2017 VOL. 319

Professional Papers (7

Geological Survey

of the Geological Survey of Belgium  ofaum

SCIENTIFIC REPORTS

New sedimentological data from Triassic
to Jurassic boreholes and sections
from Southern Belgium and Luxembourg

FREDERIC BouLvAIN, ISABELLE BELANGER,
RoBERT CoLBACH, SYLVAIN DECHAMPS,
Dowminiaue DeLsaTe, Davip DELIGNY,
PiErRRe GHYSEL, JONATHAN MICHEL,
SimoN PHiLipPo & BENnJAMIN RAMLOT




Professional Papers

of the Geological Survey of Belgium

2017
VOL. 319

Freperic Bourvain, IsABELLE BELANGER, ROBERT COLBACH, SYLVAIN
DecHAmPs, DominiQuE DeLsATE, DAviD DELIGNY, PIERRE GHYSEL,
JONATHAN MicHEL, SimoN PHiLipPO & BEnsAamMIN RamMLOT

New sedimentological data from Triassic to Jurassic boreholes
(Bonnert, Haebicht, Grouft, Grund, Consdorf)
and sections (Tontelange, Differdange, Rumelange)
from Southern Belgium and Luxembourg

@ museumw

Geological Survey
of Belgium



Series Editor in Chief: Xavier Devleeschouwer (Geological Survey of Belgium, RBINS)

Manuscript received 04.01.2017, accepted in revised form 15.09.2017, available online 15.12.2017

The Geological Survey of Belgium cannot be held responsible for the accuracy of the contents,
the opinions given and the statements made in the articles published in this series, the responsability re-
maining with the authors.

Revision and layout: Charlotte Gérard (RBINS)

Cover illustration: The Strassen Member on the top of the Florenville Member in the Tontelange
quarry (Sinemurian) © Frédéric Boulvain

Printed by Peeters (Belgium)

Legal Deposit: D/2017/0339/4

ISSN: 0378-0902

© Geological Survey of Belgium, Royal Belgian Institute of Natural Sciences, 2017

29 Vautierstreet, 1000 Brussels | www.naturalsciences.be

All translation and reproduction rights reserved for all countries. Copying or reproducing this book by
any method, including photography, microfilm, magnetic tape, disc, or other means is an infringement
punishable by law under the provisions of the Act of 11 March 1957 on copyright. Except for non-profit
educational purposes, no part of this publication may be reproduced in any manner whatsoever without
permission in writing from the Publications Service, Royal Belgium Institute of Natural Sciences.


http://www.naturalsciences.be

Table of contents

L. IOt OM ... 5
2. Geological Setting .......... ... 7
B ML OS oo s 8
4. BOreholes and SCCLIOIIS - - ccctntnmtnttnttntattteeeeeateeaeeaeeaeeneaneaeeneaneaeeneeneaneeeneensaeeneensaeeaeenseneneenes 8
4.1. The Bonnert borehole and TONtElange SECLION  +««+vxnrvnerunrruntintiieiieii ettt 8
4.2. The Haebicht BK-4A DOrehole ..oooiiiiiiiiii e e 9
4.3. The Grouft FR-204-032 DOTEROIE - ..ooinnniiiitit ettt ettt et e et e eaes 9
4.4, The Grund Borehole . .......oooiiiii e 9
4.5. The Consdorf FR-204-201 DOTEROLE  «ocnurtittitit ettt et e ettt e et e 9
4.6. The Giele BOtter qUAITy SECHIOM . ...ouvntititiniit ittt 9
4.7. The Rumelange qUarry SECLION ..............o.iiiieieii i e 9
5. Petrography BN U0 I 10 VT & 0] 0 Lo S 25
5.1, THIASSIC-TOATCIAIL <. v e entt ettt ettt e et et e e e e e e e e e e e e e e e e et e e 25
5.2, AAlBNIAN L. . 25
530 BaJOCIAN 26
6. IMICrofacies ANd FOrTIATIONS -« -t cntrtntntntntiit ettt ettt et eeeeteteaeaeteteseseneseseaenesessaeuesessusuenensnsuenns 26
6.1, TTIASSIC-TOATCIAI -t v entt ettt ettt et et et e et et e e e et et e e e et e e et e et e et e e 26
LS R - N} U< 0 T 5 o W 27
6.3. Bajocian .................................................................................................................. 34
7. Magnetic susceptibility, formations and microfacies ...................... 34
001114 111 (1) 1 L 39
Acknowledgements ............................................................................................................... 39
B T ) ) 1 1oL = 39






NEW SEDIMENTOLOGICAL DATA FROM TRIASSIC TO JURASSIC
BOREHOLES (BONNERT, HAEBICHT, GROUFT, GRUND, CONSDOREF)
AND SECTIONS (TONTELANGE, DIFFERDANGE, RUMELANGE)
FROM SOUTHERN BELGIUM AND LUXEMBOURG

by Frédéric BOULVAIN', Isabelle BELANGER?, Robert COLBACH?, Sylvain DECHAMPS!,
Dominique DELSATE?, David DELIGNY!, Pierre GHYSEL? Jonathan MICHEL'S, Simon PHILIPPO* &
Benjamin RAMLOT!

