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Abstract

This study offers a detailed description of a series of Triassic to Jurassic representative boreholes (Bonnert,  
Haebicht, Grouft, Grund, Consdorf) and sections (Tontelange, Differdange, Rumelange) from southern Belgium and 
the Grand-Duchy of Luxembourg. Investigations provide information about microfacies, paleoenvironments and 
magnetic susceptibility (MS). Three sets of microfacies, corresponding to three different sedimentary systems were 
needed in order to address the complexity of the paleoenvironments: a transgressive mixed siliciclastic-carbonate 
ramp system for the Triassic to Lower Jurassic (Toarcian) interval (microfacies TT1-8), and, for the Middle Jurassic, 
an early transgressive low productivity mixed ramp system for the Aalenian (microfacies A1-2) and a transgressive 
carbonate ramp for the Lower Bajocian (microfacies B1-3). A comparison of the MS and microfacies curves shows 
a clear correlation between the two, suggesting that the MS signal is primary. Moreover, the MS values regularly 
decrease from the marine distal (TT1) to the marine proximal microfacies (TT5), with relatively weak mean MS 
values for sandstones and limestones, and high mean MS values for marls, argillites and ironstone. This relationship 
is interpreted as the consequence of local water agitation in the shallower parts of a ramp, preventing the detrital 
particles from settling down and to the higher sedimentation rate that dilutes the magnetic and/or paramagnetic 
minerals.

Keywords: Microfacies, magnetic susceptibility, paleogeography, Triassic, Jurassic, Belgium, Luxembourg.

1.	 Introduction

This work follows up previous professional papers  
dedicated to major boreholes in Belgian Lorraine, the  
Latour borehole (Boulvain & Monteyne 1993, revised 
by Boulvain et  al. 1995), the Neulimont, Aubange, 
Saint-Mard and Toernich boreholes (Boulvain et  al. 
1995), and the Villers-devant-Orval borehole (Boulvain 
et al. 1996). These studies, together with data result-
ing from the ongoing geological mapping project for  
Wallonia (Belanger et  al. 2002; Ghysel et  al. 2002;  
Belanger 2006a-b; Ghysel & Belanger 2006), led to a syn-
thesis formalized by a new lithostratigraphical scheme 
for Belgian Lorraine (Boulvain et  al. 2001a-b). Be-
sides stratigraphical data, the borehole survey provided  

results for petrography, clay mineralogy, palynology 
and paleontology (Boulvain et al. 2001a).

The purpose of the current work is to present new 
data from a series of boreholes (Bonnert, Haebicht, 
Grouft, Grund, Consdorf) and sections (Tontelange,  
Differdange, Rumelange) representative of the Trias-
sic to Jurassic of southern Belgium and Grand-Duchy 
of Luxembourg (fig. 1). Data include lithology, petro- 
graphy, microfacies, paleoenvironments and magnetic 
susceptibility (MS). Two types of graphics are used: 
a detailed bed-by-bed description of lithology, fossils, 
sedimentary structures and sample position (scale 1/20 
or 1/50), and a synthesis log (scale 1/400) for lithostra-
tigraphy, chronostratigraphy, petrography, lithofacies, 
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Figure 1. Location and schematic logs of selected boreholes from Belgian Lorraine and Guttland. Map: pink, Triassic; blue, 
Jurassic. Grey dots refer to published boreholes, red dots to the present work and black dots to sections. B = Belgium, L = Grand-
Duchy of Luxembourg.
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MS, and well logs when present. An integrated sedi-
mentological model is also proposed herein based on 
these data.

2.	 Geological setting

The studied Triassic to Jurassic successions are confined 
to the south-eastern part of Belgium, i.e., the Belgian 
Lorraine and to the Guttland region of Grand-Duchy 
of Luxembourg. The region is characterized by typical 
cuesta morphology due to the alternation of soft and 
hard sediments and a shallow dip to the South (Lucius 
1952; Maubeuge 1954).

The oldest formation covering the Ardenne-Eisleck pe-
neplaned basement corresponds to an alluvial system 
(clay and gravels of the Habay Formation in Belgium, 
red sandstones and gravels from the Buntsandstein 
in Grand-Duchy of Luxembourg) (fig.  2). The Trias-
sic marine transgression progressed from SE to NW 
and most formations are diachronic. The first marine 

influence is recorded by the Muschelkalk Group in 
Grand-Duchy of Luxembourg, with dolostones, evapo-
rite-bearing marls and encrinites. In Belgium, the first 
marine unit is the Attert Formation with clays and do-
lomitic marls including evaporitic pseudomorphs. This 
Triassic marine transgression comes to an end with 
the deposition of littoral sandstones and marls of the 
Mortinsart Formation which is topped by alluvial clay 
(Argile de Levallois).

The development of a shallow epicontinental sea  
covering the Paris basin (Purser 1975; Ziegler 1990) 
was initiated during the Early Jurassic through the 
transgressive pulse of the Ligurian major sedimentary 
cycle (de Graciansky et al. 1998). The globally warm 
climate (e.g., Mouterde et al. 1980; Hallam 1985; Dera 
et al. 2011), among other factors, allowed the carbon-
ate factory to start (Pomar  & Hallock 2008). In the 
north-eastern part of the basin, carbonate sedimenta-
tion is associated with abundant influxes of siliciclastic 
sediments (Waterlot et al. 1973; Mouterde et al. 1980).

