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Seed formation is an important step of plant development which depends on nutrient
allocation. Uptake from soil is an obvious source of nutrients which mainly occurs during
vegetative stage. Because seed filling and leaf senescence are synchronized, subsequent
mobilization of nutrients from vegetative organs also play an essential role in nutrient use
efficiency, providing source-sink relationships. However, nutrient accumulation during the
formation of seeds may be limited by their availability in source tissues. While several
mechanisms contributing to make leaf macronutrients available were already described,
little is known regarding micronutrients such as metals. Autophagy, which is involved
in nutrient recycling, was already shown to play a critical role in nitrogen remobilization
to seeds during leaf senescence. Because it is a non-specific mechanism, it could also
control remobilization of metals.This article reviews actors and processes involved in metal
remobilization with emphasis on autophagy and methodology to study metal fluxes inside
the plant. A better understanding of metal remobilization is needed to improve metal use
efficiency in the context of biofortification.
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INTRODUCTION
Micronutrients, such as metals, are essentials for cell functions.
Zinc (Zn), which exists only as divalent cation, plays an impor-
tant role in protein structure and function thank to its Lewis acids
properties. Transition metals such as iron (Fe), copper (Cu), or
manganese (Mn), which have unpaired electrons that promote
their involvement in oxido-reduction reactions, are used in a
wealth of biological processes (Pierre and Fontecave, 1999). A
third of the proteins characterized at the structural level are met-
alloproteins, highlighting the need of metals for cell functions
(Finney and O’Halloran, 2003).

In plants, transition metal functions are mainly associated to
energy production mechanisms, thereby about 80% of Fe in mes-
ophyll cell is localized in chloroplasts (Nouet et al., 2011). Fe is
essential for chlorophyll synthesis, nitrogen fixation, DNA repli-
cation, reactive oxygen species (ROS) detoxification, and electron
transport chain in both mitochondria and chloroplasts (Nouet
et al., 2011; Yruela, 2013). Mn plays a central role in the pho-
tosystem II (PS II) where it catalyzes water oxidation (Tommos
et al., 1998). This element is also involved in sugar metabolism,
Mn-superoxide dismutase (SOD), and chloroplastic enzymes such
as decarboxylases and dehydrogenases (Luk and Culotta, 2001;
Horsburgh et al., 2002; Aggarwal et al., 2012). Cu is integrated
into plastocyanines involved in electron transfer of chloroplasts
(Yruela, 2013). It plays also an essential role in the cytochrome
oxidase of mitochondria (Bleackley and Macgillivray, 2011). Zn
is required for carbon fixation through the carbonic anhydrase
(Badger and Price, 1994). It is also needed for the Cu/Zn-SOD,
transcriptional regulation by zinc-finger DNA binding proteins

and for the turnover of PSII in chloroplasts (Kurepa et al., 1997;
Bleackley and Macgillivray, 2011; Lu et al., 2011). Therefore, plants
need metals to achieve vital functions in all their organs.

Among all plant organs, seed is a special one because it has to
store metals required for germination and during the first days of
seedling development. Hence in annual plants, seed formation
is a crucial step in which plant sacrifices itself to store nutri-
ents for its offspring. Seed filling depends on nutrient originating
from de novo uptake by roots or remobilization from senescent
organs.

Here, we review genes and processes involved in metal remo-
bilization during seed filling. We will discuss methodologies that
can be used to study metal fluxes in plants and thereby determine
the relative contribution of uptake and remobilization pathways.
Autophagy is a ubiquitous process involved in cellular nutrient
recycling. Because it was recently shown to play a critical role
in nitrogen remobilization (Htwe et al., 2011; Guiboileau et al.,
2012), this review focuses on autophagy as a potential mecha-
nism to make metal available for subsequent remobilization during
senescence.