! Pétrologie sédimentaire, Université de Liege, B20, Sart Tilman, B-4000 Li¢ge
2Service géologique de Belgique, 13 rue Jenner, B-1000 Bruxelles

3 Service géologique du Luxembourg, 23 rue du Chemin de Fer, L-8057 Bertrange
4 Musée national d’Histoire naturelle, 25 rue Miinster, L-2160 Luxembourg

5 Département de Géologie, Université de Namur, 2 rue Grafé, B-5000 Namur

Abstract

This study offers a detailed description of a series of Triassic to Jurassic representative boreholes (Bonnert,
Haebicht, Grouft, Grund, Consdorf) and sections (Tontelange, Differdange, Rumelange) from southern Belgium and
the Grand-Duchy of Luxembourg. Investigations provide information about microfacies, paleoenvironments and
magnetic susceptibility (MS). Three sets of microfacies, corresponding to three different sedimentary systems were
needed in order to address the complexity of the paleoenvironments: a transgressive mixed siliciclastic-carbonate
ramp system for the Triassic to Lower Jurassic (Toarcian) interval (microfacies TT1-8), and, for the Middle Jurassic,
an early transgressive low productivity mixed ramp system for the Aalenian (microfacies A1-2) and a transgressive
carbonate ramp for the Lower Bajocian (microfacies B1-3). A comparison of the MS and microfacies curves shows
a clear correlation between the two, suggesting that the MS signal is primary. Moreover, the MS values regularly
decrease from the marine distal (TT1) to the marine proximal microfacies (TTS), with relatively weak mean MS
values for sandstones and limestones, and high mean MS values for marls, argillites and ironstone. This relationship
is interpreted as the consequence of local water agitation in the shallower parts of a ramp, preventing the detrital
particles from settling down and to the higher sedimentation rate that dilutes the magnetic and/or paramagnetic
minerals.

Keywords: Microfacies, magnetic susceptibility, paleogeography, Triassic, Jurassic, Belgium, Luxembourg.

1. Introduction results for petrography, clay mineralogy, palynology

This work follows up previous professional papers and paleontology (Boulvain et al. 2001a).

dedicated to major boreholes in Belgian Lorraine, the
Latour borehole (Boulvain & Monteyne 1993, revised
by Boulvain et al. 1995), the Neulimont, Aubange,
Saint-Mard and Toernich boreholes (Boulvain et al.
1995), and the Villers-devant-Orval borehole (Boulvain
et al. 1996). These studies, together with data result-
ing from the ongoing geological mapping project for
Wallonia (Belanger et al. 2002; Ghysel et al. 2002;
Belanger2006a-b; Ghysel & Belanger2006),ledtoasyn-
thesis formalized by a new lithostratigraphical scheme
for Belgian Lorraine (Boulvain et al. 2001a-b). Be-
sides stratigraphical data, the borehole survey provided

The purpose of the current work is to present new
data from a series of boreholes (Bonnert, Haebicht,
Grouft, Grund, Consdorf) and sections (Tontelange,
Differdange, Rumelange) representative of the Trias-
sic to Jurassic of southern Belgium and Grand-Duchy
of Luxembourg (fig. 1). Data include lithology, petro-
graphy, microfacies, paleoenvironments and magnetic
susceptibility (MS). Two types of graphics are used:
a detailed bed-by-bed description of lithology, fossils,
sedimentary structures and sample position (scale 1/20
or 1/50), and a synthesis log (scale 1/400) for lithostra-
tigraphy, chronostratigraphy, petrography, lithofacies,
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Figure 1. Location and schematic logs of selected boreholes from Belgian Lorraine and Guttland.
Jurassic. Grey dots refer to published boreholes, red dots to the present work and black dots to sections

Duchy of Luxembourg.
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MS, and well logs when present. An integrated sedi-
mentological model is also proposed herein based on
these data.

2. Geological setting

The studied Triassic to Jurassic successions are confined
to the south-eastern part of Belgium, i.e., the Belgian
Lorraine and to the Guttland region of Grand-Duchy
of Luxembourg. The region is characterized by typical
cuesta morphology due to the alternation of soft and
hard sediments and a shallow dip to the South (Lucius
1952; Maubeuge 1954).

The oldest formation covering the Ardenne-Eisleck pe-
neplaned basement corresponds to an alluvial system
(clay and gravels of the Habay Formation in Belgium,
red sandstones and gravels from the Buntsandstein
in Grand-Duchy of Luxembourg) (fig. 2). The Trias-
sic marine transgression progressed from SE to NW
and most formations are diachronic. The first marine

ARLON

Bajocian

Toarcian

e ———

Pliensbachian

Sinemurian

Hettangian

) -
5 encrinite

s> ironstone

<> evaporites 30m |

~ 70 km

influence is recorded by the Muschelkalk Group in
Grand-Duchy of Luxembourg, with dolostones, evapo-
rite-bearing marls and encrinites. In Belgium, the first
marine unit is the Attert Formation with clays and do-
lomitic marls including evaporitic pseudomorphs. This
Triassic marine transgression comes to an end with
the deposition of littoral sandstones and marls of the
Mortinsart Formation which is topped by alluvial clay
(Argile de Levallois).

The development of a shallow epicontinental sea
covering the Paris basin (Purser 1975; Ziegler 1990)
was initiated during the Early Jurassic through the
transgressive pulse of the Ligurian major sedimentary
cycle (de Graciansky et al. 1998). The globally warm
climate (e.g., Mouterde ef al. 1980; Hallam 1985; Dera
et al. 2011), among other factors, allowed the carbon-
ate factory to start (Pomar & Hallock 2008). In the
north-eastern part of the basin, carbonate sedimenta-
tion is associated with abundant influxes of siliciclastic
sediments (Waterlot et al. 1973; Mouterde et al. 1980).

Bajocian
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=
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Figure 2. Schematic lithostratigraphic canvas of the Belgian Lorraine and Guttland.
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The Hettangian Jamoigne Formation (Grand-Duchy
of Luxembourg: Elvange Formation) shows a typical
Lorraine facies with alternating marls and fos-
sil-rich bioturbated argillaceous limestones. Above
this unit, the Luxembourg Sandstone is a Hettangian
and Sinemurian formation deposited in the Belgian
Lorraine, in southern Luxembourg, north-eastern
France, and westernmost Germany (Steininger 1828;
Dumont 1842; Dewalque 1854). The sandy material was
supplied from the German basin to the Paris basin across
the Eifel depression (Muller ef al. 1973), and deposi-
ted as subtidal sandbars in a vast deltaic system
(Mertens et al. 1983; Berners 1983). The lenticu-
lar sandy facies shifted gradually from the centre of
Luxembourg towards the NW, onto the Ardenne Mas-
sif. The diachronous pattern from East to West has
been precisely determined using biostratigraphical data
(Maubeuge 1965; Guérin-Franiatte & Muller 1986;
Guérin-Franiatte et al. 1991).

