

(

Current challenges in the physics of white dwarfs Santa Fe, 12-16 June 2017

Pulsations in white dwarf stars

Valerie Van Grootel

(STAR Institute, Liège University, Belgium)

Main collaborators:

G. Fontaine	P. Brassard	M.A. Dupret
(U. Montréal)	(U. Montréal)	(U. Liège)
S. Charpinet	N. Giammichele	E.M. Green
IRAP/U. Toulouse)	(IRAP/U. Toulouse)	(U. Arizona)

Outline

- I. What is asteroseismology?
- II. The zoo of pulsations in white dwarfs
- III. What can be learned from white dwarf asteroseismology
- IV. What do we need for white dwarf asteroseismology

Outline

- I. What is asteroseismology ?
- II. The zoo of pulsations in white dwarfs
- III. What can be learned from white dwarf asteroseismology
- IV. What do we need for white dwarf asteroseismology

Study the interiors of stars by interpreting their pulsations

Goal: improve our knowledge of stellar interiors (stars are opaque...)

What is not well known ?

Global properties (mass, radius,...)
Thermonuclear fusion properties
Microphysics (opacities)
Convection properties
 (core, envelope)
Microscopic transport (gravitational settling, radiative forces)
Macroscopic transport (differential rotation,magnetism, etc.)

What is asteroseismology ? ("stellar seismology")

Theoretical grounds:

- Linearized equations of hydrodynamics
- Angular dependence described with spherical harmonics

•Pulsations are excited and propagate in some regions, and are evanescent in others

In white dwarfs: gravity modes

representative of different stages of evolution (from birth to death)

Main sequence stars (H-burning) including the Sun

Intermediate stages of evolution

- Red Giants
- Horizontal Branch stars (He-burning), eg. sdB stars

Late stages of evolution White dwarfs (no burning)

- I. What is asteroseismology ?
- II. The zoo of pulsations in white dwarfs
- III. What can be learned from white dwarf asteroseismology
- IV. What do we need for white dwarf asteroseismology

Pulsators are present at various masses and evolutionary stages

<u>Classical (~0.6Ms, 0.5-1.2Ms)</u>

- GW Vir or PG1159, He-C-O atmo (~140,000-80,000 K, ~20 pulsators are known)
- V777 Her (DBV), He-rich atmo (~30,000-25,000 K, ~15 known)
- ZZ Ceti (DAV), H atmo (~12,000-11,000 K, ~60 known)

Extremely Low-Mass (~0.2Ms)

- Pre-ELM, H-He atmo, 5 known
- ELM DAV, H atmo, 5 known

Courtesy: G. Fontaine

Pulsators are present at various masses and evolutionary stages

Predicted

- DAOV (post-EHB)
- Hot-DAV (~30,000 K)

<u>Exotics</u>

GW Lib, accreting white dwarfs, H-He atmo, ~15 known

Dismissed? (as self-driven pulsator)

 DQV, C-rich atmo, ~5 known, highly magnetic (MG)

Rotation rather than pulsations? (not multiperiodic + theoretical works)

Courtesy. G. Fontaine

The zoo of pulsating white dwarfs

Valerie Van Grootel - Santa Fe, June 2017

Typical internal structure of a white dwarf

Here: ZZ Ceti model, 0.6Ms, T_{eff}=11,800 K

"onion-like" stratification

Internal stratification and core composition not well known !

(reflects uncertainties on the previous phases of stellar evolution: ${}^{12}C(\alpha,\gamma){}^{16}O$ rate, various mixing processes, thermal pulses on AGB, etc)

- I. What is asteroseismology ?
- II. The zoo of pulsations in white dwarfs
- III. What can be learned from white dwarf asteroseismology
- IV. What do we need for white dwarf asteroseismology

Search the stellar model(s) whose theoretical periods best fit all the observed ones, in order to minimize

$$S^{2}(a_{1}, a_{2}, ..., a_{N}) = \sum_{i=1}^{N_{obs}} (P_{obs}^{(i)} - P_{th}^{(i)})^{2}$$

> Models: Parametrized/static models (*independent of stellar evolution*), or grids of fully evolutionary models *N parameters*: T_{eff}, logg, envelope layering, core composition, convection efficiency

> Optimization procedure: Efficient optimization codes (based on Genetic Algorithms) to thoroughly explore the parameter space and find the minima of S²

Under external constraints from spectroscopy + mode identification (if available)

> Results: structural and core parameters of the star (M_{*}, M_{env}, M_{core}, etc.), internal chemical stratification (elements profiles)

The example of the V777Her star KIC08626021 (Giammichele et al.)

- 23 months of *Kepler* high-precision observations (0.6 nHz)
- 8 observed independent modes, 143-376 s
- Spectroscopy: T_{eff}=29,360±780 K, logg=7.89±0.05
- Parametrized models for DB stars: ex. He profile parametrization:

The example of the V777Her star KIC08626021 (Giammichele et al.)

- Fit to the 8 periods at the precision of the observations (S²~10⁻¹⁵)
- Inferred chemical profile:

Higher central and total O abundance and bigger core than predicted from stellar evolution

Valerie Van Grootel - Santa Fe, June 2017

See also poster of N. Giammichele

The example of the V777Her star KIC08626021 (Giammichele et al.)

