along Γwhere n is the outer unit normal vector.

1.2.1.2 Magnetodynamic formulation

Once conductivity is present in the domain, the magnetostatic equation (1.5) is no
longer appropriate to accurately formulate the electromagnetic phenomena. Now,
systems (1.1) and (1.2) form the mathematical formulation

curl h = j,
curl e+∂t b = 0,

div b = 0,
h = νb,
j = σe+ j

s
.

(1.7)

Injecting (1.4) into the second equation of (1.7) implies

curl
(
e+∂t a

)= 0 (1.8)

which defines the electric field e as

e =−∂t a−grad v (1.9)

where v is a scalar electric potential. Then, the magnetodynamic system is obtained by
respecting

div
[−σ(

∂t a+grad v
)] = 0, (1.10)

σ
(
∂t a+grad v

)+curl
(
ν curl a

) = j
s

(1.11)

and the modified magnetic vector potential formulation [71, 112]:

σ∂t a+curl
(
ν curl a

)= j
s

(1.12)

by setting the scalar electric potential to zero as an implicit gauge.

1.2.1.3 Full wave formulation

Once the frequency f is sufficiently important (i.e. when the wave number λ = c/ f
is much lower than the skin depth δ =

√
ν/π f σ), the electromagnetic system (1.1)

cannot be simplified anymore. Introducing the constitutive relations from (1.2) into
first equation of system (1.1) gives

curl
(
νb

)= (σ+∂tε)e+ j
s
. (1.13)

Replacing b with expression (1.4) and e with relation (1.9) leads to the “a− v” formula-
tion:

div
[−σ(

∂t a+grad v
)] = 0, (1.14)
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curl
(
ν curl a

)+σgrad v +σ∂t a+∂tεgrad v +∂2
t εa = j

s
. (1.15)

1.2.2 Spatial discretization

The continuous equations cannot be solved exactly on arbitrary domains Ω and has
to be spatially discretized. In this work we choose a discretization based on the Finite
Element Method (FEM) [55, 59, 110], which is well suited for problems that involve
complex geometrical structures and nonlinear materials. Other discretization methods
like the Finite Difference Method (FDM) [120, 139, 196] or the Finite Volume Method
(FVM) [166, 199] could be used as well, which would not change the overall structure of
the developments below.

1.2.2.1 Magnetostatic formulation

The weak formulation of (1.5) is obtained by multiplying it with appropriate test func-
tions a′ and by integrating by parts over the integration domainΩ [64]:(

νcurl a,curl a′)
Ω+〈

n×νcurl a,a′〉
Γ =

(
j
s
,a′

)
Ω

(1.16)

with a′ ∈ H0(curl ,Ω) ,
{

a ∈ H(curl ,Ω); a′×n = 0
∣∣
Γ

}
. Applying the standard Galerkin

FEM [79] using Whitney edge elements [31, 204, 215], the continuous field a is expressed
by a weighted sum of basis functions φi , associated to the mesh ofΩ, as

a =
∑

i
aiφi . (1.17)

The coefficients ai form the unknown vector a ∈ Rna×1 and the matrix form of (1.16)
follows

Sa = v (1.18)

where S, v correspond to the stiffness matrix (i.e. representing the curl operator) and
the source term (i.e. the imposed current) respectively.

1.2.2.2 Magnetodynamic formulation

Similarly with the continuous magnetodynamic equation (1.12), its weak formulation is
directly obtained by(

σ∂t a,a′)
Ω+ (

νcurl a,curl a′)
Ω+〈

n×νcurl a,a′〉
Γ =

(
j
s
,a′

)
Ω

(1.19)

and the corresponding matrix form follows

M∂t a+Sa = v (1.20)

where M corresponds to the mass matrix (i.e. representing the dynamics).
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1.2.2.3 Full wave formulation

Similarly to magnetostatic and magnetodynamic weak formulations, after integration
by parts (1.14), the “a− v” weak formulation is obtained as
Find a− v so that(

νcurl a,curl a′)
Ω+∂2

t

(
εa,a′)

Ω+∂t
(
σa,a′)

Ωc
(1.21)

+(∂tε+σ)
(
grad v,a′)

Ω =
(
j
s
,a′

)
Ωs

,

∂t
(
εgrad v,grad v ′)

Ω+∂2
t

(
εa,grad v ′)

Ω = 0, (1.22)

holds for every a′ and v ′ in a suitable function space (i.e. defined by edge and nodal
elements). To accurately treat wave propagation, an absorbing boundary condition
[72, 143] has to be imposed on the external boundary of the domain (e.g. a Silver-Muller
one). Equivalently, a perfect match layer [26] can be considered. The matrix form is
written as

M1∂
2
t x+M2∂t x+M3x = v (1.23)

where M1,M2,M3 come from the terms in double time derivative, simple time derivative
and time invariant respectively. Note that since two different unknowns are linked to-
gether (i.e. the magnetic vector potential and the scalar electric potential), the unknown
vector is denoted x.

1.2.3 Time domain

In order to solve a time dependent matrix form on a computer, it is further discretized
in time. We are only considering the magnetodynamic formulation in time domain in
this work. No time discretization is required for magnetostatic formulation and full
wave electromagnetic equation is not usually meant to be solved in time. By defining

f(a, t ) = M−1 (Sa−v) , (1.24)

equation (1.20) can be written as

∂t a+ f(a, t ) = 0. (1.25)

Using a simple finite difference approximation of ȧ, i.e.

∂t a = ak+1 −ak

∆t
, (1.26)

where ∆t = tk+1 − tk is the time step (i.e. the time discretization size) and ak = a(tk ) is
the value of vector a at time instant tk = k∆t , leads to the standard θ-scheme:

ak+1 −ak

∆t
+ [θf (ak+1, tk+1)+ (1−θ)f(ak , tk )] = 0, (1.27)

where θ is a parameter (see Table 1.1). In this dissertation, the unconditionally stable
implicit backward Euler scheme is chosen (i.e. θ = 1) and a new time iterate ak+1 is
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Table 1.1: Time-stepping schemes according to implicitness parameter θ.

θ Scheme Type
0 Forward Euler Explicit

1/2 Crank-Nicholson Implicit
1 Backward Euler Implicit

determined by solving [
Mk+1

∆t
+Sk+1

]
ak+1 = vk+1 +

Mk+1

∆t
ak , (1.28)

where Mk+1 = M(tk+1) (analogously with S and v) and may be changing in time. In the
particular case (as it is also considered in this work) where the conductivity (respectively
the reluctivity) does not vary in time, then matrix M (respectively S) does not change
and the subscripts can be omitted (i.e. M = Mk ). Equation (1.28) then becomes[

M

∆t
+S

]
ak+1 = vk+1 +

M

∆t
ak . (1.29)

Nonlinearities While the conductivity and reluctivity do not (generally) change in
time, they may vary according to the (induction) magnetic field—leading to nonlinear
behaviors.

First, in this work we will always assume isotropic materials with a scalar conductiv-
ity. While in practical applications it will depend on the temperature, the variation takes
place at a time scale much larger than the electromagnetic time scale we are interested
in.

Second, in most of the energy conversion applications we are interested in, magnetic
materials are used to channel the magnetic flux. In this work, anhysteretic materials
are considered and exhibit nonlinear reluctivity which depends on the flux density b
as depicted in Fig. 1.1(b) for a typical magnetic medium. Physically, at saturation, the
medium cannot store additional magnetic energy—leading to a drastic increase in the
reluctivity and consequently in the reluctance of the magnetic circuit (see eq. (1.37)).
In this case, the stiffness matrix S varies with the solution and a linearization scheme
(i.e. Newton-Raphson approach [163]) is required at each time step to solve equation
(1.29). However, in general, we tend to limit the magnetic field to the linear region of
the b/h curve where the reluctivity remains constant (as shown in Fig. 1.1(a)). Both
situations occur in energy conversion applications and therefore are considered worth
investigating in this work.

1.2.4 Frequency domain

In the frequency domain, both magnetodynamic and full wave formulations can be
derived using the Laplace transform which is defined for a time domain function f ∈ L1
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Figure 1.1: Two permittivity of linear and nonlinear materials.

as

L : f 7→ F, F (s) :=L{
f (t )

}
(s) :=

∫ ∞

0
e−st f (t )d t , s ∈C. (1.30)

Note that s = ıω where ı =
p
−1 and ω= 2π f is the pulsation.

1.2.4.1 Magnetodynamic formulation

From matrix form (1.20), the discretized equation in complex formalism is(
ıωM̂+ Ŝ

)
â = v̂. (1.31)

1.2.4.2 Full wave formulation

Similarly to the full wave formulation (1.23), the matrix form in frequency domain
becomes (−ω2M̂1 + ıωM̂2 +M̂3

)
x̂ = v̂. (1.32)

1.2.5 Global quantities

The aforementioned formulations in magnetostatics, magnetodynamics and full wave
scenarios only take into account local quantities such as the magnetic vector potential
a or the scalar electric potential v . Additional coupling can integrate global quantities
w1 into the discretized models (1.18), (1.29), (1.31) and (1.32) (e.g. imposing a global
current in a wire or a global voltage as the excitation source term of the FE model)
[66, 67, 69]. The determination of the coupling matrices from local to global quantities
is described in [68, 78]. Equations are then solved, within an FE tool (e.g. GetDP [65]),

1Note w refers to the usual global quantities linked to the windings in energy conversion applications
(e.g. transformer).
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together by assembling all unknowns, global quantities (e.g. w) and local ones (e.g.
a) into a unique unknown vector x (respectively the right hand term v becomes y by
concatenating local and global sources).

In this work, four different situations are investigated and synthesized hereafter:

1. Magnetostatic formulation defined by

Sx = y. (1.33)

Note that when no global quantity is assembled in the formulation, (1.33) is equal
to (1.18).

2. Magnetodynamic formulation in time domain defined by[
M

∆t
+S

]
xk+1 = yk+1 +

M

∆t
xk . (1.34)

Once more, when no global quantity is linked to the local ones, (1.34) is equivalent
to (1.29).

3. Magnetodynamic formulation in frequency domain defined by(
ıωM̂+ Ŝ

)
x̂ = ŷ. (1.35)

4. Full wave formulation in frequency domain expressed by (1.32).

1.3 Lumped parameter modeling

The lumped parameter modeling refers to the original definition of a model. Accord-
ing to Oxford dictionary, a model is described as “a simplified description, especially
a mathematical one, of a system or process, to assist calculations and predictions”.
Before the emergence of computational power, researchers and engineers have inves-
tigated modeling (electro-)magnetodynamic devices at macro level without solving
Maxwell’s equation at micro-scale. To this end, electric or magnetic equivalent cir-
cuits–or Lumped Parameter Models (LPMs)–were elaborated to mimic their behaviors
and/or observations. This approach presents multiple advantages such as keeping a
physical interpretation of the macro observance of the systems or limiting the complex-
ity of the models. Such models can be very precise according to the original problem
complexity. To illustrate it, let us consider an academic magnetic circuit without losses
as depicted in Fig. 1.2(a). Applying Ampère’s law along the magnetic path Γ gives∮

Γ
h ·dl = hΓlΓ = n1i1 +n2i2 (1.36)

where hΓ, lΓ, nx , ix are the magnetic field in the core along Γ, the length of Γ, the
number of turns of winding x and the current in winding x respectively. Considering a
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Figure 1.2: Lumped parameter modeling on a simple magnetic circuit.

perpendicular cross-section S, the magnetic flux φ is related to the magnetic field h by

φ= hΓS

ν
= (n1i1 +n2i2)

S

νlΓ
= (n1i1 +n2i2)

R (1.37)

with ν is the inverse of the magnetic permeability of the magnetic medium and R= νlΓ
S

is an equivalent magnetic resistance (e.g. similar to the expression of an electric resis-
tance from Pouillet’s law), called the reluctance. Given equation (1.37), an equivalent
electric circuit (see Fig. 1.2(b))–respecting similarly Ohm’s law–can be constructed
where the current would be the magnetic flux φ, the voltage supplies would be the
magnetomotive forces from the windings nx ix and the reluctance R (depending on
magnetic and geometry properties). This simple example is the key for more complex
descriptions of applications such as single and multi-phases transformers [180], dy-
namical electromechanical devices [208], rotating machines [131, 165, 214], actuators
[44, 80], electromechanical transducers [197] or even multi-physics coupled problems
[137].

1.4 Advantages and limitations of both approaches

While both methods have vastly been investigated during these last decades, their
advantages and/or limitations determine the scope of possible model order reduction
applications. Since we may be interested in designing and simulating models in large
electric network simulators, four key issues have to be discussed:

• Computational cost. Reducing it is the main objective of this dissertation.

• Dealing with nonlinearities. As real applications present nonlinear behaviors,
reduced models should accurately take them into account.

• Parameter dependencies. In case where actual device is modified, the reduced
model should remain intact (or be easily changed). In particular for design and
optimization stages, the electromagnetic device may not be physically built and
modifications in the model must easily be performed. A second consideration lies
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in the representation of multiple parameter values in the model. Is it necessary to
have multiple models for each parameter?

• Coupling with external models. While standalone models of electromagnetic
devices are useful, their integration as part of system-level models is very often the
ultimate goal. By coupling those models with external ones, consistent systems
can be studied and analyzed.

1.4.1 Computational cost

As the computational time and costs are at the center of this work, it consists in the first
key question to look at. By its philosophy of macro observation of the system or extrac-
tion of FE type models, LPMs naturally present a smaller number of unknowns than
those from local-based models derived by the high fidelity discretization approaches.
Indeed, the latter often deals from thousands to millions of unknowns where the former
only contains a few hundreds of them. Actually, the LPMs can be seen as Reduced
Order Models (ROMs) of HFMs in case the parameters are deduced from the latter.
Within this idea of combining the accuracy of the detailed models to the rapidity of
the other, [179, 187] showed LPMs where the values of the parameters are derived
from Finite Element (FE) simulations. However, determining the structure of the LPMs
is not (yet) performed by automatic algorithms and still require researchers’ knowl-
edge—representing the major drawback/issue of the LPM approach.

1.4.2 Nonlinear parameters

Both approaches deal with the nonlinearities in the same way: a linearization procedure
is employed at each time step (e.g. a Newton-Raphson scheme) which substantially
increases the required time to solve the problem compared to a similar linear case.
Indeed, each iteration requires the (re)evaluation of the matrix terms. In the micro
approach, those matrices are particularly larger then those from the lumped parameter
modeling and directly impact the computational time. However, determining the
nonlinear behaviors (values) of equivalent parameters in LPMs is not an easy task
(merely cumbersome when multiple physics are taken into account). On the other
hand, since the HFMs intrinsically describe the physics in detail, the nonlinear data are
much more easily obtained and implemented. Those models are usually more precise
in nonlinear cases and are thus usually recommended.

1.4.3 Parameters dependency

At first glance, the parameter dependency leads to the same conclusions as for nonlinear
parameters. However, it is more general as it includes all types of changes in the models.
To answer the question if models can easily be modified when the parameters change,
one would look for them to be determined by functions of the parameters. Even though
the LPMs are derived from geometrical expressions, one may not know a priori the
relation between the physical and lumped parameters. It requires new evaluations (e.g.
tests) of the systems to establish new LPMs. In a HFM, the parameters are intrinsically
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encapsulated in its formulation (and CAD description). This concern is particularly
important when the electromagnetic devices are under development (e.g. during design
and optimization stages in R&D units) as a considerable number of changes is often
expected.

1.4.4 Coupling with external models

Finally, the integration of the models in large electric simulators by coupling them
with other models is crucial for practical engineering problems. On the first hand,
since LPMs are basically represented by electric circuits, their coupling with others is
therefore trivial. On the other hand, the coupling of HFMs with external circuit requires
a bit more care, but is nowadays practice (see e.g. [78]).

1.5 Objectives

As a conclusion, we are looking for the flexibility and accuracy of HFMs with the size
and computational efficiency of LPMs without predefining any mathematical structure
of the ROMs. As [179, 187] identified lumped parameter values from FE simulations, our
goal is to compute ROMs from large HFMs (i.e. FE ones) with the following particular
and ultimate objective in mind: the practical integration of parametric electromagnetic
models in electric circuit simulators.

As a road map for this dissertation, the following list summarizes our four main
objectives:

1. Deriving ROMs from nonlinear magnetodynamic HFMs.

2. Having flexibility, accuracy and robustness of HFMs.

3. Having size and computational requirements of LPMs.

4. Integrating ROMs into external electric networks.





CHAPTER 2
Fundamentals in model order reduction

In the 1960’s, model order reduction techniques emerged in structural engineering
fields. They were first designed to assemble reduced models of subparts of large model
to be able to simulate the entire dynamics of the whole applications [54, 89, 108]. These
methods were originally geared towards the analysis of internal modes or energy.

In conversion energy applications, we are more interested in the transfer function
between the input and the output rather than studying the local components. From
the 1980’s, model order reduction methods have then been developed to minimize
the number of equations in linear time invariant (LTI) systems [10, 11]. Since then,
numerous reduction techniques have been investigated to tackle time variant and
nonlinear problems [12, 25, 183]. Such complex time variant and nonlinear systems
are largely studied in engineering fields from chemical reactions [113–115] to MEMS
analysis [127, 128, 185] to structural vibrations optimization [28, 211] for example.

The general form of an LTI system is given by{
Eẋ = Ax+Bu,

y = Cx+Du,
(2.1)

where A ∈Rn×n is the system or stiffness matrix, E ∈Rn×n is the (so-called) mass matrix,
B ∈Rn×m is an input matrix, u ∈Rm×1 is the input signal (m excitations), C ∈Rl×n is the
system output matrix, D ∈Rl×m is an input matrix, y ∈Rl×1 is the system output signal
(l observations), and x ∈Rn×1 is the state-space variable vector (n states).

Whereas the state variable x may be very large (i.e. n À 1), the output signal y usually
contains relatively few components (i.e. l ≈O(1)) or at least is much smaller than the
number of state variables (i.e. l ¿ n). As a consequence, one is highly interested in
reducing the state-space relation in system (2.1) since most of the computational time
and resources are spent on an excessively larger problem than the required or observed
one.

Given formulation (2.1), the general model order reduction consists in projecting
the high dimensional state-space vector x onto a reduced subspace with a much smaller

19
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Figure 2.1: High fidelity vector x expressed by reduced vector x̃ via the mapping basis Q.

number of dimensions (i.e. r ¿ n) and defining a corresponding reduced order state-
space vector x̃ ∈Rr×1. Such a projection (illustrated in Fig. 2.1) is often expressed by a
linear combination of x and is called the projection matrix Q ∈Rn×r verifying

x ≈ Qx̃. (2.2)

According to the choice of Q (and the related method), the approximation in (2.2) can
be excellent or very poor. In most methods, error (upper) bounds can be determined
and provide information on the aforementioned deviation between the reduced and
high fidelity vectors.

Replacing x by its approximated form Qx̃ in (2.1) gives rise to an over-determined
system with n equations for r ≤ n unknowns. Then, system (2.1) is left projected on a
second subspace P ∈Rn×r . After projecting on the subspace spanned by the columns of
P, system (2.1) is reduced to formulation{

Ẽ˙̃x = Ãx̃+ B̃u,
y = C̃x̃+Du,

(2.3)

with reduced matrices Ẽ = PTEQ ∈ Rr×r , Ã = PTAQ ∈ Rr×r , B̃ = PTB ∈ Rr×m , C̃ = CQ ∈
Rl×r . It is a Galerkin projection when the reduced matrices are equal to each other (i.e.
P = Q).

In the next sections we review state-of-the-art model reduction techniques, which
lead to different left and right projection matrices P and Q.

Similarly to the previous chapter where modeling techniques followed different
philosophies based on global or local description of the systems, model order reduction
techniques can similarly be organized in several categories. In section 2.1, existing
reduction methods are listed and explained. First, a set of methods equivalent to model-
based reduction techniques, where the resulted ROMs are directly derived from the
equations of the HFMs, are presented. Secondly, at the opposite of the first philosophy,
reduced order models are derived from observations of the HFMs—being similar to the
macro description of LPMs method regarding the modeling aspects. These methods
could be denoted as observation-based reduction techniques. Lastly, alternative and
efficient formulations can be derived when solutions allow a separable representation.
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Then in section 2.2, the question regarding the treatment of nonlinearities is tackled.
Due to the additional linearization scheme at each time step, the computational cost
highly grows in nonlinear problems—requiring supplementary reductions consider-
ations. Particular to model order reduction, the differentiation between online and
offline phases is explained in section 2.3.1. Completing the requirements defined in
previous chapter, the two distinct philosophies in the model order reduction commu-
nity are presented to tackle parametric problems in section 2.3.2. Lastly, in section 2.3.3
we present the choice of the methods we will further consider for reducing HFMs, and
we provide a more refined outline of the work which suggests the considered strategies
for the studied applications—from simple linear magnetic devices to fully integrated
parametric nonlinear applications with external electric circuits.

2.1 Model- and observation-based reduction techniques

In this section, we first present methods where the left and right subspaces are de-
termined from the mathematical structure or properties of the HFM (2.1): the Schur
complement approach, the balanced truncation method and the Krylov-based tech-
nique. Then methods where observations of the system are used to determine the
projection matrices or to construct a black-box model are then reviewed: the Proper
Orthogonal Decomposition and machine learning approaches. Lastly, the Proper Gen-
eralized Decomposition approach is described, where the dimension of the original
system is reduced through a separable representation of the solution.

2.1.1 Schur complement approach

One of the oldest methods to deal with model reduction is the Schur complement ap-
proach, or static linear condensation [20, 89, 206]. It relies on eliminating the unwanted
variables in a large system by inverting its corresponding block matrix. To illustrate
it, let us consider the general system (2.4) where one is only interested in the vector
x1 which is coupled to another vector x2 via the matrix B. This coupling increases the
overall system size which is unnecessary for the only observation of x1:[

A B
C D

][
x1

x2

]
=

[
w1

w2

]
. (2.4)

By developing the system (2.4) into{
Ax1 +Bx2 = w1,
Cx1 +Dx2 = w2,

(2.5)

one can directly express x2 in terms of x1 as

x2 = D−1 (w2 −Cx1) (2.6)
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if D is invertible. By injecting this expression into the first row of system (2.5), x1

becomes independent of x2 as

Ax1 +Bx2 = Ax1 +BD−1 (w2 −Cx1) (2.7)

= (
A−BD−1C

)
x1 +BD−1w2. (2.8)

Rewriting this equation in conventional form, one finds the canonical equation(
A−BD−1C

)
x1 = w1 −BD−1w2 (2.9)

which only implies vector x1. Contrary to the original system dimension that equals the
sum of both the size of x1 and x2, this formulation results in a smaller dimension as it
only contains the unknown x1. A direct solution of x1 is given by

x1 = (
A−BD−1C

)−1 (
w1 −BD−1w2

)
. (2.10)

Several issues appear with this approach, in particular when x1 is expressed by
equation (2.10). The main problem comes from the direct inversion of matrices (i.e. D
and

(
A−BD−1C

)
). This operation may not be suitable if D is not invertible, is large or

constantly changing. From Gauss-Jordan elimination technique [136, 159] to optimized
inversion algorithms [77, 126], inverting a matrix of size n×n has a complexity between
O(n2) and O(n3) and may lead to huge computational time and operations. In addi-
tion, if D is changing, one has to recompute its inverse multiple times—leading to an
even more impractical method. Iterative linear solvers like preconditioned conjugate
gradient methods [29, 52, 53, 117, 186] can be used instead of inverting the matrix blocs
explicitly, but this still leads to very expensive methods in practice.

Even if the Schur complement method does not seem at first glance to provide a
reduced system of the general form (2.3), a simple reverse-engineering analysis permits
the identification of the left and right projection matrices. First, the right projection
matrix Q is trivially determined by eliminating x2 from the high fidelity vector x. Since
one must satisfy

Qx1 =
[

Q1

Q2

]
x1 =

[
x1

x2

]
, (2.11)

then

Q =
[

I
x2/x1

]
=

[
I

D−1(w2 −Cx1)/x1

]
. (2.12)

Considering the left projection matrix P, since

PT w = [
P1

T P2
T ][

w1

w2

]
= w1 −BD−1w2. (2.13)

then

P =
[

I
(−BD−1)T

]
=

[
I

−D−T BT

]
. (2.14)
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Figure 2.2: General representation of a LTI system.

2.1.2 Balanced truncation

Considering the LTI formulation in time domain (2.1), one is generally interested in the
input-output relationship only. Graphically, the system is modeled by a black-box as
depicted in Fig. 2.2. As one acts on the input u, the output y changes and is the only
variable of interest. This relation is usually defined in frequency domain as the transfer
function G(s). By considering the Laplace transformation of system (2.1) with no initial
condition as {

sEx(s) = Ax(s)+Bu(s),
y(s) = Cx(s)+Du(s).