In the central part of the Belgian Lorraine, interdigita-
tions of the marly Lorraine facies (Arlon Formation)
with the Luxembourg Sandstone define respectively
the Tritte, Strassen, La Posteric marly units and the
Metzert, Chevratte, Florenville, Orval, and Virton san-
dy units (Boulvain et al. 2001b) (fig. 2). The Pliens-
bachian Hondelange Formation is a mixed facies with
marls and bioturbated calcareous sandstone.

Later Pliensbachian and Toarcian formations corre-
spond to fine-grained dark argillaceous and marly units
(Ethe, Messancy and Grandcourt formations) alternat-
ing with a mixed marly-sandstone unit (Aubange For-
mation). These units are locally rich in organic matter,
indicating quiet sedimentation conditions on an anoxic
sea floor. In Grand-Duchy of Luxembourg, the top of
the Toarcian is sandy with ironstone beds (the well-
known “Minette” iron ore), which when fully devel-
oped is of Aalenian age (Faber ef al. 1999; Bintz &
Storoni 2009). In Belgium, the contemporaneous beds
were largely eroded during a significant emersion. The
youngest Jurassic strata belongs to the Bajocian in
both countries. This stage is characterized by the de-
velopment of a carbonate platform: in Grand-Duchy of
Luxembourg, the Audun-le-Tiche Limestone includes
spectacular 20 x 200 m sized coral reefs.

3. Methods

Petrographic samples for thin sections (500, for the
present study) were selected from all facies, even

unconsolidated. In that case, samples were indurated
with Geofix® resin. All the thin sections are preserved
at the Sedimentary Petrology Laboratory in Li¢ge. The
MS measurements were made using a KLY-3 Kappa-
bridge device (see Da Silva & Boulvain 2006). Three
measurements were made on each sample weighed
with a precision of 0.01 g. Sampling interval varies but
is less than 1 m; 2360 samples were analyzed.

4. Boreholes and sections
4.1. The Bonnert borehole and Tontelange section

The Cote Rouge or Tontelange quarry is located 3.5 km
north of Arlon, along the N4 road, at the base of the
Lower Jurassic cuesta (Dewalque 1854). Once used as
a sandpit, the front-slope of the cuesta is currently ex-
ploited for the carbonate sandstones and sands.

Since the end of the 19th century, the Sinemurian
cuesta running north of Arlon has proved to be in-
valuable for the study of the Belgian Lower Jurassic.
The Coéte Rouge quarry provided the first description
of the Metzert Member (Dormal 1894), abundant pa-
lacontological material for the biostratigraphy of the
Luxembourg Formation (Joly 1936; Maubeuge 1989),
and an extended section improving the stratigraphic
framework of Belgian Lower Jurassic (Maillieux 1948;
Monteyne 1959; Mergen 1983; 1984).

The cleared cliff-side provides a unique section through
the Metzert and Florenville members of the Luxem-
bourg Formation and the Strassen Member of the Arlon
Formation. Accordingly, this quarry has been selected
as the stratotype of the Luxembourg Formation in Bel-
gium (Boulvain ef al. 2001Db).

A borehole was drilled south of the Tontelange quar-
ry, at 205 m from the crossroad between the N4 road
and the Metzert street (Lambert 72: X = 253.375;
Y = 45.825; WGS84: 5.8022 E; 49.7151 N). The drill
core has a 9 cm diameter and is complete down to
44 m (figs 3A-B). Due to the lack of cementation in the
Metzert Member, no continuous core was recovered
deeper than 44 m. The borehole has then been complet-
ed with a section described in the Tontelange quarry
(figs 3B-C). This section is 15 m thick and covers the
upper part of the Metzert Member. The ages and bio-
stratigraphic zonations follow Gradstein et al. (2004).
Biozonations calibrations are inferred from Mergen
(1983).
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The two sections were precisely described bed-by-bed
(fig. 3). Samples were collected on a regular base, for
a total of 55 thin sections and 193 MS measurements.
The synthesis log further provides an estimation of
quartz grain size (cf. fig. 13).

4.2. The Haebicht BK-4A borehole

In the context of the search for a disposal site for indus-
trial waste, a series of 5 drill holes was made in 1993
close to the highway service area of Capellen. The
boreholes intersected the Hettangian-Pliensbachian
beds over more than 100 m. The 10 cm diameter BK-
4A drill cores (LuRef: X =65752;Y = 77476, WGS84:
5.9709 E; 49.6317 N), are held at the Musée national
d’Histoire naturelle du Luxembourg and were selected
for the present work for which 101 thin sections and
394 MS measurements were performed (fig. 4). MS is
supplemented by resistivity and X-ray data compiled
from downhole well logs (cf. fig. 14). A former study of
the same cores, focused on ammonites and a biostrati-
graphy is proposed by Guérin-Franiatte (2003).

4.3. The Grouft FR-204-032 borehole

The Grouft borehole (LuRef: X = 79452; Y = 84733;
WGS84: 6.1605 E; 49.6971 N), located 7 km SE of
Mersch, close to Lorentzweiler, is a piezometer in-
stalled during the construction of the Grouft Tunnel.
This tunnel, with a length of nearly 3 km, is one of
the major civil engineering works of the “Route du
Nord” highway (A7), leading from Luxembourg City
to the North of the country. Its purpose was to monitor
the groundwater levels in the aquifers crossed by the
tunnel. The 8.5 cm diameter core samples are stored
at the Geological Survey of Luxembourg and range
from the Middle Keuper to the Lower Sinemurian. It
should be noted that cores were only obtained from 70-
106 m depth (fig. 5). A total of 63 thin sections and
43 MS measurements were made. The synthesis log
(cf. fig. 10) further provides an estimation of quartz
grain size and sorting.