Figure 2. Schematic lithostratigraphic canvas of the Belgian Lorraine and Guttland.
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The Hettangian Jamoigne Formation (Grand-Duchy 
of Luxembourg: Elvange Formation) shows a typical  
Lorraine facies with alternating marls and fos-
sil-rich bioturbated argillaceous limestones. Above 
this unit, the Luxembourg Sandstone is a Hettangian 
and Sinemurian formation deposited in the Belgian  
Lorraine, in southern Luxembourg, north-eastern 
France, and westernmost Germany (Steininger 1828; 
Dumont 1842; Dewalque 1854). The sandy material was 
supplied from the German basin to the Paris basin across 
the Eifel depression (Muller et al. 1973), and deposi- 
ted as subtidal sandbars in a vast deltaic system  
(Mertens et  al. 1983; Berners 1983). The lenticu-
lar sandy facies shifted gradually from the centre of  
Luxembourg towards the NW, onto the Ardenne Mas-
sif. The diachronous pattern from East to West has 
been precisely determined using biostratigraphical data 
(Maubeuge 1965; Guérin-Franiatte  & Muller 1986; 
Guérin-Franiatte et al. 1991).

In the central part of the Belgian Lorraine, interdigita-
tions of the marly Lorraine facies (Arlon Formation) 
with the Luxembourg Sandstone define respectively 
the Tritte, Strassen, La Posterie marly units and the 
Metzert, Chevratte, Florenville, Orval, and Virton san-
dy units (Boulvain et  al. 2001b) (fig.  2). The Pliens-
bachian Hondelange Formation is a mixed facies with 
marls and bioturbated calcareous sandstone.

Later Pliensbachian and Toarcian formations corre-
spond to fine-grained dark argillaceous and marly units 
(Ethe, Messancy and Grandcourt formations) alternat-
ing with a mixed marly-sandstone unit (Aubange For-
mation). These units are locally rich in organic matter, 
indicating quiet sedimentation conditions on an anoxic 
sea floor. In Grand-Duchy of Luxembourg, the top of 
the Toarcian is sandy with ironstone beds (the well-
known “Minette” iron ore), which when fully devel-
oped is of Aalenian age (Faber et  al. 1999; Bintz  & 
Storoni 2009). In Belgium, the contemporaneous beds 
were largely eroded during a significant emersion. The 
youngest Jurassic strata belongs to the Bajocian in 
both countries. This stage is characterized by the de-
velopment of a carbonate platform: in Grand-Duchy of 
Luxembourg, the Audun-le-Tiche Limestone includes 
spectacular 20 x 200 m sized coral reefs.

3.	 Methods

Petrographic samples for thin sections (500, for the 
present study) were selected from all facies, even  

unconsolidated. In that case, samples were indurated 
with Geofix® resin. All the thin sections are preserved 
at the Sedimentary Petrology Laboratory in Liège. The 
MS measurements were made using a KLY-3 Kappa-
bridge device (see Da Silva & Boulvain 2006). Three 
measurements were made on each sample weighed 
with a precision of 0.01 g. Sampling interval varies but 
is less than 1 m; 2360 samples were analyzed.

4.	 Boreholes and sections

4.1.	 The Bonnert borehole and Tontelange section

The Côte Rouge or Tontelange quarry is located 3.5 km 
north of Arlon, along the N4  road, at the base of the 
Lower Jurassic cuesta (Dewalque 1854). Once used as 
a sandpit, the front-slope of the cuesta is currently ex-
ploited for the carbonate sandstones and sands.

Since the end of the 19th century, the Sinemurian 
cuesta running north of Arlon has proved to be in-
valuable for the study of the Belgian Lower Jurassic. 
The Côte Rouge quarry provided the first description 
of the Metzert Member (Dormal 1894), abundant pa-
laeontological material for the biostratigraphy of the 
Luxembourg Formation (Joly 1936; Maubeuge 1989), 
and an extended section improving the stratigraphic 
framework of Belgian Lower Jurassic (Maillieux 1948; 
Monteyne 1959; Mergen 1983; 1984).

The cleared cliff-side provides a unique section through 
the Metzert and Florenville members of the Luxem-
bourg Formation and the Strassen Member of the Arlon 
Formation. Accordingly, this quarry has been selected 
as the stratotype of the Luxembourg Formation in Bel-
gium (Boulvain et al. 2001b).

A borehole was drilled south of the Tontelange quar-
ry, at 205 m from the crossroad between the N4 road 
and the Metzert street (Lambert 72: X  =  253.375; 
Y = 45.825; WGS84: 5.8022 E; 49.7151 N). The drill 
core has a 9  cm diameter and is complete down to 
44 m (figs 3A-B). Due to the lack of cementation in the 
Metzert  Member, no continuous core was recovered 
deeper than 44 m. The borehole has then been complet-
ed with a section described in the Tontelange quarry 
(figs 3B-C). This section is 15 m thick and covers the 
upper part of the Metzert Member. The ages and bio-
stratigraphic zonations follow Gradstein et al. (2004). 
Biozonations calibrations are inferred from Mergen 
(1983).
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The two sections were precisely described bed-by-bed 
(fig. 3). Samples were collected on a regular base, for 
a total of 55 thin sections and 193 MS measurements. 
The synthesis log further provides an estimation of 
quartz grain size (cf. fig. 13).

4.2.	 The Haebicht BK-4A borehole

In the context of the search for a disposal site for indus-
trial waste, a series of 5 drill holes was made in 1993 
close to the highway service area of Capellen. The 
boreholes intersected the Hettangian-Pliensbachian 
beds over more than 100 m. The 10 cm diameter BK-
4A drill cores (LuRef: X = 65752; Y = 77476; WGS84: 
5.9709 E; 49.6317 N), are held at the Musée national 
d’Histoire naturelle du Luxembourg and were selected 
for the present work for which 101  thin  sections and 
394 MS measurements were performed (fig. 4). MS is 
supplemented by resistivity and X-ray data compiled 
from downhole well logs (cf. fig. 14). A former study of 
the same cores, focused on ammonites and a biostrati- 
graphy is proposed by Guérin-Franiatte (2003).