(2.15)

the derivative of x is eliminated and the definition of the transfer function G(s), the
relation between the input and the output, is further defined by

y(s) = [
C (sE−A)−1 B+D

]
u(s) (2.16)

= G(s)u(s). (2.17)

If one defines a reduced model of (2.1) by (2.3), the aim is to provide a relatively close
reduced output ỹ to the original full size output y such that∥∥y− ỹ

∥∥=
∥∥Gu− G̃u

∥∥≤
∥∥G− G̃

∥∥ · ‖u‖ ≤ ε · ‖u‖ , (2.18)

where ε is an arbitrary tolerance bounding the error of the reduced output compared to
the input excitation. From a different point of view, reducing the system is similar to the
minimisation problem (while respecting r ¿ n)

min
rank(G)≤r

∥∥G− G̃
∥∥∞ (2.19)

The balanced truncation has the objective to eliminate the state-space variables of a
balanced system that have minimal contribution in the transfer function by verifying
equation (2.19) [141, 142]. System (2.1) is balanced if the controllability and observabil-
ity Gramians (respectively Wc and Wo) satisfy

Wc = Wo = di ag (ξ1, · · · ,ξn) (2.20)
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with ξ1 ≥ ξ2 ≥ ·· · ≥ ξn > 0 their Hankel singular values in decreasing order. Those
Gramians are the solutions of generalized Lyapunov equations [18, 132, 195]:

AWcET +EWcAT = −BBT , (2.21)

AT W̃oE+ET W̃oA = −CT C, Wo = ET W̃oE. (2.22)

Any arbitrary system (2.1) (which is not balanced) can be transformed in a balanced
one (Ẽ, Ã, B̃, C̃, D̃) via a state-space transformation T such that

Ẽ = TET−1,
Ã = TAT−1,
B̃ = TB,
C̃ = CT−1,
D̃ = D.

(2.23)

The discarded states are truncated after the reduced size r . A practical method allowing
the direct balancing and truncation of an arbitrary system [86, 141, 212] is the following:

1. Compute controllability and observability Gramians Wc and Wo by solving gener-
alized Lyapunov equations (2.21) and (2.22).

2. Compute the decomposition factors S and R of the Gramians according to one of
the two methods:

a) Compute the Cholesky factors Wc = ST S and Wo = RT R.

b) Compute the Singular Value Decomposition (SVD) of the Gramians: W· =
U·Ξ·V·T . The factors are given by S = (

UoΞ
1/2
o

)T
and R = (

UcΞ
1/2
c

)T
.

3. Compute the SVD of SRT in order to sort the Hankel singular values ξi :

SRT = UΞVT = [
U1U2

][
Ξ1

Ξ2

][
V1

T

V2
T

]
(2.24)

withΞ= di ag (ξ1, · · · ,ξn).

4. By truncating at r th singular value ξr (such that 1 ≤ r ≤ n), the discarded states
are the n − r last ones and correspond to block matrices U2,Ξ2 and V2. The left
and right projection matrices are given by{

PT =Ξ1
−1/2V1

T RE−1,
Q = ST U1Ξ1

−1/2,
(2.25)

and the reduced model follows the general reduction formulation (2.3).

Two major advantages come with this method:

1. Stability is preserved when it is applied on a stable system [158].
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Figure 2.3: Time required to process the balanced truncation method with regard to to the system
size.

2. An error bound is provided in [73]. By keeping the r first Hankel singular values
ξ1, · · · ,ξr , the error bound is defined as

∥∥y− ỹ
∥∥≤ 2‖u‖

n∑
k=r+1

ξk . (2.26)

However, the main disadvantages of this method are large storage O(n2) and high com-
putational complexity O(n3) as it requires dense matrix factorizations (the resolution
time with respect to system size is depicted in Fig. 2.3 on a typical laptop). To alleviate
these issues, novel approximate balanced reduction methods are being developed to
efficiently apply this method [87, 156, 157, 193]. In addition, its main limitation consists
in its application to LTI systems only. Limited studies investigated balanced truncation
applied to nonlinear system [181].

Example Let us illustrate this method on the following small problem
[

ẋ1

ẋ2

]
=

[ −1 1
0 −1

] [
x1

x2

]
+

[
1
δ

]
u,

y = [
1 1

] [
x1

x2

]
,

(2.27)

where δ is a parameter. Depending on the parameter value, the state x2 is controllable
(i.e. δÀ 1) or not (i.e. δ¿ 1). Based on the previous developments, if a state is not
controllable (or observable), it may be eliminated by applying the balanced truncation
method. In this case, the system would be reduced from size 2 down to 1. This obser-
vation can easily be done by deriving the transfer function G(s) using relation (2.16)
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Table 2.1: Illustration of balanced truncation of system (2.27) by eliminating the second variable.

δ= 10−2 δ= 1 δ= 102

Wc

[
0.5050 0.005
0.005 5e −5

] [
1.25 0.75
0.75 0.5

] [
2550.5 2550
2550 5000

]
Wo

[
0.5 0.75

0.75 1.25

] [
0.5 0.75

0.75 1.25

] [
0.5 0.75

0.75 1.25

]
ξi

[
0.51

1.22e −5

] [
1.5406
0.0406

] [
106.3754

5.8754

]
Q = P

[ −0.9951
−0.0099

] [ −0.8891
−0.5623

] [ −4.1880
−6.6741

]
Ã -0.9902 -0.6838 -0.5546
B̃ -1.0050 -1.4515 -10.8621
C̃ -1.0050 -1.4515 -10.8621

as

G(s) = 1

s +1
+δ

(
s +2

(s +1)2

)
, (2.28)

where it is approximated by a 1-pole transfer function in case δ¿ 1. Table 2.1 shows the
balanced truncation of system (2.27) by only keeping the first variable. By looking at the
Hankel singular values and the error criterion (2.26), the reduction only makes sense in
the first case (i.e. δ= 10−2). As the parameter acts on matrix B, only the controllability
Gramian changes with it significantly. The Bode diagrams are depicted in Fig. 2.4 for
δ= 10−2 and δ= 102. On the first hand, with δ= 10−2, the balanced truncated model
significantly matches the full model response. On the other hand, with δ= 102, both
models do no longer align to each other in amplitude and phase (even though the
approximations remain quite good).

2.1.3 Krylov-based methods

Considering the case where B is a vector, one can derived its Taylor expansion around
zero, using the transfer function described in (2.16), as

G(s) = −CA−1B+D−C
(
A−1E

)
A−1Bs −·· ·−C

(
A−1E

)i
A−1Bsi −·· · (2.29)

= D−
∞∑

i=0
C

(
A−1E

)i
A−1Bsi (2.30)

= D+
∞∑

i=0
Mi si (2.31)

where Mi =−C
(
A−1E

)i
A−1B is called the i th moment around zero. Similarly, the mo-

ments and the transfer function can be determined around any arbitrary expansion
point sexp 6= 0. Translating the transfer function gives

G(s) = C
[
(s − sexp )E− (

A− sexp E
)]−1 B+D (2.32)
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Figure 2.4: Comparison of full and balanced truncated systems of (2.27) with one mode.

where the moments around sexp can be retrieved by substituting A by
(
A− sexp E

)
in

(2.29). As the moments define the transfer function, the reduced model (2.3) should
share the same moments—leading to the usually called moment matching method.

Let us define the Krylov subspace of rank r by

Kr (A,B) = span
{

B,AB,A2B, · · · ,Ar−1B
}

, (2.33)

with A ∈Rn×n and B ∈Rn . The vectors B,AB,A2B, · · · are usually called the basis vectors.
It can be shown that if Q is a basis of Krylov subspace

Kr (
(
A− sexp E

)−1 E,
(
A− sexp E

)−1 B)

and P is chosen to preserve Ã nonsingular (e.g. P = Q), then the first r moments around
expansion point sexp for both full and reduced systems match [75]—leading to the
Krylov-based reduction methods. For the sake of simplicity, the demonstration around
sexp = 0 is shown hereafter using the recursive theorem. From (2.31), the first moment
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of the reduced model is given by

M̃0 =−C̃Ã
−1

B̃ = CQ
(
PT AQ

)−1
PT B. (2.34)

Since AA−1 = I and basis vector A−1B is part of the Krylov subspace Kr (A−1E,A−1B) (i.e.
basis vector is a linear combination of the subspace and ∃v0 ∈Rr : A−1B = Qv0), one can
verify the moment matching between full and reduced model as

M̃0 = −CQ
(
PT AQ

)−1
PT AA−1B (2.35)

= −CQ
(
PT AQ

)−1
PT AQv0 (2.36)

= −CQv0 (2.37)

= −CA−1B (2.38)

= M0. (2.39)

Considering the second moment M1, the following equalities can be derived

M̃1 = −C̃Ã
−1

ẼÃ
−1

B̃ (2.40)

= −CQ
(
PT AQ

)−1 (
PT EQ

)(
PT AQ

)−1
PT B (2.41)

= −CQ
(
PT AQ

)−1 (
PT E

)
Qv0 (2.42)

= −CQ
(
PT AQ

)−1 (
PT E

)
A−1B (2.43)

= −CQ
(
PT AQ

)−1 (
PT AA−1E

)
A−1B (2.44)

= −CQ
(
PT AQ

)−1
PT AQv1 (2.45)

= −CQv1 (2.46)

= −CA−1EA−1B (2.47)

= M1 (2.48)

since A−1EA−1B is the second basis vector of the Krylov subspace Kr (A−1E,A−1B) and
can be written, as previously, by a linear combination of Q such as ∃v1 ∈Rr : A−1EA−1B =
Qv1. The following (r −1) moments can be inferred with the same approach.

It may be worth knowing the special selection of P in the Krylov subspace

Kr

((
A− sexp E

)−T ET ,
(
A− sexp E

)−T BT
)

allows 2r moments matching between full and reduced models—usually called the
two-sided Krylov method [84, 175].

The determination of the basis matrices P and Q are often handled by the Lanczos
or Arnoldi algorithms in such subspaces [10, 176]. Krylov subspace reduction has been
vastly investigated [16, 109, 174]—in particular the error bounds [148].

Example Using the same example (2.27) as with the balanced truncation method, a
single expansion Krylov reduction is shown in Table 2.2 and Fig. 2.5 in order to reduce
the original size from two to one. Using the Arnoldi algorithm to determine the Krylov
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Table 2.2: Illustration of 1 expansion point Krylov reduction of system (2.27) using Arnoldi
algorithm.

δ= 10−2 δ= 1 δ= 102

Q = P
[

0.01
1

]
Ã -0.9902
B̃ 1 -1.4142 100.005
C̃ 1.0099

M0 -1.03 -4 -301
M̃0 -1.03 -8 -103

subspace Kr (A,B) with a single expansion point, the reduction basis Q contains one
vector and is unique for all values of δ. As with the balanced truncation method, the
lower δ, the better the reduced model. It is directly observed by the comparison of the
first moment M and its reduced counterpart M̃0 in Table 2.2. The lower δ, the better the
moments match to each others which leads to an accurate reduced model as described
in Fig. 2.5.

2.1.4 Proper Orthogonal Decomposition

Instead of constructing the projection bases P and Q algebraically from the model (i.e.
the large matrices A, B, ... in (2.1)), they can also be determined using the information
contained in multiple observations of the state-space vector x, by identifying a smaller
dimensional subspace from high fidelity observations [116]. It consists in reducing a
large number of correlated variables to a smaller number of interdependent ones. Let
us consider Nt observations of x ∈Rn×1 of a dynamical system as in (2.1), the snapshot
matrix X is defined as the concatenation of all solutions xi with i = 1, · · · , Nt :

X = [
x1, · · · ,xNt

] ∈Rn×Nt . (2.49)

Having a large snapshot matrix, the POD aims at finding a small orthogonal subspace
containing the same information. Therefore, the high dimensional snapshot matrix can
be expressed by a linear combination of the orthogonal vectors as

X ≈ QX̃ (2.50)

which is similar to eq. (2.2) and where Q = [
q1, · · · , qr

] ∈ Rn×r and X̃ = [
x̃1, · · · , x̃Nt

] ∈
Rr×Nt . The determination of Q can be performed by either of three classical tools: the
singular value decomposition (SVD) [57, 81, 201], the Principal Component Analysis
(PCA) [111, 188, 207] or the Karhunen-Loeve Decomposition (KLD) [76, 118, 200]. Those
three methods are equivalent as shown in [128]. By defining the error matrix as

E = X−QX̃, (2.51)
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Figure 2.5: Comparison of full and Krylov reduced systems (using Arnoldi algorithm) of (2.27)
around one expansion point.

the SVD finds the optimal approximation of X = UΞVT such that ‖E‖ is minimum for
a given value of r . Note that U ∈ Rn×n and V ∈ RNt×Nt are orthogonal matrices and
Ξ ∈ Rn×Nt is a diagonal matrix containing all singular values in decreasing order. By
identification with eq. (2.2), one could consider Q = U ∈Rn×n and X̃ =ΞVT ∈Rn×Nt . In
this case, no reduction is performed and both left and right hand sides of (2.50) are
equal to each other. The low rank approximation is obtained by truncating the size of
the representation by taking r first columns of Q = [u1, · · · ,ur ] ∈ Rn×r . By doing so, it
can be shown that the error (2.51) is minimized to the sum of next n − r eigenvalues:

εr = min
∑

i
‖ei‖2 = min

∑
i

∥∥xi −Qx̃i

∥∥2 =
n∑

i=r+1
σi (2.52)

where σi = ξ2
i is the i th singular value of X. In the case n ≥ Nt , performing a full SVD

is time consuming and computationally expensive. Two approaches can solve the
dependency on the size of the problem:
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Figure 2.6: Required time to compute the projection basis from 1000 snapshots.

1. Computing the eigenvalue decomposition of the autocorrelation matrix XTX ∈
RNt×Nt [102].

2. Computing a thin SVD which only computes the first non-zero singular values.

Fig. 2.6 shows the required time to compute the projection basis for the three different
approaches according to the size n of random snapshot matrix X containing 1000
snapshots. It can be seen that the full SVD computation is the worst algorithm.

The main disadvantage of this method is the robustness of the Proper Orthogonal
Decomposition (POD) approximation which is only valid with the snapshots for which
it has been computed. As a consequence, to accurately reduce a dynamical system
such as (2.1) with a good approximation, one has to correctly train the model with
appropriate inputs u to generate relevant observations xi .

Example To illustrate the POD, let us consider the original (and famous) picture of
Lena (Fig. 2.9(a)). As an image is just a set of rows and columns made of pixels values, it
represents a valid snapshot matrix X (i.e. the columns are the snapshots). One could
have taken the rows as snapshots. The POD is applied on it to reduce its size. The
numerical results are provided in Table 2.3 and graphically shown in Figs. 2.9(b), 2.9(c)
and 2.9(d) with errors (ε) of 0.1%, 1% and 5% respectively. The original picture is 512 ×
512 (as the rank). According to the error criteria, the lower the error, the larger the POD
size. The POD sizes are 115, 21 and 4 respectively. With an error of 0.1%, the difference
is hard to detect and the POD achieves a mathematical reduction factor of 4 (based on
the order of the matrix representation) and 60% reduction in the jpg file. Note that jpg
format also introduces an additional compression on the reconstructed matrix. Even if
Fig. 2.9(c) (1% error) is blurred compared to the original picture, one can still recognize
the model. It allows a further reduction down to a rank of 21 (96% reduction) and 70%
reduction for the jpg file size. Finally, last picture in Fig. 2.9(d) with 5% error is totally
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Table 2.3: Sizes [in kB] of the SVD matrices for all reductions in Fig. 2.9.

Original ε=0.1% ε=1% ε=5%
U 2000 452 83 16
Ξ 32 2 0.45 0.215
V 18100 1400 248 47

order 512 115 21 4
jpg file 98 39 29 19

Table 2.4: Illustration of POD reduction of system (2.27) using one mode.

δ= 10−2 δ= 1 δ= 102

Ξ

[
35672

9

] [
76345
4272

] [
4.84 ·107

6.74 ·106

]
ε1 6.36·10−8 0.003 0.013

Q = P
[ −1

−0.0099

] [ −0.8877
−0.4586

] [ −0.6897
−0.7121

]
Ã -0.9901 -0.5912 -0.4916
B̃ -1 -1.3463 -71.8966
C̃ -1.099 -1.3463 -1.4017

blurred and does not allow the reader to identify the original source. This last example
is shown to demonstrate the limitation of the POD reconstruction.

As a second example in the continuity of what was presented with all the previous
methods, the academic example (2.27) is reduced to a single unknown system. As
the POD requires snapshots x, system (2.27) is solved for 100 different frequencies
using its Laplace transform system (2.15). The frequencies (in rad/s) are logarithmically
distributed from 10−2 to 102. The details are presented in Table 2.4 and Bode diagrams
are shown in Fig. 2.7 for δ= 10−2 and δ= 102. As with the previous methods, the POD
offers better results with lower δ values. However, general results are more accurate
than with the balanced truncation or Krylov methods in this simple academic case.

2.1.5 Machine (deep) learning

Fully embracing the observation-based model order reduction strategy, the represen-
tation of the reduced model can bypass (2.3). Since the 1980’s, the machine learning
community has developed generic manners to create a learning machine capable of
determining a high dimensional function f (u) from the general problem y = f (u) by
providing numerous inputs u. If the correct outputs are not given, the process is called
“unsupervised” learning. On the contrary, when the outputs are provided, it is logically
called “supervised” learning.

In the machine learning research fields, one of the current hot topic is the artificial
neural network (ANN) [88, 191]. Multiple techniques have been explored to simplify
or intensify ANNs but the philosophy remains intact and is briefly introduced in this
overview. By acquiring more and more computational power, researchers try to develop
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Figure 2.7: Comparison of full and POD reduced systems of (2.27) with one mode.

fully automated ANNs. An illustration of their concept is depicted in Fig. 2.8. Each
neurone i of layer j represents a weighted sum of all the neurones of the previous layer
j −1 and is mathematically described as

∀i , j xi j =
∑

i
wi ( j−1)xi ( j−1), xi ,0 = u. (2.53)

Note that the neurons of the first layer equal the inputs. Considering n layers, the
outputs are described by y = xi ,n = f (xi ,0) = f (u) and the implicit (nonlinear) function
f (u) is determined by the collection of the weights wi j in the ANN. When n > 1, this
machine learning process is called “deep learning” as each layer captures a higher
dimensional representation of the previous one [23, 124].

Deep learning methods are well suited for two purposes:

1. Classification: the objective is to label the inputs into categories. A direct example
is the recognition of hand written digits. The model is trained with a classical
database of digits from 0 to 9 [123]—meaning the weights wi j are being deter-
mined. Then, a new (unknown) digit is provided as an input and the model has
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to determine the value. Given this database, the best error rate is 0.23% using
advanced machine learning concepts (e.g. convolutional nets) [50].

2. Prediction: the objective is to predict the next item1. A common example is the
Google autocompletion during an internet research. Given the previous words
and requests, Google predicts what would (logically) be the next word you will
type in its search bar.

Example Let us consider the picture in Fig. 2.9(a) to illustrate the learning in the
different layers. The first layer takes the visible pixels as inputs. The second layer, by
combining the first layer, would detect the edges in the picture. The third layer would
assemble those edges to construct (and identify) curves. The fourth layer combines
those curves to detect objects (e.g. the hat, the face or the feather). Finally, the last layer
performs the classification of the picture by considering the object(s) in the picture (e.g.
a woman with a hat and a feather on it). In this example, the layers have a practical
meaning but it is no longer the case when complex structures (automatically generated)
with hundreds of layers and millions of neurones are considered. Nowadays, a typical
machine learning problem requires thousands of CPUs to correctly train the ANN in
a respectable short time (couples of days or weeks). In October 2015, the AlphaGo
distributed version was using 1202 CPUs and 176 GPUs [189].

As it can be deduced from this brief description, the main issues with this approach
are:

1. The more complex the (nonlinear) function f (u), the larger the training set. In
the typical handwriting recognition, the training set comprises 30 thousands pic-
tures [123]. In the AlphaGo challenge, more than 30 millions observations of Go
games have been used to train the ANN [189]. This leads to two computationally
consuming operations:

a) Generating enough high fidelity solutions to train the ANN.

b) Learning the solutions.

2. Even if the model is trained, it should perform faster than the original high fidelity
system—which is not guaranteed by looking at the AlphaGo challenge statistics.
This problem may be solved by creating a small ANN that mimics the behaviour
of the large, originally trained, ANN. This technique is called the distillation [105]
but is not guaranteed to fulfill sufficiently small error and high success rate.

3. The loss of structure of the general reduced system formulation (2.3). As the
reduced model does no longer rely on a mathematical model based on Maxwell’s
equations, it entirely acts as a black box without any concrete meaning. Indeed,
inner variables in ANNs consist in abstracted items.

1Voluntary vague as the neurone networks can deal with different type of objects.
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Figure 2.8: Artificial Neurone Network.

2.1.6 Proper Generalized Decomposition

Both model- and observation-based model order reduction techniques may suffer from
the so-called “curse of dimensionality” where the accuracy of the solution depends
exponentially on the dimensionality of the problem (noted D). In this context, the
brute force approach may not work and other techniques have to be investigated in
order to explore the whole space. In particular the case in quantum mechanics where
Nobel Prize winner R.B. Laughlin famously declared that no computer would ever exist
to crack the barriers of the Schrödinger equation in multi-particle systems [122]. By
considering a general domain Ω ∈ RD which is discretized with n elements in each
dimension, the number of degrees of freedom of a problem defined in such a space is
nD . Consequently, the classical computation methodology can be seen as a brute force
approach and is impracticable for D and n relatively large. Three methodologies allow
overcoming this problem:

1. Use different grids. As the discretisation in each direction may be different, one
would adapt the sampling rate. However, this first naive approach is limited to
simple problems.

2. Use sparse grids which involve O(n(logn)D −1) degrees of freedom instead of
nD [41]. However when the space dimension remains too large (e.g. D ≥ 20), this
approach becomes intractable [1].

3. Use separate variable decomposition. If one decomposes the D dimensions, the
total number of evaluations becomes nD instead of nD . The Proper Generalized
Decomposition (PGD) falls in this category [3, 48, 49, 121, 145].

Hereafter we describe the general methodology of the PGD. Considering the general
unknown x = x(µ1, · · · ,µD ) depending on D parameters µi with i = 1, · · · ,D, the PGD
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(a) Original picture. (b) Reduced picture with 0.1% error.

(c) Reduced picture with 1% error. (d) Reduced picture with 5% error.

Figure 2.9: Comparison of POD reduction on a picture.

aims at finding r modes of the product of D separated representations F j
i (µi ):

x(µ1, · · · ,µD ) ≈
r∑

j=1

D∏
i=1

F j
i (µi ). (2.54)

Given the general problem
L(x) =G (2.55)

and boundary conditions, the solution x(µ1, · · · ,µD ) is determined through an enrich-
ment process satisfying the representation (2.54). At the r th iteration of that process,
the r −1 modes are known and the r th mode is determined. Relation (2.54) can be



2.1. MODEL- AND OBSERVATION-BASED REDUCTION TECHNIQUES 37

written as

x(µ1, · · · ,µD ) ≈
r−1∑
j=1

D∏
i=1

F j
i (µi )+

D∏
i=1

F r
i (µi ) (2.56)

where the first part represents the first r − 1 modes and the second one is the new
enrichment. Introducing this new expression (2.56) into the general formulation (2.55)
leads to

L
(

r−1∑
j=1

D∏
i=1

F j
i (µi )+

D∏
i=1

F r
i (µi )

)
=G+Rr (2.57)

where Rr is the r th residual due to the approximation of the correct solution x by rela-
tion (2.54). By projecting eq. (2.57) onto each unknown function F r

i (µi ), the following
system, with D equations, is obtained:∫

Ωi

L
(

r−1∑
j=1

D∏
i=1

F j
i (µi )+

D∏
i=1

F r
i (µi )

)
·F r

i dµi =
∫
Ωi

G ·F r
i dµi +

∫
Ωi

Rr ·F r
i dµi (2.58)

for i = 1, · · · ,D and Ωi is the parameter space of µi . By considering functions F r
i (µi )

orthogonal to the residual as the best choice [145], Rr vanishes. Then, a fixed point
method is used to alternatively determine the functions F r

i (fixing all F r
j for j 6= i ) until

convergence is reached—leading to the representation of r th mode. The number of
modes is progressively increased until the error ε defined as

ε=
∥∥∥∥∥G−L

(
r∑

j=1

D∏
i=1

F j
i (µi )

)∥∥∥∥∥ (2.59)

is sufficiently small lower than an arbitrary threshold εmax .
The PGD method is perfectly suited for multidimensional systems whose solutions

can be expressed by a separate representation of variables. An interesting survey of
models can be found in [164].