ORIGIN OF SEED METALS: UPTAKE FROM SOIL VS
REMOBILIZATION FROM SENESCENT TISSUES
CIRCULATION OF METALS INTO THE PLANT AND MICRONUTRIENT USE
EFFICIENCY
Understanding metal seed filling requires knowledge on the gen-
eral micronutrient pathways which was already summarized in
several recent reviews (Pittman, 2005; Palmgren et al., 2008; Mor-
rissey and Guerinot, 2009; Puig and Peñarrubia, 2009; Yruela,
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2009; Pilon, 2011; Waters and Sankaran, 2011; Thomine and Vert,
2013).

On the whole, both uptake from soil and remobilization
from senescent organs may participate in metal loading in seeds
(Figure 1). To date, little is known about the contribution of metal
remobilization from senescent organs to seed filling. In contrast,
this topic is well documented regarding nitrogen. It was shown
that uptake and fixation of nitrogen dramatically decrease at the
onset of reproductive stage in cereals, oilseed rape and legumes
(Salon et al., 2011). Accordingly, 50 to 90% of nitrogen grain of
rice, wheat, or maize originate from leaf remobilization (Masclaux
et al., 2001). This highlights that the importance of nitrogen remo-
bilization for seed filling is conserved in most plants. However,
some species, such as oilseed rape, have a low nitrogen remobiliza-
tion capacity resulting in low nitrogen use efficiency (Schjoerring
et al., 1995; Etienne et al., 2007).

As for nitrogen, it is necessary to better understand metal remo-
bilization from senescent organs during seed filling with the aim
to increase micronutrient use efficiency in the context of inten-
sive agriculture, fertilization limitations, and biofortification. This
is especially important as metal availability may become limiting

FIGURE 1 | Uptake and remobilization pathways involved in seed

filling with emphasis on source-sink relationships. Micronutrients from
the rhizosphere (brown arrow) are taken up into roots and transported to
the xylem vessels (shown in blue). After xylem loading, micronutrients are
translocated into shoots for subsequent unloading. Micronutrients located
in the xylem can also be unloaded into the xylem parenchyma of nodes to
be transferred to phloem vessels (shown in red) by specific transporters
(Sondergaard et al., 2004; Tanaka et al., 2008; Yamaji and Ma, 2009). This is
essential for seed filling which is only achieved by the phloem sap (Patrick
and Offler, 2001). Phloem micronutrients are unloaded to fill seeds.
Because seed filling is also achieved by nutrient remobilized from
senescent tissues (green arrow), seed formation requires close
synchronization between sink formation and source organ senescence.
Age, biotic and abiotic stresses contribute to orchestrate nutrient
mobilization during leaf senescence with the formation of reproductive
organs and seed filling (black arrows). Light and photoperiod act indirectly
on leaf senescence by stimulating the development of the reproductive
organs.

under certain environmental conditions (drought, low tempera-
ture) and soil characteristics (low metal content, high salt content,
ionic unbalance, low pH, high bicarbonate concentration; Chen
and Barak, 1982; Karamanos et al., 1986; Graham, 1988; Alloway,
2009).

METHODOLOGIES TO DETERMINE NUTRIENT FLUX
The most common way to study nutrient fluxes within the
plant is to determine the “apparent remobilization” which con-
sists in the measurement of the total amount of element of
interest present in different plant organs at different times
(Masclaux-Daubresse et al., 2010). However, this approach does
not provide sufficient resolution and does not allow distinguish-
ing nutrients coming from different pathways, such as nutrient
uptake from soil and nutrient remobilization from senescent
leaves.

The most appropriate approach to study short-term accumu-
lation, uptake from soil and fluxes between tissues is the use of
isotopes as tracers. Isotopic labeling can be implemented with dif-
ferent protocols (Grusak, 1994; Wu et al., 2010; Erenoglu et al.,
2011; Hegelund et al., 2012).

Metal fluxes may be monitored by pulse-chase labeling using
radioactive or stable isotopes. The 59Fe, 65Zn, and 68Zn radioiso-
topes have been used for pulse labeling on specific organs followed
by a chase period to facilitate the identification of source organs
contributing to seed filling in peas, wheat and rice (Grusak, 1994;
Wu et al., 2010; Erenoglu et al., 2011; Zheng et al., 2012). Following
this approach, it was demonstrated that nutrient supply can affect
Zn remobilization in wheat (Erenoglu et al., 2011). In rice, dif-
ferences in Zn remobilization efficiency between genotypes were
observed using isotopic pulse-chase on specific organs (Wu et al.,
2010).