4.3.	 The Grouft FR-204-032 borehole

The Grouft borehole (LuRef: X = 79452; Y = 84733; 
WGS84: 6.1605  E; 49.6971  N), located 7  km SE of 
Mersch, close to Lorentzweiler, is a piezometer in-
stalled during the construction of the Grouft Tunnel. 
This tunnel, with a length of nearly 3  km, is one of 
the major civil engineering works of the “Route du 
Nord” highway (A7), leading from Luxembourg City 
to the North of the country. Its purpose was to monitor 
the groundwater levels in the aquifers crossed by the 
tunnel. The 8.5  cm diameter core samples are stored 
at the Geological Survey of Luxembourg and range 
from the Middle Keuper to the Lower Sinemurian. It 
should be noted that cores were only obtained from 70-
106  m depth (fig.  5). A total of 63  thin  sections and 
43  MS measurements were made. The synthesis log 
(cf.  fig.  10) further provides an estimation of quartz 
grain size and sorting.

4.4.	 The Grund borehole

This 55  m deep borehole was drilled in  1994 on the 
yard of the former prison for women in Luxembourg 
City (LuRef X = 77640; Y = 75014; WGS84: 6.1355 E; 
49.6097 N). The cores, of 8 cm diameter, range from 
the Triassic (Keuper) to the Upper Hettangian; 105 MS 
measurements and 52 thin sections were made from the 

cores. Well log data were acquired and included in this 
work (figs 6, 11).

4.5.	 The Consdorf FR-204-201 borehole

The Consdorf borehole (LuRef X = 94430; Y = 92835; 
WGS84: 6.3684 E; 49.7698 N) is one of several pie-
zometer installations that were made during a hydro-
geological survey related to the building of a waste 
dumpsite at Rosswinkel, SW of the Consdorf locality. 
The possible incidence of construction waste deposits 
on the underlying sandstone aquifer were investigated. 
The cores have a diameter of 10  cm and range from 
the Upper  Keuper to the Lower  Sinemurian and are 
preserved at the Geological Survey of Luxembourg; 
115  MS measurements and 115  thin sections were 
made from the cores. Logs are complemented by petro-
graphic data (sorting and quartz grain size) (figs 7, 12).

4.6.	 The Giele Botter quarry section

This section (Aalenian-Bajocian) is located in a pro-
tected area close to Niederkorn: the 255 ha Prënzebi-
erg-Giele Botter nature reserve (LuRef: X  =  59080; 
Y = 67880; WGS84: 5.879 E; 49.545 N), mainly ded-
icated to the “Minette” oolitic ironstone that made the 
wealth of the Luxembourg and French steel industries. 
In Grand-Duchy of Luxembourg, the Minette ironstone 
was deposited during the Late Toarcian-Early Aalenian 
in two basins: Esch-Ottange and Differdange-Longwy. 
The Differdange-Longwy iron ore is slightly older than 
the Esch-Ottange ore (Thein 1975; Achilles & Schulz 
1980). Theyssen (1984), who made a detailed study of 
this famous section, proposed a model of subtidal sand-
waves for the deposition of the oolitic ironstone. The 
present work is based on 62 thin sections and 186 MS 
measurements for section that is 41  m thick (fig.  8). 
The synthesis log is complemented with petrograph-
ic data (quartz grain size and sorting, clay content) 
(cf. fig. 15).

4.7.	 The Rumelange quarry section

The Rumelange section is 43  m thick, and surveyed 
in the Cimalux quarry close to Ottange (LuRef: 
X = 67350; Y = 57360; WGS84: 5.994 E; 49.451 N). 
The quarry works Bajocian limestone beds interbedded 
with marls for cement production. A bed-by-bed sam-
pling led to the collection of 118 samples used for MS 
measurements, 54 of which were used for thin sections 
(figs 9, 16).
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Figure 3A. The Bonnert borehole. Legend of symbols, cf. fig. 5.
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Figure 3B. The Bonnert borehole and Tontelange quarry section. 
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Figure 3C. The Tontelange quarry section.
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Figure 4A. The Haebicht borehole. 
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Figure 4B. The Haebicht borehole.
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Figure 4C. The Haebicht borehole. 
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Figure 4D. The Haebicht borehole. 
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Figure 5. The Grouft borehole. Legend of symbols. 
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Figure 6A. The Grund borehole.
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Figure 6B. The Grund borehole. 
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Figure 7. The Consdorf borehole. 
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Figure 8A. The Differdange “Giele Botter” section. 
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Figure 8B. The Differdange “Giele Botter” section. 
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Figure 9A. The Rumelange Cimalux quarry section. 
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Figure 9B. The Rumelange Cimalux quarry section.
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5.	 Petrography and microfacies

Three sedimentary systems, corresponding to nearly 
contemporaneous paleoenvironments, are recognized: 
a transgressive mixed siliciclastic-carbonate ramp for 
the Triassic-Toarcian interval, an early transgressive, 
low productivity, mixed ramp for the Aalenian, and a 
transgressive carbonate ramp for the Lower Bajocian. 
The different microfacies are described hereunder, 
from the most distal to the most proximal for each 
model. The Dunham (1962) textural classification for 
carbonates is used.

Similar microfacies, based on 150  thin  sections from 
the Latour, Neulimont and Villers-devant-Orval 
boreholes were already described and interpreted by  
Boulvain et  al. (2001a). The 500  new thin sections 
obtained from the present work are used to comple-
ment the study and generalize the paleoenvironmental  
models.

5.1.	 Triassic-Toarcian

The following microfacies were described from the 
Bonnert, Haebicht, Grouft, Grund, and Consdorf 
boreholes. The Triassic to Toarcian interval is charac-
terized by high accommodation rates responsible for 
a progressive marine transgression on the Ardenne  
basement. Sedimentation is dominated by high detrital 
inputs coming from the Eifel depression zone (Mertens 
et al. 1983).

(TT1) Homogeneous argillite or sub-millimeter lami-
nated silty argillite (silt ~15 µm). Locally, millimeter-
thick lenses of poorly sorted quartz (50-100  µm) ce-
mented by xenomorphic sparitic calcite are observed. 
Sporadic micas, pyrite, charcoal fragments, crinoids, 
peloids, ostracods, phosphatic grains may be present as 
well as 1 mm diameter horizontal burrows.

