Olivier Absil

Université de Liège

High-contrast companions: the PIONIER view

Context: the exoplanet craze

- 20+ exoplanets imaged
 - Near-IR contrast $\leq 10^{-3}$
 - Separations: 0.4" 10+"
- Shorter separations?
 - Extreme AO: ~100 mas
 - Dynamic range ≥ 10 mag
 - Aperture masking: ~30 mas
 - Dynamic range ~ 7 mag
 - Interferometry: ~1 mas

HR8799 with LBT/LMIRCam+AGPM

Interferometric view of binaries

- Sum of 2 offset fringe packets
 - Source size increased \rightarrow <u>visibility</u> affected
 - Photocenter shifted → phase affected
 - "Resolved" when $\Delta \theta > \lambda/2B$

Detection methods

Based on fringe amplitude

- Squared visibililities
- Nulling
- Based on fringe phase
 - Differential phase
 - Closure phase

Squared visibilities

- Drop in V²
 - Up to 4× flux ratio
 - Period λ/Δθ vs. B
- Robust astrometry needs many OBs
 - Or multi-telescope array
 - 180° ambiguity remains
- Dynamic range
 - ~100:1 assuming 1% accuracy on V2

Nulling interferometry

- Put the 2 beams in phase and lock them
- Introduce achromatic
 π phase shift
- Dynamic range ≥ 10³:1 (Palomar Fiber Nuller)

Differential phase

- Absolute phase lost due to turbulence
- Wavelengthdifferential phase can be measured
 - Non-zero if star and companion have different spectra
- Affected by dispersion
 - Contrast limited to a few 100:1

Closure phase

- $\Psi_{123} = \phi_{12} + \varepsilon_1 + \phi_{23} + \phi_{31} \varepsilon_1$
 - All telescope-specific errors are removed
 - ≠ o only when object not point-symmetric
- Case of a high contrast binary: ψ = ρm
 - ρ: flux ratio
 - m: magnification factor
 - Primary resolved → "closure phase nulling"

Magnification factor

- m = sin α_{12} + sin α_{23} + sin α_{31}
 - $\alpha_{ij} = 2\pi \mathbf{B}_{ij} \cdot \mathbf{\theta} / \lambda$
- Ranges from o° to 149°
 - $\rho = 1\% \rightarrow \psi = \rho m \sim 1^{\circ}$
- Contrast/position ambiguity solved by
 - *u,v* coverage
 - Spectral dispersion

Wavelength dependence of ψ

The PIONIER view

- Observables
 - 6 visibilities
 - 4 closure phases
 - Spectral dispersion
 - SMALL: 3 channels
 - LARGE: 7 channels
- Binary search tools
 - Absolute V²
 - Absolute CP

Field-of-view limitations

- Single-mode fibers
 - Injection efficiency affected by seeing
 - FHWM ~ 400 mas
- Mostly superposed fringe packets
 - 50m, LARGE → ~100 mas
- Spectral sampling
 - Period ~ $\lambda^2/B\Delta\theta > 4\Delta\lambda$
 - 50m, LARGE → ~70 mas
 - Aliasing further out

Closure phase stability

Companion search method (CP)

- Test null hypothesis (H_o = no companion)
 - Compute χ² for single star model (Ψ=ο)
 - Derive associated probability: $P_o = 1 CDF_v(\chi^2)$
 - $CDF_{v} = \chi^{2}$ cumulative probability distribution with v dof
 - If $P_o < 0.27\%$ (3 σ Gaussian) then H_o rejected
- Underlying assumptions
 - Gaussian noise
 - Error bars properly estimated
- In practice: χ^2/ν generally ≠ 1 for single star

Companion search method (CP)

- Better idea (?)
 - Compare χ²(o) with χ² of binary models
 - Test many binary models $\rightarrow \chi^2$ cube
- Check if adding companion reduces significantly the χ²
 - Find χ²_{min} in cube
 - Renormalise: χ²/χ²_{min}
 - Check null hypothesis

Illustration: minimum χ² map

NON-DETECTION

DETECTION

A companion to δ Aqr

- Long period RV + astrometry
- Contrast 2.05% ± 0.16%
 - A3V + G5V system
- Position ambiguous

Marion et al., in prep

A companion to 90 Tau

CLOSURE PHASES

VISIBILITIES

Deriving upper limits

- Based on χ² cube
 - Renormalise $\chi^2|_{\rho=0} = 1$
 - Find ρ such that χ²=χ²_{lim} (3σ criterion)
- Double blind test
 - Fake companions inserted into calibrated ψ data
 - Count the fraction of good detections vs ρ