4.4. The Grund borehole

This 55 m deep borehole was drilled in 1994 on the
yard of the former prison for women in Luxembourg
City (LuRef X =77640; Y =75014; WGS84: 6.1355 E;
49.6097 N). The cores, of 8 cm diameter, range from
the Triassic (Keuper) to the Upper Hettangian; 105 MS
measurements and 52 thin sections were made from the

cores. Well log data were acquired and included in this
work (figs 6, 11).

4.5. The Consdorf FR-204-201 borehole

The Consdorf borehole (LuRef X = 94430; Y = 92835;
WGS84: 6.3684 E; 49.7698 N) is one of several pie-
zometer installations that were made during a hydro-
geological survey related to the building of a waste
dumpsite at Rosswinkel, SW of the Consdorf locality.
The possible incidence of construction waste deposits
on the underlying sandstone aquifer were investigated.
The cores have a diameter of 10 cm and range from
the Upper Keuper to the Lower Sinemurian and are
preserved at the Geological Survey of Luxembourg;
115 MS measurements and 115 thin sections were
made from the cores. Logs are complemented by petro-
graphic data (sorting and quartz grain size) (figs 7, 12).

4.6. The Giele Botter quarry section

This section (Aalenian-Bajocian) is located in a pro-
tected area close to Niederkorn: the 255 ha Prénzebi-
erg-Giele Botter nature reserve (LuRef: X = 59080;
Y = 67880; WGS84: 5.879 E; 49.545 N), mainly ded-
icated to the “Minette” oolitic ironstone that made the
wealth of the Luxembourg and French steel industries.
In Grand-Duchy of Luxembourg, the Minette ironstone
was deposited during the Late Toarcian-Early Aalenian
in two basins: Esch-Ottange and Differdange-Longwy.
The Differdange-Longwy iron ore is slightly older than
the Esch-Ottange ore (Thein 1975; Achilles & Schulz
1980). Theyssen (1984), who made a detailed study of
this famous section, proposed a model of subtidal sand-
waves for the deposition of the oolitic ironstone. The
present work is based on 62 thin sections and 186 MS
measurements for section that is 41 m thick (fig. 8).
The synthesis log is complemented with petrograph-
ic data (quartz grain size and sorting, clay content)
(cf. fig. 15).

4.7. The Rumelange quarry section

The Rumelange section is 43 m thick, and surveyed
in the Cimalux quarry close to Ottange (LuRef:
X =67350; Y = 57360; WGS84: 5.994 E; 49.451 N).
The quarry works Bajocian limestone beds interbedded
with marls for cement production. A bed-by-bed sam-
pling led to the collection of 118 samples used for MS
measurements, 54 of which were used for thin sections
(figs 9, 16).
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Figure 3A. The Bonnert borehole. Legend of symbols, cf. fig. 5.
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Figure 9A. The Rumelange Cimalux quarry section.
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5. Petrography and microfacies

Three sedimentary systems, corresponding to nearly
contemporaneous paleoenvironments, are recognized:
a transgressive mixed siliciclastic-carbonate ramp for
the Triassic-Toarcian interval, an early transgressive,
low productivity, mixed ramp for the Aalenian, and a
transgressive carbonate ramp for the Lower Bajocian.
The different microfacies are described hereunder,
from the most distal to the most proximal for each
model. The Dunham (1962) textural classification for
carbonates is used.

Similar microfacies, based on 150 thin sections from
the Latour, Neulimont and Villers-devant-Orval
boreholes were already described and interpreted by
Boulvain et al. (2001a). The 500 new thin sections
obtained from the present work are used to comple-
ment the study and generalize the paleoenvironmental
models.

5.1. Triassic-Toarcian

The following microfacies were described from the
Bonnert, Haebicht, Grouft, Grund, and Consdorf
boreholes. The Triassic to Toarcian interval is charac-
terized by high accommodation rates responsible for
a progressive marine transgression on the Ardenne
basement. Sedimentation is dominated by high detrital
inputs coming from the Eifel depression zone (Mertens
et al. 1983).

(TT1) Homogeneous argillite or sub-millimeter lami-
nated silty argillite (silt ~15 pm). Locally, millimeter-
thick lenses of poorly sorted quartz (50-100 pm) ce-
mented by xenomorphic sparitic calcite are observed.
Sporadic micas, pyrite, charcoal fragments, crinoids,
peloids, ostracods, phosphatic grains may be present as
well as 1 mm diameter horizontal burrows.

(TT2) This facies is a millimeter to several millimeter
scale alternation of (A) silty argillite or microsparitic
marl with sporadic charcoal debris and pyrite; (B) lo-
cally bioturbated microsparitic argillaceous packstone
with bioclasts (crinoids, bivalves, gastropods, ostra-
cods, brachiopods), peloids and pyrite. Sporadic 60-
100 um diameter quartz grains are observed; (C) poorly
sorted cross-laminated argillaceous sandstone (quartz
50-300 pm diameter). Bioturbation locally obliterates
sedimentary structures. Xenomorphic sparitic cement
is present; (D) well-sorted (~300 um) sandstone with
sparry calcite cement and bioclasts (crinoids, bivalves,
gastropods).

(TT3) Laminated or bioturbated wackestone in sever-
al cm-thick lenses included in (silty) argillite or marl.
This wackestone is rich in well-preserved fossils: bi-
valves, ostracods, gastropods, crinoids, cephalopods,
together with fragments of charcoal, glauconite, phos-
phatic debris, and 50-300 um diameter quartz grains.

(TT4) Microsparitic to pseudosparitic (cf. Tucker 1981)
laminar to bioturbated calcareous sandstone or san-
dy packstone with peloids. Quartz grains are angular
and moderately to well-sorted (60-300 pm diameter).
Peloids are ~100 pm micritized bioclasts or lithoclasts.
Some fossils are observed: crinoids, bivalves, gastro-
pods and charcoal fragments as well. Locally, oolites
are present. Millimeter-thick irregular laminae of mi-
crosparitic marl are observed.