Recently, pulse labeling using very short life ß+ radioiso-
tope like 52Fe, 52Mn, and 62Zn has been used to image metal
fluxes within a plant via a real-time and non-destructive tech-
nique called Positron-Emitting Tracer Imaging System (Kume
et al., 1997; Tsukamoto et al., 2006; Tsukamoto et al., 2009).

Non-radioactive isotope is also used for pulse labeling on spe-
cific organs. Application of 65Cu to one individual leaf of rice
allowed to study Cu redistribution between the different leaves
during vegetative stage (Zheng et al., 2012). Non-radioactive iso-
topes can be also added in the nutrient solution for labeling plants
early during development in order to monitor nutrient movement
during vegetative stages or later at reproductive stage to study
remobilization and seed filling. Using Zn isotopes, this pulse-chase
approach has been used to quantify the effect of nutrient limita-
tion on Zn fluxes between organs in rice and wheat (Wu et al.,
2010; Erenoglu et al., 2011). Moreover, 70Zn pulse-chase labeling
combined with laser ablation-inductively coupled plasma-mass
spectrometry has provided a spatial distribution of Zn within
wheat seeds revealing zinc transport barriers during grain filling
in wheat (Wang et al., 2010).

Long term labeling in nutrient solution may be performed to
address the contribution of uptake from soil to organs during
a specific developmental stage, with respect to the contribution
of endogenous remobilization. Continuous application of 68Zn
provided evidence that Zn uptake before anthesis contributes to
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more than 50% to the total Zn grain content in rice (Wu et al.,
2010). Shorter continuous labeling can also be used to deter-
mine the uptake capacity by measuring isotope accumulation in
roots (Hegelund et al., 2012) or isotope depletion in the nutritive
solution (Erenoglu et al., 2011).

Isotopic labeling is an essential tool to study metal fluxes within
the plant but require the availability of enriched isotopes and
adequate analytical tools. Initially, isotopic labeling was mainly
performed using radioactive isotope despite the risk for humans.
Nowadays, enriched stable isotopes are more and more accessible
at least for Fe, Ni, Cu, Zn, and Mo. They represent a healthier
and less restrictive alternative but their analysis requires the use
of mass spectrometry, such as inductively coupled plasma-mass
spectrometry.

THE COUPLING BETWEEN SENESCENCE AND
MICRONUTRIENT REMOBILIZATION
CONTROL OF SENESCENCE AND REMOBILIZATION AT THE WHOLE
PLANT LEVEL
Senescence is an active process controlled by age whereby sink
tissues performing photosynthesis and anabolism become source
tissues undergoing catabolism (Figure 2). Senescence makes nutri-
ents available for further plant organs (Hörtensteiner and Feller,
2002), contributing to nutrient use efficiency. Optimal remobi-
lization requires close synchronization between sink formation
and source organ senescence (Figure 1). It was observed that
the removal of sink tissues delays senescence in oilseed rape, soy-
bean and wheat and decrease nitrogen remobilization in oilseed
rape and soybean (Patterson and Brun, 1980; Crafts-Brandner
and Egli, 1987; Noquet et al., 2004; Htwe et al., 2011). How-
ever, senescence and remobilization are also controlled by other

parameters such as nutrient availability (Figure 1). In Arabidopsis,
nitrogen limitation triggers leaf senescence (Lemaître et al., 2008).
In wheat, remobilization of Fe and Zn from flag leaves to seeds
is increased under nutrient-limiting conditions (Waters et al.,
2009; Wu et al., 2010; Sperotto et al., 2012b). Conversely con-
tinuous nutrient uptake during seed formation may account for
low nutrient remobilization in some species (Masclaux-Daubresse
and Chardon, 2011; Waters and Sankaran, 2011). However, an
opposite behavior was observed in barley plants for which remo-
bilization increased upon high Zn supply. This illustrates the
diversity of Zn management at the whole plant level (Hegelund
et al., 2012). Moreover, other abiotic and biotic stresses such as
pathogen attack, high salinity, drought, low temperature, modi-
fications of light intensity, and quality can also cause premature
senescence and remobilization (Nooden et al., 1996; Buchanan-
Wollaston, 1997; Gan and Amasino, 1997). Because they are
sessile, plants developed high plasticity to respond to environ-
ment conditions, triggering cell death and remobilization in
order to save nutrients and produce more adapted organs and
tissues.