(TT2) This facies is a millimeter to several millimeter 
scale alternation of (A) silty argillite or microsparitic 
marl with sporadic charcoal debris and pyrite; (B) lo-
cally bioturbated microsparitic argillaceous packstone 
with bioclasts (crinoids, bivalves, gastropods, ostra-
cods, brachiopods), peloids and pyrite. Sporadic 60-
100 µm diameter quartz grains are observed; (C) poorly 
sorted cross-laminated argillaceous sandstone (quartz 
50-300 µm diameter). Bioturbation locally obliterates 
sedimentary structures. Xenomorphic sparitic cement 
is present; (D) well-sorted (~300 µm) sandstone with 
sparry calcite cement and bioclasts (crinoids, bivalves, 
gastropods).

(TT3) Laminated or bioturbated wackestone in sever-
al cm-thick lenses included in (silty) argillite or marl. 
This wackestone is rich in well-preserved fossils: bi-
valves, ostracods, gastropods, crinoids, cephalopods, 
together with fragments of charcoal, glauconite, phos-
phatic debris, and 50-300 µm diameter quartz grains.

(TT4) Microsparitic to pseudosparitic (cf. Tucker 1981) 
laminar to bioturbated calcareous sandstone or san-
dy packstone with peloids. Quartz grains are angular 
and moderately to well-sorted (60-300 µm diameter). 
Peloids are ~100 µm micritized bioclasts or lithoclasts. 
Some fossils are observed: crinoids, bivalves, gastro-
pods and charcoal fragments as well. Locally, oolites 
are present. Millimeter-thick irregular laminae of mi-
crosparitic marl are observed.

(TT5) Well-sorted laminar or bioturbated sandstone 
with bioclasts (bivalves, crinoids, gastropods, brachio-
pods). Locally, oolites and proto-oolites are very abun-
dant (with quartz or bioclast nuclei). Detrital feldspar 
and micas may occur. The cement consists of calcitic 
pseudospar, xenomorphic spar, syntaxial quartz, micro-
quartz, iron oxides/hydroxides, or pyrite. Quartz grains 
are well sorted (150-500 µm diameter) and well-round-
ed. Charcoal fragments are locally abundant, in mm-
thick lenses or disseminated.

(TT6) Microsparitic dolostone. Bioturbation is fre-
quently observed and corresponds to plant roots, lo-
cally filled with clay. Lithoclasts are common. Sand 
(~150 µm) or silt (30 µm) lenses are occasional.

(TT7) Laminar or massive argillite with glaebules, root 
structures, dolomitic nodules, iron oxides, lithoclasts. 
Sporadic lenses of silt (10-30 µm) or unsorted sand (up 
to 300 µm) are observed.

(TT8) Poorly sorted conglomerate with argillaceous 
or sparitic cement. Angular quartz sand is present.  
Gravels consist of quartzitic sandstone or quartz.

5.2.	 Aalenian

The following microfacies are representative of the 
“Minette” unit of the Differdange “Giele Botter” sec-
tion. The Aalenian is characterized by low sedimen-
tations rates, abundance of condensed ferruginous 
deposits and sedimentary hiatuses, related to a gen-
eral decrease of accommodation, probably of tecton-
ic origin. Climate was relatively humid (Martinez  &  
Dera 2015; Andrieu et al. 2016).
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(A1) Silty argillite or marl, with local millimeter-thick 
lenses of poorly sorted rounded quartz grains (up to 
500 µm diameter). Uncommon bioclasts of crinoids or 
bivalves are observed. They are commonly replaced by 
iron oxy-hydroxides.

(A2) Oolitic ironstone. Ferruginous oolites are ellipti-
cal, with a highly visible concentric lamination of iron 
oxide. They are commonly well-sorted, with a diame-
ter ranging between 100 to 600 µm. The nuclei of the 
ferruginous oolites are bioclasts, fragments of a former 
oolite or quartz. Beside the ferruginous oolites, the oth-
er grains are well-rounded bioclasts (bivalves, crinoids, 
brachiopods, ostracods, foraminifers), lithoclasts and 
well-rounded, poorly sorted quartz (up to several mm 
diameter). Lithoclasts and some bioclasts are replaced 
by iron oxides. The cement of this microfacies could be 
goethite, iron silicates (locally fibrous), or sparitic iron 
calcite. Siderite is observed as automorphic crystals in 
some oolites. Locally, oolites are squashed. Most bio-
clasts are imbricated, suggesting high energy environ-
ments (storm deposits).

5.3.	 Bajocian

The following microfacies are described from the up-
per part of the Differdange “Giele Botter” section and 
from the Rumelange quarry. The Bajocian age initiated 
a new cycle of renewed accommodation, drier climate 
and high carbonate sedimentation rates, dominated 
by photozoan reef builders (Martinez  & Dera 2015;  
Andrieu et al. 2016).

(B1) Well-sorted grainstone with millimeter-sized 
rounded bioclasts: crinoids, bivalves, brachiopods, 
bryozoans, ostracods, gastropods, mud-coated grains. 
Rounded exoclasts (including ferruginous oolites, 
quartz, etc.) are locally observed. Some of the bioclasts 
or lithoclasts are replaced by iron oxy-hydroxides. 
Angular 100 µm-1 mm diameter quartz grains are lo-
cally present. The grainstone cement is a xenomorphic 
Fe-calcite, or an automorphic calcite in 30  µm-thick 
isopachous rims. Moldic porosity is important. Un-
common chalcedony spherules in fossils are observed.