(TTS) Well-sorted laminar or bioturbated sandstone
with bioclasts (bivalves, crinoids, gastropods, brachio-
pods). Locally, oolites and proto-oolites are very abun-
dant (with quartz or bioclast nuclei). Detrital feldspar
and micas may occur. The cement consists of calcitic
pseudospar, xenomorphic spar, syntaxial quartz, micro-
quartz, iron oxides/hydroxides, or pyrite. Quartz grains
are well sorted (150-500 pm diameter) and well-round-
ed. Charcoal fragments are locally abundant, in mm-
thick lenses or disseminated.

(TT6) Microsparitic dolostone. Bioturbation is fre-
quently observed and corresponds to plant roots, lo-
cally filled with clay. Lithoclasts are common. Sand
(~150 pum) or silt (30 um) lenses are occasional.

(TT7) Laminar or massive argillite with glaebules, root
structures, dolomitic nodules, iron oxides, lithoclasts.
Sporadic lenses of silt (10-30 um) or unsorted sand (up
to 300 pm) are observed.

(TT8) Poorly sorted conglomerate with argillaceous
or sparitic cement. Angular quartz sand is present.
Gravels consist of quartzitic sandstone or quartz.

5.2. Aalenian

The following microfacies are representative of the
“Minette” unit of the Differdange “Giele Botter” sec-
tion. The Aalenian is characterized by low sedimen-
tations rates, abundance of condensed ferruginous
deposits and sedimentary hiatuses, related to a gen-
eral decrease of accommodation, probably of tecton-
ic origin. Climate was relatively humid (Martinez &
Dera 2015; Andrieu et al. 2016).
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(A1) Silty argillite or marl, with local millimeter-thick
lenses of poorly sorted rounded quartz grains (up to
500 pm diameter). Uncommon bioclasts of crinoids or
bivalves are observed. They are commonly replaced by
iron oxy-hydroxides.

(A2) Oolitic ironstone. Ferruginous oolites are ellipti-
cal, with a highly visible concentric lamination of iron
oxide. They are commonly well-sorted, with a diame-
ter ranging between 100 to 600 pm. The nuclei of the
ferruginous oolites are bioclasts, fragments of a former
oolite or quartz. Beside the ferruginous oolites, the oth-
er grains are well-rounded bioclasts (bivalves, crinoids,
brachiopods, ostracods, foraminifers), lithoclasts and
well-rounded, poorly sorted quartz (up to several mm
diameter). Lithoclasts and some bioclasts are replaced
by iron oxides. The cement of this microfacies could be
goethite, iron silicates (locally fibrous), or sparitic iron
calcite. Siderite is observed as automorphic crystals in
some oolites. Locally, oolites are squashed. Most bio-
clasts are imbricated, suggesting high energy environ-
ments (storm deposits).

5.3. Bajocian

The following microfacies are described from the up-
per part of the Differdange “Giele Botter” section and
from the Rumelange quarry. The Bajocian age initiated
a new cycle of renewed accommodation, drier climate
and high carbonate sedimentation rates, dominated
by photozoan reef builders (Martinez & Dera 2015;
Andrieu et al. 2016).

(B1) Well-sorted grainstone with millimeter-sized
rounded bioclasts: crinoids, bivalves, brachiopods,
bryozoans, ostracods, gastropods, mud-coated grains.
Rounded exoclasts (including ferruginous oolites,
quartz, etc.) are locally observed. Some of the bioclasts
or lithoclasts are replaced by iron oxy-hydroxides.
Angular 100 pm-1 mm diameter quartz grains are lo-
cally present. The grainstone cement is a xenomorphic
Fe-calcite, or an automorphic calcite in 30 pm-thick
isopachous rims. Moldic porosity is important. Un-
common chalcedony spherules in fossils are observed.

(B2) Poorly sorted grainstone or packstone with
rounded bioclasts (corals, bivalves, crinoids, bra-
chiopods, codiacean algae) and lithoclasts. The coral
fragments are abundant and several millimeters long.
Poorly sorted quartz sand is locally present. The ma-
trix consists of microsparite or pseudosparite and
the cement varies from a xenomorphic sparite to an

automorphic calcite in isopachous rims, as in (B1) mi-
crofacies. Moldic porosity is frequent. This facies is
commonly recrystallized.

(B3) Microsparitic to pseudosparitic laminar to biotur-
bated calcareous sandstone or sandy packstone with
peloids, similar to (TT4) microfacies. It may alternate
with (B1) microfacies.

6. Microfacies and formations

6.1. Triassic-Toarcian

As a preliminary remark, it should be emphasized that
thin sections were generally obtained from the most
hardened sediments, and therefore their nature may not
be representative of the most pelitic formations.

The oldest unit intersected by the Grouft (fig. 10),
Grund (fig. 11) and Consdorf (fig. 12) boreholes is the
Attert Formation (Middle Keuper). This formation is
characterized by microfacies TT6 (microsparitic dolo-
stone) and TT7 (pedogenetic argillite). These microfa-
cies are mostly associated with moderately developed
pedogenetic structures (Wright 1994). Equivalent mi-
crofacies were described in the Neulimont and Villers
boreholes. Additionally, in the Latour borehole, poorly
sorted quartzose or lithic arenites were observed, to-
gether with sandstones and conglomerates cemented
by gypsum or dolomite. Anhydrite occurred as deci-
metric fractured nodules with gypsum filling. These
microfacies and associated lithologies point to an arid
lowland with sparse vegetation and limited precipita-
tion of evaporites (fig. 17). Local and sporadic detrital
supply is responsible for channelized or sheet-like im-
mature sandstones and conglomerates (cf. Alsharhan &
Kendall 2003; Donselaar & Schmidt 2005).

The next unit is the Mortinsart Formation (Rhae-
tian). It is characterized, in the Grouft and Consdorf
boreholes, by microfacies TT7 (pedogenetic argillite)
and TTS8 (poorly sorted conglomerate). In the Villers,
Neulimont and Latour boreholes, however, well-sorted
pluridecimetric sandy or silty units are also observed,
suggesting a first littoral influence, in addition to the
Attert-like aridic continental facies.