Example To illustrate the PGD, let us consider the classical (academic) parametric
heat transfer equation:

∂t x−α∆x = q (2.60)

whereα, q and x are the thermal diffusivity, the source term and the spatial temperature
respectively–depending on µ1 =α, µ2 = t and µ3 the spatial discretization (µ3 could
be subdivided in each spatial direction as µ3 = e = (x, y, z) = (µ4,µ5,µ6)). Considering
all these parameters as coordinates of the solution, a traditional resolution scheme
would solve eq. (2.60) for all time values using a time stepping scheme and all thermal
diffusivity values—leading to a cumbersome and computationally expensive approach.
Therefore, one is looking for a separable representation of the solution as in eq. (2.54):

x(t ,α,e) ≈
r∑

j=1
F j

1 (t )F j
2 (α)F j

3 (e) (2.61)
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considering r modes. Using an FE method, the weak form of eq. (2.60) is used and leads
to ∫

Ω

(
∂t x−α∆x−q

)
x′dαdtde = 0 (2.62)

where Ω=Ωα×Ωt ×Ωe is the union of all domain intervals of the variables and x′ is
the test function. The PGD proceeds as an enrichment method and therefore the r −1
previous modes are known and one is looking for F r

1 (t ),F r
2 (α),F r

3 (e) only. For the sake
of simplicity, the superscript r is omitted. Introducing the approximation (2.61) into
eq. (2.62) leads to∫

Ω
(∂t F1(t )F2(α)F3(e)−αF1(t )F2(α)∆F3(e))x′dαdtde =−

∫
Ω
Rr−1x′dαdtde (2.63)

where

Rr−1 =
r−1∑
j=1

∂t F j
1 (t )F j

2 (α)F j
3 (e)−αF j

1 (t )F j
2 (α)∆F j

3 (e)−q (2.64)

is the residual at iteration r −1.
To determine those three functions, a fixed point algorithm is used to alternatively

solve equation (2.62) with appropriate test functions and ends up to the following loop
(until convergence):

1. Determining F1(t ) (F2(α) and F3(e) are known)
The test function is defined by

x′ = F ′
1(t )F2(α)F3(e). (2.65)

Introducing (2.65) in (2.63) leads to relation∫
Ω

(∂t F1F2F3F2F3 −αF1F2∆F3F2F3)F ′
1 dαdtde (2.66)

=−
∫
Ω

(
r−1∑
j=1

∂t F j
1 F j

2 F j
3 F2F3 −

r−1∑
j=1

αF j
1 F j

2∆F j
3 F2F3 −qF2F3

)
F ′

1 dαdtde.

But since both functions F2(α) and F3(e) are known, their corresponding integrals
(overΩα andΩe respectively) can be computed. Let us define

c1 = ∫
Ωα

F 2
2 dα ·∫Ωe

F 2
3 de,

c2 = ∫
Ωα
αF 2

2 dα ·∫Ωe
F3∆F3 de,

c j
3 = ∫

Ωα
F j

2 F2 dα ·∫Ωe
F j

3 F3 de,

c j
4 = ∫

Ωα
αF j

2 F2 dα ·∫Ωe
F3∆F j

3 de,
c5 = ∫

Ωα
F2 dα ·∫Ωe

F3 de,

(2.67)

then equation (2.66) becomes∫
Ωt

(∂t F1c1 −F1c2)F ′
1 dt =−

∫
Ωt

(
r−1∑
j=1

∂t F j
1 c j

3 −
r−1∑
j=1

F j
1 c j

4 −qc5

)
F ′

1 dt (2.68)
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and represents a classical weak form of an ODE (time evolution of F1). It can be
solved either in this weak form or directly in its strong form

∂t F1c1 −F1c2 =−
r−1∑
j=1

∂t F j
1 c j

3 +
r−1∑
j=1

F j
1 c j

4 +qc5 (2.69)

using time linearization scheme (e.g. finite differences). Solving equation (2.69)
provides an updated solution F1(t ).

2. Determining F2(α) (F1(t ) and F3(e) are known)
Using a similar approach, the test function is defined by

x′ = F1F ′
2F3. (2.70)

Introducing (2.70) in (2.63) leads to relation∫
Ωα

(c6F2 − c7F2)F ′
2 dα=−

∫
Ωα

(
r−1∑
j=1

F j
2 c j

8 −
r−1∑
j=1

F j
2 c j

9 −qc10

)
F ′

2 dα (2.71)

with the constants defined as

c6 = ∫
Ωt

F1∂t F1 dt ·∫Ωe
F 2

3 de,
c7 = ∫

Ωt
F 2

1 dt ·∫Ωe
F3∆F3 de,

c j
8 = ∫

Ωt
∂t F j

1 F1 dt ·∫Ωe
F j

3 F3 de,

c j
9 = ∫

Ωt
F j

1 F1 dt ·∫Ωe
F3∆F j

3 de,
c10 = ∫

Ωt
F1 dt ·∫Ωe

F3 de.

(2.72)

As with equation (2.68), equation (2.71) can be solved using its strong form

(c6 − c7)F2 =−
r−1∑
j=1

F j
2 c j

8 +
r−1∑
j=1

F j
2 c j

9 +qc10 (2.73)

(as no differential operator is involved) to determine the updated solution F2(α).

As the original equation does not involve differential operators with respect to
the heat diffusivity, the update equation (2.73) is a typical algebraic equation and
shows the advantage of the PGD over a classical method.

3. Determining F3(e) (F1(t ) and F2(α) are known)
Again, similarly to previous two update stages, the test function would be defined
by

x′ = F1F2F ′
3. (2.74)

Introducing (2.74) in (2.63) leads to relation∫
Ωe

(c11F3 − c12∆F3)F ′
3 de =−

∫
Ωe

(
r−1∑
j=1

F j
3 c j

13 −
r−1∑
j=1
∆F j

3 c j
14 −qc15

)
F ′

3 de (2.75)
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with 

c11 = ∫
Ωt

F1∂t F1 dt ·∫Ωα F 2
2 dα,

c12 = ∫
Ωt

F 2
1 dt ·∫Ωα αF 2

2 dα,

c j
13 = ∫

Ωt
∂t F j

1 F1 dt ·∫Ωα F j
2 F2 dα,

c j
14 = ∫

Ωt
F j

1 F1 dt ·∫Ωα αF2F j
2 dα,

c15 = ∫
Ωt

F1 dt ·∫Ωα F2 dα.

(2.76)

Equation (2.75) is the weak form of an elliptic problem which can be solved using
any spatial discretization technique (e.g. FEM). As it was shown for the two
previous equations, its strong form is

c11F3 − c12∆F3 =−
r−1∑
j=1

c j
13F j

3 +
r−1∑
j=1

c j
14∆F j

3 +qc15. (2.77)

When the three functions have converged, the new r th mode is obtained. The number
of modes increases and this process is repeated until the residual is sufficiently small
(e.g. lower than 10−5). Then, the solution is given by equation (2.61) for any value
in time, space or heat diffusivity (as far as the system has been trained in its range).
Electromagnetic examples using the PGD approach can be found in [98, 101].

2.2 Nonlinear extensions

Contrary to the exhaustive research carried out on linear model order reduction meth-
ods, nonlinear problems are still fairly open to further investigation. Indeed, each
nonlinear situation is unique and it is hard to find either a general nonlinear reduction
method or precise approximation of nonlinear states. To solve nonlinear problems,
linearization techniques are used such as the Newton-Raphson scheme. Therefore, the
current nonlinear reduction methods consist in using the previously described reduc-
tion techniques on the linearized problems. A complete survey of projection-based
techniques is proposed in [25] and of nonlinear dynamical techniques in [138, 160].

From now on, we consider constituting matrices A, B, C, D and E of system (2.1)
that may depend on the state-space variable x. The general problem becomes:{

E(x)ẋ = A(x)x+B(x)u,
y = C(x)x+D(x)u.

(2.78)

2.2.1 Projection

To solve the nonlinear system (2.78), a linearization is performed (e.g. using a Picard
method or a Newton-Raphson scheme) in order to determine the solution using an
iterative process. This procedure requires a nonlinear loop where the system has to
converge to a steady iterate . Given such a linear system, the previously described
methods can be used to determine the reduction matrices P and Q—such as illustrated
by using the balanced truncation approach [133, 181] or the POD method [27, 190].
Applying the reduction methodology based on subspace representation (2.2) leads to a
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similar reduced system as (2.3):{
PTE(Qx̃)Q˙̃x = PTA(Qx̃)Qx̃+PTB(Qx̃)u,

y = C(Qx̃)Qx̃+D(Qx̃)u.
(2.79)

Its main drawback is that nonlinear terms still depend on a high dimensional state-
space representation of Qx̃. As a consequence, at each nonlinear iteration, the reduced
solution must be projected back to its original size and a complete evaluation of the
nonlinear matrices is required. This leads to two bottlenecks:

1. Because the reduced states have to be projected back at each nonlinear itera-
tion, system (2.79) may not be solved at smaller computational costs (time and
ressources) than with the original HFM (2.3) as it requires O(nr ) multiplications.

2. Nowadays, numerical methods have replaced analytical analysis in most of engi-
neer problems geared towards discretization techniques. Evaluating the nonlinear
terms requires access to the numerical assembly of the original HFM at each it-
eration—which may be an inconvenient procedure and lead to an even larger
expense of computational time.

2.2.2 Element sampling methods

Projecting the entire state-space vector is theoretically correct (even though the high
fidelity representation of reduced states may be different than actual solution). When
the nonlinearities derive from material properties, as it is the case in electromagnetic
applications, two scenarios (which are not antinomic) can be observed to reduce the
size of the nonlinear evaluation:

1. The domain of interest is not only composed of nonlinear regions (see Fig. 2.10(a)).

2. Over the entire domain, only a limited region may enter in the nonlinear regime
(see Fig. 2.10(b)).

In both cases, only the areas exhibiting nonlinear behaviors need to be reevaluated
at each nonlinear iteration. When the problem is intrinsically nonlinear, the entire
domain is considered nonlinear and the second scenario should be considered.

While the first scenario only depends on the application and can easily be handled
by decoupling the linear and nonlinear materials, the second scenario is intrinsically
more difficult as the a priori knowledge of the nonlinear regions is unknown. In this
research area, multiple methods have been developed to determine the sampling region
in general nonlinear domains [19, 42, 45, 46, 62, 74, 154, 171–173, 202, 205]. The same
philosophy is shared by all these methods: sampling the nonlinear domain to accurately
reconstruct the overall state-space vector with minimum entries—logically denoted
as element sampling methods. Two of them are utilized in this work and are described
hereafter.

First, the Discrete Empirical Interpolation Method (DEIM) [46] (or its continuous
version EIM [19]) consists in projecting a reduced set of evaluations of a large vector
(or matrix) onto a smaller mapping basis. By doing so, the assembly time originally
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F

(a) Illustration of a double-sided clamped
beam under central force F made of two dif-
ferent materials (red is nonlinear and white
is linear).

F

(b) Illustration of nonlinear plasticity re-
gions (red) for a double-sided clamped
beam under central force F . White regions
remain in linear states.

Figure 2.10: Illustration of the sampling methods in combined systems of linear and nonlinear
regions.

required to generate the large vector (or matrix) is curtailed. Let us consider the large
vector f(µ) ∈ Rn×1 depending on some parameters µ. One can construct the snapshot
matrix F as:

F = [
f(µ1), f(µ2), · · · ]

. (2.80)

To reduce the size of f(µ), one would like to have a smaller representation similar to
the one of the POD approach–f̄(µ):

f(µ) ' Uf̄(µ) (2.81)

where U ∈ Rn×q is a mapping basis and f̄(µ) ∈ Rq×1 is a reduced representation of f(µ)
with q ¿ n. As in section 2.1.4, the matrix Q̄ is obtained through the application of a
thin SVD on the snapshot matrix F (and can be truncated):

[U,Ξ,V] = thin SVD(F). (2.82)

The DEIM expresses f̄ from the evaluation of only q components of f:

f̄(µ) '
(
P̄T U

)−1
P̄T f(µ) (2.83)

with P̄ ∈ Rn×q a selection matrix that picks q rows of f(µ)2. The following procedure
explains the sampling method:

1. Performing the selection of q rows to both sides of (2.81) leads to:

P̄T f(µ) '
(
P̄T U

)
f̄(µ). (2.84)

2In the general formulation of the reduced system (2.3), P reduces the overdetermination due to the
excess of equations. Even though P is usually chosen equal to Q, it could have been a selection matrix similar
to P̄.
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2. By inverting
(
P̄T U

)
, the expression of f̄(µ) (equation (2.83)) is obtained.

3. Finally, (2.81) can be written as:

f(µ) ' U
(
P̄T U

)−1
P̄T f(µ) (2.85)

where q components of f are generated and assembled using the selection matrix
P̄ and projected on U to retrieve the full size vector f.

Applying the DEIM methodology to the reduced order model (2.79), it becomes{
PT ǓP̄T E(x)Q˙̃x = PT ǓP̄T A(x)Qx̃+PT ǓP̄T B(x)u,

y = ǓP̄T C(x)Qx̃+ ǓP̄T D(x̃)u,
(2.86)

where Ǔ = U
(
P̄T U

)−1
.

The main drawback of the DEIM is its dependency on the snapshots f(µ) and their
number. Contrary to the POD method where one looks for similar observations in
the state-space vector, nonlinear vectors f may significantly vary with the parameters
µ—leading to inaccurate representations and/or ill-conditioned systems based on too
few observations.

Secondly, the Missing Point Estimation (MPE) [15] does not rely on a collection of
nonlinear snapshots to determine the selection matrix P̄. In fact, the greedy algorithm

selects q rows of the system such that Q̌
T

Q̌ ≈ I with Q̌ = P̄T Q. In other words, the

closer the condition number of Q̌
T

Q̌ is to 1, the better. In the worst case, q = n and no
reduction is performed. Using this approach, the n nonlinear equations are sampled to
a subset of q ones. Contrary to the DEIM, there is no mapping of the q equations onto a

reduced basis (i.e. U
(
P̄T U

)−1
in the DEIM), the reduced order model (2.79) is directly

obtained by {
P̌

T
P̄T E(x)Q̌˙̃x = P̌

T
P̄T A(x)Q̌x̃+ P̌

T
P̄T B(x)u,

y = P̌
T

P̄T C(x)Q̌x̃+ P̌
T

P̄T D(x)u,
(2.87)

with P̌ = P̄T P and Q̌ = P̄T Q. Complementary explanations can be found in [13–15].
The difference between DEIM and MPE methods lays in the expression of the full

vector through its reduced set of entries and their determination. Whereas the MPE
system (2.87) only evaluates and solves the system on those reduced number of entries,
the DEIM projects the reduced entries of the large vector onto the mapping basis
Q̄ ∈ Rn×q back into the high fidelity subspace.

Example To illustrate the sampling nonlinear methods, an academic illustration of
a reluctance equivalent electric circuit is chosen. Let us consider the parallel system
illustrated in Fig. 2.11 where the currents i in all branches verify the vector formulation

v(t ) = L∂t i+R(i)i (2.88)
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with

L =


L1 0 0 · · · 0
0 L2 0 · · · 0
...

. . .
. . .

. . .
...

0 0 0 · · · Ln

 , (2.89)

R =


R1(i1) 0 0 · · · 0

0 R2(i2) 0 · · · 0
...

. . .
. . .

. . .
...

0 0 0 · · · Rn(in)

 , (2.90)

v =

 v1
...

vn

 , (2.91)

i =

 i1
...

in

 . (2.92)

The parameter values are determined by the following set
Lk = 10−15 k ≤ 0.25n,
Lk = 104 k > 0.25n,

Rk (i ) = k ×102 k ≤ 0.25n,
Rk (i ) = exp(i )+k ×102 k > 0.25n

(2.93)

The voltage source is given as

vk (t ) = 500sin(2π f t ) (2.94)

with f = 50Hz and a time discretization containing 40 time steps of ∆t = 1 millisecond.
Using an implicit Euler time scheme, equation (2.88) becomes[

L

∆t
+R(it )

]
it = v+ L

∆t
it−1. (2.95)

The equation (2.95) can be linearized using a Newton-Raphson scheme where the
iterative solution ik

t updates accordingly to

f (ik
t ) = 0 ≈ f (ik−1

t )+ ∂ f (ik
t )

∂ik
t

(
ik
t − ik−1

t

)
(2.96)
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v(t )

i1(t )
L1 R1(i1)

i2(t )
L2 R2(i2)

in(t )
Ln Rn(in)

Figure 2.11: Parallel system of nonlinear branches.

with

f (ik
t ) = [ L

∆t +R(ik
t )

]
ik
t −

[
v+ L

∆t it−1
]

,

∂ f (ik
t )

∂ik
t

= [ L
∆t +R(ik

t )
]+ ∂R(ik

t )

∂i

∣∣∣∣∣
ik
t

ik
t︸ ︷︷ ︸

jacobian of R(ik
t )

. (2.97)

In practice, the iterative increment δik
t is computed by solving

∂ f (ik
t )

∂ik
t︸ ︷︷ ︸

J(ik
t )

δik
t =− f (ik−1

t )︸ ︷︷ ︸
R(ik

t )

(2.98)

and the new iterate is obtained by

ik+1
t = ik

t +δik
t . (2.99)

Applying the aforementioned methods on equation (2.98), reduced order models can
be built. To emphasise the need of sampling methods in nonlinear cases, a POD
model without sampling is also generated and analyzed. In this POD case, the reduced
unknown vector is projected back at each nonlinear iteration in order to evaluate the
high fidelity nonlinear vector (i.e. R(i)). The computational times are presented in
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Table 2.5: Application of POD, DEIM and MPE on the system (2.88).

Size n Time [s]
FULL POD DEIM MPE

10 0.1236 0.0760 0.0687 0.0684
100 0.5506 0.1534 0.0580 0.0630

1000 4.7739 1.0126 0.0564 0.0664
10000 44.056 15.9980 0.0400 0.0466

Table 2.5 with a relative error below 10−8 for all models. As expected, the bigger the
size of the system, the longer the time to solve it (column FULL). The POD method
allows acceptable time reduction compared to the high fidelity resolution but it can be
seen the computational time also increases with the size of the system as the nonlinear
states have to be projected back to its full size. To handle this problem, the DEIM
and MPE approaches have been implemented and the computational times are now
independent of the original size n (e.g. computational time 1000x and 400x faster than
the high fidelity model and POD model respectively with n = 10000). In particular,
considering the largest size n = 10000, the POD method keeps four modes (to achieve
an a priori error of 10−10) and they are depicted in Fig. 2.12. The DEIM and MPE
approaches sample the 10000 vector entries at the four points (2501, 1, 2500, 1133) and
(470,71, 3806, 3970) respectively and are also shown on the POD modes in Fig. 2.12.
The form of equation (2.88) is similar to those of the magnetodynamic problems of

interest described by equation (1.34).

2.2.3 Polynomial approximation

Another way to solve the main issue of the back projection method consists in replacing
the original nonlinear matrices by some reduced linearized expressions—the use of
the Taylor expansion is a common approximation of a nonlinear function around an
arbitrary point x0 such as

f (x) = f (x0)+
∞∑

i=1

f (i )(x)

i !
(x −x0)i . (2.100)

This approach is only valid for nonlinear static time invariant functions. In particular,
no memory effect is present in eq. (2.100) which cannot describe a previous state.
The generalisation of the Taylor expansions are the Volterra series which can capture
dynamics for time variant and nonlinear systems [170, 182]. It can also be seen as the
generalization of the impulse response function of an LTI system h(t ) if one defines the
input-output relation as

y(t ) =
∫ ∞

−∞
h(τ)u(t −τ)dτ. (2.101)
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Figure 2.12: Four first POD modes of system 2.88 with n = 10000. 1st mode (up-left), 2nd mode
(up-right), 3rd mode (down-left) and 4th mode (down-right). DEIM and MPE selection points in
black and red respectively.

Indeed, one would write the input-output relation of a nonlinear system as the sum of
multiple contributions depending of the input signal u as

y(t ) =
∞∑

i=0
yi (t ) =

∞∑
i=0

Hi [u(t )] (2.102)

where Hi [u(t )] is referred to the i th order Volterra operator and defined by

Hi [u(t )] =
∫
τi∈Ri

hi (τi )
i∏

j=1
u(t −τ j )dτi ( j = 1,2, ...) (2.103)

with τi = [τ1, · · · ,τi ]T a vector containing the i integration variables and the functions
hi the Volterra kernels. In particular, when i = 1, one finds the impulse response
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Figure 2.13: Trajectories in the state space x and clustering of the local reduction matrices.

function h(τ) = h1(τ1). The higher order multidimensional convolutional integrals take
the multiple delays into account. Multiple research studies in engineering fields have
been conducted using the Volterra series expansion [33, 35], in particular for dynamic
problems in [37, 177, 178].

As a consequence, a nonlinear dynamical system is entirely defined by its Volterra
kernels. As the basis functionals are correlated, determining the kernels is not an easy
task. To estimate them, [34, 36] used the coefficients of the Wiener series (which are
close to the Volterra series). More recently, [209] used artificial neural networks to learn
and determine the kernels of an arbitrary dynamical nonlinear system.

However, due to memory usage and computational resources, the infinite sum in
eq. (2.100) has to be truncated to the first terms and the nonlinear function f (x) may be
badly represented by its Taylor expansion. In addition, no efficient and accurate model
order reduction methods can tackle the higher order terms. Multiple studies can be
found in [17, 47, 61, 129, 210, 213].

2.2.4 Trajectory Piecewise Linear Models

Given multiple training inputs, the Trajectory Piece-Wise Linear (TPWL) [167] approxi-
mation designs a set of linear models around different expansion points which are then
accurately weighted to represent the nonlinear behavior of the system. The procedure
consists in five steps:

1. Training. For multiple inputs, the HFM is solved and the state-space vectors
are retrieved (i.e. they are called trajectories)–see black lines in Fig. 2.13. This
training must catch all the nonlinear behaviors and thus need to explore all states
in the system. Determining the appropriate excitation signals and their number
is crucial. In general, one cannot compute all the possible trajectories and would
limit its computational resources to practical input signals.
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2. Expansion points. Determining a set of key expansion points from the trajectories
to build local linearized models. A simple greedy algorithm is used to determine
the expansion points. Let us consider t as the number of expansion points, d
an arbitrary distance and the initial state-space vector x0. Until the number of
expansion points t is reached, the state-space vectors xi that are too far from its
closest expansion point x j are added to the set of the expansion points T (see
algorithm 2.1).

Algorithm 2.1: Selection of the expansion points in the TPWL method

Data: x0, t , s
Result: The set of expansion points T
T = {x0}; i = 1;
while i ≤ t do

if min
x j ∈T

∥∥xi−x j
∥∥∥∥x j

∥∥ > d then

T = T ∪ {xi };
end
i++;

end

3. Linearization. Linearizing the nonlinear models around the expansion points.
One can linearize the nonlinear terms of system (2.78) by taking the first two
terms of the approximation (2.100). At a given expansion point xi , each nonlinear
term is written as

E(x)x = Ei xi + JE
i (x−xi ) (2.104)

where JE
i ∈Rn×n is the Jacobian of vector E(x)x evaluated on xi .

4. Model order reduction. Applying the linear model order reduction methods onto
the linearized models from system (2.78) for each expansion point xi leads to{

∂t
(
PT

i

[
Ei + JE

i (x−xi )
]

Qi x̃
) = PT

i

[
Ai + JA

i (x−xi )
]

Qi x̃+PT
i Bu,

y = CQi x̃+Du.
(2.105)

System (2.105) only considers nonlinearities in matrices E and A as it is the most
common case. However, the procedure is the same for the other terms. Two
approaches can be used in the reduction stage. Either use the same bases P and
Q for all expansion points or use specific Pi and Qi for each linear system. The
latter was the original philosophy of the TPWL as the weighted sum was first
built–leading to a single linear model–before the reduction process. However, the
former approach is more general. To determine the reduction matrices, studies
include the use of POD [22, 82, 97], the moment-matching approach [30, 167]
and the balanced truncation method [125].
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5. Weighting. Defining appropriate weights to obtain an accurate model which
consists in a weighted sum of all reduced linearized systems around the expansion
points. By only considering the update equation of system (2.105) (for the sake of
readiness), a weighted sum of all linearized reduced models would be written as

∂t

(
t∑

i=1
wi PT

i

(
Ei + JE

i (x−xi )
)

Qi x̃

)
=

t∑
i=1

wi
(
PT

i

[
Ai + JA

i (x−xi )
]

Qi x̃+PT
i Bu

)
.