Table 1 | Derived properties of KIC08626021

Quantity	Estimated value
$\log g (\text{cm s}^{-2})$	7.917 ± 0.009
<i>T</i> _{eff} (K)	29,968 ± 150
X(He) _{env}	0.18 ± 0.03
log <i>q</i> 1	-7.63 ±0.09
$\log q_2$	-3.23 ± 0.05
X(O) _{center}	0.86 ± 0.02
log q ₃	-0.72 ± 0.01
<i>M</i> (He)/ <i>M</i> *	0.0113 ± 0.0006%
<i>M</i> (C)/ <i>M</i> *	21.96 ± 2.7%
<i>M</i> (O)/ <i>M</i> *	78.03 ± 2.7%
M _* /M _☉	0.570 ± 0.004
R∗/R₀	0.0138 ± 0.0001
L∗/L⊙	0.137 ± 0.005
<i>M</i> _r ^a	10.28 ± 0.03
<i>d</i> (pc) [⊳]	422 ± 45
P _{rot} (h)	46.3 ± 2.5
V _{eq} (km s⁻¹)	0.36 ± 0.02
<i>J</i> (kg m² s⁻¹) ^c	6.59±0.38×10 ³⁸
J/J⊙	1/291
dP/dt ₁₉₇ (s/s) ^d	14.4 or 2.8×10 ⁻¹⁴
dP/dt ₂₃₂ (s/s) ^d	15.1 or 2.8×10 ⁻¹⁴
d <i>P</i> /d <i>t</i> ₂₇₁ (s/s) ^d	15.5 or 3.0×10 ⁻¹⁴

Access to stellar radius, mass, luminosity, distance,...

Asteroseismic results important for:

- Constraints for stellar evolution
- WD cosmochronology (GAIA)
 - C/O content
 - « insulating » envelope

By exploiting the fine structure of modes, interpreted as *rotational splitting* (rotation lifts the (2I+1)-fold degeneracy of pulsation modes)

How to compute pulsation periods in presence of rotation is a whole field of asteroseismology, but, if Pmodes << Prot:

$$\sigma_{klm} = \sigma_{kl} - m \int_0^R \Omega(r) K_{kl}(r) dr \qquad \qquad K_{kl}(r) = \frac{\xi_r^2 - [l(l+1) - 1]\xi_h^2 - 2\xi_r \xi_h}{\int_0^R [\xi_r^2 + l(l+1)\xi_h^2] \rho r^2 dr} \rho r^2$$

ξr,ξh:eigenfunctions

Internal rotation profile in white dwarfs: PG 1159-035 (=GW Vir)

3.50 3.40 3.30 3.20

3.10

3.00 2.90

2.80

2.70 2.60

2.50

2.40 2.30 2.20

2.10 2.00 1.90

1.80

1.70

1.60 1.50

1.40 1.30 1.20 1.10

1.00 0.90 0.80

0.70

0.60 0.50 0.40

0.30 0.20 0.10

0.00

1.0

Solid-body rotation over 99% of the stellar mass; Prot=33.67±0.24h

A pre-WD has already lost all of its angular momentum

Valerie Van Grootel - Santa Fe, June 2017

Understanding how pulsations are excited, trying to reproduce observed instability strips

General picture: opacity-driven mechanism:

- Don Winget (1981) for ZZ Ceti:
- H ionization/recomb. around T_{eff}~12,000 K
- \Rightarrow envelope opacity increase
- ⇒ strangle the flow of radiation, convection zone develops
- \Rightarrow g-modes instabilities
- // ELM pulsators (H atmo)
- By analogy, Winget proposed pulsating He-rich, V777 Her white dwarfs:
 Hell partial ionization around T_{eff}~30,000 K
 // pre-ELM pulsators (H-He atmo)
- Partial ionization of K-shell e⁻ of C and O for GW Vir, no convection development (κ-mechanism)

Understanding how pulsations are excited, trying to reproduce observed instability strips

ZZ Ceti & ELM (H-atmo)

V777 Her (He-rich atmo)

What can be learned: convection in WDs (depth, efficiency)

Understanding how pulsations are excited, trying to reproduce observed instability strips

Empirical strips (e.g. group of P. Bergeron, WET collaboration):

- Decades of work to reach a homogeneous view of the empirical strips (high-quality photometric & spectroscopic observations + high-quality model atmospheres)
- In both cases: most likely a **pure** strip
- Efficiency of convection in *atmospheres*: α/MLT=0.6 (ZZ Ceti) and α/MLT=1.25 (V777Her)

Theoretical strips (e.g. Van Grootel et al.):

- T_{conv} << Periods of pulsations (blue edge), or T_{conv} <~ Periods (later in cooling)
- ⇒ need of **Time-Dependent Convection (TDC)**, as in MAD code (Dupret, Liège)
- TDC still fails to reproduce the red edge: energy leakage argument (mode are no longer reflected back by the atmosphere)
- **1D** stellar models with, for upper layers, same T stratification than full 1D model atmospheres

Detailed modeling of the superficial layers:

Our structure models have the same T stratification as the complete (1D) model atmospheres \Rightarrow "feedback" of the convection on the global atmosphere structure

Theoretical instability strip for ZZ Ceti and ELM DA pulsators

Theoretical instability strip for V777Her stars

Theoretical instability strip for V777Her stars

- **BUT: .** Red edge leakage *slightly* too cool (?)
 - Kepler observartions: 2 pulsators hotter than blue edge !