CONTROL OF SENESCENCE AND REMOBILIZATION AT THE MOLECULAR
LEVEL
Transcript analysis, comparing green and senescing leaves, led to
the identification of senescence-associated genes (SAG) in dif-
ferent species (Hensel et al., 1993; Buchanan-Wollaston, 1994;
Smart et al., 1995; Guo et al., 2004; Buchanan-Wollaston et al.,
2005; van der Graaff et al., 2006; Breeze et al., 2011). Irrevo-
cably, the expression of genes encoding cysteine proteases is
strongly induced in senescent leaves (Hensel et al., 1993; Smart
et al., 1995; Bhalerao et al., 2003; Andersson et al., 2004; Guo

FIGURE 2 | Sink/source transition at the cellular level. Active
photosynthetic cells perform carbon fixation, energy production and
anabolism and require micronutrients for these functions. Senescence
modifies these sink cells into a source cells undergoing catabolism. Intense
catabolism activities and nutrient recycling occurs in chloroplasts, cytosol,
and vacuole allowing nutrient remobilization. Chloroplasts, which
concentrate a large part of metals, are first affected (Zavaleta-Mancera
et al., 1999). Pigment degradation directly takes place in chloroplasts
(Hörtensteiner et al., 1995; Park et al., 2007). However, stromal proteins are
degradated into the central vacuole through rubisco containing body (RCB:
autophagosome) or into senescence associated vacuoles (SAV) through an

ATG-independent route which is not well understand yet (Hörtensteiner and
Feller, 2002; Ishida et al., 2008; Ishida et al., 2013). These dismantling
mechanisms decrease chloroplast seize enabling whole chloroplast
degradation via chlorophagy (Ishida et al., 2013). Peroxisomes are modified
to glyoxysomes, which produce energy and soluble sugars from lipid
catabolism (Buchanan-Wollaston, 1997; del Rìo et al., 1998). Mitochondria
that remain intact until late after senescence onset, are in turn degraded
when the energy demand decreases (Yoshida, 2003). Finally, membrane
permeabilization causes loss of cytoplasm that finally leads to death. ROS,
reactive oxygen species; SAV, senescence-associated vacuoles; RCB,
rubisco containing body; N, nucleus.
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et al., 2004; Breeze et al., 2011). As expected, these analyses
confirmed induction of genes involved in hormonal pathways
(Andersson et al., 2004; van der Graaff et al., 2006; Breeze et al.,
2011). Indeed, senescence is regulated by the balance between
senescence promoting hormones, namely jasmonic acid, abscisic
acid, salicylic acid, and ethylene, and senescence repressing hor-
mones such as cytokinins, auxins, and gibberellins (van der
Graaff et al., 2006). As hormones, sugars are known to act as
signaling molecules and several lines of evidence indicate that
they also contribute to senescence regulation. Sugar concen-
trations rise in senescent leaves. Moreover, overexpression of
hexokinase, a sugar sensor, accelerates senescence whereas anti-
sense expression delays senescence in Arabidopsis (Nooden et al.,
1997; Masclaux et al., 2000; Xiao et al., 2000; Watanabe et al.,
2013).