(2.106)
Two scenarios can be described to determine the weights wi as a function of x.
First, when a full solution x at a given time instant equals one of the expansion
points xi , the weighted coefficient wi should, logically, be higher than all the
others. Therefore the i th linearized model has more impact when x = xi . Secondly,
when x 6= xi , the weights have to best describe the influence of all systems when
linearized models are combined. A typical weight distribution is a Gaussian
function as described in [167]. The procedure is the following:

a) Compute the distance di between the state-space vector x and all expansion
points xi (i.e. di = ‖x−xi‖ with i = 1, ..., t ).

b) Normalise the distance based on the smallest one (i.e. di = di
min(d1,··· ,dt ) ).

c) By defining a standard deviation constant ϑ of the Gaussian function, the

weight coefficients are computed as wi = e−d 2
i /2ϑ2

for i = 1, · · · , t .

d) Normalise the coefficients.

Three main advantages of this method can be listed:

1. As with the other approaches, linearizing the nonlinear problem allows the use of
the accurate and well-known linear reduction methods.

2. Combining multiple linearised models allows a better approximation of nonlinear
behaviors.

3. Linearised systems reduce the size of the approximation—avoiding the exponen-
tial rise of the high order terms as in the Volterra/Taylor series.

Three disadvantages are intrinsically related to this method:

1. The results are strongly dependent on the training procedure.

2. Determining the number of linearization points with an accurate (a-priori) error
criteria is not feasible.

3. No algorithm is proposed to generate the optimal weight coefficients.

Additional information and examples can be found in [2, 60, 168, 198].
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Example To illustrate the TPWL on a simple example, let us consider the 1D nonlinear
function f (x) = tanh(x) with x ∈ [0,10]. This function is chosen for two reasons. First,
it is similar to a typical anhysteretic magnetic saturation curve in nonlinear core. Sec-
ondly, it is obviously piecewise linear. The function is linearized at the following seven
linearization points xi = [0,0.5,1,1.5,2,3,5] with a deviation ϑ = 0.15. The nonlinear
function f (x), linearized functions li (x), weights wi (x) and relative error are shown in
Fig. 2.14. One can observe a relative error lower than 2% for the entire domain (naturally
bigger at small values of f (x)) and drops at the linearization points (as expected by the
proper choice of the weights).

2.3 Other considerations

2.3.1 Online/Offline stages

To create a ROM, two different processes need to be described: the online and offline
stages. Instinctively, a ROM has to be fast and accurate regarding the evaluation time
but it is often forgotten to consider the time required to construct it. This distinction
defines the separation between offline and online stages. The evaluation time (or run-
time), when the model is actually used, is called the online stage. Considering the
online stage as a theatre floor where excellent performance is requested, the offline
step is the back stage where ROM is prepared and trained. This offline stage is often
long and computational expensive. Depending on the utilized methods and the para-
metric problems, several training procedures are required to extract information from
the HFMs and construct the ROMs—inducing substantial time during offline stages.
In this dissertation, we are only interested in a tremendous reduction in the online
stage whatever the offline step needs (i.e. long time and large computational power).
Indeed, nowadays, large supercomputers can (in parallel) easily train HFMs and build
corresponding ROMs before actual evaluations. The main focus is then geared towards
runtime efficiency (speed and accuracy). Conversely, storage issues can be solved by us-
ing ROMs during the online stage. By determining such small models, they can actually
be embedded in micro computers with a small amount of memory where the HFMs
can simply not be stored.

2.3.2 Parametric problems

When dealing with parametric problems, model order reduction may not be easily
adapted. Depending on the parameter space, the appropriate projection matrices P
and Q may be difficult to determine. Considering reduced models as in eq. (2.3), two
main manners exist to deal with parametric reduction:

1. Generating multiple local reduced bases in the parameter space and interpolating
between them according to the actual parameter set [4, 5, 7, 8, 58, 150]. It consists
in clustering the solutions in the parameter space based on multiple trajectories
taken by the HFMs in that space as shown in Fig. 2.15. For each region around
each value within each parameter (i.e. µi , i ∈ [1, · · · ,5]), a small local basis is
identified. The main difficulties are to correctly identify the clusters, the number
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Figure 2.14: TPWL approximation of nonlinear function f (x) = tanh(x) at linearization points xi =
[0,0.5,1,1.5,2,3,5]. f (x) in black up, linearized functions and corresponding weights according
to the colours.
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Figure 2.15: Trajectories in the parameter space µ and clustering of the local reduction matrices.

of local bases which may be large and the transition in the parameter space both
online and offline taking into account the dynamical effects during the trainings.
Then, for a new parameter set, the corresponding reduced basis is obtained by
interpolating the predefined bases, e.g. using the manifold theory to preserve
and ensure the same desired properties of reduced bases. An advanced review is
made in [4].

2. Creating a single global basis by gathering all the information for all values within
each parameter [99]. A naive approach would train the model with all possible val-
ues within each parameter range by exploring all the trajectories in the parameter
space. However, [150] showed it is not the optimal choice in pure magnetodynam-
ics (without coupling) as the training of the global basis only needs to explore the
most stressful nonlinear states in which the reduced model may be in afterwards
(during the online stage). In comparison with the former approach, the basis size
tends to be larger than with local bases due to the need to catch and collect all
the required information in a single place. Nevertheless, the basis size is often
lower than the sum of all local bases as some redundancies may be eliminated
with the model reduction techniques.

However, in unsteady problems, this global approach can lead to unstable re-
duced order models [96]. Another problem occurs when the modes from different
parameter values are largely different and leads to a swap in the importance of
the modes–leading to a truncation of important modes [85].

In addition to these intuitive explanations, a mathematically-rigorous survey of
model order reduction techniques for dynamical parametric systems is proposed in
[25].

2.3.3 Refined outline
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The HFMs of nonlinear electromagnetic devices may contain a very large number of
unknowns (e.g. millions)–preventing the use of reduction techniques such as the direct
use of the Schur complement or the balanced truncation. As a corollary, and since
a general engineer may directly use already defined FE models (as black-boxes), the
reduction methods from the observations of the state-space vector are preferred such
as the POD and PGD.

Considering the nonlinearities in the electromagnetic devices, polynomial approxi-
mations and TPWL approaches have already been investigated in previous work–inducing
this dissertation towards the exploration of the correct usage of the element sampling
methods in magnetodynamics.

Lastly, to take into account the parameter dependency of electromagnetic devices
(e.g. the input excitations or the output loads for instance), both approaches (single and
multiple reduced bases) are investigated in this dissertation as no previous investigation
and comparison have been pursued so far.

Based on the descriptions of state-of-the-art reduced order model techniques and
the objectives of the proposed work, a refined outline is proposed hereafter:

• Chapter 3 deals with linear electromagnetic problems and shows the application
of the POD and the PGD. An academic inductor-core system is used as first
example. A second test case consists in a frequency analysis of the impedance of a
micro-antenna. Lastly, a time domain analysis of a 2D transformer is performed.

• In chapter 4, a nonlinear magnetic behavior is introduced in previously described
linear problems—requiring the integration of the aforementioned sampling meth-
ods (i.e. MPE and DEIM approaches are considered and analysed). To this end,
two examples are chosen: a simple inductor-core system and a three-phase power
transformer.

• In chapter 5, the parametric dependencies are brought in the two nonlinear
test cases by considering coupled formulations of local and global quantities
in FE equations. The global training and nonlinear interpolation methods are
investigated and compared on the inductor-core system.

• In chapter 6, an external electric circuit is added to the previously reduced system
of the voltage-driven three-phase nonlinear transformer to demonstrate the
proper future deployment in large electric network simulators of the obtained
ROM. To this end, a decoupled approach of global and local quantities is proposed
to determine robust, reliable, accurate and parametric ROM by considering the
POD for the resolution reduction and the MPE for the assembly reduction.



CHAPTER 3
Linear problems

3.1 Introduction

The aim of this chapter consists in setting the context of parametric model order reduc-
tion for linear magnetodynamics in time and frequency domains and linear electro-
magnetics in frequency domain as the basis for more complex situations to come in the
following chapters.

In section 3.2, the reduction of the discretized magnetodynamics without global
quantities using the POD and PGD methods with linear parameters is presented. As
an application, a 2D inductor-core system is considered to illustrate the two reduction
methods.

Then, in section 3.3, model order reduction of discretized full wave formulation
is considered both in time and in frequency domains with global quantities. To this
end, POD and Krylov-based methods are used to efficiently reduce the model of a 2D
transformer and a 3D microwave antenna.

Finally, conclusions of the performance of these linear ROMs are presented in
section 3.4.

3.2 Model order reduction of magnetodynamics without global
quantities

To begin with the model order reduction of magnetodynamic systems, we initially
consider the magnetodynamic equation (1.29) in time domain by using two model
order reduction techniques: the POD and the PGD.

3.2.1 Proper Orthogonal Decomposition

Considering Nt time solutions ai , i = 1, · · · , Nt of equation (1.29), the snapshot matrix

A = [
a1, · · · ,aNt

] ∈ Rn×Nt (3.1)

55
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is obtained. The determination of the reduced basis Q is achieved by the application of
an SVD on the snapshot matrix as

[U,S,V] = SVD(A) (3.2)

and truncating U to its r first columns according to error criteria (2.52):

Q = P = [u1, · · · ,ur ] (3.3)

where ui are the columns of U (i = 1, · · · ,n). The reduced form[
M̃

∆t
+ S̃

]
ãk+1 = ṽk+1 +

M̃

∆t
ãk (3.4)

with ∆t the resolution, M̃ = QT MQ (respectively S̃) and ṽ = QT y is obtained by injecting
a ≈ Qã into (1.29). Solving equation (3.4) for the desired Nt time steps tk = k∆t (k =
1, ..., Nt ) provides the reduced snapshot matrix

Ã = [
ã1, · · · , ãNt

] ∈ Rr×Nt (3.5)

and high fidelity solutions are directly retrieved by applying relation (2.2).

Application to an inductor-core system To illustrate this first model order reduction
technique, let us consider an academic inductor-core system as depicted in Fig. 3.1
where the current density source term y is directly imposed in the coil area as

y = Nw

Sc
Ipeak sin(2π f t )ez (3.6)

where Nw = 288, Sc = 27mm2, Ipeak = 1.41A (IRMS = 1A), f = 50Hz and ez are the
number of turns, the total coil surface, the RMS input current, the frequency and the
unit vector along the z-axis respectively. Concerning the parameters of the model, a
core conductivity of 1000S/m and a linear relative permittivity of 2000 are chosen (i.e.
the reluctivity is the inverse of the permittivity and the core is 2000 times less reluctant
to magnetic field than vacuum or air). Then, equation (1.29) is solved for one period
with Nt = 20 time steps and time stepping ∆t = 1ms. As this case is linear without any
coupling, only a single mode is sufficient to entirely describe the solutions for all time
steps. To illustrate this remark, the singular values of A are shown in Fig. 3.2. The decay
of the singular values is prominent in this case with first one close to 103 and second
one to 10−10—leading to a drastic reduction of the size of the high fidelity subspace to
a unique dimensional space. The a priori POD error is negligible after the first mode.
The original size of the HFM consists of 973 unknowns (which is equivalent to the
reduction ratio in this case). It takes 0.34 second to solve the HFM and 0.0017 second
for the ROM—leading to a speedup of 200. It is important to note that the matrices
in (1.29) are only generated once in 6 seconds (from the FE tool). The generation
time is not taken into account in those numbers (which only correspond to the time
required to solve the 20 time steps). This deliberate choice is made to highlight the
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Figure 3.1: Axisymetric model of an inductor-core system. Blue is the coil, green is the core, white
is the air and red is the infinite transformation. Dimensions in meters.
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Figure 3.2: Singular values of A.

reduction in time by applying the POD. By considering the assembly time in the overall
computational duration, the speedup settles down to 1.05 showing one of the further
discussed issue—the assembly process may take as much time as the resolution one (if
not more). The solutions for the 10 first time steps of the magnetic vector potential in the
core (in z-direction) are depicted in Fig. 3.3 (the 10 last ones have similar behaviours).
To illustrate the overall error in the considered time interval, the L2 norm of the absolute
and relative errors on the snapshot matrices (from HFM and ROM) is considered and
defined by

εabsolute =
∥∥A− Ã

∥∥
2 , (3.7)

εr el ati ve =
∥∥A− Ã

∥∥
2

‖A‖2
. (3.8)
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Figure 3.3: Z component of vector potential amplitude for the 10 first time steps of inductor-
core system POD model. Legend: 0 (dark blue) to 0.1 (dark red) with a ten level linear-spaced
graduation. (Vs/m)

In this application, the very small errors (i.e. εabsolute = 2.6 · 10−11 and εr el ati ve =
1.5 ·10−12) show that the POD performs an outstanding reduction of the number of
unknowns in the magnetodynamic inductor-core system while preserving an excellent
accuracy with respect to the HFM. The absolute errors for the corresponding 10 first
time steps are shown in Fig. 3.4. The direct observation of the time solutions in Fig. 3.3
intuitively shows the patterns of the single POD mode that is depicted in Fig. 3.5.

3.2.2 Proper Generalized Decomposition

In this section, the PGD formulation of magnetodynamic problems is presented. It
first considers the general developments of separable magnetodynamic formulation
by taking µi , i = 1, · · · ,D variables. Then, the developments are particularized to a
two-variable decomposition (in space and time) and a three-variable one (by adding
the input current intensity). This two-step description illustrates one of the most
important feature of the PGD: the hierarchical procedure of expansion with the number
of separable variables. After the theoretical formulations, the PGD is applied on the
same previously described 2D inductor-core system.

Let us assume a can be decomposed into µi , i = 1, · · · ,D separable variables such
that it can be written as

ar (µ1, · · · ,µD ) ≈
r−1∑
j=1

D∏
i=1

F j
i (µi )︸ ︷︷ ︸

ar−1(µ1,··· ,µD )

+
D∏

i=1
F r

i (µi ) (3.9)
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Figure 3.4: Absolute errors on the magnetic vector potential amplitude of 10 first time steps of
inductor-core system POD model. Legend: 0 (dark blue) to 10−12 (dark red) with a ten level
linear-spaced graduation. (Vs/m)
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Figure 3.5: POD basis (1 mode) of the inductor-core system. Legend: 0 (dark blue) to 0.0186 (dark
red) with a ten level linear-spaced graduation.

where F j
i (µi ) are the modes in the PGD decomposition. Injecting this PGD separated

representation of a comprising r modes into the continuous magnetodynamic equation
(1.12) leads to

σ∂t

[
ar−1 +

D∏
i=1

F r
i (µi )

]
+curl

(
ν curl

[
ar−1 +

D∏
i=1

F r
i (µi )

])
= js . (3.10)

Following the enrichment procedure described in section 2.1.6, ar (µ1, · · · ,µD ) is known
and one is interested at finding the additional r th mode. Isolating the previously known
solution ar−1 from the unknown modes F r

i (µi ), equation (3.10) becomes

σ∂t

D∏
i=1

F r
i (µi )+curl

(
ν curl

D∏
i=1

F r
i (µi )

)
= js −σ∂t ar−1 −curl

(
ν curl ar−1) . (3.11)
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In the first term (i.e. the derivative one), only the modes F r
i (µi ) depending on the time

variable are impacted. By defining D1 and D2 two sets such that F j
i (µi ) ∈ D1 (D2 re-

spectively) is time independent (dependent respectively) and respecting
∏D

i=1 F r
i (µi ) =∏D1

i=1 F r
i (µi )

∏D2
i=1 F r

i (µi ) with D = D1 ∪D2, the time derivative terms become{
σ∂t

∏D
i=1 F r

i (µi ) = σ
∏D1

i=1 F r
i (µi )∂t

∏D2
i=1 F r

i (µi ),

σ∂t ar−1 = σ
∑r−1

j=1

(∏D1
i=1 F j

i (µi )∂t
∏D2

i=1 F j
i (µi )

)
.

(3.12)

Conversely, the same separation can be performed with the curl operator by defining

D3 and D4 two sets such that F j
i (µi ) ∈ D3 (D4 respectively) is spatially independent

(dependent respectively) and respecting
∏D

i=1 F r
i (µi ) = ∏D3

i=1 F r
i (µi )

∏D4
i=1 F r

i (µi ) with
D = D3 ∪D4. The curl terms can be rewritten as curl

(
ν curl

∏D
i=1 F r

i (µi )
) = ∏D3

i=1 F r
i (µi )curl

(
νcurl

∏D4
i=1 F r

i (µi )
)

,

curl
(
ν curl ar−1

) = ∑r−1
j=1

∏D3
i=1 F j

i (µi )curl
(
νcurl

∏D4
i=1 F j

i (µi )
)

.
(3.13)

By injecting relations (3.12) and (3.13) into (3.11), the magnetodynamic equation be-
comes

σ
D1∏
i=1

F r
i (µi )∂t

D2∏
i=1

F r
i (µi )+

D3∏
i=1

F r
i (µi )curl

(
νcurl

D4∏
i=1

F r
i (µi )

)
= (3.14)

js −σ
r−1∑
j=1

(
D1∏
i=1

F j
i (µi )∂t

D2∏
i=1

F j
i (µi )

)
−

r−1∑
j=1

D3∏
i=1

F j
i (µi )curl

(
νcurl

D4∏
i=1

F j
i (µi )

)
.

Using FEM, the Partial Differential Equation (PDE) (3.14) is solved by means of its weak
formulation obtained after multiplication by appropriate test functions w

′
in the form

of w
′ = F

′
1F r

2 · · · + F r
1 F

′
2 · · · + · · · where F

′
i is a test function in the same functional space

than F r
i and integration over the parameter spaceΩD =Ωµ1 ×Ωµ2 ×·· ·×ΩµD . By doing

so, equation (3.14) becomes ∫
ΩD

[
σ

D1∏
i=1

F r
i (µi )∂t

D2∏
i=1

F r
i (µi )

]
·w

′
dµ (3.15)

+
∫
ΩD

[
D3∏
i=1

F r
i (µi )curl

(
νcurl

D4∏
i=1

F r
i (µi )

)]
·w

′
dµ

+
∫
ΩD

[
σ

r−1∑
j=1

(
D1∏
i=1

F j
i (µi )∂t

D2∏
i=1

F j
i (µi )

)]
·w

′
dµ

+
∫
ΩD

[
r−1∑
j=1

D3∏
i=1

F j
i (µi )curl

(
νcurl

D4∏
i=1

F j
i (µi )

)]
·w

′
dµ

−
∫
ΩD

[
js

] ·w
′
dµ= 0.
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Each integral term induces D equations by the application of the test function w
′
. In

each of them, a single function F r
i is tested by its corresponding test function F

′
i while

the other functions are known and form coefficients. At this point, due to the potentially
large number of parameter D, further general developments are not relevant and the
particularization to formulations involving two or three variables is then considered.

Formulation with two variables First, the unknown is separated in two variables–space
and time (i.e. µ1 = x and µ2 = t with D = 2)–such that equation (3.9) becomes

ar (x, t ) = ar−1 +Sr (x)Tr (t ) (3.16)

where Sr (x) and Tr (t ) are the r th mode corresponding to the space and time variable
respectively. By doing so, one verifies D1 = {

Si (x)
}
, D2 = {

Ti (t )
}
, D3 = {

Ti (t )
}

and
D4 = {

Si (x)
}

for i = 1, · · · ,r . For the sake of readiness, dependencies are omitted and

different notations than F j
i are used (e.g. Si = F i

1 and Ti = F i
2). With test functions

w
′ = S

′
Tr +Sr T

′
, separated formulation of source term js = jxJt and equation (3.16),

(3.15) becomes ∫
ΩD

[
σSr∂t Tr ] ·[S

′
Tr +Sr T

′]
dtdx (3.17)

+
∫
ΩD

[
Tr curl

(
νcurl Sr )] ·[S

′
Tr +Sr T

′]
dtdx

+
∫
ΩD

[
σ

r−1∑
j=1

(
S j∂t T j

)]
·
[

S
′
Tr +Sr T

′]
dtdx

+
∫
ΩD

[
r−1∑
j=1

T j curl
(
νcurl S j

)]
·
[

S
′
Tr +Sr T

′]
dtdx

−
∫
ΩD

[
jxJt

] ·[S
′
Tr +Sr T

′]
dtdx = 0.

By defining the following constants:

t j r =
∫
Ωt

(
∂t T j

)
Tr dt, (3.18)

s j r =
∫
Ωx

σS j Sr dx, (3.19)

u j r =
∫
Ωt

T j Tr dt, (3.20)

v j r =
∫
Ωx

curl
(
νcurl S j

)
Sr dx, (3.21)

yr =
∫
Ωt

jt Tr dt, (3.22)

zr =
∫
Ωx

jxSr dx, (3.23)
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equation (3.17) can be written in the more compact form∫
Ωx

[
r∑

j=1
t j rσS j +u j r curl

(
νcurl S j

)
− yr jx

]
·S

′
dx (3.24)

+
∫
Ωt

[
r∑

j=1
s j r∂t T j + v j r T j − zr jt

]
·T

′
dt = 0.

Finally, equation (3.24) is solved by computing the two integral terms separately and
updating the solutions until convergence. Decoupling (3.24) into two equations leads
to the procedure described in algorithm 3.1 as explained in section 2.1.6.

Algorithm 3.1: PGD procedure to solve eq. (3.24)

Data: Initialized S0(x) and T 0(t ) (e.g. 0) and ROM error criteria εmax

Result: The set of modes S j (x) and T j (t ) with j = 1, ...,r
εr om = 1
r=1
S1

1 = S0 and T 1
1 = T 0

while εmax ≤ εr om do
εi ter = 1
i=1
while εi ter ≤ εr om do

Find Sr
i by solving∫

Ωx

[∑r
j=1

(
t j rσS j

i +u j r curl
(
νcurl S j

i

))
− yr jx

]
·S

′
dx = 0

Find T r
i by solving∫

Ωt

[∑r
j=1

(
s j r∂t T j

i + v j r T j
i

)
− zr jt

]
·T

′
dt = 0

Compute error εi ter (e.g. L2 norm between iterates Sr
i and Sr

i−1 and T r
i

and T r
i−1)

i++
end
Iterative process converged and r th mode is obtained Sr = Sr

i and T r = T r
i .

Compute error εr om (see equation (2.59))
r++

end
PGD model is obtained with modes S j (x) and T j (t ) ( j = 1, ...,r ).

Formulation with three variables Since the PGD method simplifies a complex model
into a separable representation of modes (corresponding to independent variables),
additional parameters can easily be added to the formulation (3.16). As a second
example and to illustrate this remark, the source current intensity is considered as a new
parameter for the magnetodynamic problem. Now, the solution field a can be written as

ar (x, t , i ) = ar−1 +Sr (x)Tr (t )Ir (i ) (3.25)
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where i is the peak current value in source term

j(x, t , i ) = jx(x) jt (t ) ji (i )ez . (3.26)

By applying the same procedure as before, the PGD formulation (3.11) now consists in
solving the system of three separated equations

∑r
j=1 u j r q j r curl νcurl S j + t j r q j r S j = yr wr jx,∑r

j=1 v j r q j r T j + s j r q j r dtT j = zr wr jt ,∑r
j=1

(
v j r u j r + s j r t j r

)
I j = zr yr jI ,

(3.27)

with the six constants defined from (3.18) to (3.23) and the two additional ones

q j r =
∫
Ωi

I j Ir di, (3.28)

wr =
∫
Ωi

ji I j di. (3.29)

System (3.27) is voluntary written in strong form (instead of weak one in (3.24)) for the
sake of conciseness and highlight the differentiation between the coefficients and the
unknowns.

The main advantage of the PGD formulation is directly observable by the hierarchi-
cal enrichment in modes and in number of variables (coming from the formulation with
two variables to three). This characteristic is derived from the separable representation
of independent variables. As they are independent one to each other, the same con-
stants can be reused in a richer formulation presenting more variables. As the method
is entirely centered around the enrichment of modes, one can observe the particular
enrichment in the formulation by adding one variable. Finally, system (3.27) is solved
using the same procedure as described in algorithm 3.1 but with three variables.

Application to an inductor-core system Even though the PGD may seem compli-
cated with the previous formulations, applying it to the uncoupled linear inductor-core
system showed in Fig. 3.1 gives very intuitive results. Indeed, as the POD showed the
solutions in time only require a single mode, the separation of variables is trivial.