The Jamoigne Formation shows a large spectrum of
purely marine microfacies (Grouft, Grund: TT1-4;
Consdorf: TT1-5). Similar microfacies were described
from the Latour, Neulimont and Villers boreholes. The
depositional environments proposed for the micro-
facies TT1 to TTS are organized according to a ramp
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geometry (Burchette & Wright 1992) and range from
the lower mid ramp to the inner ramp. TT1 (argillite or
thinly laminated silty argillite) is a distal facies, located
close to the storm wave base. The fauna is characteristic
of open marine environments and the preserved lami-
nation suggests a reducing sea bottom. TT2 (silty argil-
lite alternating with bioclastic or peloidal argillaceous
packstone, sandstone, and argillaceous sandstone),
located in the storm wave zone (cf. Aigner 1985), re-
corded the starting of the carbonate factory on a more
oxygenated and bioturbated sea bottom (Colombié
etal.2012). Lenses of TT3 (wackestones with well-pre-
served fossils) are associated with TT2 and correspond
to periods with low detrital supply. The TT2 storm
deposits are only distal tempestites (Reineck & Singh
1972; Guillocheau 1983) and no proximal tempestites
were observed in this unit. The Jamoigne Formation
was deposited on an offshore storm-controlled mixed
detrital carbonate ramp, as were other similar facies
(Calcaire a gryphées, cf. Hanzo ef al. 2000).

The Luxembourg Formation was intersected by the
Grouft, Grund, Consdorf, Bonnert (fig. 13) and Haebicht
(fig. 14) boreholes. It was also present in Latour, Vil-
lers and Neulimont boreholes. This unit is an alterna-
tion of yellowish ochre, poorly cemented sandstones
(10-20% carbonate) and grey to whitish, cement-rich
sandy limestones (30-60% carbonate) (Colbach 2005).
Microfacies correspond to TT4 (calcareous sandstone
or sandy packstone with peloids) and TTS (well-sort-
ed bioclastic and oolitic sandstone), both located on
the inner ramp. Oolites are a local constituent of the
sandstone and were only observed in Tontelange, Vil-
lers-devant-Orval and Neulimont. Decimetric to metric
coquina beds with bivalves (Cardinia) are present and
represent proximal tempestites (cf. Brenner & Davies
1973; Mandic et al. 2004). Fauna has an open marine
character with prevalent bivalves and crinoids. The
moderate to good sorting and scarcity of mud is related
to a relatively high energy, pointing to a fair-weather
wave zone environment. The terrigenous clastic sup-
ply was abundant in both microfacies (Van Den Bril &
Swennen 2009), and the efficient carbonate factory
led to a high sedimentation rate. Due to the constant
and high water agitation in the inner ramp, the coarse
quartz grains were mixed with bioclasts and peloids.
Sedimentation is most probably driven by longshore
currents with the influence of storm waves. The long-
shore currents deposited sands in planar or cross
bedded units, while short periods of calm allow the

depositionofthinclaylaminae. These facies are inagree-
ment with the sandwaves facies model defined for the
(Berners 1983;
Guérin-Franiatte et al. 1991). Unidirectional cross

Luxembourg Sandstone
stratifications have been related to asymmetric tid-
al flows inducing a dominant current (Mertens et al.
1983) and also related to lateral migration of the bars
following the transgressive trend (Berners 1983).

The Arlon Formation is present in the Consdorf, Bon-
nert and Haebicht boreholes. As in the Jamoigne For-
mation, a relatively wide variety of marine microfacies
are observed (TT1-5), suggesting similar paleoenvi-
ronments, ranging from close to the storm wave zone
to the fair weather wave zone. When compared with
the Luxembourg Formation, most of the facies from the
Arlon Formation are characterized by less sorted and
finer-grained sand, together with more abundant organ-
ic matter and coal fragments (Boulvain et al. 2001a).

The Ethe Formation is only intersected by the Haebicht
borehole and is fully characterized by microfacies TT1,
deposited close or below the storm wave base. The
lower part of the Ethe Formation (Haebicht 52.5-42 m)
shows horizontal burrows of deposit-feeders, while its
upper part is devoid of any endofauna, suggesting more
reducing conditions in the sediment.

6.2. Aalenian

After a large stratigraphic gap, the next formation to
be surveyed is the Minette, well exposed in the Differ-
dange “Giele Botter” section (fig. 15). The main mi-
crofacies is A2, oolitic ironstone, locally interrupted by
ATl (silty argillite or marl with scattered iron-rich bio-
clasts and ooids). Despite numerous works that aimed
to discover their genesis (Hallam & Bradshaw 1979;
Kimberley 1979; Van Houten & Bhattacharyya 1982;
Teyssen 1984; Collin et al 2005; Reolid et al. 2008;
Garcia-Frank ef al. 2012, etc.), a comprehensive depo-
sitional model of oolitic ironstone has yet to be estab-
lished. The purpose of the present work is only to bring
some petrographical observations about this special
ironstone. The well-sorted character of the oolites and
bioclasts, the rounded aspect and pitting of the latter,
and the grainstone texture all point to an open marine,
well-agitated environment. Locally, a reworking by
proximal storms is assumed to account for the imbri-
cation of shells. The depositional environment of the
ironstone is located in the fair-weather wave zone, on a
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storm-dominated ramp. However, no data are available
on the genesis of the ferruginous oolites.

6.3. Bajocian

Petrographical information is available for the Bajo-
cian Marnes a Soninia (fig. 15), Calcaire de Haut-Pont
(figs 15-16), Calcaire de Audun-le-Tiche and Calcaire
de Nondkeil (fig. 16).