Genes coding metal ion binding proteins such as metalloth-
ioneins, ferritins, zinc-finger proteins, metalloproteases (Ftsh)
and metal transporters were also frequently found to be upreg-
ulated in senescent leaves (Buchanan-Wollaston, 1994; Bhalerao
et al., 2003; Andersson et al., 2004; Guo et al., 2004; Zelisko et al.,
2005). This may illustrate the involvement of metals in degrada-
tion mechanisms and/or the importance of their remobilization
(Breeze et al., 2011). Furthermore, these transcriptomic analy-
ses highlighted the significant induction of autophagy related
genes (ATG genes) and genes encoding NAC and WRKY tran-
scription factors (Andersson et al., 2004; Guo et al., 2004; van der
Graaff et al., 2006; Breeze et al., 2011). Whereas NAC have already
been demonstrated to be involved in micronutrient remobiliza-
tion during senescence (Olmos et al., 2003; Guo and Gan, 2006;
Uauy et al., 2006; Sperotto et al., 2009, 2010; Waters et al., 2009),
nothing is known about the implication of ATG genes in this
process.

ROLE OF AUTOPHAGY IN NUTRIENT RECYCLING AND
REMOBILIZATION
INVOLVEMENT OF AUTOPHAGY IN NUTRIENT RECYCLING
Autophagy catabolizes cytoplasmic components that are no longer
useful. It eliminates aberrant proteins and damaged organelles
for the maintenance of essential cellular function by vacuole
internalization mediated by double membrane vesicles called
autophagosomes (Yoshimoto, 2012). Genes involved in autophagy
(ATG) were first defined by a genetic screen in yeast (Mat-
suura et al., 1997), thereby molecular mechanisms have been well
described on this organism (for reviews see Thompson and Vier-
stra, 2005; Bassham, 2007; Li and Vierstra, 2012; Yoshimoto, 2012).
Most of these genes turned out to have conserved functions in all
eukaryotic cells. They encode proteins involved in the induction
of autophagy, membrane delivery for autophagosome forma-
tion, nucleation, expansion, and enclosure of autophagosomes
(Thompson and Vierstra, 2005).

Autophagy can be triggered upon nutrient starvation and stress
leading to intracellular remodeling, which allows plants to respond
to environmental constraints (Yoshimoto, 2012). Accordingly,
mutants impaired in ATG genes exhibit decreased growth associ-
ated with premature senescence when they develop under carbon
or nitrogen starvation (Doelling et al., 2002; Hanaoka et al., 2002;
Yoshimoto et al., 2004; Phillips et al., 2008; Chung et al., 2010;

Suttangkakul et al., 2011). Plants defective in autophagy are thus
unable to cope with nutrient starvation suggesting that autophagy
is an important mechanism for nutrient use efficiency and cellular
homeostasis.

AUTOPHAGY CONTROLS NUTRIENT REMOBILIZATION DURING
SENESCENCE
During senescence, cytoplasmic components such as organelles
are gradually dismantled and degraded. Autophagy is an essen-
tial degradation process for nutrient recycling and remobilization.
Accordingly, up-regulation of ATG genes is observed during
leaf senescence in Arabidopsis (Doelling et al., 2002; van der
Graaff et al., 2006; Chung et al., 2010; Breeze et al., 2011) and
the decrease of chloroplast number and chloroplast size during
senescence is affected in Arabidopsis atg4a4b-1 mutant (Wada et al.,
2009).

Because of its key role in the degradation of cellular compo-
nents during nutrient recycling and its up-regulation and involve-
ment during senescence, it was hypothesized that autophagy
could play a role in nutrient remobilization. During senescence,
autophagy was shown to be involved in the degradation of chloro-
plasts and specifically of RuBisCO which is the most abundant leaf
protein containing about 80% of the cellular nitrogen (Figure 2;
Chiba et al., 2003; Ishida et al., 2008; Wada et al., 2009; Gui-
boileau et al., 2012; Ishida et al., 2013). In addition, pulse-chase
experiments in which 15N labeling was applied in nutrient solu-
tion during vegetative stage revealed a significant decrease of
nitrogen remobilization from vegetative tissues to seeds in atg
mutants. These results demonstrated that autophagy is required
for nitrogen remobilization and seed filling (Guiboileau et al.,
2012).