First, let us consider the same problem as described in the POD section with the
PGD formulation involving the separation in space and time (no separation in intensity
is taken into account first). As the source term is expressed by (3.6), it can be separated
as

v = vx · vt =
(

Nw

Sc
Ipeakez

)
· sin(2π f t ). (3.30)

The intuitive separate modes are shown in Fig. 3.6 with one spatial mode S1 (similar
to the one observed in the POD formulation) and one time mode T 1 corresponding
to the sin expression in the source term. Given those two modes, one can retrieve a
particular value of the magnetic vector potential at any given coordinates in space
and time without the need to recompute the original problem (or the PGD modes).
Consequently, the speedup in time and curtailment in computational resources are
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Figure 3.6: (Left) 1st mode in space. Legend: 0 (dark blue) to 0.1 (dark red) with a ten level
linear-spaced graduation. (Right) 1st mode in time.

massively noticeable if the PGD modes are already defined. The time to determine
those modes follows classical FE resolutions but can be large in case the fixed point
algorithm 3.1 does not easily converge.

Because the PGD is aimed at dealing with numerous parameters, one may be inter-
ested in adding the conductivity, the permittivity or the RMS input current as parameters
in the original problem. Let us consider the PGD formulation (3.27) with the input cur-
rent IRMS as a third parameter. Here, the source term can easily be separated in three
terms as

v = vx · vi · vt =
(

Nw

Sc
ez

)
· Ipeak · sin(2π f t ). (3.31)

The first current mode I 1 in the PGD formulation corresponds to a linear ramp as
depicted in Fig. 3.7 and the space and time modes are the same as in the two-variable
separation case (Fig. 3.6). The PGD method has been applied on a coupled formulation
of a similar problem in [98].

3.3 Model order reduction of electromagnetics with global
quantities

Here, in complement to the last section where the model order reduction methods
have been presented for linear time domain magnetodynamics, MOR is introduced for
linear magnetodynamic and full wave applications by integrating global quantities as
described in section 1.2.5. Only the coupling between FE local and global quantities
without external electric circuit is considered. Due to this coupling, multiple modes in
the reduced order models are expected.

Two methods are considered –POD and Krylov-based approaches–in both time and
frequency domains of two magnetodynamic applications: a 2D transformer and a 3D
microwave antenna. Those results are parts of the research presented in [95, 151].
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Figure 3.7: 1st mode in intensity.

3.3.1 Proper Orthogonal Decomposition

3.3.1.1 Reduced order model of magnetodynamic formulation

The POD acts similarly in this case as in the previous formulation which only comprised
local quantities. From the general magnetodynamic equation in time (1.34), the reduced
order model is directly obtained by

QT
[

M

∆t
+S

]
Qx̃k+1 = QT yk+1 +QT M

∆t
Qx̃k . (3.32)

(reminding that x and y are the unknown and source vectors comprising both local and
global relations in extension of a and v respectively).

Similarly, in frequency domain, (1.35) is projected onto the POD reduced basis Q̂
and gives the reduced model formulation

Q̂
T

(ıωM+S)Q̂x = Q̂
T

y (3.33)

where Q̂ (equivalently to Q in time domain) is generated through the application of
the SVD onto the snapshot matrix, which is obtained by collecting and appending the
solutions at given frequencies such as

X = [x1, · · · ,xK ] ∈ Rn×K (3.34)

with xi the solution of system (1.32) at frequency fi with i = 1, · · · ,K (equivalently at
time ti in time domain).
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Figure 3.8: 3D model of the microwave antenna. [151]

3.3.1.2 Reduced order model of full wave formulation

Based on full wave equation (1.32), the reduced order model of full wave formulation
using POD method is

Q̂
T (−ω2M1 + ıωM2 +M3

)︸ ︷︷ ︸
A

Q̂x = Q̂
T

y. (3.35)

3.3.1.3 Application to a 3D microwave antenna

To illustrate the POD on full wave coupled formulation, a 3D microwave antenna appli-
cation is considered (and is depicted in Fig. 3.8). It is made of copper (σ= 5.77 ·107S/m)
and has a 5 × 5 mm2 square section. Contrary to the previous application in time
domain, a frequency analysis is performed to determine the input impedance z of
the antenna in the frequency band [0.01−100]MHz—without the need to know the
underlying local unknowns using (3.35). Here, the impedance corresponds to the global
quantity of interest. It is important to notice that size of the system is directly linked to
the number of elements in the mesh. Since the mesh discretization usually changes with
the frequency (respecting the rule of thumb of minimum 10 elements per wavelength),
the finest mesh is considered for all frequencies—leading to a constant size n of the
system.

While the application of the POD on the simple case of magnetodynamics without
global quantity only requires one snapshot (for one mode), two issues occur when
global quantities are included:

1. The number of modes (and consequently the minimum number of snapshots) is
unknown. This means that the HFM needs to be trained at multiple frequencies
to generate enough snapshots to constitute X and obtain an appropriate POD
basis.

2. The choice of the snapshots is not predetermined. This will induce an over-
training of the HFM and generating dependent snapshots. As a consequence,
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a loss of time is noticed and performing the reduce order modeling may not
be as interesting as most of the high fidelity solutions may have already been
computed.

To our knowledge, even if some reduced order modeling techniques effectively deal with
parametric problems by stimulating (predefined) particular values of the parameters
[83, 134, 152, 169], no algorithm has been developed to construct a representative
snapshot matrix for the POD by determining the appropriate parameter values for
which the system has to be trained. Even though, recent developments similar to the
one presented here have been published in [38, 153].

In joint work [151], three greedy algorithms are proposed to adequately find the min-
imum number of high fidelity resolutions at given frequencies and obtain an accurate
response over the entire frequency range thanks to the fast evaluation of the ROM:

1. Algorithm 3.2 stops the greedy search when the residual error on local quantities
is smaller than the fixed tolerance τ. If it is not the case for all frequencies, the
HFM is solved at the frequency corresponding to the highest error to enrich the
POD basis. Both the convergence criterion and snapshot selection are based on
local quantities. The main disadvantage is the need to project-back the solution
to the full size subspace for all frequencies at each greedy iteration. However, it is
still faster than solving the HFM for all frequencies.

2. Algorithm 3.3 uses the same philosophy as algorithm 3.2 except that the con-
vergence criterion is based on the error made on the global quantity (i.e. the
input impedance z). If the tolerance on the global quantity is not fulfilled for all
frequencies, then the selection process for the next snapshot is the same as in
previous algorithm.

3. Algorithm 3.4 is only based on the global quantity. Here, the convergence crite-
rion is the same as in algorithm 3.3 but the selection of frequencies is based on
numerical convergence of the global quantity. In other words, at a given iteration,
it looks at the largest variation in the frequency domain of the global quantity. If
it is sufficiently small (i.e. lower than tolerance τ) than the algorithm stops and
the global quantity response is said to have converged over the entire domain; if
not, than the HFM is solved for the frequency presenting the largest variation and
the process loops back.

In practice, by forcing the current in the antenna, the input voltage is retrieved by
integrating the electric field over a closed loop. Such an operation can be discretized
and added as an additional equation in (1.32)—allowing a faster evaluation of the global
quantity from reduced solution. Indeed, in this application, the voltage (and the input
impedance since the input current is set to 1A ) is placed to be the first unknown in x.
Therefore, the evaluation of the input impedance is directly obtain by only evaluating
the first row of the HFM such as

z = A[1, :]Q̂x̃−y[1]. (3.36)
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where A[1, :] is the first row of A. Because the reduced solution still has to be projected
back to high fidelity subspace, this operation mathematically shows the post-operation
performed on local quantities to retrieve the global one. Two models of the antenna

Algorithm 3.2: Greedy algorithm based on local quantities (for snapshot selection
and convergence criterion).

Data: Fk = { fk } with k = 1, . . . ,K , tolerance τ
Result: Q̂, ROM for Fk

Choose an initial frequency f1.
Solve full FE at f1 and get initial snapshot x1.
t = 1
r = 1
while t do

X = [x1], remove f1 from Fk , r = 1
Generate Q̂ (from SVD on X).
for fk in Fk do

Compute reduce matrices for fk .
Solve reduced system and retrieve x̃.
Compute error on residual εk = ‖R(Q̂x̃)‖.

end
if εmax = max(εk ) > τ,∀k then

Pick frequency fεmax associated to εmax .
Solve full FE at fεmax and obtain xεmax .
Add the new snapshot X = [X,xεmax ].
Remove fεmax from Fk , r ++.

else
t=0

end
if r=K then

t=0
end

end

are considered and present different impedance responses in order to test the greedy
algorithms. The first one (later called “model 1”) comprises two turns and a single
resonance in the impedance response. It is made of 13420 prisms and 5360 hexahedra,
yielding to 46563 complex unknowns. The second one ( noted “model 2” later on) is
made of four turns and presents multiple peak resonances in the impedance analysis.
It has 15120 prisms and 6800 hexahedra, leading to 54826 complex unknowns. By
considering 10000 frequencies in the sweep analysis, the computational time required
to solve the HFM over the entire frequency range by the serial approach is 44 hours.

First, the three algorithms have been tested on the model 1 to determine which one
is the most efficient (i.e. requiring the minimum time and number of snapshots to reach
a given tolerance). The convergence rates of L2 relative error on the input impedance
with respect to the number of snapshots are shown in Fig. 3.9 for all three algorithms.
All algorithms determine snapshots that guarantee to reach a prescribed tolerance τ. By
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Algorithm 3.3: Greedy algorithm based on local quantities (snapshot selection)
and global quantity (convergence criterion).

Data: Fk = { fk } with k = 1, . . . ,K , tolerance τ
Result: Q̂, ROM, Z for Fk

Choose an initial frequency f1.
Solve full FE at f1 and get initial snapshot x1.
Initialize Zk

0 6= 0,∀k.
t = 1
r = 1
while t do

X = [x1], remove f1 from Fk , r = 1
Generate Q̂ (from SVD on X).
for fk in Fk do

Compute reduce matrices for fk .
Solve reduced system and retrieve x̃.
Evaluate ROM impedance zk

r .

Compute numerical error on impedance εz,k =
∥∥∥∥ zk

r −zk
r−1

zk
r−1

∥∥∥∥.

end
if εz,max = max(εz,k ) > τ,∀k then

for fk in Fk do
Compute reduce matrices for fk .
Solve reduced system and retrieve x̃.
Compute error on residual εk = ‖R(Q̂x̃)‖.

end
Pick frequency fεmax associated to εmax .
Solve full FE at fεmax and obtain xεmax .
Add the new snapshot X = [X,xεmax ].
Remove fεmax from Fk , r ++.

else
t=0

end
if r=K then

t=0
end

end
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Algorithm 3.4: Greedy algorithm based on global quantity (for snapshot selection
and convergence criterion).

Data: Fk = { fk } with k = 1, . . . ,K , tolerance τ
Result: Q̂, ROM, Z for Fk

Choose an initial frequency f1.
Solve full FE at f1 and get initial snapshot x1.
Initialize Zk

0 6= 0,∀k.
t = 1
r = 1
while t do

X = [x1], remove f1 from Fk , r = 1
Generate Q̂ (from SVD on X).
for fk in Fk do

Compute reduce matrices for fk .
Solve reduced system and retrieve x̃.
Evaluate ROM impedance zk

r .

Compute numerical error on impedance εz,k =
∥∥∥∥ zk

r −zk
r−1

zk
r−1

∥∥∥∥.

end
if εz,max = max(εz,k ) > τ,∀k then

Pick frequency fεmax associated to εz,max .
Solve full FE at fεz,max and obtain xεz,max .
Add the new snapshot X = [X,xεz,max ].
Remove fεz,max from Fk , r ++.

else
t=0

end
if r=K then

t=0
end

end

taking τ= 10−6, algorithm 3.4 needs 25 snapshots while algorithms 3.2 and 3.3 require
74 and 82 snapshots respectively. As algorithm 3.4 is 2.96 and 3.28 times more efficient
than the two others, it is the preferred choice hereafter for the automatic reduction of
both antenna models.

Model 1 Considering the first model with two turns, the impedance norms, angles
and relative errors of POD models with four sizes (i.e. 2, 3, 6 and 12) are shown in
Fig. 3.10 compared to the HFM—which means that the 46563 original unknowns are
reduced to only a dozen ones. The first frequency is 0.01MHz as the lowest in the
considered range. The second is the latest: 100MHz. The third one is the resonance
frequency at 64.49MHz. With six modes (corresponding to frequencies [0.01, 0.1, 1, 30,
64, 49, 100]MHz), the relative error is close to 10−5 around the resonance frequency
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Figure 3.9: Convergence of the three algorithms vs the size of the ROM.

and 6.7 ·10−4 over the entire frequency range. The reduction ratio is 46563/6 = 7760.
Considering twelve modes, the relative error is even smaller.

Two important conclusions can be derived from this first test case:

1. The algorithm detects the resonance peak quickly in the greedy process as it
corresponds to the second chosen frequency.

2. The information given at the resonance notably improves the results in both
impedance norm and phase. Identifying and training the HFM with well chosen
input excitations is of great importance for the quality of the ROM.

Even though the results are obtained by algorithm 3.4, equivalent observations can be
drawn with algorithms 3.2 and 3.3.

Model 2 A second application involves the POD reduction on antenna model 2
with four turns and presenting five resonance peaks (three high and two zeros). The
impedance norms, phases and relative errors are shown in Fig. 3.11 in comparison to
the HFM. As expected, the higher the number of modes, the smaller the relative error.
Compared to the first test case (antenna model 1), the number of modes required to
reach the same level of relative errors is bigger as the second model presents a more
difficult impedance response between 0.01 and 100MHz. The average relative error
is 2.59, 6.71 ·10−3, 8.73 ·10−4 for 5, 10 and 15 modes respectively. The 25 first selected
frequencies are [0.01, 100, 1, 2, 80, 86, 21, 60, 51, 50, 35, 68, 17, 82, 97, 9, 12, 6, 67,
69, 66, 3, 4, 83, 81]MHz in the order of selection by the greedy algorithm whereas the
resonant ones are 17, 50, 83MHz (up), 35 and 68MHz (down). One can observe that all
resonant frequencies are present in the automatically selected ones. Even if one may
only be interesting in the global quantities (e.g. the impedance), one can look at the
errors of local fields. In Fig. 3.12 are shown the relative errors on the magnetic field b
in the middle of the coil (in height) for the same four POD basis sizes: 5, 10, 15 and 25.
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Figure 3.10: Results of ROMs for model 1. (Top) Impedance norm. (Middle) Impedance angle.
(Bottom) Relative error of complex impedance from reduced model.

The relative errors are 1.04 ·10−6, 5.95 ·10−11, 3.77 ·10−12 and 3.91 ·10−14 respectively.
Respecting the computational time, solving 10000 frequencies with the classical serial
HFM requires 44 hours, while the three proposed algorithms only need 4.5 hours, 3.5
hours and 19 minutes respectively—leading to respective speedups of 10, 13 and 140.

3.3.1.4 Application to a 2D transformer

In complement to the frequency analysis, a time domain approach is investigated as
with the inductor-core system presented in section 3.2.1. Here, a 2D transformer is
considered (depicted in Fig. 3.13) with the primary winding (358 turns) on the left
and the secondary one (206 turns) on the right in open-circuit (both in copper with
conductivity σ= 5.77 ·107S/m and non magnetic behavior). The core is made of iron
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Figure 3.11: Results of ROMs for model 2. (Top) Impedance norm. (Middle) Impedance angle.
(Bottom) Relative error of complex impedance from reduced model.

with linear magnetic behavior (i.e. ν= 1
1000ν0) and conductivity σ= 3.72 ·103S/m. The

model comprises 8430 triangles, yielding to 4175 unknowns as the finest discretization
in this application (and is kept constant).

The equations in time and frequency domains are given by (1.34) and (1.35) respec-
tively and the POD reduced models correspond to (3.32) and (3.33) respectively.

In this example, the Joule losses are considered as the global quantity of interest.
Due to the conductive core, the solution at time instant tk depends on the solution at
previous instant tk−1 which prohibits parallel computations to efficiently construct the
required reduced basis. Indeed, the classical manner to deal with temporal scheme in
model order reduction consists in deducing the basis from the resolution of the first
Ns (< Nt ) solutions [99, 161] with Nt the total number of time steps. Unfortunately, the
choice of the number of snapshots Ns is arbitrary. To solve this issue in time domain,
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Figure 3.12: Cut (at coil center) of the absolute error of magnetic induction field b for r =
5,10,15,25 snapshots (from up-left to down-right). Scale range: 10−16 (dark blue) to 10−5 (dark
red). [151]

based on similar greedy ideology than algorithms 3.2, 3.3 and 3.4 in frequency domain,
algorithm 3.5 is proposed and has the following philosophy: the HFM and ROM are
solved in parallel for each time step until the error (of the local or global quantity)
between HFM and ROM for nb time steps is lower than the tolerance τ. If a single test
fails the error bound limitation, the counter is reset and a new basis is computed by
using all the (high fidelity) snapshots computed so far. The higher the number of trials
nb, the more predictive the ROM becomes1.

Let us consider a frequency of 50Hz and a time interval of 1.5 periods with Nt = 90
time steps (60 per period). Using the algorithm 3.5 with a tolerance τ = 10−4 on the
time discretized system gives the results depicted in Fig. 3.14. If too few bases are
considered due to a small number of trials nb (e.g. r ≤ 4), then the solution clearly
diverges compared to the HFM. The error lowers when nb increases—forcing the ROM
to capture more information from additional high fidelity snapshots. With ten modes,
the L2 relative error is below 1% for the entire time interval. The obtained reduction
ratio is 4175/10 = 418. Notice that the size of a POD basis r may not change with nb

1A similar algorithm has recently been proposed by [51].
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Algorithm 3.5: Adaptive algorithm in time domain published in [95].

Data: Time steps {tk }, k ∈ [1, ...,K ], Mk ,Sk ,yk , εmax , nb
Result: Reduced solutions x̃k and basis Q̂
Q̂ = 0n

x0 = 0n

x̃0 = 0
count = 0
for k ← 1 to K do

Compute reduced matrices of equation (3.4) (e.g. M̃).
Retrieve xk by solving HFM (1.29).
Retrieve x̃k by solving ROM (3.4).
Compute error ε (on local or global quantities) (e.g. ε=

∥∥xk − Q̂x̃k
∥∥

2 /‖xk‖2).
if maxε≤ εmax then

count ++
else

count = 0
end
if count = nb then

for k ← 1 to K do
Retrieve x̃k by solving ROM (3.4).

end
break

else if count = 0 then
Generate reduced basis Q̂ from full solutions.
Compute reduced matrices of equation (3.4) (e.g. M̃).
Initialize x̃0 = 0
for i ← 1 to k do

Retrieve x̃i by solving ROM (3.4).
end

else
//Keep current reduced basis

end
end
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Figure 3.13: 2D model of the 1 phase transformer. Direction of the currents shown in windings by
dot and cross symbols. Dimensions in cm. [95]

as it is truncated to its r most significant modes. Indeed, with nb < 4, the number of
modes equals 6 and with nb > 3, it equals 10. This is the reason why the results are
detailed according to r in order to appropriately compare this approach with others
(showing the divergence issue at low ROM size). As a conclusion, the algorithm 3.5 gives
the results for r = 6 and r = 10 with nb < 4 and nb > 3 respectively.

Conversely, the good convergence behavior is observed for local quantities (e.g.
the magnetic flux density b) as the absolute error is depicted in Fig. 3.15 at 25ms with
respect to the size of the ROM (i.e. r = 4,5,6,10). At this time instant, the HFM has not
been solved and no contribution to the POD basis can be related to it—showing the
adequate results for further (untested) time simulations.

Even though algorithm 3.5 may solve time discretized systems, the choice of the
number of trials nb remains an arbitrary one as Ns is in classical POD approaches.
Moreover, the algorithm still relies on serial computations of the HFM until the number
of trials is sufficient. To this end, generating the POD basis in the frequency domain to
further use in the time domain would solve both issues. To do so, one has to verify that
projectors in time and frequency domains can easily be interchanged. In steady state,
the harmonic formalism verifies

xk = ‖x̂‖e ıωtk (3.37)

at time instant tk with xk and x̂ the solutions in time and frequency domains respectively.
Therefore, the full size vector xk in time is linked to its reduced form ˜̂xk in frequency by

xk ≈ Qx̃k , (3.38)
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Figure 3.14: Greedy time algorithm. (Top) Normalized losses in the transformer core with POD.
(Bottom) L2-relative error.

= Qℜ
{∥∥∥˜̂x

∥∥∥e ıωtk
}

, (3.39)

= ℜ
{

Q
∥∥∥˜̂x

∥∥∥e ıωtk
}

, (3.40)

= ℜ
{

Q̂
∥∥∥˜̂x

∥∥∥e ıωtk
}

, (3.41)

with Q̂ the reduced basis in frequency domain. Equation (3.41) demonstrates the
interchangeability of both bases. Further developments have been shown in [16].

Uniform selection First, as previously studied in [161], the POD basis is based on
snapshots taken uniformly in the frequency range. Let us consider the frequency range
[0,100]Hz to adequately center the frequency of interest (50Hz). The normalized losses
from the ROMs and the relative errors in frequency domain are shown in Fig. 3.16
(first and third graphs). The relative error is above 1% with two modes whereas it is
around 10−4 and 10−6 with four and six modes respectively. We considered a linearly
spaced frequency set of r frequencies between 0 and 100Hz. In time domain, the
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Figure 3.15: Cut (at coil center) of the absolute error of magnetic flux density (field) b for r =
4,5,6,10 at 25 ms (from up-left to down-right). Logarithmic scale range: 10−6 (dark blue), 10−3

(yellow) and 101 (dark red) [95]

transposition of the POD basis generated in frequency domain provides encouraging
results as depicted in Fig. 3.16 (second and fourth graphs). As expected, two modes
are not sufficient to adequately represent the system and the losses explodes after 2
milliseconds. Better results are obtained with four modes. However, some oscillations
are present at the beginning from 2 to 4 milliseconds even though the rest of the time
are rather good with relative error near 1%. Finally, six modes allow an error below 1%
for all time instants.

Greedy algorithm selection Even if the results are quite good with the uniform se-
lection of frequencies, one may compare it to algorithm 3.4 that was developed to
automatically detect resonant peaks in electromagnetic devices. The results are very
similar to the uniform selection as they are depicted in Fig. 3.17. The frequencies de-
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Figure 3.16: Uniform frequency algorithm. (Top) normalized losses in transformer core with POD.
(Bottom) L2-relative error.
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termined by the greedy algorithm are ordered as [0, 100, 57, 33, 12, 11, 23, 72, 74]Hz
and are very close to the one of uniform selection. The convergence rate of the greedy
algorithm for this application is shown in Fig. 3.18. Except the beginning presenting a
plateau for the first two modes, the POD convergence presents a logarithmic decrease
with respect to the number of modes. The advantage of the greedy algorithm over the
uniform selection approach are the absence of arbitrary choice concerning the number
of snapshots and their determination (e.g. at which frequencies the HFM need to be
solved).

3.3.2 Krylov-based method

In addition to the POD approach in time and frequency domains, an Arnoldi Krylov
Subspace (AKS) method, described in section 2.1.3, is applied to reduce the same 2D
transformer case.

Contrary to the POD, the AKS approach is only applicable in the frequency domain.
Therefore, the results are to be compared with those of the POD based on the uniform
selection and greedy algorithm methods. Similarly, the generated basis is used in both
time and frequency domains. From equation (1.35) the transfer function reads

H(s) = (Ms +S)−1 y. (3.42)

Approximating the transfer function with a Padé expansion around the expansion point
sexp as in [161] leads to

H(s) =
∑

j
H j

(
s − sexp

) j (3.43)

with H j = (−(Msexp + S)−1M) j (Msexp + S)−1y for j = 0,1, ...,n − 1. Thus, the Krylov
subspace Kn(α,γ) is defined by α = −(Msexp +S)−1M and γ = (Msexp +S)−1y. From

the Krylov subspace Kn(α,γ), the reduced basis Q̂ is obtained by the application of
the Arnoldi algorithm with two moments for each expansion point [146]. Therefore,
by using two moments, the reduced size r doubles compared to the POD one for an
identical number of selected frequencies.

Uniform selection First, the uniform selection of frequencies in the range [0,100]Hz is
performed and leads to the results in frequency and time domains depicted in Fig. 3.19.
Those results have to be compared to the ones shown in Fig. 3.16. They are very
close to the POD observations with relative errors of 10−2, 10−4, 10−8 with r = 4,8,12
(corresponding to 2, 4, 6 frequencies respectively in POD case).