The limestone beds from the Marnes a Soninia are cha-
racterized by microfacies B3 (laminar to bioturbated
calcareous sandstone or sandy packstone with peloids),
similar to TT4, deposited on an open marine mid to
inner mixed ramp. The Calcaire de Haut-Pont shows
microfacies B3 and B1 (well-sorted grainstone with
rounded bioclasts). The latter corresponds to crinoid
dominated bioclastic shoals formed in the fair-weather
wave zone (Bintz 2001). If B3 is still indicative of a
certain level of detrital supply, B1 is a purer limestone
and announces the future development of a healthy car-
bonate platform.

The Calcaire d’Audun-le-Tiche, in addition to mi-
crofacies B1, is largely dominated by microfacies B2
(bioclastic grainstone or packstone with corals).

ROCKS

-, marl/argilite/siltite SEDIMENTS

'sand/sandstone calcareous mud
@ conglomerate ’
P—H limestone
E dolostone

‘sand

ALLUVIAL FANS
ALLUVIAL

EVAPORITIC LAGOON
) SANDY BARRIER

This limestone is a peri-reefal facies, largely influenced
by the well-known Isastrea reefs of the Rumelange
area (Hary 1970).

Three synthesis conceptual depositional system mod-
els with the horizontal repartition of microfacies are
proposed hereafter (figs 17-19).

7. Magnetic susceptibility, formations and micro-
facies

Changes in magnetic susceptibility (MS) in sedimen-
tary successions are attributed to changes in ferromag-
netic/paramagnetic mineral content, that in turn may
reflect sea level variations (Ellwood ef al. 1999). The
major influence of sea level on the MS signal is re-
lated to the strong link between MS and detrital com-
ponents, assuming that the detrital input is generally
controlled by eustasy or climate. In this way, a lower-
ing of sea-level (regression) increases the proportion of
exposed continental area, increases erosion and leads to
higher MS values, whereas rising sea level (transgres-
sion) decreases MS (Crick et al. 2001). Climatic vari-
ations influence MS through changes in rainfall (high
rainfall increases erosion and MS), glacial-interglacial
periods (glacial periods are related to glacier erosion

® ooids

i\( crinoids

\— pelecypods

@ ammonites

D fine-grained marine detritics
|:| fine-grained continental detritics

of meters

Figure 17. Depositional system model with microfacies (TT1-8) for Triassic to Toarcian formations. FWWZ = fair weather wave

zone; SWZ = storm wave zone.
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Figure 20. Summary of selected boreholes and magnetic susceptibility.

and to marine regression and both effects increase MS)
and pedogenesis (formation of magnetic minerals in
soils; Tite & Linington 1975). Furthermore, early and
late diagenesis can be responsible for MS variations
through mineralogical transformations, dissolution or
authigenesis (McCabe & Elmore 1989; Zegers et al.
2003).

A series of 2360 samples coming from all the forma-
tions surveyed in this study were analyzed. Figure 20
proposes a summary of MS versus logs for Consdorf,

Grouft, Grund, Haebicht, Tontelange and Rumelange
boreholes, together with new MS data for Latour and
Neulimont boreholes. Table 1 and figure 21 give the
number of samples, mean values and standard devia-
tion for all the formations intersected by all boreholes
and sections (including Latour and Neulimont).

First observations show that MS values are relatively
weak for the Luxembourg Formation (except for some
peaks whose origin is not yet explained), Calcaire et
Marnes d’Audun-le-Tiche and Calcaire de Nondkeil.
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Table 1. MS (m’/kg) versus formations for all sections and
boreholes

Formations Number of Mean Standard deviation
samples (m*/kg) (m*/kg)
Calcaire de Nondkeil 15 2.23 E-08 5.47 E-09
Marnes d'Audun-le-Tiche 13 1.90 E-08 8.64 E-09
Calcaire d'Audun-le-Tiche 47 5.68 E-09 8.32 E-09
Calcaire Haut-Pont 70 4.06 E-08 2.14 E-08
Couches a Soninia 24 4.77 E-08 1.08 E-08
Marnes micacées 19 7.39 E-08 1.84 E-08
Minette 113 2.25 E-07 1.31 E-07
Ethe 213 1.442 E-07 1.665 E-07
Hondelange 22 7.282 E-08 9.490 E-08
Arlon 264 4.565 E-08 2.241 E-08
Luxembourg 668 2.024 E-08 6.163 E-08
Jamoigne 543 3.687 E-08 1.506 E-08
Mortinsart 73 5.420 E-08 3.538 E-08
Attert 220 7.317 E-08 3.578 E-08
Habay 58 6.265 E-08 3.898 E-08

MS wvalues are high for the Ethe, Hondelange,
Arlon, Attert formations, for the Minette and Marnes
micacées.

A comparison between the MS and microfacies curves
shows a clear positive correlation (figs 10-17), sugges-
ting that the MS signal is primary, as already stated by
Dechamps et al. (2015) for the Bajocian-Bathonian of
the Az¢é caves. Moreover, the MS values regularly de-
crease from the marine distal (TT1) to the marine prox-
imal microfacies (TT5) (table 2; fig. 22A). The same
pattern was recorded earlier for carbonate ramps (Mid-
dle Devonian: Mabille & Boulvain 2007; Tournaisian:
Bertola et al. 2013). This was interpreted by Da Silva
et al. (2009) as the consequence of local water agita-
tion in the shallower parts of a ramp, preventing the
detrital particles from settling down and to the higher
sedimentation rate that dilutes the magnetic minerals.
More precisely, the sandstones and limestones show
the weakest MS signal, while the argillaceous rocks
are characterized by a strong and fluctuating MS sig-
nal. This was also observed in Lower Devonian sand-
stone-shale alternations by Michel et al. (2010; fig. 7).
The stronger signal, also recorded from the Attert ar-
gillites and dolostones (microfacies TT6-7), is perhaps
related to pedogenesis or proximity of the terrestrial
sources (Tite & Linington 1975; Babek et al. 2013).