(B2) Poorly sorted grainstone or packstone with 
rounded bioclasts (corals, bivalves, crinoids, bra-
chiopods, codiacean algae) and lithoclasts. The coral 
fragments are abundant and several millimeters long. 
Poorly sorted quartz sand is locally present. The ma-
trix consists of microsparite or pseudosparite and 
the cement varies from a xenomorphic sparite to an  

automorphic calcite in isopachous rims, as in (B1) mi-
crofacies. Moldic porosity is frequent. This facies is 
commonly recrystallized.

(B3) Microsparitic to pseudosparitic laminar to biotur-
bated calcareous sandstone or sandy packstone with 
peloids, similar to (TT4) microfacies. It may alternate 
with (B1) microfacies.

6.	 Microfacies and formations

6.1.	 Triassic-Toarcian

As a preliminary remark, it should be emphasized that 
thin sections were generally obtained from the most 
hardened sediments, and therefore their nature may not 
be representative of the most pelitic formations.

The oldest unit intersected by the Grouft (fig.  10),  
Grund (fig. 11) and Consdorf (fig. 12) boreholes is the 
Attert Formation (Middle Keuper). This formation is 
characterized by microfacies TT6 (microsparitic dolo-
stone) and TT7 (pedogenetic argillite). These microfa-
cies are mostly associated with moderately developed 
pedogenetic structures (Wright 1994). Equivalent mi-
crofacies were described in the Neulimont and Villers 
boreholes. Additionally, in the Latour borehole, poorly 
sorted quartzose or lithic arenites were observed, to-
gether with sandstones and conglomerates cemented 
by gypsum or dolomite. Anhydrite occurred as deci-
metric fractured nodules with gypsum filling. These 
microfacies and associated lithologies point to an arid 
lowland with sparse vegetation and limited precipita-
tion of evaporites (fig. 17). Local and sporadic detrital 
supply is responsible for channelized or sheet-like im-
mature sandstones and conglomerates (cf. Alsharhan & 
Kendall 2003; Donselaar & Schmidt 2005).

The next unit is the Mortinsart Formation (Rhae-
tian). It is characterized, in the Grouft and Consdorf 
boreholes, by microfacies TT7 (pedogenetic argillite) 
and TT8 (poorly sorted conglomerate). In the Villers, 
Neulimont and Latour boreholes, however, well-sorted 
pluridecimetric sandy or silty units are also observed, 
suggesting a first littoral influence, in addition to the 
Attert-like aridic continental facies.

The Jamoigne Formation shows a large spectrum of 
purely marine microfacies (Grouft, Grund: TT1-4; 
Consdorf: TT1-5). Similar microfacies were described 
from the Latour, Neulimont and Villers boreholes. The 
depositional environments proposed for the micro-
facies TT1 to TT5 are organized according to a ramp 
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geometry (Burchette & Wright 1992) and range from 
the lower mid ramp to the inner ramp. TT1 (argillite or 
thinly laminated silty argillite) is a distal facies, located 
close to the storm wave base. The fauna is characteristic 
of open marine environments and the preserved lami-
nation suggests a reducing sea bottom. TT2 (silty argil-
lite alternating with bioclastic or peloidal argillaceous 
packstone, sandstone, and argillaceous sandstone), 
located in the storm wave zone (cf. Aigner 1985), re-
corded the starting of the carbonate factory on a more  
oxygenated and bioturbated sea bottom (Colombié 
et al. 2012). Lenses of TT3 (wackestones with well-pre-
served fossils) are associated with TT2 and correspond 
to periods with low detrital supply. The TT2  storm 
deposits are only distal tempestites (Reineck & Singh 
1972; Guillocheau 1983) and no proximal tempestites 
were observed in this unit. The Jamoigne  Formation 
was deposited on an offshore storm-controlled mixed 
detrital carbonate ramp, as were other similar facies 
(Calcaire à gryphées, cf. Hanzo et al. 2000).

The Luxembourg Formation was intersected by the 
Grouft, Grund, Consdorf, Bonnert (fig. 13) and Haebicht 
(fig. 14) boreholes. It was also present in Latour, Vil-
lers and Neulimont boreholes. This unit is an alterna-
tion of yellowish ochre, poorly cemented sandstones 
(10-20% carbonate) and grey to whitish, cement-rich 
sandy limestones (30-60% carbonate) (Colbach 2005). 
Microfacies correspond to TT4 (calcareous sandstone 
or sandy packstone with peloids) and TT5 (well-sort-
ed bioclastic and oolitic sandstone), both located on 
the inner ramp. Oolites are a local constituent of the 
sandstone and were only observed in Tontelange, Vil-
lers-devant-Orval and Neulimont. Decimetric to metric 
coquina beds with bivalves (Cardinia) are present and 
represent proximal tempestites (cf. Brenner & Davies 
1973; Mandic et al. 2004). Fauna has an open marine 
character with prevalent bivalves and crinoids. The 
moderate to good sorting and scarcity of mud is related 
to a relatively high energy, pointing to a fair-weather 
wave zone environment. The terrigenous clastic sup-
ply was abundant in both microfacies (Van Den Bril & 
Swennen 2009), and the efficient carbonate factory 
led to a high sedimentation rate. Due to the constant 
and high water agitation in the inner ramp, the coarse 
quartz grains were mixed with bioclasts and peloids. 
Sedimentation is most probably driven by longshore 
currents with the influence of storm waves. The long-
shore currents deposited sands in planar or cross 
bedded units, while short periods of calm allow the 

 deposition of thin clay laminae. These facies are in agree-
ment with the sandwaves facies model defined for the  
Luxembourg Sandstone (Berners 1983;  
Guérin-Franiatte et  al. 1991). Unidirectional cross 
stratifications have been related to asymmetric tid-
al flows inducing a dominant current (Mertens et  al. 
1983) and also related to lateral migration of the bars 
following the transgressive trend (Berners 1983).