Chloroplast is the organelle where metals are most intensively
used. Thereby about 80% of the cellular Fe is localized in chloro-
plasts (Nouet et al., 2011). Because autophagy is involved in the
degradation of organelles, including chloroplasts, the role of
autophagy in metal recycling in source tissues for remobilization
to the seeds has to be considered. In plants, autophagy leads to the
degradation of autophagosome cargo within the vacuole. Hence,
tonoplastic metal efflux transporters are needed to retrieve met-
als from the vacuole. Interestingly, transcriptomic analyses that
highlight autophagy induction during senescence in Arabidopsis
leaf also show specific up-regulation of NRAMP3, a gene encod-
ing a transporter involved in metal mobilization from vacuoles
(Thomine et al., 2003; Lanquar et al., 2005, 2010; Breeze et al.,
2011). Availability of metals in source tissues may therefore also
be dependent on autophagy and subsequent mobilization from
vacuole during senescence.

REMOBILIZATION AND AUTOPHAGY IN THE CONTEXT OF
BIOFORTIFICATION
BIOFORTIFICATION TO IMPROVE HUMAN DIET
Key micronutrients are often not sufficiently available in human
diet (Kennedy et al., 2003). Over 60% of the world popula-
tion are Fe deficient and over 30% are Zn deficient (White
and Broadley, 2009). Staple food crops such as cereal grains
are poor sources of some mineral nutrients, including Fe and
Zn. Thus, the importance of cereals in human diet accounts
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in large part for micronutrients deficiencies (Gomez-Galera et al.,
2010).

Biofortification aims at increasing the availability of key
micronutrients such as Fe and Zn in crops (White and Broadley,
2009). For this purpose, conventional breeding and genetic engi-
neering are performed in rice, which is the major staple crop in
most countries affected by Fe-deficiency (Juliano, 1993; WHO,
2002; Sperotto et al., 2012a). Single or multiple metal homeostasis
genes were already introduced in rice through genetic engineering
to improve grain Fe content (Sperotto et al., 2012a). By pyramid-
ing transgenes conferring strong sink strength in seeds, high metal
translocation and enhancing phloem unloading during seed mat-
uration, it was possible to increase Fe concentration by 4.4 in rice
seeds (Masuda et al., 2012).

ENGINEERING AUTOPHAGY AS A NEW WAY FOR BIOFORTIFICATION
Another option to increase seed micronutrient content could be to
improve their availability in source tissues for remobilization dur-
ing seed formation. Himelblau and Amasino (2001) showed that
senescence of Arabidopsis leaves only leads to a decrease by 40%
of leaf concentrations of metals such as Mo, Fe, Cu, and Zn. Thus,
about 60% of these micronutrients are not remobilized and can
therefore not participate to seed filling. Up-regulating autophagy
in source tissues specifically during seed formation could improve
intracellular nutrient recycling and thereby increase the nutrient
pool available for reallocation. However, because autophagy is not
specific, this approach may increase seed yield without increasing
Zn or Fe concentrations. To improve seed quality, up-regulation
of autophagy should be combined with a strategy that specifically
targets a metal, such as the expression of ferritin under the control
of a seed endosperm promoter in the case of Fe (Sperotto et al.,
2012a).

More than thirty genes are involved in autophagy (Yoshi-
moto, 2012). It might therefore not be straightforward to increase
autophagy by overexpressing autophagy related genes during
seed formation. However, autophagy is regulated at the post-
transcriptional level by the target of rapamycin (TOR) kinase
complex (Noda and Ohsumi, 1998; Kamada et al., 2000). Because
TOR is a negative regulator of autophagy, its specific inhibi-
tion in vegetative tissues during seed formation may be the best
approach to stimulate autophagy and nutrient recycling. On
the other hand, TOR kinase complex is not a specific regula-
tor of autophagy. It controls many others aspect of metabolism
(Diaz-Troya et al., 2008). Besides, autophagy itself is not only
involved in nutrient recycling. It also controls the hypersensitive
response (Yoshimoto et al., 2009). Therefore, further investigations
are necessary to determine if TOR inactivation during senes-
cence is efficient for biofortification and to identify more specific
regulators.
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