An important exception would be the ironstone, where
the MS signal is directly influenced by the ferrugi-
nous ooids content (fig. 15). Concerning Bajocian

Consdorf | n | Grouft n | Grund n | Haebicht n | Bonnert n Table 2. Mean MS value
(m’/kg) versus micro-
/Tontelange facies for  Consdorf,
Grouft, Grund, Haebicht,
1 441E08 | 2 |472E08 | 7 | 468E-08 | 4 | 9.59E-08 | 59 | 7.90E-08 | 1 | Bonnert/Tontelange and
Rumelange boreholes and
2 1.95E-08 |20 | 3.58 E-08 | 12 | 2.82 E-08 | 29 | 4.68E-08 | 17 | 6.18E-08 | 6 | Sscctions. n = number of
samples
3 7.45 E-09 1 | 2.68E-08 | 4
4 1.18 E-08 |47 | 1.35E-08 | 11 | 1.68 E-08 | 10 | 1.03 E-08 5 1.84 E-08 16
5 1.19 E-08 | 30 7.15E-09 | 2 7.68 E-09 8 7.63 E-09 26
6 526E-08 | 4 | 6.31 E-08 | 15| 3.17E-08 | 3
7 9.01 E-08 | 8
8 3.38 E-08 2
- Rumelange
1 2.30 E-08 17
2 2.65 E-09 18
3 2.07 E-08 18
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Figure 21. Mean MS and standard deviation (m3/kg) versus formations for all sections and boreholes (number of samples).
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microfacies B1-3, the argillaceous rocks are charac-
terized by the highest MS signal, while carbonates
show the weakest one (fig. 22B). This is probably re-
lated to the dilution of magnetic particles by carbonate
production (Da Silva et al. 2009).

Conclusion

This study offers a detailed description of a series of
boreholes (Bonnert, Haebicht, Grouft, Grund, Cons-
dorf) and sections (Tontelange, Differdange, Rume-
lange) representative of the Triassic to Jurassic of
southern Belgium and Grand-Duchy of Luxembourg.
At a low resolution, synthesis logs provide information
about microfacies and a framework for magnetic sus-
ceptibility (MS) curves. MS results from previous and
unpublished studies of the Neulimont, Latour and Vil-
lers-devant-Orval boreholes were combined to expand
the database of the present work. Three sets of microfa-
cies, corresponding to three different sedimentary sys-
tems were necessary to address the complexity of the
paleoenvironments: a transgressive mixed siliciclas-
tic-carbonate ramp system for the Triassic-Toarcian in-
terval (microfacies TT1-8), an early transgressive low
productivity mixed ramp system for the Aalenian (mi-
crofacies A1-2) and a transgressive carbonate ramp for
the Lower Bajocian (microfacies B1-3). This evolution
reflects a combination of climatic and tectonic forc-
ing on the sedimentation area (Martinez & Dera 2015;
Andrieu et al. 2016). The TT1-8 microfacies range
from the lower mid ramp to the inner ramp. TT1 (argil-
lite or thinly laminated silty argillite) is a distal facies,
located close to the storm wave base, TT2 (silty argil-
lite alternating with bioclastic or peloidal argillaceous
packstone, sandstone and argillaceous sandstone), lo-
cated in the storm wave zone, recorded the initiation
of the carbonate factory on a more oxygenated sea bot-
tom. Lenses of TT3 (wackestones with well-preserved
fossils) are associated with TT2 and corresponds to
periods with low detrital supply. TT4 (calcareous
sandstone or sandy packstone with peloids) and TT5
(well-sorted bioclastic and oolitic sandstone), are both
located on the inner ramp and correspond to sandwaves
development. TT6 (microsparitic dolostone) and TT7
(pedogenetic argillite) are supratidal or continental
arid microfacies locally interrupted by sporadic detri-
tal supply, responsible for the formation of channelized
or sheet-like immature sandstones and conglomerates
(TT8). The “Minette” main microfacies is A2, oolitic
ironstone, locally interrupted by Al (silty argillite or

marl with scattered iron-rich bioclasts and ooids). Both
correspond to an open marine environment, periodical-
ly agitated by storms. Bajocian formations are char-
acterized by microfacies B3 (laminar to bioturbated
calcareous sandstone or sandy packstone with peloids),
deposited on an open marine mid to inner mixed ramp,
microfacies Bl (well-sorted grainstone with rounded
bioclasts), corresponding to crinoid dominated bioclas-
tic shoals formed in the fair-weather wave zone, and
microfacies B2, largely dominated by corals. This bio-
clastic grainstone or packstone is a peri-reefal facies,
influenced by the well-known Isastrea reefs.

A comparison of the MS and microfacies curves shows
a clear correlation between the two, suggesting that the
MS signal is primary, or at least follows from the pri-
mary lithology. Moreover, the MS values regularly de-
crease from the marine distal (TT1) to the marine prox-
imal microfacies (TT5), with relatively weak mean MS
values for sandstones and limestones, and high mean
MS values for marls, argillites, and for the ironstone.
This relation was interpreted by Da Silva et al. (2009)
as the consequence of local water agitation in the shal-
lower parts of a ramp, preventing the detrital particles
from settling down and to the higher sedimentation rate
that dilutes the magnetic minerals.
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Plate

Plate. A: microfacies TT1: laminated silty argillite (Haebicht, 53); B: microfacies TT2: microsparitic marl and bioturbated
marly siltstone with a few bioclasts (Consdorf, 45.5); C: microfacies TT3: bioturbated wackestone with gastropods, phosphatic
debris and quartz (Grouft, 82.3); D: microfacies TT4: microsparitic bioturbated sandy packstone with peloids (Consdorf, 12);
E: microfacies TT5: well-sorted sandstone with rare bioclasts and peloids (Consdord, 3.6); F: microfacies TT7: argillite with
peloids, root structure and lithoclasts. (Grouft, 105.3); G: microfacies A2: oolitic ironstone with a Fe-silicate cement (Giele
Botter, 5); H: microfacies B2: grainstone with rounded bioclasts, mud coated grains and lithoclasts; the cement is a 30-100 pm
pseudosparitic to sparitic calcite (Rumelange, 28).
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