The Arlon Formation is present in the Consdorf, Bon-
nert and Haebicht boreholes. As in the Jamoigne For-
mation, a relatively wide variety of marine microfacies 
are observed (TT1-5), suggesting similar paleoenvi-
ronments, ranging from close to the storm wave zone 
to the fair weather wave zone. When compared with 
the Luxembourg Formation, most of the facies from the 
Arlon Formation are characterized by less sorted and 
finer-grained sand, together with more abundant organ-
ic matter and coal fragments (Boulvain et al. 2001a).

The Ethe Formation is only intersected by the Haebicht 
borehole and is fully characterized by microfacies TT1, 
deposited close or below the storm wave base. The 
lower part of the Ethe Formation (Haebicht 52.5-42 m) 
shows horizontal burrows of deposit-feeders, while its 
upper part is devoid of any endofauna, suggesting more 
reducing conditions in the sediment. 

6.2.	 Aalenian

After a large stratigraphic gap, the next formation to 
be surveyed is the Minette, well exposed in the Differ-
dange “Giele Botter” section (fig.  15). The main mi-
crofacies is A2, oolitic ironstone, locally interrupted by 
A1 (silty argillite or marl with scattered iron-rich bio-
clasts and ooids). Despite numerous works that aimed 
to discover their genesis (Hallam  & Bradshaw 1979; 
Kimberley 1979; Van Houten & Bhattacharyya 1982; 
Teyssen 1984; Collin et al 2005; Reolid et  al. 2008; 
Garcia-Frank et al. 2012, etc.), a comprehensive depo-
sitional model of oolitic ironstone has yet to be estab-
lished. The purpose of the present work is only to bring 
some petrographical observations about this special 
ironstone. The well-sorted character of the oolites and 
bioclasts, the rounded aspect and pitting of the latter, 
and the grainstone texture all point to an open marine, 
well-agitated environment. Locally, a reworking by 
proximal storms is assumed to account for the imbri-
cation of shells. The depositional environment of the 
ironstone is located in the fair-weather wave zone, on a 
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Figure 10. Synthesis log of the Grouft borehole with stratigraphy, magnetic susceptibility, microfacies, quartz mean diameter 
and quartz sorting (relative scale). MSL = mean sea level; FWWZ = fair weather wave zone; SWZ = storm wave zone. 

Figure 11. Synthesis log of the Grund borehole with stratigraphy, magnetic susceptibility, microfacies, quartz mean diameter and 
quartz sorting (relative scale). MSL = mean sea level; FWWZ = fair weather wave zone; SWZ = storm wave zone.
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Figure 12. Synthesis log of the Consdorf borehole with stratigraphy, magnetic susceptibility, microfacies, quartz mean diameter 
and quartz sorting (relative scale). MSL = mean sea level; FWWZ = fair weather wave zone; SWZ = storm wave zone.
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Figure 13. Synthesis log of the Bonnert borehole and Tontelange quarry section with stratigraphy, magnetic susceptibility,  
microfacies and quartz mean diameter. MSL = mean sea level; FWWZ = fair weather wave zone; SWZ = storm wave zone. 
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Figure 14. Synthesis log of the Haebicht borehole with stratigraphy, magnetic susceptibility, microfacies, and gamma-ray log. 
MSL = mean sea level; FWWZ = fair weather wave zone; SWZ = storm wave zone.
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Figure 15. Synthesis log of the Differdange “Giele Botter” section with stratigraphy, magnetic susceptibility, ferruginous  
oolites content, microfacies (two models) and quartz mean diameter. MSL = mean sea level; FWWZ = fair weather wave zone; 
SWZ = storm wave zone.
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Figure 16. Synthesis log of the Rumelange Cimalux quarry section with stratigraphy, magnetic susceptibility and microfacies. 
MSL = mean sea level; FWWZ = fair weather wave zone; SWZ = storm wave zone. 
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Figure 17. Depositional system model with microfacies (TT1-8) for Triassic to Toarcian formations. FWWZ = fair weather wave 
zone; SWZ = storm wave zone. 

storm-dominated ramp. However, no data are available 
on the genesis of the ferruginous oolites. 

6.3.	 Bajocian

Petrographical information is available for the Bajo-
cian Marnes à Soninia (fig. 15), Calcaire de Haut-Pont 
(figs 15-16), Calcaire de Audun-le-Tiche and Calcaire 
de Nondkeil (fig. 16).

The limestone beds from the Marnes à Soninia are cha-
racterized by microfacies B3 (laminar to bioturbated 
calcareous sandstone or sandy packstone with peloids), 
similar to TT4, deposited on an open marine mid to 
inner mixed ramp. The Calcaire de Haut-Pont shows 
microfacies B3 and B1 (well-sorted grainstone with 
rounded bioclasts). The latter corresponds to crinoid 
dominated bioclastic shoals formed in the fair-weather 
wave zone (Bintz 2001). If B3 is still indicative of a 
certain level of detrital supply, B1 is a purer limestone 
and announces the future development of a healthy car-
bonate platform.

The Calcaire d’Audun-le-Tiche, in addition to mi-
crofacies B1, is largely dominated by microfacies B2 
(bioclastic grainstone or packstone with corals).  

This limestone is a peri-reefal facies, largely influenced 
by the well-known Isastrea reefs of the Rumelange 
area (Hary 1970).

Three synthesis conceptual depositional system mod-
els with the horizontal repartition of microfacies are 
proposed hereafter (figs 17-19). 

7.	 Magnetic susceptibility, formations and micro- 
facies

Changes in magnetic susceptibility (MS) in sedimen-
tary successions are attributed to changes in ferromag-
netic/paramagnetic mineral content, that in turn may 
reflect sea level variations (Ellwood et al. 1999). The 
major influence of sea level on the MS signal is re-
lated to the strong link between MS and detrital com-
ponents, assuming that the detrital input is generally  
controlled by eustasy or climate. In this way, a lower-
ing of sea-level (regression) increases the proportion of 
exposed continental area, increases erosion and leads to 
higher MS values, whereas rising sea level (transgres-
sion) decreases MS (Crick et al. 2001). Climatic vari-
ations influence MS through changes in rainfall (high 
rainfall increases erosion and MS), glacial-interglacial 
periods (glacial periods are related to glacier erosion 
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Figure 19. Depositional system model with microfacies (B1-3) for Bajocian formations. FWWZ =  fair weather wave zone; 
SWZ = storm wave zone.