Greedy algorithm selection Secondly, applying the greedy algorithm 3.4 to avoid the
arbitrary choice of the number of snapshots to consider and construct the projection
basis gives the results of Fig. 3.20 in frequency and time domains (to be compared with
Fig. 3.17 for POD approach). Once again, the results are very similar to the POD ones
except that the selected frequencies are different with [0,100,99,72,31,9,85,28,5]Hz (the
first two remain identical in both situations and represents the extreme frequencies
in the considered range). Overall, the AKS results are slightly better then POD ones.
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Figure 3.17: Greedy frequency algorithm. (Top) Normalized losses in transformer core with POD.
(Bottom) L2-relative error.
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Figure 3.18: Convergence rate of greedy algorithms with POD.

Finally, the convergence rate of the AKS method by generating the projection basis in
frequency domain in order to employ it in time domain is shown in Fig. 3.21. Excepting
the two plateaus at the beginning, the AKS approach presents the similar logarithmic
decay with the number of modes (twice as much as the POD method as two moments
are considered per expansion points).

3.4 Conclusion

In this chapter, multiple model order reduction techniques have been applied in lin-
ear (electro)magnetodynamics. The PGD has been applied and detailed on a single
unknown formulation without global quantity. The AKS method has been derived on a
coupled multi-variable problem with local and global unknowns. The POD has been
employed in both situations, in time and frequency domains, as it is one of the most
versatile approach.

When the formulation only presents one local quantity in linear problems (which
is a vector of numerous unknown components), a single mode is sufficient to entirely
describe the dynamics—presenting the best reduction ratio. With multiple local and
global quantities in a coupled formulation, several modes are required to accurately
reduce the HFM. For these three methods, the number of modes cannot be chosen
based on an a priori error estimate valid in the whole parameter range, so this number
is usually fixed by trial and error.

Three automatic algorithms have been proposed to construct the snapshot matrix
for the POD method by identifying the proper parameter values. They have been
applied in different situations and showed excellent results in both time and frequency
domains—with reduction of the resolution process above 99%. This method has been
extended to the use of AKS reduction approach and results are very similar to the ones
obtained with the POD.

Several applications have been detailed in this chapter such as an academic 2D
inductor-core system with single variable formulation in magnetic vector potential, a



3.4. CONCLUSION 83

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

frequency [Hz]

n
o

rm
al

iz
ed

lo
ss

es

HFM
r = 4
r = 8

r = 12

0 5 10 15 20 25 30
0

0.5

1

time [ms]

n
o

rm
al

iz
ed

lo
ss

es

0 10 20 30 40 50 60 70 80 90 10010−9

10−5

10−1

frequency [Hz]

re
la

ti
ve

er
ro

r

0 5 10 15 20 25 3010−5

10−2

101

time [ms]

re
la

ti
ve

er
ro

r

Figure 3.19: Uniform frequency algorithm. (Top) normalized losses in transformer core with AKS.
(Bottom) L2-relative error (down).
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Figure 3.20: Greedy frequency algorithm. (Top) Normalized losses in transformer core with AKS.
(Bottom) L2-relative error.
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Figure 3.21: Convergence rate of greedy algorithm 3.5 with AKS.

2D transformer with coupled formulation and global quantities, and a 3D microwave
antenna with full electromagnetic coupled formulation. All test cases showed drastic
reductions by the application of the aforementioned MOR techniques.

This section paves the next developments for more complex situations involving
nonlinearities, parameterized systems and external circuit coupling will further be
involved.





CHAPTER 4
Nonlinear problems

4.1 Introduction

While the resolution process is obviously linked to the computational expenses, the
assembly step may also be as time consuming as the resolution one. This observation is
of great importance in nonlinear problems. Indeed, such problems are linearized (e.g.
using a Newton-Raphson scheme) which implies an additional loop in the resolution
procedure. Due to those new iterations, the time required in the assembly is critical to
efficiently reduce nonlinear problems. In practice, applying the simple back-projection
presented in section 2.2.1 does not lead to actual reduction in time as most of the time
is spent in the generation of the nonlinear vectors and matrices.

To deal with such problems, element sampling methods have been developed in
diverse engineering fields so that nonlinear operators of the ROM can be estimated
from a reduced set of components of the HFM. In this chapter, two of them have been
investigated in the context of magnetodynamic applications as described in section
2.2.2. First, the DEIM tends to approximate a general nonlinear vector from a reduced
set of projected components onto a reduced basis. It is similar to the reduced approxi-
mation made so far except that the reduced states are the aforementioned reduced set
of components. Secondly, the MPE is intrinsically linked to the POD method and limits
the number of components in the projection matrix. Its idea consists in finding the
most “useful” components in the projection matrix and restricts the assembly to them.

The chapter is organized as follows. In section 4.2 we present the nonlinear magne-
todynamic formulation which is then, particularized by the application of the MPE and
DEIM in sections 4.3 and 4.4 respectively. Two applications are considered: the previ-
ously described inductor-core system and a three-phase current-driven transformer.

4.2 Nonlinear formulation

In real applications, the magnetic cores do present nonlinear reluctivity (or permeabil-
ity) depending on the magnetic flux density such that ν= ν(b) (see Fig. 1.1(b)). Inserting

87
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such a behavior in previously described linear general magnetodynamic reduced equa-
tion (3.32), one obtains the nonlinear relations

QT
[

M

∆t
+S(Qx̃k+1)

]
Qx̃k+1 = QT yk+1 +QT M

∆t
Qx̃k , (4.1)

xk ≈ Qx̃k , (4.2)

where matrix S(xk+1) = S(Qx̃k+1) now depends on the solution xk+1. Now, both x̃k+1 and
S(xk+1) are unknown at time instant tk+1 and a linearization scheme is used. Using a
Newton-Raphson scheme, the solution is updated (i denotes the index of the nonlinear
iteration) by

x̃i+1
k+1 = x̃i

k+1 + δx̃i+1
k+1 (4.3)

where the increment δx̃i+1
k+1 is the solution of

QT J
(
xi

k+1

)
Qδx̃i+1

k+1 =−QT r
(
xi

k+1

)
(4.4)

with r(xi
k+1) = r(Qx̃i

k+1) the residual defined by the difference between right and left
hand sides in (1.34):

r(xi
k+1) = yk+1 +

M

∆t
xk −

([
M

∆t
+S(xi

k+1)

]
xi

k+1

)
(4.5)

and J the Jacobian of r(xi
k+1). This nonlinear loop is stopped at each time step once the

increment or the residual is sufficiently small (i.e.
∥∥δx̃i+1

k+1

∥∥< 10−5 or
∥∥r(Qx̃i

k+1)
∥∥< 10−5).

Then, the solution is said to have converged and x̃k = x̃i
k .

4.3 Missing Point Estimation

Originally, the MPE method [13–15] has been developed for chemical reactions fol-
lowing the idea that the finite number of probes available limits the knowledge of the
reactions at particular spots. Then, from those sampled probed areas, how can the
information be inferred in the entire domain of interest? On the contrary, what are the
particular positions to locate the probes and acquire all the information required to
determine the solutions entirely?

With this philosophy, the MPE is intrinsically linked to the POD basis that extracts
the maximum information from observations of the system. The MPE aims at sampling
this basis Q to its q minimum number of rows while preserving a sufficiently low condi-
tion number of QT Q to accurately solve the FE system. Similarly, different techniques
have been developed, e.g. gappy POD [39] and hyper-reduction [171] and differ in the
manner the selection matrix is determined.

Let us define P̄ ∈Rn×q (q ¿ n) a selection matrix of q components and the sampled
expressions of the residual and Jacobian by

r̄(x) = P̄T r(x), (4.6)

J̄(x) = P̄T J(x). (4.7)
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In the context of FEM, the coefficients on a given row of the original (sparse) matrix
can be computed locally (e.g. for nodal finite elements, by considering all the mesh
elements that share the corresponding node). This allows to generate the reduced
set of q rows of the nonlinear matrices efficiently defined by P̄, by only considering
a small subset of elements in the mesh [25, 144]. Since q rows are selected, only the

corresponding q rows in the POD basis are useful and then kept with Q̄ = P̄T Q ∈Rq×r

computed once (or offline). Then, the application of the MPE sampling matrix P̄ on the
Jacobian and residual of equation (4.4) leads to the linearized POD-MPE equation

Q̄T J̄Qδx̃ =−Q̄T r̄. (4.8)

The overall system is reduced to an r -dimensional subspace (with the application of
the POD basis Q) but only by considering q components of the FE model (using P̄)
with r, q ¿ n. Compared to the POD error criterion based on the singular values of
the snapshot matrix, the MPE selection indices are obtained by increasing sequentially
q with the most contributing rows of the POD basis according to the greedy (non
hierarchical) algorithm [13, 15] that tends to verify

Q̄T Q̄ ≈ I . (4.9)

Equivalently, this condition can be interpreted as the decay of the condition number

of Q̄T Q̄ to 1 (the closest, the better). This procedure may be long and should only be
done once during an offline stage. The MPE takes into account the initial n FE degrees
of freedom to determine the reduced set of unknowns without depending on a number
of snapshots. In the worst case, the reduced set of entries equals all of them (i.e. q = n)
and no assembly reduction is performed.

4.4 Discrete Empirical Interpolation Method

Contrary to the direct element sampling method described with the MPE approach,
the DEIM tends to project the sampled elements of the high fidelity size nonlinear vec-
tor/matrix onto a projection basis U (similar to the POD method). Given this projection
matrix based on a singular value decomposition of nonlinear snapshots Z (cf. section
2.2.2), the greedy algorithm 4.1 determines the appropriate sampling matrix P̄. From
our point of view based on [100], we did not use the snapshots J(x)δx—as it would apply
the DEIM on the right hand side r(x). Here, the DEIM is applied on the whole system
and tries to approximate x. Thus, the nonlinear snapshots equal the complete ones, i.e.
xk (k = 1, · · · , Nt ) which effectively correspond to the correct sampling of the nonlinear
unknowns x. As a result, the nonlinear reduced basis U equals the POD projection basis
Q of the overall system.

Considering the Jacobian and the residual as nonlinear matrices, their DEIM sam-
pled expressions are given (as defined by (2.85)) by

J(x) ' Q
(
P̄T Q

)−1
P̄T J̄(x), (4.10)
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Algorithm 4.1: DEIM greedy algorithm. [45]

Data: Nonlinear reduced basis U = [
u1, · · · ,uq

]
given by the application of a

truncated SVD on nonlinear snapshot matrix F = [f1, · · · ]
Result: Sampling matrix P̄
Find index with [~,k] = max(|u1|)
Construct matrices with Ũ = [u1] and P̄ = [ek ]
for i = 2 to q do

Solve
(
P̄T Ũ

)
c = P̄T ui

Compute r = ui − Ũc
Find index with [~,k] = max(|r|)
Enrich matrices with U ← [

Ũ ui
]

and P̄ ← [
P̄ ek

]
end

r(x) ' Q
(
P̄T Q

)−1

︸ ︷︷ ︸
Q̄−1

P̄T r̄(x). (4.11)

Now, injecting (4.10) and (4.11) into original POD equation (4.4) leads to the POD-DEIM
reduced equation

Q̄
−1

J̄(x)Qδx̃ =−Q̄
−1

r̄(x). (4.12)

with Q̄, J̄(x), r̄(x) defined as in (4.6) and (4.7) respectively, which corresponds to the
formulation in [99].

Naturally, the greedy algorithm considers the r POD modes to compute the selection
matrix P̄ which may not lead to sufficient entries in order to correctly represent the
nonlinear terms (as q = r ¿ n)—pointing out the most critical issue of this approach.

Recently, a novel algorithm based on DEIM procedure (called DIME) that differently
determines the sampling matrix P̄ by using a QR factorization with column pivoting is
considered as a third sampling method. Extensive mathematical explanations can be
found in [62].

4.5 Applications

In this section, two applications are considered to illustrate the reduction in the assem-
bly stage with the POD-MPE and POD-DEIM/DIME approaches. First, the academic
inductor-core system coupled with global current is reduced by the mean of the POD-
MPE method. Secondly, a three-phase current-driven transformer (also coupled with
global currents) is tested with POD-MPE and POD-DEIM/DIME methods. In addition,
sensitivities in the core conductivity and dependencies in current intensities are also
performed to test the stability of the reduction with regards to those parameters.
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4.5.1 Inductor-core system

Using the same test case configuration as described in the chapter 3 (cf. Fig. 3.1) but
with nonlinear permittivity depicted in Fig. 1.1(b) and following the Brauer’s law:

ν(|b|) = γ+αexp(β |b|2) (4.13)

with γ = 80.47, α = 0.05 and β = 4.21 (from core material V330-50A), the POD-MPE
approach is considered with formulation (4.8). The inductor-core system is coupled
with global input current and presents 981 unknowns.

Four input currents are considered [0.1,0.4,0.7,1.0]A in order to test the reduction
efficiency and accuracy (as well as its sensitivity). Supplementary, four conductivity
values for the core are considered [0,102,104,106]S/m to evaluate the performance from
non conductive to very conductive core material. Since the parametric reduction order
modeling is not yet considered in this chapter, the POD basis used for each test case has
previously been computed for the same configuration. This allows the exact analysis of
the MPE approach without considering errors from resolution reductions through an
inappropriate POD usage. The POD basis comprises six modes for all cases.

In [15], the authors force a minimum number of indices in the MPE process in known
critical regions and interfaces (notably with respect to the sources). This constraint
is set to ensure the stability of the POD-MPE equation (e.g. without any source term,
the solution is trivially zero). From our point of view, the greedy algorithm should
automatically detect those regions as they would present the highest contributions in
the determination of the lowest condition number. To test this hypothesis, Figs. 4.1,
4.2 and 4.3 show the errors (defined as in (3.8)) when no index, indices in the coil and
indices in both coil and core are forced respectively. The conclusions from those results
are:

1. For certain values of q , the reduced model does not converge when the proper
indices are not forced (Fig. 4.1 and 4.2).

2. When no index is forced (Fig. 4.1), reaching a small error (i.e. 10−4) requires 6% of
the original elements for all input currents—leading to an assembly reduction of
1/0.06 = 16.6.

3. When the coil indices are forced (Fig 4.2), the convergence is better with stabilized
small error before 5% of the original number of elements—leading to an assembly
reduction of 20.

4. When the coil and core indices are forced (Fig. 4.3), the results are way better than
previously. The convergence rate is faster at a small relative error below 10−4 with
roughly 3% of original elements—leading to an assembly reduction of 33.

5. Whatever the conductivity values or the input currents, the MPE reduction is
fairly uniform with similar results throughout all experiments.

Even though forcing some (important) indices improves the results by lowering the
relative errors, the observation is not as significant as expected or explained in [15]. The
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Figure 4.1: Relative errors of POD-MPE model of inductor-core system vs MPE size for different
values of the core conductivity σ with input current 0.1, 0.4, 0.7 and 1.0A (from top to bottom).
No forced indices.
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Figure 4.2: Relative errors of POD-MPE model of inductor-core system vs MPE size for different
values of the core conductivity σ with input current 0.1, 0.4, 0.7 and 1.0A (from top to bottom).
Coil indices are forced.
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Figure 4.3: Relative errors of POD-MPE model of inductor-core system vs MPE size for different
values of the core conductivity σ with input current 0.1, 0.4, 0.7 and 1.0A (from top to bottom).
Coil and core indices are forced.
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Figure 4.4: FE model of the 3-phase transformer. Description in Table 4.1. Dimensions in mm.
[90]

automatic determination of the MPE points without forcing remains a valid approach
in our experience.

4.5.2 Current-driven three-phase power transformer

As a more complex and realistic test case, a three-phase transformer is considered and
depicted in Fig. 4.4 and Table 4.1. It contains one three-phased input in star configura-
tion and two three-phased outputs (one in star and one in triangle configurations). The
model has n = 7300 unknowns and is simulated at no load (similar to the inductor-core
system). Without conductivity (non-conductive behavior), the nonlinear reluctivity fol-
lows the same Brauer’s law as in (4.13). Here, as the core conductivity is also considered
non zero (conductive behavior) for a laminated iron core, the constitutive law (1.2) is
modified accordingly to [91] as

h = ν(|b|)b+ d 2

12
σ∂t b, (4.14)

where d = 0.5mm is the thickness of the laminations andσ= 2·107S/m is the conductiv-
ity of iron. As with the academic inductor-core system, a single period at 50Hz (T=20ms)
with Nt =20 time steps is considered with input current

I = (−1)ηIpeak cos(2π f t +ϕi )êz (4.15)

where η= 0 (resp. η= 1) for left (resp. right) part of the coil (representing the direction
of the current), Ipeak ∈ [0.1,0.3] A is the input peak current (Ipeak = 0.1 A induces linear
magnetic behaviour whereas Ipeak = 0.3 A causes the core to saturate).
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Table 4.1: Subdomains of the 3-phase transformer in Fig.4.4.

Domain Region Legend in Fig.4.4
Ωnl

c \Ω j core (if σ 6= 0) white
Ωl

cc air stripped
Ωnl

cc core (if σ= 0) white
Ω j windings filled

Phase Delay ϕi [rad] Legend in Fig.4.4
A 0 black
B 4π/3 gray
C 2π/3 light gray

Resolution reduction - POD First, in order to verify that the POD can efficiently re-
duce this three-phase transformer, one has to observe the singular value decay. Given
an input current of 0.25A, a single POD basis can achieve a small relative error (i.e.
below 2%) for all input currents as it can be seen in Fig. 4.6(up) with the singular values
depicted in Fig. 4.5. The POD basis is truncated after the 11 first modes to respect
an a-priori error of 10−15 and leads to a theoretical speedup between 663 and 440000
[106, 107]. In Fig. 4.6(down) is shown the POD relative error for different core conduc-
tivities when using a basis generated with a core conductivity of 1S/m. As explained in
[150], changing the conductivity modifies the distribution of the eddy currents that will
prevent the use of a single basis. Therefore, the POD bases are generated with the same
conductivity value than those of the (tested) reduced configurations.

Assembly reduction - DEIM/DIME As explained in section 4.4, the choice of nonlin-
ear snapshots may be crucial for the application of the DEIM. From our experiment,
taking the residuals r(x) at different time instants as snapshots would not lead to appro-
priate DEIM projection basis as the singular values do not decrease as expected (see
Fig. 4.5). Indeed, two possibilities are offered:

1. By taking the converged residuals, no correlation between them is expected as
they should be as minimum as possible—leading to no proper reduced basis.

2. Taking all non-converged residuals would lead to a way greater snapshot ma-
trix—leading to potential computational and storage issues.

As a consequence, the original full size solutions X are considered as snapshots for
the DEIM method. However, the method considering the residuals as snapshots may
be worth investigating and comparing with the proposed one (taking the solutions as
snapshots). In [99], the POD-DEIM approach efficiently reduces a static 3D trans-
former with a relative error of 4% by considering 55 DEIM edges (representing 0.5%
of the original number of nodes). Here, considering a conductive core directly im-
pacts the stability of the POD-DEIM model as it becomes more and more dependent
on a priori independent parameters (i.e. the number of time steps per period or the
conductivity values) [140, 192]. As an alternative, the DIME algorithm is also investi-
gated. However, similar results are observed in this eddy current problem (I = 0.3A and
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Figure 4.5: Singular values of snapshot matrices of X and right hand side r(x).

σ= 2 ·107S/m). These issues are depicted in Fig. 4.7 where the change in the number
of time steps highly impacts the relative errors obtained with both POD-DEIM and
POD-DIME models—whereas the POD-MPE method allows a quasi constant relative
error. In Fig. 4.7(top) the basis for the DEIM/DIME algorithm is truncated to the 25 first
modes—following the general truncation methodology as in POD. In Fig. 4.7(bottom),
the basis for the DEIM algorithm is not truncated (in order to catch a sufficiently large
number of elements in the FE assembly stage) and has consequently the same number
of modes as the number of time steps. One would have expected better results in this
second scenario with a bigger size for the basis. Considering more than 90 time steps
per period does not influence the results. Due to these oscillations, the DEIM/DIME is
not considered for further developments and applications.

Assembly reduction - MPE Concerning the POD-MPE model, Fig. 4.7 shows a quasi-
constant relative error with respect to the number of time steps per period (as expected).
Similar results were obtained by varying the number of periods or the core conductivity
values. Four scenarios are considered for the application of the POD-MPE approach.
Either small (I = 0.1A) or large (I = 0.3A) current values and either no conductivity
(σ= 0) or laminated iron core configuration (σ= 2 ·107S/m). The condition numbers
of covariance matrix of sampled projection basis Q̄–as the criterion of the MPE algo-
rithm–are shown in Fig. 4.8(up) with an extremely fast decay to one. However, in this
case, the relative error (depicted in Fig. 4.8(bottom)) with respect to the MPE size seems
to be independent to this criterion. Indeed, a relative error of 0.1% is reached for a MPE
sampling size q in the range [50,350] according to the configuration (core conductivity
and input current intensity). Now, by applying the POD-MPE approach, the magneto-
dynamic problem is solved with 11 unknowns through the application of the POD by
only considering and assembling 350 elements/rows in the FE matrices (in case of the
worst scenario) by the MPE sampling—leading to significant assembly reduction ratios
between 99% and 95% compared to the original 7300 unknowns. Similarly to the global
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Figure 4.6: (Top) Relative error of POD model according to input peak current (basis generated
with input current I = 0.01 A (dotted line), 0.25 A (dashed line), 0.5 A (solid line)). The vertical
line represents the transition between linear and nonlinear regimes. (Bottom) Relative error of
POD model according to core conductivity (basis generated with σ= 1 S/m).
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Figure 4.7: (Top) Relative errors with truncated basis (25 modes). (Bottom) Relative errors with
untruncated basis.

quantities, the local fields (i.e. the magnetic flux density b) present small errors and are
depicted in Fig. 4.9 for the four different configurations, i.e. I = 0.1 A (top) - I = 0.3 A
(middle) and σ= 0 S/m (left) - σ= 2 ·107 S/m (right) as well as the 50 first MPE selected
points (bottom).

4.6 Conclusion

In this chapter, the combined approach of the POD and the MPE has been presented to
efficiently and drastically reduce both nonlinear static and eddy current models of an
inductor-core system and a three-phase current-driven power transformer. However,
as illustrated with the transformer, the MPE condition number may not be the best
criterion to predict the error of the sampled reduced model as it seems uncorrelated
with the obtained results.

On the other hand, the combined POD-DEIM/DIME approach failed to reduce
robustly the three-phase transformer as its stability becomes parameter-depend on the
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POD-MPE model of 3-phase current-fed transformer compared to HFM.

dynamic situation.
The POD-MPE approach is the preferred one for the coupling of nonlinear energy

conversion devices with electric circuits such as presented in chapter 6. In addition, the
important reduction ratios, above 95%, in the three-phase transformer are encouraging
for the next test case involving electric network coupling in chapter 6.
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CHAPTER 5
Nonlinear parametrised problems

5.1 Introduction

Creating reduced order models for given sets of parameter values for which they have
been pre-computed is a great achievement, but creating reduced order models for
multiple parameter values and being able to deal with parametrized problems is of
greater interest.

In this chapter, nonlinear parametrized magnetodynamic problems are studied in
the context of model order reduction to develop more generic reduced order models.

Two methodologies are presented. The first one consists in building a single basis
for all values within the parameter values while the second one is based on the interpo-
lation of multiple reduced bases created from different trainings (comprising different
parameter values). This latter approach follows the principle of the interpolation on
manifolds.

To illustrate those theories onto nonlinear parametrized problems, the academic
inductor-core system is considered with different parameters as the intensity and the
frequency of the input current.

5.2 Parameter sampling

Regarding the reduced order modeling techniques, the manner the parameter space is
sampled is critical, e.g. using the POD, snapshots must be computed for appropriate
sampled parameter values. In case of small number of parameters, a random or struc-
tured sampling may be sufficient (i.e. Latin hypercube or grid-based sampling). They
constitute the simplest approach that will produce a rich and large dataset by covering
the entire parameter space. When the number of parameters increases, those methods
may lead to very large number of high fidelity simulations as the number of samples in
a regular grid grows exponentially with the number of parameters. In case the number
of parameters is very large, the number of points in the grid is intractable and more
complex sampling methods have to be used, such as greedy adaptive search methods

103
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[24, 40, 93], adaptive parameter sampling based on local sensitivity analysis [30] or
optimal interpolation points [21] (only in the case there exists an affine parameter de-
pendency in B and C and no dependency in A and E in general state-space formulation
(2.1)).