Deep search: χ² cube

- 3σ sensitivity on
 100 mas region
 - Fom: 2.3 × 10⁻³
 - τ Cet: 3.5 × 10⁻³
- 90% upper limit
 - 0.17 M_{sun} (~M6V)
 - 0.09 M_{sun} (~BD)
- Exclude
 companion as
 source of near infrared excess

Deep search: blind test

- Confirms the χ² results
- Median sensitivity
 - Fom: 1.9 × 10⁻³
 - τ Cet: 3.2 × 10⁻³
- Noise floor
 - $\leq 2.3 \times 10^{-3}$
 - $\leq 3.5 \times 10^{-3}$

Snapshot sensitivity (Regulus)

- Median sensivitity: 5.4 × 10⁻³
- Poor uv plane coverage → zones with low sensitivity
- Blind test ok for contrast but not for position
 - "Side lobes" of instrument PSF

Sensitivity vs number of OBs

- Assume accuracy of 0.25° on A1-G1-I1-Ko
- Pointings at hour angles
 - oh
 - -1h, oh, 1h
 - -2h, -1h, oh, 1h, 2h
- Median sensitivities
 - 6×10⁻³, 4.5×10⁻³, 4.0×10⁻³
 - Huge improvement in completeness
- 3 pointings ok for survey

Sensitivity vs configuration

- Sensitivity does not depend on configuration
- Configuration size still matters
 - Sets inner working angle and FOV size
- Ideal filler program

Astrophysical applications

- Performance summary
 - Noise floor ~ 0.2°
 - Dynamic range △H~6
 - Valid up to H~6 (?)
- Warm BD/planets
 - Transition objects
 - Moving groups
 - Hot Jupiters ... not yet
- Binary fraction of massive stars

Age	AoV	GoV	MoV	
10 Myr	0.09 M _{sun}	0.017 M _{sun}	0.012 M _{sun}	
50 Myr	0.22 M _{sun}	0.043 M _{sun}	0.013 M _{sun}	
200 Myr	0.35 M _{sun}	o.o8 M _{sun}	0.030 M _{sun}	

Example: the EXOZODI survey

- ~90 stars in H band
- ~20 stars in K band (some overlap)
- Use combined χ² for V² and CP

Marion et al., in prep

Binaries in the EXOZODI survey

	Name	Date	Significance (cp+v2)	Significance (cp)	Significance (v2)	
AolV HI	ПD4150	17-12-2012	7.08	3.73	6.84	2%, 90 mas
	11D4130	09-08-2013	22.52	29.25	43.84	
	HD7788	23-07-2012	7.29	1.88	13.51	
	HD15798	16-10-2012	5.96	1.98	13.83	
		09-08-2013	13.72	4.96	19.74	
A6V	HD16555	18-12-2012	106.20	28.04	219.17	50%, 80 mas
	HD20794	15-10& 12-12-2012*	4.47	1.51	6.59	
		10-08-2013	6.49	3.65	8.68	
		11-08-2013	3.58	3.53	5.48	
	HD23249	15-10& 16-12-2012*	11.59	3.36	20.51	
	HD28355	15-12-2012	4.31	2.44	5.58	0/
A6V	HD29388	16-12-2012	106.03	50.89	105.03	3% , 11 mas
		16-10-2012	3.46	2.34	5.00	
	HD39060	09-08-2013	3.87	2.23	4.35	
		11-08-2013	5.92	3.67	8.52	
	HD158643	08-08-2013	7.58	5.60	26.00	
		09-08-2013	9.14	2.74	13.69	
	HD173667	09-08-2013	3.98	1.47	5.69	
		11-08-2013	3.30	2.92	4.87	
A _\ (HD197481	08-08-2013	4.39	2.03	5.01	
A5V	HD202730	24-07-2012	11.47	8.58	21.02	95%, 65 mas
	HD216956	09-08-2013	5.04	2.23	6.04	
AıV	HD224392	26-07-2012	12.53	19.46	5.75	
		08-08-2013	20.06	3.58	22.93	2% , ?? mas
		09-08-2013	5.96	2.31	7.16	
		11-08-2013	10.50	6.25	11.53	

3σ sensitivity: V² vs CP

CP: 3σ , 4σ , or something else?

Summary