Figure 18. Depositional system model with microfacies (A1-2) for Aalenian formations. FWWZ =  fair weather wave zone; 
SWZ = storm wave zone.
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and to marine regression and both effects increase MS) 
and pedogenesis (formation of magnetic minerals in 
soils; Tite & Linington 1975). Furthermore, early and 
late diagenesis can be responsible for MS variations 
through mineralogical transformations, dissolution or 
authigenesis (McCabe  & Elmore 1989; Zegers et  al. 
2003).

A series of 2360 samples coming from all the forma-
tions surveyed in this study were analyzed. Figure 20 
proposes a summary of MS versus logs for Consdorf, 

Grouft, Grund, Haebicht, Tontelange and Rumelange 
boreholes, together with new MS data for Latour and 
Neulimont boreholes. Table  1 and figure  21 give the 
number of samples, mean values and standard devia-
tion for all the formations intersected by all boreholes 
and sections (including Latour and Neulimont). 

First observations show that MS values are relatively 
weak for the Luxembourg Formation (except for some 
peaks whose origin is not yet explained), Calcaire et 
Marnes d’Audun-le-Tiche and Calcaire de Nondkeil. 

Figure 20. Summary of selected boreholes and magnetic susceptibility.
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MS values are high for the Ethe, Hondelange,  
Arlon, Attert formations, for the Minette and Marnes  
micacées.

A comparison between the MS and microfacies curves 
shows a clear positive correlation (figs 10-17), sugges- 
ting that the MS signal is primary, as already stated by 
Dechamps et al. (2015) for the Bajocian-Bathonian of 
the Azé caves. Moreover, the MS values regularly de-
crease from the marine distal (TT1) to the marine prox-
imal microfacies (TT5) (table 2; fig. 22A). The same 
pattern was recorded earlier for carbonate ramps (Mid-
dle Devonian: Mabille & Boulvain 2007; Tournaisian: 
Bertola et al. 2013). This was interpreted by Da Silva 
et al. (2009) as the consequence of local water agita-
tion in the shallower parts of a ramp, preventing the 
detrital particles from settling down and to the higher 
sedimentation rate that dilutes the magnetic minerals. 
More precisely, the sandstones and limestones show 
the weakest MS signal, while the argillaceous rocks 
are characterized by a strong and fluctuating MS sig-
nal. This was also observed in Lower Devonian sand-
stone-shale alternations by Michel et al. (2010; fig. 7). 
The stronger signal, also recorded from the Attert ar-
gillites and dolostones (microfacies TT6-7), is perhaps 
related to pedogenesis or proximity of the terrestrial 
sources (Tite & Linington 1975; Babek et al. 2013).

An important exception would be the ironstone, where 
the MS signal is directly influenced by the ferrugi-
nous ooids content (fig.  15). Concerning Bajocian  

Table 1. MS (m3/kg) versus formations for all sections and 
boreholes

Formations Number of 

samples 

Mean  

(m3/kg) 

Standard deviation 

(m3/kg) 

Calcaire de Nondkeil 15 2.23 E-08 5.47 E-09 

Marnes d'Audun-le-Tiche 13 1.90 E-08 8.64 E-09 

Calcaire d'Audun-le-Tiche 47 5.68 E-09 8.32 E-09 

Calcaire Haut-Pont 70 4.06 E-08 2.14 E-08 

Couches à Soninia 24 4.77 E-08 1.08 E-08 

Marnes micacées 19 7.39 E-08 1.84 E-08 

Minette 113 2.25 E-07 1.31 E-07 

Ethe 213 1.442 E-07 1.665 E-07 

Hondelange 22 7.282 E-08 9.490 E-08 

Arlon 264 4.565 E-08 2.241 E-08 

Luxembourg 668 2.024 E-08 6.163 E-08 

Jamoigne 543 3.687 E-08 1.506 E-08 

Mortinsart 73 5.420 E-08 3.538 E-08 

Attert 220 7.317 E-08 3.578 E-08 

Habay 58 6.265 E-08 3.898 E-08 

	

TT Consdorf n Grouft n Grund n Haebicht n Bonnert 

/Tontelange 

n 

1 4.41 E-08 2 4.72 E-08 7 4.68 E-08 4 9.59 E-08 59 7.90 E-08 1 

2 1.95 E-08 20 3.58 E-08 12 2.82 E-08 29 4.68 E-08 17 6.18 E-08 6 

3 7.45 E-09 1 2.68 E-08 4       

4 1.18 E-08 47 1.35 E-08 11 1.68 E-08 10 1.03 E-08 5 1.84 E-08 16 

5 1.19 E-08 30   7.15 E-09 2 7.68 E-09 8 7.63 E-09 26 

6 5.26 E-08 4 6.31 E-08 15 3.17 E-08 3     

7   9.01 E-08 8       

8 3.38 E-08 2         

B Rumelange  

1 2.30 E-08 17 

2 2.65 E-09 18 

3 2.07 E-08 18 

	

Table 2. Mean MS value 
(m3/kg) versus micro- 
facies for Consdorf, 
Grouft, Grund, Haebicht, 
Bonnert/Tontelange and 
Rumelange boreholes and 
sections. n  =  number of 
samples 
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Figure 21. Mean MS and standard deviation (m3/kg) versus formations for all sections and boreholes (number of samples).

