Olivier Absil
Université de Liège
High-contrast companions: the PIONIER view

Context: the exoplanet craze

- 20+ exoplanets imaged
- Near-IR contrast $\leq 10^{-3}$
- Separations: 0.4" - 10+"
- Shorter separations?
- Extreme AO: ~100 mas
- Dynamic range $\geq 10 \mathrm{mag}$

HR8799 with LBT/LMIRCam+AGPM

- Aperture masking: ~30 mas
- Dynamic range ~ 7 mag
- Interferometry: ~1 mas

Interferometric view of binaries

- Sum of 2 offset fringe packets
- Source size increased \rightarrow visibility affected
- Photocenter shifted \rightarrow phase affected
- "Resolved" when $\Delta \theta>\lambda / 2 B$

Detection methods

- Based on fringe amplitude
- Squared visibililities
- Nulling
- Based on fringe phase
- Differential phase
- Closure phase

Squared visibilities

- Drop in V^{2}
- Up to $4 \times$ flux ratio
- Period $\lambda / \Delta \theta$ vs. B
- Robust astrometry needs many OBs
- Or multi-telescope array
- 180° ambiguity remains
- Dynamic range
- ~100:1 assuming 1\% accuracy on V_{2}

1\% contrast at 10 mas

Nulling interferometry

- Put the 2 beams in phase and lock them
- Introduce achromatic π phase shift
- Dynamic range $\geq 10^{3}: 1$ (Palomar Fiber Nuller)

Differential phase

- Absolute phase lost due to turbulence
- Wavelengthdifferential phase can be measured
- Non-zero if star and companion have different spectra
- Affected by dispersion
- Contrast limited to a few 100:1

Closure phase

- $\Psi_{123}=\phi_{12}+\varepsilon_{1}+\phi_{23}+\phi_{31}-\varepsilon_{1}$
- All telescope-specific errors are removed
- \neq o only when object not point-symmetric
- Case of a high contrast binary: $\psi=\rho m$
- ρ : flux ratio
- m: magnification factor
- Primary resolved \rightarrow "closure phase nulling"

Magnification factor

- $m=\sin \alpha_{12}+\sin \alpha_{23}+$ $\sin \alpha_{31}$
- $\alpha_{i j}=2 \pi B_{i j} \cdot \theta / \lambda$
- Ranges from 0° to 149°
- $\rho=1 \% \rightarrow \psi=\rho m \sim 1^{\circ}$
- Contrast/position ambiguity solved by
- u,v coverage
- Spectral dispersion

Magnification factor "m" (equilateral triangle, 60 m baseline, H band)

Wavelength dependence of Ψ

The PIONIER view

- Observables
- 6 visibilities
- 4 closure phases
- Spectral dispersion
- SMALL: 3 channels
" LARGE: 7 channels
- Binary search tools
- Absolute V^{2}
- Absolute CP

Field-of-view limitations

- Single-mode fibers
- Injection efficiency affected by seeing
- FHWM ~ 400 mas
- Mostly superposed fringe packets
- 50m, LARGE \rightarrow ~100 mas
- Spectral sampling
- Period $\sim \lambda^{2} / B \Delta \theta>4 \Delta \lambda$
- 50m, LARGE $\rightarrow \sim 70 \mathrm{mas}$
- Aliasing further out

Closure phase stability

Companion search method (CP)

- Test null hypothesis ($\mathrm{H}_{\mathrm{o}}=$ no companion)
- Compute χ^{2} for single star model ($\Psi=0$)
- Derive associated probability: $P_{o}=1-C D F_{v}\left(\chi^{2}\right)$
- CDF $_{v}=\chi^{2}$ cumulative probability distribution with v dof
- If $\mathrm{P}_{0}<0.27 \%$ (3σ Gaussian) then H_{0} rejected
- Underlying assumptions
- Gaussian noise
- Error bars properly estimated
- In practice: $\chi^{2 / v}$ generally $\neq 1$ for single star

Companion search method (CP)

- Better idea (?)
- Compare $\chi^{2}(0)$ with χ^{2} of binary models
- Test many binary models $\rightarrow \chi^{2}$ cube
- Check if adding companion reduces significantly the χ^{2}
- Find $\chi^{2}{ }_{\text {min }}$ in cube
- Renormalise: χ^{2} / χ^{2} min
- Check null hypothesis

Illustration: minimum χ^{2} map

NON-DETECTION

A companion to $\delta \mathrm{Aqr}$

- Long period RV + astrometry
- Contrast 2.05\% $\pm 0.16 \%$
- A3V + G5V system
- Position ambiguous

A companion to go Tau

CLOSURE PHASES

VISIBILITIES

Deriving upper limits

- Based on χ^{2} cube
- Renormalise $\left.\chi^{2}\right|_{\rho=0}=1$
- Find ρ such that $\chi^{2}=\chi^{2} \lim$ (3σ criterion)
- Double blind test
- Fake companions inserted into calibrated ψ data
- Count the fraction of good detections vs ρ