In this dissertation, a small number of parameters is considered as they consist in
the values that external excitations can have onto the magnetodynamic devices—in
contrast with material values (e.g. permittivity, conductivity, ...) and shape parameters
(e.g. geometrical dimensions) that are common in optimization processes and which
can lead to large parameter spaces. To this end, a regular grid sampling is performed in
the considered parameter space.

5.3 Parametrized reduced order model generation

In this section, based on the general description in section 2.3.2, the two different
strategies for generating parametrized ROMs are detailed. Those philosophies are
applicable (to our knowledge) with any of the reduction methods (especially those
presented in chapter 2).

First, in section 5.3.1 is presented the generation of a single basis for POD reduced
model of nonlinear magnetodynamic formulation (4.1). Then, in section 5.3.2, the
multiple bases generation and manifold interpolation are detailed.

In further sections, the D parameters will be denoted by p which belongs to the
unique domain Ωp ∈ RD . Recently, [9, 63, 70, 94, 154, 203] proposed to divide the
parameter spaceΩp into multiple sub-domains to construct local bases. However, the
two presented generation strategies remain valid within any partitioning ofΩp .

5.3.1 Single basis model

From general nonlinear magnetodynamic equation (4.1), a global basis is determined
by a unique projection matrix Q which is obtained by sampling the parameter space.

In the general case where the matrices M, S and v depend on the parameters p,
the obtained ROM is inefficient and the computational gain (compared to the HFM)
is mostly lost. Indeed, such problems are similar to the one exposed in chapter 4 and
require sampling approaches such as the DEIM or MPE methods. However, in case of
affine dependency, one can write

M(p) =
k∑
i

ci (p)Mi (5.1)

where Mi does not depend on the parameters and ci (p) are general functions of p. Then,
the reduced matrix M̃ can be efficiently computed for all parameter values as

M̃(p) =
k∑
i

ci (p)QT Mi Q︸ ︷︷ ︸
M̃i

(5.2)

and M̃i are precomputed once.
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In this dissertation, only the right hand side y is parameter-dependent—allowing
the pre-computation of all other matrices. However, the projected (reduced) matrices
still have to be adequately represented in the reduced subspace when a parameter
change induces the solution to change (drastically). Two common methodologies to
capture all the information related to the parameter space can be derived:

1. The global basis Q consists in the concatenation of local bases (i.e. Qi , i = 1, · · · ,P )
generated for the P sampled parameter values (i.e. pi , i = 1, · · · ,P ) such as

Q = [
Q1, · · · ,QP ]

. (5.3)

But doing so, the resulting global basis may include redundant information due
to potential similar local bases. One may perform an SVD [81] on Q to solve this
issue.

2. The second manner intrinsically solves the aforementioned problem as the global
basis Q is obtained from the SVD [81] of the concatenation of snapshots obtained
for the sampled parameter values—such as

X =
[

x1
1, · · · ,x1

Nt
,x2

1, · · · ,xP
Nt

]
, (5.4)

Q = SVD(X). (5.5)

where xp
k is the solution at time instant tk with parameter values pp . Compared

to the generation of the local bases in the first methodology from local snapshot
matrices, the matrix X is importantly larger. However, all the snapshots have to
be computed in both cases and performing the SVD directly on them is not more
computationally expensive. An additional advantage consists in the observation
of the singular values for all the snapshots in order to measure the extent the
global parametrized model can be reduced onto a global POD basis. With this
method, the standard POD a priori error criterion remains valid. Therefore, this
latter approach is considered in this work.

5.3.2 Multiple bases model

Instead of constructing a single basis which is valid for all parameter values, one can
consider generating multiple local bases (i.e. Qi , i = 1, · · · ,P ) for the P sampled parame-
ter values (i.e. pi , i = 1, · · · ,P ) and interpolating them in case of a simulation involving a
new (unexplored) parameter set p∗ ∈Ωp .

Straightforward interpolation (i.e. Lagrange) of reduced bases may lead to an invalid
basis. Let us consider the simple case with two local bases such as one is the opposite
of the other (i.e. Q1 =−Q2) and new parameter is in the middle of respective param-
eter sets p1 and p2, then the interpolated quantity will be zero (which is not a basis).
Therefore, one must not interpolate the bases directly but their underlying subspaces.
To this end, the interpolation of such subspaces thanks to a projection onto a tangent
space of the underlying manifold structure has been highlighted in [5]. Contrary to
the straightforward interpolation among the bases that does not preserve the desired
properties of the bases, the manifold structure does. As a note, one may observe that
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the representation of a basis may be independent of the choice of coordinate repre-
sentation as the importance is given to the subspace that is spanned by this basis. In
[4], the definition of the Grassmann manifold is provided and matches the one of the
projection bases detailed in section 2. Indeed, the Grassmann manifold Gn,r is the set
of all r -dimensional subspaces of Rn . As a particular case, the Stiefel manifold Sn,r is
defined as the set of all r -dimensional orthonormal bases of Rn , and correspond to the
definition of a POD reduced basis. For the sake of generality, the interpolation on the
Grassmann manifold is considered and further developed in this research. For more
details, see [4].

The procedure is described hereafter and is illustrated in Fig. 5.1:

1. Define a reference point. Let define Qp the span of basis Qp obtained with the
parameter values pp . By definition, Qp ∈Gn,r . Let us consider Q1 as the reference
point. Here, a tangent space TS (Q1) to the manifold Gn,r at Q1 can be defined.

2. Let us define Rp as the projection of Qp for p = 1, · · · ,P onto TS (Q1) using the
logarithmic mapping

Rp = LogQ1 (Qp ) ∈ TS (Q1). (5.6)

In matrix form, the logarithm map on Gn,r is defined as

(I−Q1Q1,T )Qp (
Q1,T Q1)−1 = UpΣp Vp,T , (5.7)

Rp = Up tan−1(Σp )Vp,T . (5.8)

3. As all Rp lie onto the Euclidean space TS (Q1), an interpolation method (e.g.
Lagrange) can be used to determine the matrix R∗ that would have been obtained
from the projection onto that space of the subspace Q∗ spanned by the basis Q∗

generated for a new parameter set p∗. Thus,

R∗ =
P∑
i

li (p∗)Ri (5.9)

with li (p∗) the Lagrange coefficients. Now, R∗ spans the subspace R∗ ∈ TS .

4. Project subspaceR∗ back onto the manifold inQ∗ using the exponential mapping

Q∗ = ExpQ1 (R∗) ∈Gn,r . (5.10)

In matrix form, the exponential map is obtained as

R∗ = U∗Σ∗Vp∗,T , (5.11)

Q∗ = Q1Vp∗,T cos(Σ∗)+U∗ sin(Σ∗). (5.12)

where the interpolated basis Q∗ spans Q∗.

Considering this approach to determine the projection basis for any parameter values
still requires the projection of the system original full size matrices (e.g. M) onto it. In
case of numerous changes in the parameter space requiring as many interpolations,
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Figure 5.1: Interpolation of Q∗ from Q1 and Q2 on the Grassmann manifold by considering Q1 as
the reference point.

a significant time and computational resources may be lost in that operation. To
overcome this issue, another approach would consists in interpolating the reduced
matrices directly instead of the reduced bases. This philosophy has been investigated in
[6, 7, 58, 130, 147] and mainly consists in determining a consistent representation of the
reduced bases among all the parameters. This allows direct interpolation or manifold
interpolation of the reduced matrices. This method has not been investigated in this
dissertation (which may be one of the future works).

5.4 Application to a parametrized inductor-core system

In this section, the previously described academic inductor-core system is considered.
The POD reduced nonlinear magnetodynamic formulation (4.4) without sampling
method is used to highlight the choice of the POD basis. Two parameters are considered:
the intensity and the frequency of the input current. This work has previously been
published in [149, 150].

Input current intensity In the first scenario where the intensity of the input current
can be different than the one used to generate the POD basis, a single basis trained with
the highest input current is sufficient to achieve very small error (< 0.1%). Actually, the
global training is inherent to the application of a sinusoidal input current (see equation
(3.6)). Indeed, as the range of the sine function is [−1,1], the input current ranges in
[−Ipeak , Ipeak ]A. This type of excitation naturally performs a sampling in the parameter
space for all lower values thanks to the time discretisation. In particular, when the basis
is trained without a sufficiently high current (to enter in saturation), the reduced model
cannot achieve a small error (> 10% are commonly observable). This observation is
quite logical as the POD basis has only explored the linear behavior and does not have
the information regarding the saturation states. As a conclusion, two observations can
be derived:

1. The global basis is directly obtained by only simulating the HFM with the highest
input current (peak value).
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2. The choice of the training is crucial to retrieve maximum information and limit
the number of high fidelity computations.

Input current frequency As a second test case presenting different observations, the
frequency of the input current is considered as a parameter and can be changed from
the training stage to the online computations. This choice is interesting as it will directly
impact the shape of eddy current distribution—a priori limiting the use of a single POD
basis which spatially describes the fields at a given frequency.

First, to confirm the need of multiple POD bases in this example, let analyze the
relative errors obtained with a single POD basis generated at a unique frequency over
the frequency range [1,16000]Hz (see Fig. 5.2). Here, four results are depicted when the
POD basis is generated at 15, 150, 1000 and 16000 Hz respectively and then use over
the entire frequency range. Except for the same particular frequency where the relative
error is small (as expected), all others are important with majority of them above 100%.
This illustrates that the use of a single POD basis generated at a given frequency cannot
be considered (to achieve small errors) for any another frequency. As the previous
range may be very large, two detailed analyses are performed at 50 and 350Hz. In
Fig. 5.3 is shown the same result as in Fig. 5.2 when the POD basis is generated at 50Hz.
Contrary to the prior results, the POD basis can be used for another frequency as far
as it is relatively close to the one used for the basis generation (e.g. 1% relative error
remains achievable within a 30Hz difference). This means that a POD basis has to be
computed each 60Hz. This limitation may be sufficient in real application but one may
be interested in larger frequency bands—which prohibits the use of single POD basis. As
the frequency range increases, the global basis and interpolation method are analyzed
to limit the number of bases generation. In Fig. 5.4 are shown the relative error obtained
at 50Hz with three approaches that combine the information retrieved at two neighbor
frequencies. The global basis method concatenates the snapshots taken at (50-x) and
(50+x) Hz (with x the distance between the frequencies and 50Hz), performs an SVD
and truncates the basis respecting an a priori error of 10−15. The Grassmann method
follows the procedure described in section 5.3.2 with the POD bases generated at (50-x)
and (50+x)Hz. Lastly, Lagrange method is tested to illustrate the incoherent results that
are obtained from direct interpolation of the bases without taking into account the
manifold theory. Naturally, the Lagrange method provides erroneous results and should
not be taken as a valid approach. It is considered as illustrative in further results. One
can see that the global POD basis is always better than the Grassmann interpolation
with a maximum relative error of 2 ·10−4 by combining the snapshots from 20 and 80Hz
instead of 10−3 for the manifold interpolation. Two conclusions can be drawn:

1. By generating the POD bases each 60Hz as in the direct use of the POD basis, this
method divides the relative error by 100.

2. By keeping the relative error criterion to 1%, the number of POD bases can be
lowered—reducing the computational resolutions of HFMs1.

1A precise value of the sampling number cannot be given due to the limited frequency analysis made in
this work.
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Figure 5.2: Relative errors of ROMs according to the frequency with the POD basis generated at
frequency=15, 150, 1000, 16000Hz (from top to bottom). Filled circles correspond to the ROMs at
same frequency than the one used for the construction of POD basis.
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Figure 5.3: Relative error of ROMs according to the frequency with the POD basis generated at
frequency=50Hz. Filled circle corresponds to the ROM at same frequency than the one used for
the construction of POD basis.
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Figure 5.4: Relative errors of ROMs using Grassman or Lagrange interpolation with two bases gen-
erated at frequencies (50-x) and (50+x) Hz and global basis from snapshots at same frequencies.
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Instead of moving the left and right “neighbours” at the same time, Fig. 5.5 shows the
relative errors at 50Hz when the left frequency is fixed while the right one is changing
for the generation of the local bases (or the snapshots for the global basis). From top to
bottom, the left frequency is fixed at 20, 30, 40 and 49Hz. The right frequency is given
by the x-axis. The results show the global POD basis remains a better suited approach
then the Grassmann interpolation (for the considered frequency range). Logically, the
errors lower when the left frequency get closer to 50Hz but not significantly. This is the
main insight of these results. Indeed, if the error would have literally dropped instead
of the slow decay, the previous results (with left and right neighbours generated at
equidistant of the frequency of interest) would not be sufficient to limit the sampling of
the POD bases. Here, as the relative error with the global basis is only divided by 3 (with
right frequency at 51Hz) and 10 (with right frequency at 80Hz), increasing the number
of POD would not significantly improve the relative errors. It is worth mentioning
that contrary to the results from the global basis, the errors made by the Grassmann
manifold interpolation flatten to the error at 51Hz when the left frequency is increased
(no decrease as with the global basis is observed). This insight is quite logical since the
projections of the bases (from 20 to 49Hz) become more and more equivalent to the
projection of the basis at 51Hz and therefore set the same reference tangent space for
all upper frequencies.

As another test case, the frequency 350Hz is considered. Similar results and conclu-
sions can be made from the results in Fig. 5.6 (direct use of single POD basis generated
at 350Hz), Fig. 5.7 with left and right frequencies at equidistant of 350Hz and Fig. 5.8
(with fixed left frequencies at 320, 330, 340 and 349Hz). However, the global basis
gives even better results than the Grassmann manifold interpolation even though the
relative errors are smaller than in the 50Hz case. This second example demonstrates
the coherence of the results for two different frequency tests.

5.5 Conclusion

Dealing with parametric models, either at design or operational stages, is crucial for
modern applications. Defining a corresponding accurate reduced model (or multiple of
them) is the next question to answer. In this chapter, two methodologies to construct
POD reduced model of nonlinear magnetodynamic inductor-core system are presented:
the first one deals with a global reduced model whereas the second is based on the
interpolation of multiple bases using manifold theory.

The results show great interest of those methods as the direct use of a single POD
basis is limited to a tiny region in the parameter space. However, as certain parameters
are inherently linked to appropriate training of the POD basis, such a proper procedure
is therefore sufficient to accurately gather all required information.

Here, by considering a change in the frequency of the input current (leading to
drastic change in the eddy current distribution), the global basis approach always
provides better results than the methods that interpolate two bases. For that reason,
this approach is preferred when the model only deals with a small number of parame-
ters—allowing the generation of a single basis based on all trained snapshots.
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Figure 5.5: Relative errors of ROMs using Grassman or Lagrange interpolations with two bases
generated at frequencies 20, 30, 40, 49 (from top to bottom) and x Hz and global basis from
snapshots at same frequencies.
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Figure 5.6: Relative error of ROMs according to the frequency with the POD basis generated at
frequency=350Hz. Filled circles correspond to the ROM at same frequency than the one used for
the construction of POD basis.
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Figure 5.7: Relative error of ROMs using Grassman or Lagrange interpolation with two bases gen-
erated at frequencies (350-x) and (350+x) Hz and global basis from snapshots at same frequencies.
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Figure 5.8: Relative error of ROMs using Grassman or Lagrange interpolation with two bases
generated at frequencies 320, 330, 340, 349 Hz (from top to bottom) and x Hz and global basis
from snapshots at same frequencies.



CHAPTER 6
Parametrized electric coupling with nonlinear

magnetodynamic devices

6.1 Introduction

In this last chapter, the linear POD method, the nonlinear sampling approaches and
the conclusions of the parametrized analysis using a global basis are used to efficiently
and accurately reduce a 2D three-phase voltage-driven power transformer (previously
described in section 4.5.2) coupled with external electric circuits.

It concludes the investigation of model order reduced modeling in electromagnetics
by providing an example of practical application that can further be used in large
network simulators.

First, a description of the nonlinear coupled FE model is provided and explained.
Secondly, a decoupled formulation is proposed to adequately perform the reduction on
local variables—keeping the external (global) quantities unchanged. Finally, results of
this novel approach for magnetodynamic applications are substantially analyzed.

6.2 Nonlinear finite element model

The nonlinear FE formulation has been described in section 4.2 for a global input cur-
rent. In this chapter, as in real applications, a voltage-driven transformer is considered
and conducts to additional variables in the formulation (i.e. global input voltage).

From the time and spatial discretized magnetodynamic equation (1.34), separating
the local and the global quantities leads to the bloc form (regardless the time discretiza-
tion) [

Aaa Aaw

Aw a Aw w

][
a
w

]
=

[
ya
yw

]
(6.1)

where a corresponds to the local unknowns and w represents the global quantities (at
windings in this case).

115
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Figure 6.1: single phase transformer with external electric circuit.

6.3 Network coupling

Once the FE model is obtained, one can integrate it in electric network simulators by
coupling it with external circuit equations. As a simple example of the procedure, the
coupling of a single phase transformer with input voltage and output resistance load is
illustrated in Fig. 6.1 and further detailed. Based on the bloc matrix form (6.1), coupling
external electric components is straightforward. Indeed, as the global quantities w
correspond to the input and output currents Ii n and Iout and voltages Vi n and Vout

(in Fig. 6.1), the additional currents and voltages in the external electric networks are
directly obtained by adding the corresponding circuit equations (e.g. resistors, diodes,
...). Therefore, equation (6.1) becomes Aaa Aaw 0

Aw a Aw w Cwc

0 Ccw Ccc

 a
w
c

=
 ya

yw
yc

 (6.2)

with a, w and c are the vectors of local FE unknowns, global FE unknowns and global
external quantities (currents and voltages) in the external circuits respectively, Cwc and
Ccw the coupling matrices from global quantities in the FE model and global quantities
in the external circuits, Ccc the electric circuit matrix, and yc the source term in the
external circuits. As an illustration with the single phase transformer in Fig. 6.1, equation
(6.2) would be in the form

Aaa Aaw 0 0 0 0

Aw a

−1 0 0 0 1 0 −Ri n 0
0 −1 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 Rout

0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 −1





a
Vi n

Vout

Ii n

Iout

Vg en

VR

Ig en

IR


=



M
∆t a

0
0
0
0

Vg en

0
0
0


(6.3)



6.4. HIGH FIDELITY COUPLED FORMULATION 117

where the source term is fixed by Vg en . Note that Vg en is present in the unknown vector
for the sake of clarity (with respect to the separation between the global quantities from
the FE model and external circuits). Naturally, one can group all global quantities w and
c in a single variable g = [w,c]T such that the coupled system (6.2) is in the form[

Aaa(a) Aag

Ag a Ag g

]
︸ ︷︷ ︸

A

[
a
g

]
︸ ︷︷ ︸

x

=
[

ya
yg

]
︸ ︷︷ ︸

y

. (6.4)

In case of large electric circuits where the definitions of electric components are not
explicit (e.g. derived from equivalent models), one can couple a matrix form of the
external networks to this FE model and obtain a general system similar to (6.4).

6.4 High fidelity coupled formulation

At each time step tk , the system (6.4) has to be solved as a classic

Ak (xk )xk = yk (xk ) (6.5)

equation. Reminding section 4.2, this remains a nonlinear equation and a Newton-
Raphson scheme is employed to linearize it such that the solution xk is obtained when
the update

xi+1
k = xi

k +δxi+1
k (6.6)

has converged. The increment δxi+1
k is the solution of the classical Newton-Raphson

equation

J
(
xi

k

)
δxi+1

k =−r
(
xi

k

)
(6.7)

with J
(
xi

k

)
and r

(
xi

k

)
the Jacobian and the residual respectively. The solution is consid-

ered converged when the increment is sufficiently small (i.e. in this work,
∥∥δxi+1

k

∥∥ <
10−5 is used). Similarly, as previously introduced in section 4.2, the solution can also be
considered converged when the error on the residual is sufficiently small.

6.5 Resolution reduction

6.5.1 Reduced formulation

The POD method is considered to reduce system (6.4) (and further linearized equation
(6.7)). By applying the straightforward POD training, the snapshot matrix is given by

X = [
x0, · · · ,xNs

]= [
a0, · · · ,aNs

g0, · · · ,gNs

]
=

[
Xa

Xg

]
∈ Rn×Ns (6.8)

when Ns ≤ Nt snapshots are taken. As previously described in prior chapters, the
POD basis is determined by truncating the result of the application of an SVD on the
snapshot matrix. However, a and g represent intrinsically two types of unknowns



118 CHAPTER 6. PARAMETRISED COUPLING

inducing a drastic difference in matrices Xa ∈ Rna×Ns and Xg ∈ Rng ×Ns . Due to this
observation, applying an SVD on X may not lead to an optimal (or appropriate) reduced
basis for both unknowns a and g. This observation has already been presented in the
coupled systems of mechanical and thermal physics [103]. Due to the different order in
magnitude in the different quantities, determining a single basis to correctly represent
both of them is not an easy task and often instabilities in the resolution scheme of the
reduced system may occur. The authors proposed two solutions to this issue:

1. Applying a scaling factor to normalize the variables and define proper reduced
basis. This method introduces an additional issue: the determination of the
scaling factor represents a new problem that is not easy to solve.

2. Separating the variables and reducing them by using different bases (generated
by snapshots of the separate variables). This latter method is considered in this
dissertation.

Generally, the size of the global quantities is much smaller than the local ones in the FE
model and may not need a particular reduction1. Therefore, the local unknowns are
the only one requiring a reduction by using an appropriate reduced basis Qa generated
from the snapshot matrix Xa . By doing so, the separated reduced system of (6.4) is[

QT
a Aaa Qa QT

a Aag

Ag a Qa Ag g

][
ã
g

]
=

[
QT

a ya
yg

]
. (6.9)

In our experience, the projection of the coupling matrix Aag onto the reduced basis
leads to unstable reduced POD system when the magnetodynamic system is driven
with an imposed voltage and coupled to electric circuits instead of an imposed current
source with no external interactions (as in the prior chapter). Indeed, global quantities
and their coupling matrix are badly projected on the local basis on the local unknowns.
To solve this problem, a decoupled formulation is sought in the form[

Ãaa 0
Ãg a Ag g

][
ã
g

]
=

[
ỹa
yg

]
. (6.10)

From equation (6.4), the local quantities a can be decoupled from the global ones with

A∗a =
(
Aaa −Aag A−1

g g Ag a

)
a = ya −Aag A−1

g g yg = y∗. (6.11)

Note that inverting matrix Ag g is feasible for three reasons:

1. It consists in differential-algebraic equations from electric relations and a minimal
graph representation of the electric block matrix Ag g can be found [119].

2. It is relatively small compared to the other blocks—allowing fast evaluation.

1If this assumption would not be fulfilled, a separate reduction of the global quantities can be performed
as detailed for local ones in this dissertation.
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3. The external electric components change at a way smaller pace than the (elec-
tro)magnetodynamic ones–where that property is exploited in multi-rate cou-
pling and co-simulation researches [155, 162, 184]–and can be considered con-
stant (for a relatively long period of time at micro-scale).

Applying the POD reduced basis Qa onto decoupled equation (6.11) leads to the reduced
equation

QT
a A∗Qa ã = QT

a y∗ (6.12)

with Qa ∈Rna×r and unknown ã ∈Rr×1. Now, the coupled reduced system respecting
the form (6.10) is [

QT
a A∗Qa 0

Ag a Qa Ag g

][
ã
g

]
=

[
QT

a y∗

yg

]
. (6.13)

Here, the size of the system (6.13) equals r +ng and is supposed to be much smaller
than original one n = na +ng .

6.5.2 Single vs multiple parameter models

Previously described in chapter 5, the global basis is the preferred approach to deal
with slight parametric dependencies in the input and output excitations. Therefore, no
nonlinear interpolation is considered in this section.

In particular, the correct training of such a basis is crucial. A global trajectory such
that all nonlinear behaviours are encoutered in the magnetodynamic model in order to
capture all the required information is mandatory.

This method is presented in details within the application section by comparing
multiple training strategies.

6.6 Assembly reduction

This section refers to the methods detailed in chapter 4 by considering the MPE and
DEIM approaches to curtail the generation of the entries in the nonlinear terms.

6.6.1 Missing Estimation Point

Only equation (6.12) has to be correctly sampled as the nonlinear terms are present in
Aaa . Indeed, one can see that the other block matrices in A do not depend in a as they
are constituting the coupling between local and global quantities and expression of the
external electric network.