Figure 22. A: mean MS value (m3/kg) versus TT microfacies for Consdorf, Grouft, Grund, Haebicht and Bonnert/Tontelange 
boreholes and sections. B: mean MS value (m3/kg) versus B microfacies for the Rumelange section. MSL = mean sea level; 
FWWZ = fair weather wave zone; SWZ = storm wave zone.
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microfacies  B1-3, the argillaceous rocks are charac-
terized by the highest MS signal, while carbonates 
show the weakest one (fig. 22B). This is probably re-
lated to the dilution of magnetic particles by carbonate  
production (Da Silva et al. 2009).

Conclusion

This study offers a detailed description of a series of 
boreholes (Bonnert, Haebicht, Grouft, Grund, Cons-
dorf) and sections (Tontelange, Differdange, Rume-
lange) representative of the Triassic to Jurassic of 
southern Belgium and Grand-Duchy of Luxembourg. 
At a low resolution, synthesis logs provide information 
about microfacies and a framework for magnetic sus-
ceptibility (MS) curves. MS results from previous and 
unpublished studies of the Neulimont, Latour and Vil-
lers-devant-Orval boreholes were combined to expand 
the database of the present work. Three sets of microfa-
cies, corresponding to three different sedimentary sys-
tems were necessary to address the complexity of the 
paleoenvironments: a transgressive mixed siliciclas-
tic-carbonate ramp system for the Triassic-Toarcian in-
terval (microfacies TT1-8), an early transgressive low 
productivity mixed ramp system for the Aalenian (mi-
crofacies A1-2) and a transgressive carbonate ramp for 
the Lower Bajocian (microfacies B1-3). This evolution 
reflects a combination of climatic and tectonic forc-
ing on the sedimentation area (Martinez & Dera 2015;  
Andrieu et  al. 2016). The TT1-8  microfacies range 
from the lower mid ramp to the inner ramp. TT1 (argil-
lite or thinly laminated silty argillite) is a distal facies, 
located close to the storm wave base, TT2 (silty argil-
lite alternating with bioclastic or peloidal argillaceous 
packstone, sandstone and argillaceous sandstone), lo-
cated in the storm wave zone, recorded the initiation 
of the carbonate factory on a more oxygenated sea bot-
tom. Lenses of TT3 (wackestones with well-preserved 
fossils) are associated with TT2 and corresponds to 
periods with low detrital supply. TT4 (calcareous 
sandstone or sandy packstone with peloids) and TT5 
(well-sorted bioclastic and oolitic sandstone), are both 
located on the inner ramp and correspond to sandwaves 
development. TT6 (microsparitic dolostone) and TT7 
(pedogenetic argillite) are supratidal or continental 
arid microfacies locally interrupted by sporadic detri-
tal supply, responsible for the formation of channelized 
or sheet-like immature sandstones and conglomerates 
(TT8). The “Minette” main microfacies is A2, oolitic 
ironstone, locally interrupted by A1 (silty argillite or 

marl with scattered iron-rich bioclasts and ooids). Both 
correspond to an open marine environment, periodical-
ly agitated by storms. Bajocian formations are char-
acterized by microfacies  B3 (laminar to bioturbated 
calcareous sandstone or sandy packstone with peloids), 
deposited on an open marine mid to inner mixed ramp, 
microfacies B1 (well-sorted grainstone with rounded 
bioclasts), corresponding to crinoid dominated bioclas-
tic shoals formed in the fair-weather wave zone, and 
microfacies B2, largely dominated by corals. This bio-
clastic grainstone or packstone is a peri-reefal facies, 
influenced by the well-known Isastrea reefs.

A comparison of the MS and microfacies curves shows 
a clear correlation between the two, suggesting that the 
MS signal is primary, or at least follows from the pri-
mary lithology. Moreover, the MS values regularly de-
crease from the marine distal (TT1) to the marine prox-
imal microfacies (TT5), with relatively weak mean MS 
values for sandstones and limestones, and high mean 
MS values for marls, argillites, and for the ironstone. 
This relation was interpreted by Da Silva et al. (2009) 
as the consequence of local water agitation in the shal-
lower parts of a ramp, preventing the detrital particles 
from settling down and to the higher sedimentation rate 
that dilutes the magnetic minerals.
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Plate. A: microfacies TT1: laminated silty argillite (Haebicht, 53); B: microfacies TT2: microsparitic marl and bioturbated 
marly siltstone with a few bioclasts (Consdorf, 45.5); C: microfacies TT3: bioturbated wackestone with gastropods, phosphatic 
debris and quartz (Grouft, 82.3); D: microfacies TT4: microsparitic bioturbated sandy packstone with peloids (Consdorf, 12);  
E: microfacies TT5: well-sorted sandstone with rare bioclasts and peloids (Consdord, 3.6); F: microfacies TT7: argillite with 
peloids, root structure and lithoclasts. (Grouft, 105.3); G: microfacies A2: oolitic ironstone with a Fe-silicate cement (Giele 
Botter, 5); H: microfacies B2: grainstone with rounded bioclasts, mud coated grains and lithoclasts; the cement is a 30-100 µm 
pseudosparitic to sparitic calcite (Rumelange, 28).
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transgressive mixed siliciclastic-carbonate ramp system for the Triassic to Lower Jurassic 
(Toarcian) interval (microfacies TT1-8), and, for the Middle Jurassic, an early transgressive 
low productivity mixed ramp system for the Aalenian (microfacies A1-2) and a transgres-
sive carbonate ramp for the Lower Bajocian (microfacies B1-3). A comparison of the MS 
and microfacies curves shows a clear correlation between the two, suggesting that the 
MS signal is primary. Moreover, the MS values regularly decrease from the marine distal 
(TT1) to the marine proximal microfacies (TT5), with relatively weak mean MS values for 
sandstones and limestones, and high mean MS values for marls, argillites and ironstone. 
This relationship is interpreted as the consequence of local water agitation in the shal-
lower parts of a ramp, preventing the detrital particles from settling down and to the higher 
sedimentation rate that dilutes the magnetic and/or paramagnetic minerals.
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