Deep search: χ^{2} cube

- 3σ sensitivity on 100 mas region
- Fom: 2.3×10^{-3}
- τ Cet: 3.5×10^{-3}
- 90\% upper limit
- $0.17 \mathrm{M}_{\text {sun }}$ (~M6V)
- $0.09 \mathrm{M}_{\text {sun }}$ ($\sim \mathrm{BD}$)
- Exclude companion as source of nearinfrared excess

Deep search: blind test

- Confirms the χ^{2} results
- Median sensitivity
- Fom: 1.9×10^{-3}

- τ Cet: 3.2×10^{-3}
- Noise floor
- $\leq 2.3 \times 10^{-3}$
- $\leq 3.5 \times 10^{-3}$

Snapshot sensitivity (Regulus)

- Median sensivitity: 5.4×10^{-3}
- Poor uv plane coverage \rightarrow zones with low sensitivity
- Blind test ok for contrast but not for position
- "Side lobes" of instrument PSF

Linear separation [AU]

Sensitivity vs number of OBs

- Assume accuracy of 0.25° on A1-G1-lı-Ko
- Pointings at hour angles
- oh
- -1h, oh, 1h
- - $2 h,-1 h, o h, 1 h, 2 h$
- Median sensitivities
- $6 \times 10^{-3}, 4.5 \times 10^{-3}, 4.0 \times 10^{-3}$
- Huge improvement in completeness
- 3 pointings ok for survey

Sensitivity vs configuration

- Sensitivity does not depend on configuration
- Configuration size still matters
- Sets inner working angle and FOV size
- Ideal filler program

Astrophysical applications

- Performance summary
- Noise floor~0.2
- Dynamic range $\Delta \mathrm{H} \sim 6$
- Valid up to H~6 (?)
- Warm BD/planets
- Transition objects
- Moving groups
- Hot Jupiters ... not yet
- Binary fraction of massive stars

Age	AoV	GoV	MoV
10 Myr	$0.09 \mathrm{M}_{\text {sun }}$	$0.017 \mathrm{M}_{\text {sun }}$	$0.012 \mathrm{M}_{\text {sun }}$
50 Myr	$0.22 \mathrm{M}_{\text {sun }}$	$0.043 \mathrm{M}_{\text {sun }}$	$0.013 \mathrm{M}_{\text {sun }}$
200 Myr	$0.35 \mathrm{M}_{\text {sun }}$	$0.08 \mathrm{M}_{\text {sun }}$	$0.030 \mathrm{M}_{\text {sun }}$

Example: the EXOZODI survey

- ~90 stars in H band
- ~20 stars in K band (some overlap)
- Use combined χ^{2} for V^{2} and CP

Binaries in the EXOZODI survey

AolV	Name	Date	Significance (cp+v2)	Significance (cp)	Significance (v2)
	HD4150	17-12-2012	7.08	3.73	6.84
	HD4150	09-08-2013	22.52	29.25	43.84
A6V	HD7788	23-07-2012	7.29	1.88	13.51
		16-10-2012	5.96	1.98	13.83
	HD15798	09-08-2013	13.72	4.96	19.74
	HD16555	18-12-2012	106.20	28.04	219.17
		15-10\& 12-12-2012*	4.47	1.51	6.59
	HD20794	10-08-2013	6.49	3.65	8.68
		11-08-2013	3.58	3.53	5.48
A6V	HD23249	15-10\& 16-12-2012*	11.59	3.36	20.51
	HD28355	15-12-2012	4.31	2.44	5.58
	HD29388	16-12-2012	106.03	50.89	105.03
		16-10-2012	3.46	2.34	5.00
	HD39060	09-08-2013	3.87	2.23	4.35
		11-08-2013	5.92	3.67	8.52
		08-08-2013	7.58	5.60	26.00
	HD158643	09-08-2013	9.14	2.74	13.69
$A_{5} \mathrm{~V}$	HD173667	09-08-2013	3.98	1.47	5.69
	HD173667	11-08-2013	3.30	2.92	4.87
	HD197481	08-08-2013	4.39	2.03	5.01
	HD202730	24-07-2012	11.47	8.58	21.02
	HD216956	09-08-2013	5.04	2.23	6.04
A1V	HD224392	26-07-2012	12.53	19.46	5.75
		08-08-2013	20.06	3.58	22.93
		09-08-2013	5.96	2.31	7.16
		11-08-2013	10.50	6.25	11.53

2\%, 90 mas
50%, 8 omas

3\%, 11 mas
$95 \%, 65 \mathrm{mas}$

2\%, ?? mas

30 sensitivity: V² vs CP

CP: $3 \sigma, 4 \sigma$, or something else?

Significance level

Summary

-PIONIER —NACO/SAM-L —NACO/AGPM-L