Applying the definition of the MPE (as in (4.7)) onto (6.12) leads to

Q̄
T
a Ā∗Qa ã = Q̄

T
a ȳ∗ (6.14)
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where the reduction processes can intuitively be understood in detailed form

(
P̄T Qa

)T

︸ ︷︷ ︸
const ant

P̄T Aaa︸ ︷︷ ︸
MPE

− P̄T Aag A−1
g g Ag a︸ ︷︷ ︸

const ant

 Qa︸︷︷︸
POD

ã =
(
P̄T Qa

)T

︸ ︷︷ ︸
const ant

P̄T ya︸ ︷︷ ︸
MPE

− P̄T Aag A−1
g g yg︸ ︷︷ ︸

const ant

 . (6.15)

The MPE terms are evaluated at each nonlinear iteration and come from the application

of the selection matrix P̄ on the block decomposition of A (i.e. P̄T Aaa) and y (P̄T ya and

P̄T Aag A−1
g g yg ).

6.6.2 Discrete Empirical Interpolation Method

Similarly to MPE sampling procedure, the DEIM formulation is obtained by(
P̄T Qa

)−1
Ā∗Qa ã =

(
P̄T Qa

)−1
ȳ∗ (6.16)

following the scheme described in 2.2.2 and equation (4.12). In details, analogue to
(6.15), equation (6.16) is written as

(
P̄T Qa

)−1

︸ ︷︷ ︸
const ant

P̄T Aaa︸ ︷︷ ︸
DE I M

− P̄T Aag A−1
g g Ag a︸ ︷︷ ︸

const ant

 Qa︸︷︷︸
POD

ã =
(
P̄T Qa

)−1

︸ ︷︷ ︸
const ant

P̄T ya︸ ︷︷ ︸
DE I M

− P̄T Aag A−1
g g yg︸ ︷︷ ︸

const ant

 . (6.17)

6.7 General reduced order model

From both similar equations (6.15) and (6.17), a general equation with local and global
quantities regardless the sampling method can be formulated. To obtain this global
form, let us first define the projection operators

ΞY =
[

Y 0
0 I

]
∈Rn×n and ΠY =

[
Y
0

]
∈Rn×y2 (6.18)

with Y ∈Ry1×y2 ,I ∈R(n−y1)×(n−y2) the identity matrix so that the full order unknown x is
retrieved by

x =ΞQa
x̃. (6.19)

Now, the general reduced system for all methods is written as[
C1

(
ΠT

P̄
AΠIna

− P̄T Aag A−1
g g Ag a

)
C2 0

Ag a C2 Ag g

][
ã
g

]
=

[
C1

(
ΠT

P̄
y− P̄T Aag A−1

g g yg

)
yg

]
(6.20)

with the definition of the constants in Table 6.1. To solve system (6.20), one can derive a
linearized Newton-Raphson equation as with (6.7). However, one can directly identify
the matrices A and y to be the Jacobian J and the residual r respectively. While generating
the left hand side with block decomposition of the Jacobian is simple, treating the
residual may be more challenging (as it involves block decomposition of matrices M
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Table 6.1: Definition of constants of (6.20) for all reduction techniques.

Method HFM POD MPE DEIM/DIME
P̄ Ina Ina from algorithm from algorithm

C1 ∈Rr×q Ina QT
a

(
P̄T Qa

)T (
P̄T Qa

)−1

C2 ∈Rna×r Ina Qa Qa Qa

and S). For the sake of clarity, one can decompose the residual expression to

ri+1
k =

[
ri+1

a,k
ri+1

g ,k

]

=
[

Maa
∆t C2 −

(
Maa
∆t +Saa

)
C2 Sag 0

Mag

∆t C2 −Mag

∆t C2 Sg g I

]
ãk−1

ãi
k

gi
k

vg

 (6.21)

to highlight how the resolution and assembly reductions will operate on it. Note that
only the block matrix Saa is nonlinear with a and needs to be updated whereas the rest
is constant and can be precomputed once.

Practical implementation Depending on the FE software, the initial A and y matrices
(or sub-blocs M,S,v) may be atomically generated (e.g. no specific access to Aaa) and
the MPE selection must directly be performed on them. Since Aaa can be written as

Aaa =ΠT
Ina

AΠIna
with Ina the identity matrix of size na , P̄T Aaa = P̄T

ΠT
Ina

AΠIna
and the

term P̄T
ΠT

Ina
must be inverted to apply the MPE selection on the original A matrix. By

applying block multiplication, one directly finds P̄T
ΠT

Ina
=ΠT

P̄
which is equivalent to

simply expand the P̄ selection matrix to original full size (rows). In practice, as Aaa is
the upper left block of A, computing the q rows of Aaa is equivalent to computing the q
first rows of A–e.g.

P̄T Aaa =


0 1
0 0
1 0
0 0


T

Aaa and ΠT
P̄

A =



0 1
0 0
1 0
0 0
x x
x x



T

A (6.22)

both correspond to the computations of 3rd and 1st rows of A. Therefore, the block
decomposition is implicitly performed by the implementation. Then, the columns can
be truncated by applyingΠIna

on the right side as

P̄T Aaa = ΠT
P̄

AΠIna
(6.23)
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=
[

P̄T 0
][

Aaa Aag

Ag a Ag g

][
I
0

]
(6.24)

This truncation can also be directly implemented in the FE code. Indeed, only the
indices of the columns lower than size na have to be computed. Considering the local
influence of a degree of freedom in the FE method, most of the elements are null–which
allows fast evaluations of non-zero elements using sparse format for the required q
rows.

Concerning the y-term, the selection matrix P̄ naturally extends to full size (na +ng )
and performs the selection on it as

P̄T ya = P̄T
ΠT

Ina
y =ΠT

P̄
y. (6.25)

Finally, considering term P̄T Aag A−1
g g yg , the matrix product Aag A−1

g g does not allow

any permutation with P̄. Even though, since P̄ selects q rows in the na first ones of y
and yg lies in the ng last ones, yg cannot be retrieved by applying a function of P̄ on y.

However, P̄T Aag A−1
g g ∈Rq×ng is constant and small. As a result, from a computational

point of view, it is allowed to generate the last ng ≈O(1) entries of y (i.e. yg ) and store

P̄T Aag A−1
g g .

6.8 Application to a voltage-driven three-phase power transformer

In this section, the general coupled formulation (6.20) is used to solve the coupling
between a three-phase voltage-driven transformer with external electric circuits.

6.8.1 Problem description

The three-phase power transformer introduced in section 4.5.2 is used. For this applica-
tion, the conductivity does not act as a parameter and is taken into account with the
modified constitutive law (4.14) (σ= 2107S/m) by considering an iron laminated core.
In addition, the current input excitation is replaced by a voltage one that follows

Vi = sV RMS
i cos(2π f t +ϕi ) (6.26)

for phase i with ϕi the corresponding phase delay and s a soft-start limitation such that{
s = 1

2 [1−cos(πt )] , t < 1,
s = 1 , t ≥ 1.

(6.27)

These quantities are shown in Fig. 6.2 in case of V peak
a =V RMS

a

p
2 = 220

p
2. The input

RMS voltage values V RMS
i are taken in the set [10,80,150,220]V in order to simulate

both low and high excitations. Using the smooth soft-start limitation, the simulations
are computed for 1.4 seconds corresponding to 70 periods at f = 50Hz (T = 20 ms) with
Nt = 1400 time steps to avoid any transient disturbance.
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Concerning the external electric circuits, the voltage-driven transformer is con-
nected to the balanced network of resistive loads–composed of two different con-
figurations in star and triangle–depicted in Fig. 6.3. These loads vary in the range
R ∈ [0.1,1,10,100]Ωwhere lowest value simulates short-circuit and highest one corre-
sponds to open-circuit configuration.

6.8.2 Resolution reduction

Changing the parameters (i.e. input voltage and output loads) values can significantly
change the local fields (see magnetic flux density field for all extreme values in Fig. 6.4)
and consequently represents a challenge for an appropriate global training. As with
current input in section 5.4, the voltage source (6.26) ranges in [−V RMS

i ,V RMS
i ] (see
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Fig. 6.2) and using the highest peak voltage for the training stimulates all the nonlinear
behaviors according to the magnetization curve depicted in Fig. 6.5. To illustrate this
explanation with numerical data, Figs. 6.6 and 6.7 show the relative errors of the global
quantities with POD bases generated at different voltages. No load is considered to
stimulate the highest nonlinear states. Indeed, with no load connected in the secon-
daries, there is no output currents that limit the internal magnetic field (Faraday’s law).
In Fig. 6.6, the POD bases have been trained with input voltages V RMS

tr ai ni ng = 10V, 80V,

150V and 220V respectively and are used to reduce the nonlinear magnetodynamic
formulation with input voltages V RMS

li ve = 10V, 80V, 150V and 220V. These results validate
the training strategy for three reasons:

1. Errors are small when the POD basis comes from a training with higher input
voltage (i.e. V RMS

tr ai ni ng ≥V RMS
li ve ).

2. In the opposite situation with a training lower than the input test voltage (i.e.
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Table 6.2: Setup of loads for the global training of the single reduced basis. The time row represents
intervals from the last time instant till the described ones (e.g. the second column → 1.2 should
be understood as the time interval [1.0,1.2[).

Time [s] 0.0 → 1.0 → 1.2 → 1.4 → 1.6 → 1.8 → 2.0 → 2.2 → 2.4 → 2.6
R1→6[Ω] 100 50 10 5 2 1 0.5 0.2 0.1

V RMS
tr ai ni ng < V RMS

li ve ), errors stabilise at high values as the bases lack information

from the non exploration of nonlinear states.

3. Errors are quasi similar for all input voltages when using the highest training
voltage (i.e. V RMS

tr ai ni ng = 220V) for all input test voltages V RMS
li ve (Fig. 6.7).

Now, to take into account the dependency in the output load, a similar varying
procedure is considered by modifying their values from highest to lowest values. In
practice, a single training is performed during 2.6 seconds (time step = 1ms) with the
highest input voltage V RMS

1,2,3 = 220V respecting the load procedure defined in Table 6.2
to capture all dynamical and nonlinear behaviours.

With the 2600 snapshots, the single POD basis can be deduced by the application
of the SVD if the singular values decay sufficiently fast—illustrating the possibility of
projecting the HFM onto a reduced subspace (of size r ). Indeed, the singular values
are depicted in Fig. 6.8 and the POD relative error for all configurations2 are shown in
Fig. 6.9. Note that all configurations have been tested during 2.6 seconds to appropri-
ately test the choice of the training procedure. As in previous chapter, the L2 relative
error defined in (3.8) is used. One can see that for an a priori POD error of 0.1% (which
is considerable acceptable from an engineering point of view) the number of unknowns
in the reduced system is only 50 (comparable to the original 7300). This drastic re-
duction leads to a curtailment ratio of 99% in both resources and computational time
and a theoretical speedup comprised between 145 and 21,000 depending on the solver

2By configuration is meant a couple [V ,R] in the prescribed ranges. No distinction of a particular
configuration is shown to illustrate the robustness of the proposed methods over the entire parameter space.
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[106, 107]. Numerical results show better accuracy than predicted by the POD a priori
error. From there (Fig. 6.9), three main conclusions can be made:

1. As expected, the larger the POD basis, the smaller the error.

2. All reduced models provide relatively the same relative errors given an a priori
defined error (as awaited by results in global training shown in Fig. 6.7).

3. All errors are below the a priori error criterion which acts as an upper-bound in
this problem.

In conclusion, from en empirical point of view, the resolution reduction can effectively
be performed using a single POD approach on the coupled system with appropriate a
priori error estimate.

6.8.3 Assembly reduction

6.8.3.1 Discrete Empirical Interpolation Method

Similarly to the first observations made with the input current in section 4.5.2, in this
experiment with input voltage source, the POD-DEIM/DIME model (6.20) suffers from
the same ill-conditioning problem. Indeed, condition number as high as 1020 have
been encountered and thus leads to (very) non-robust solutions.

From the observations in both current and voltage mode of magnetodynamic prob-
lems, one may conclude that the POD-DEIM/DIME cannot efficiently and robustly be
used.
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6.8.3.2 Missing Point Estimation

According to the results in Fig. 6.9, a POD basis of size 50 is chosen for two reasons.
First, it drastically reduces the resolution complexity by 99%. Secondly, the a priori error
of 0.1% and actual error of 1e-5 for all cases are fairly acceptable from an engineering

point of view. The condition number of Q̄
T
a Q̄a is shown in Fig. 6.10(top) and decays

as the number of elements increases. Naturally, the higher the number of entries in
nonlinear terms the lower the error. Considering the full size, when no reduction is
performed, the POD-MPE error tends to the POD error. As the condition number
is described as a correlated indicator of the resulted error, multiplying it by the a-
priori POD error provides an a priori MPE error. In the present problem, this indicator
acts, similarly with the POD one, as an upper bound when the number of elements is
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sufficiently large (satisfying the MPE conditioning criterion). In Fig. 6.10(middle) are
also depicted the relative errors of POD-MPE model for all configurations by considering
a POD size of 50. From a practical point of view, 200 elements satisfy a legitimate error
criterion of 1%—allowing a reduction of 97% in the assembly process. However, the
actual error is ten times lower at 0.1% in most cases. In Fig. 6.10, the errors show
appropriate decaying behaviours regarding the condition number of the MPE process
(200 elements correspond to a condition number of 7 from Fig. 6.10). In addition, the
pivot value (around an MPE condition number of 10) does not fluctuate as the POD
basis size changes. As explained in [15], the condition number has to be sufficiently
small (defining this pivot value) to accurately reduce the assembly process otherwise
non robust solutions emerge.

Directly related to the POD basis, the selection matrix P̄ has to be recomputed in case
of a modification in the size of the basis. Similarly to the hierarchical generation of the
POD basis, one may be interested in generating the MPE selection matrix regardless the
POD size. Naturally, using the largest POD basis to determine the MPE selection matrix
P̄ for any POD size is a logical choice. In Fig. 6.10(bottom) is depicted the relative errors
made by the POD-MPE method using the selection matrix generated from the largest
POD basis (i.e. 340 modes)–but still considering the truncated basis (50 modes) for the
resolution reduction. The results are good (presenting low errors) but show a less robust
convergence decay (i.e. some test cases do converge with a small number of elements
equivalently to a large condition number, whereas others do not)–preventing the correct
use of this approach. However, once the results have converged, they are similar to the
ones previously obtained. As a consequence, the selection process may provide similar
indices from both POD bases. Nonetheless, they are not entirely identical as the 200 first
MPE selection points can be graphically seen in Fig. 6.11 for both bases (50-mode and
340-mode POD bases in black and in red respectively). Compared to the black points,
the red ones are more concentrated on the edges where the saturation behaviours tend
to emerge. Given that observation, one may investigate different point selections as an
experienced user may know the most critical areas to take into consideration. Following
this last observation on the dependency in the choice of the points in the MPE process,
four different scenarios are studied:

1. Scenario 1: as the nonlinear behaviours mostly happen in the corners of the core
and the global currents flowing in the coil are of great interest, the corresponding
95 first MPE indices are forced in those areas.

2. Scenario 2: more indices are added in the core in order to fully capture the
nonlinear behaviours (i.e. the indices are chosen in the corners, in the middle
of the E shape-core and uniformly distributed on the external boundary). These
extra points lead to a total of 165 first forced indices in the MPE process.

3. Scenario 3: 7 extra points in the air region are added to those of the second
scenario –obtaining 172 imposed indices.

4. Scenario 4: a random selection is used.
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Figure 6.10: (Top) MPE size vs MPE condition number. (Middle) Relative error (all cases) vs MPE
size (MPE indices determined from 50-mode POD basis). (Bottom) Relative error (all cases) vs
MPE size (MPE indices determined from 340-mode POD basis)
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Figure 6.11: Comparison of 200 MPE first points based on 50-mode POD basis (black) and
340-mode POD basis (red).

All other indices are then determined using the MPE algorithm. The 200 first MPE
points are shown in Fig. 6.12 for all four scenarios. The related results are shown in
Fig. 6.13 and can be analyzed as follows:

1. Scenario 1: the decay is not monolithic and 1% is reached with 230 elements. This
is 15% larger than with the automatic determination from Fig. 6.10.

2. Scenario 2: the results are very similar to those from the automatic determination
by the MPE algorithm.

3. Scenario 3: similar to the observation of scenario 2. This insight induces two
explanations. First, the extra points in the air, which is linear, do not add signifi-
cant useful information as expected. Secondly, there is no need to specify critical
regions first (e.g. with an experienced user), as the automatic determination from
scratch using the MPE algorithm equally performs.

4. Scenario 4: at a first glance, the results are very similar to the one obtained with
the automatic determination. However, two test configurations do not reach .1%
relative error with less than 350 elements contrary to the previous test cases. In
addition, the lack of an a priori MPE error bound represents also a disadvantage
of choosing a random selection of points. In conclusion, random selection of
the nonlinear indices may provide sufficiently good results but can be improved
by using the MPE automatic algorithm without forcing any element in case of
unknown nonlinear patterns [15, 171].

6.9 Conclusion

The coupling between numerical HFMs based on Maxwell’s equations and external
(differential) algebraic electric network equations is of great interest to eliminate the
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Figure 6.12: 200 first MPE indices in scenario 1 (top-left), 2 (top-right), 3 (bottom-left) and 4
(bottom-right). In scenario 1, 95 indices are forced in the coil. In scenario 2, 165 are forced in
coil and core. In scenario 3, 172 are forced in coil, core and air. In scenario 4, random indices are
chosen.
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Figure 6.13: Relative error (all cases) vs MPE size for scenario 1, 2, 3 and 4.
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Table 6.3: Synthesis of model order reduction results on the coupled three-phased voltage-driven
power transformer.

Resolution Assembly
Method Robustness reduction reduction Relative Speed-up

ratio ratio error
FULL X / / / /
POD coupled 7 / / / /
POD decoupled X 99% 0% 1e-4 0x
POD-MPE X 99% 97% 1e-3 ∼ 60x
POD-DEIM/DIME 7 / / / /

need of human knowledge and automatize design, optimisation and operational stages
of electromagnetic energy conversion devices. However, those HFMs are described
through discretization techniques, e.g. the FEM, and lead to expensive assemblies and
resolutions both in time and in required resources. In order to cope with this limitation,
model order reduction techniques have been a hot topic for the last two decades.

In this last chapter, the direct use of the POD on the original coupled problem leads
to unstable and ill-conditioned systems–requiring another reduction methodology for
such problems. A (novel) decoupled approach in magnetodynamics is developed by
investigating several reduction techniques to efficiently and drastically reduce the com-
plexity of a coupled parametric system by only curtailing the high fidelity formulation
using the appropriate reduction mapping.

As an application, the HFM is made of a nonlinear magnetodynamic three-phase
transformer coupled to three electric circuits (one input and two outputs). The ob-
tained reduction ratios are higher than 97% for both resolution and assembly pro-
cesses–allowing a theoretical speed-up around 350 for the “state of the art” logarithmic
solvers. However, we showed that all reduction methods may not permit an efficient
and/or reliable curtailment as the obtained relative errors may be too large—misleading
the direct/general use of such methods for all problems and requiring particular inves-
tigation for each situation.

Table 6.3 lists the results from all the investigated approaches with a practical (en-
gineer) error criterion—even if the method was not robust. As both stages are time
consuming and scales logarithmically for the best solvers [43, 106, 107], the correspond-
ing speed-up factor is the theoretical minimum achievable between the speed-ups from
the resolution and the assembly reduction parts. In case of the solver scales in O(n2),
the speed-ups are in the order of O((1−η)−2) where η is the reduction ratio.



Conclusion

In this thesis, we investigated several model order reduction techniques to handle
parametric electromagnetic models involving linear, nonlinear, dynamic and coupled
aspects. The main achievements and conclusions, already presented at the end of each
chapter, are summarized hereafter. Subsequently, an overview of future prospects are
proposed.

Main achievements and conclusions

High fidelity modeling provides an outstanding accuracy compared to equivalent mod-
els, however the computational time required to solve them remains its biggest disad-
vantage. Creating robust and stable reduced order models of such systems to describe,
optimize and operate electromagnetic applications is crucial for further developments.
Therefore, a major part of this thesis was dedicated to the investigation of the available
reduced order model techniques in several research areas.

First, we proposed several algorithms to automate the reduction procedure of linear
electromagetics in both time and frequency domains. This allows to avoid any arbitrary
choice as it is often the case with the selection of snapshots, their number, their spacing
(in time or frequency), etc. The proposed algorithms have been tested on two applica-
tions: a transformer and a microwave antenna with two different linear reduced order
model techniques: the Proper Orthogonal Decomposition and the Arnoldi Krylov-based
method. The results show important reduction above 99% in all tested situations —in
agreement with the intensive research for linear applications in the literature.

Then, the reduction of nonlinear magnetodynamics has been investigated by the
means of the Missing Point Estimation and the Discrete Empirical Interpolation Me-
thod—two element sampling methods which only evaluate a reduced set of entries in
nonlinear matrices. The results show significant stable and robust reduction of 95% in
the assembly phase with the (preferred) MPE method regardless of the input values for
a three-phase power transformer over the DEIM. Indeed, DEIM method suffers from a
lack of robustness with regards to a priori independent parameters such as the time
stepping discretisation or the conductivity value.

As the input and the output values change either in design or operational processes,
building appropriate parametrized reduced order model is then necessary and two com-
plementary philosophies have been investigated. The first one, consisting in building a
global basis for all parameters, is a well-known method in electromagnetic reduction
while the second one deals with nonlinear interpolation of reduced bases (generated at
different parameter values) and has been first introduced in aeronautics. Although the

135
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systematic investigation showed interesting results, the global basis approach remains
the preferred one as it provides better results (i.e. one order of magnitude lower) and is
easier to deal with for the limited parameter space considered in our applications.

Lastly, the coupling of the reduced model of a three-phase power transformer with
external electric network presented issues by the direct use of the aforementioned linear
methods and nonlinear sampling techniques. Indeed, the reduced system presents
robustness problems—avoiding the brute force reduction concepts detailed up to now.
To solve this instability problem, a decoupled approach has been detailed to only cur-
tail the local variables coming from the high fidelity discretisation of the transformer,
while preserving the global quantities intact. Although this approach may be simple,
it has–to the best of our knowledge–never been explored in electromagnetic applica-
tions. The obtained results showed a reduction above 95% in both the resolution and
the assembly processes during the online stage (i.e. without considering the training
procedure)—allowing a speedup of a factor 60 with a relative error of 0.1%.

Future prospects

Several suggestions for future work are listed hereafter:

1. A better MPE (a priori ) error criterion should be determined. While it showed
promising accordance with the obtained results in thermodynamics, we have
shown the limit of its general formulation in magnetodynamics. In a sense,
an optimal algorithm could provide a better suited criterion than the greedy
approach proposed in [15].

2. The DEIM/DIME method has been efficiently applied to 3D static applications
[100]. However, it failed in our dynamic test applications. Further mathematical
analysis is needed to explain this lack of robustness.

3. An electromagnetic specifically dedicated sampling method could be elaborated
to outperform the results obtained with the POD-MPE approach. This method
should be able to accurately determine the critical regions for electromagnetic
applications with an important interest in nonlinear, dynamical, parametric and
coupling considerations.

4. We considered the element sampling method as the best approach in contrast
to the projection technique which implies numerous multiplications between
the sampled matrices and the sampled POD basis—which can become rather
costly in practice. However, a direct generation of the reduced nonlinear matrices
with respect to the reduced states–by integrating this operator in the discretized
generation of the nonlinear terms–would eliminate the need of the projection
or the element sampling approaches. This prospect is worth investigating as a
major potential breakthrough.

5. We determined the nonlinear interpolation on manifold as ineffective compared
to the global basis method for parametric problems. However, the frequency
variation in the applications we considered may be too limited to reveal the
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advantage of the aforementioned approach. As our applications did not involve
large variations of the parameter values, the global basis method works perfectly
fine but other electromagnetic applications should investigate the nonlinear
interpolation when the number of parameters and their intensity variations are
larger than proposed in this dissertation.

6. We only considered balanced resistive loads in the coupled three-phase trans-
former. The following cases should be studied:

a) Unbalanced resistive loads.

b) Balanced complex loads (comprising capacitances and inductances).

c) Unbalanced complex loads.

d) Abrupt change in the input or output configurations.

e) The appropriate training strategies for such systems.

f) The coupling of multiple reduced models within a single electric circuit.

7. Lastly, we did not take movement (which is crucial for the modeling of e.g. ro-
tating machines) into account in the energy conversion applications that we
considered. The development of model order reduction techniques applied to
the finite element method in this context remains an active research area, where
the various methodologies to handle movement (remeshing, dynamic periodicity
conditions, mortar methods, etc) need to be integrated. In the case of rotating ma-
chines, a possible alternative, which would be directly amenable to the methods
proposed in this thesis, is the use of a multi-harmonic steady-state formulation
for the period movement [92].

“During a PhD, we try to give answers but I think it’s more
about finding the right question.” Prof. K. Willcox, Paris 2015.
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