TDC with turbulent pressure perturbations

$$\frac{\delta P_t}{P_t} = \frac{\delta \rho}{\rho} + 2 \frac{\overline{\delta V_r}}{V_r}$$

• With δPt=3:

Theoretical instability strip for V777Her stars

Red edge « with turbulent pressure »: ~500 K hotter than red edge leakage

But 3δPt is not physically realistic. Mimic other components of the Reynolds stress tensor (Pt = *rr* component), i.e. **turbulent viscosity** ?

Theoretical instability strip for V777Her stars

Red edge « with turbulent pressure »: ~500 K hotter than red edge leakage

But 3δPt is not physically realistic. Mimic other components of the Reynolds stress tensor (Pt = *rr* component), i.e. **turbulent viscosity** ?

3D simulations for DA and DB white dwarfs (P.E. Tremblay)

See also poster of E. Cukanovaite

Detailed modeling of the superficial layers:

Our structure models have the same T stratification as the complete (1D) model atmospheres \Rightarrow "feedback" of the convection on the global atmosphere structure

Outline

- I. What is asteroseismology ?
- **II.** The zoo of pulsations in white dwarfs
- III. What can be learned from white dwarf asteroseismology
- IV. What do we need for white dwarf asteroseismology

- I. What is asteroseismology ?
- II. The zoo of pulsations in white dwarfs
- III. What can be learned from white dwarf asteroseismology
- IV. What do we need for white dwarf asteroseismology
- To improve further equilibrium structures used for asteroseismology, including for WD cosmochronology:
 - Extended EOS
 - Radiative & conductive opacities

To understand better driving/damping pulsations in WDs:

 Patched 1D models + improved treatment for interaction between convection and pulsations by including turbulent viscosity (work in progress)

Radiative and conductive opacities

Valerie Van Gi

Equation of state

What we can learned from WD seismology:

Quantitative asteroseismology:

- Global parameters
- Internal layering and chemical stratification
- Internal rotation profile
- Non-adiabatic asteroseismology:
 - how pulsations are driven
 - how convection behaves in WD

What do we need from WD seismology:

- About physics: EOS & opacities
- Patched 1D models + improved treatment for interaction between convection and pulsations (work in progress)

•From the linearized equations of hydrodynamics (small perturbations to equilibrium):

$$f_{klm}^{\prime}(r,\theta,\phi,t)=f_{kl}^{\prime}(r)Y_{l}^{m}(\theta,\phi)e^{i\sigma_{kl}t} \quad \text{ (f'=p, v, T, ...)}$$

- eigenfunction f'(r) (radial dependence)

- oscillation eigenfrequency σ_{kl} (temporal dep.)
- spherical harmonics Y^m (angular dep.)

Lamb and Brunt-Väisälä frequency

$$L_l^2 = \frac{l(l+1)c_s^2}{r^2} \qquad \qquad N^2 = \frac{g^2\rho}{p}\frac{\chi_T}{\chi_\rho}(\nabla_{\rm ad} - \nabla + B)$$

Oscillations are excited and propagate in some regions, and are evanescent in others

- if $\sigma^2 > L_l^2, N^2$: **p-modes** (restoring force : pressure), acoustic waves
- if $\sigma^2 < L_l^2$, N^2 : g-modes (restoring force : buoyancy), gravity waves

Driving and damping of pulsations in GW Vir white dwarf

Courtesy: G. Fontaine

Internal rotation profile in white dwarfs: KIC08626021

Pulsation modes probe ~70% of the stellar radius (81% of the stellar mass)

Solid-body rotation down to 0.3 R_{*}, Prot=46.34±2.54 h

Common point: opacity-driven mechanism

Don Winget (1981) for ZZ Ceti:

H ionization/recomb. around T_{eff} ~12,000 K

- \Rightarrow envelope opacity increase
- ⇒ strangle the flow of radiation, convection zone develops
- \Rightarrow g-modes instabilities

// ELM pulsators (H atmo)

- By analogy, Winget proposed pulsating He-rich, V777 Her white dwarfs:
 Hell partial ionization around T_{eff}~30,000 K
 // pre-ELM pulsators (H-He atmo)
- Partial ionization of K-shell e⁻ of C and O for GW Vir, no convection development (κ-mechanism)

Energy leakage argument

• For the red edge (long-standing problem):

based on the idea of Hansen, Winget & Kawaler (1985): red edge arises when

 $\tau_{th} \sim P_{crit} \quad \alpha \; (I(I+1))^{-0.5}$

 $(\tau_{th}:$ thermal timescale at the base of the convection zone),

which means the mode is no longer reflected back by star's atmosphere