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ABSTRACT

Aims. We present a technique to determine the orbital and physicalparameters of eclipsing eccentric Wolf-Rayet+ O-star binaries,
where one eclipse is produced by the absorption of the O-starlight by the stellar wind of the W-R star.
Methods. Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from
the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple
mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters
and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to
derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of thewind transparency
and limb-darkening laws.
Results. The method is applied to the SMC W-R eclipsing binary HD 5980,a remarkable object that underwent an LBV-like event in
August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the
system allows a quality assessment of the results obtained.

Key words. stars: early-type – stars: mass-loss – binaries: eclipsing– stars: individual: HD 5980

1. Introduction

Photometric monitoring of Wolf-Rayet (W-R) binaries revealed
that many of them display a shallow eclipse when the W-R star
passes in front of its O-type companion (e.g. Lamontagne et al.
1996). These so-called atmospheric eclipses arise when part of
the light of the O-type companion is absorbed by the wind of the
W-R star. In a few cases, the light curve displays an eclipse at
both conjunctions and the analysis of this phenomenon can pro-
vide important information about the physical parameters of W-
R stars and their winds. In this context, the most famous example
is V444 Cyg (WN5+ O6 V), which has been extensively inves-
tigated by the Moscow group (e.g. Antokhin & Cherepashchuk
2001 and references therein). Cherepashchuk and coworkers
(e.g. Cherepashchuk 1975, Antokhin & Cherepashchuk 2001
and references therein) developed a sophisticated method to han-
dle the ill-posed problem of light curve inversion for V444 Cyg.
Based on the minimuma priori assumptions about the trans-
parency function, this method not only yields the radii of both
components, but also provides information about the structure of
the WN5’s stellar wind. However, because of a number of funda-
mental hypotheses that are not necessarily valid for all eclipsing
W-R binaries, this method cannot be readily applied to all eclips-
ing W-R + O systems. For eccentric systems in particular (e.g.
WR22, Gosset et al. 1991) some assumptions (such as spherical
symmetry of the problem) break down and a different technique
must be used.

We initiated our study of the observed light changes of
eclipsing Wolf-Rayet binary systems when two of us (J.B. and
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C.P.) tried to confirm the 25.56 day period found by Hoffmann
et al. (1978) for the SMC star HD 5980, the first extragalactic
Wolf-Rayet binary then known to display eclipses. This exercise
led to the discovery of the correct orbital period of HD 5980,
P = 19.266± 0.003 days (Breysacher & Perrier 1980), the light
curve revealing, in addition, a rather eccentric orbit ofe = 0.47
assumingi = 80◦. However, because of the uncertainties in the
depth of both minima, caused by an insufficient number of ob-
servations, no detailed quantitative analysis of this preliminary
light curve could be attempted.

Its relatively long period and large eccentricity ensure that
HD 5980 is an interesting object in which to study the structure
of a W-R envelope, and a photometric monitoring of this sys-
tem was initiated to define the shape of its light curve in a more
accurate way. More than 700 observations were collected. After
realizing that none of the existing ‘classical tools’ was suited to
our purpose – the decoding of the light changes of apartially-
eclipsing systemcharacterized by aneccentric orbitand contain-
ing one component with anextended atmosphere– we started to
develop another approach to the solution of light curves.

The technique of light curve analysis applied to V444 Cyg
by Smith & Theokas (1980), which is based on Kopal’s fun-
damental work (cf. Kopal 1975, 1979), appeared as an attractive
approach to the solution of our problem. This method is basedon
the interpretation of the observed light changes in thefrequency-
domain, i.e., not the light curve as a function of time, but its
Fourier-like integral transform.

We now describe in detail the method we developed for the
study of Wolf-Rayet eclipsing binaries. A preliminary applica-
tion of this technique to the light curve of HD 5980 prior to
its 1994 LBV-like eruption (see e.g., Bateson & Jones 1994,
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Barbá et al. 1995, Heydari-Malayeri et al. 1997) was presented
by Breysacher & Perrier (1991, hereafter BP91). We reanalyse
the pre-outburst observational data using an improved version
of the software tool. Revised values for the physical parameters
of HD 5980 are derived. A synthetic light curve based on the
elements thus obtained allows a quality assessment of the new
results.

A more detailed study of HD 5980, including the analysis of
the light curve obtained after the eruption (Sterken & Breysacher
1997), will be presented in a forthcoming paper.

2. Analysis of the light changes in the
frequency-domain

In this section, we present the fundamental equations of our
method, we then introduce the mathematical functions to model
the transparency and limb-darkening functions and consider the
specific problem of eccentric orbits.

2.1. The basic equations

We refer to the fundamental work of the Manchester group (cf.
Kopal 1975, 1979; Smith 1976), and first consider an eclipsing
system consisting of two spherical stars revolving around the
common centre of gravity in circular orbits, and appearing in
projection on the sky as uniformly bright discs. The system is
seen at an inclination anglei. When star 1 of fractional lumi-
nosity L1 and radiusr1 is partly eclipsed by star 2 of fractional
luminosityL2 and radiusr2 (Fig. 1), the apparent brightnessl of
the system (maximum light between minima taken as unity) is
given by

l(r1, r2, δ, J) = 1−
∫ ∫

A
J(r) dσ, (1)

whereδ is the apparent separation of the centres of the two discs,
J represents the distribution of brightness over the apparent disc
of the star undergoing eclipse, anddσ stands for the surface el-
ement. The distancesr1, r2, andδ are expressed in units of the
orbital separation. The integral in Eq. (1) provides the apparent
‘loss of light’ displayed by the system when an areaA(r1, r2, δ)
of star 1 is eclipsed (see Fig. 1). The assumption that star 1 is
uniformly bright yields

J(r) =
L1

πr2
1

. (2)

Combining Eqs. (1) and (2), we obtain

1− l(r1, r2, δ, J) =
L1

πr2
1

∫ ∫

A
dσ = αL1, (3)

whereα is the ratio of the mutual area of eclipse to the area of the
disc of the eclipsed star, and is a function ofr1, r2, andδ (Kopal
1975). A generalisation of these concepts to the case of spherical
stars with arbitrary limb-darkening lawsJ(r) was presented by
Smith (1976).

For an orbital periodP and an epoch of conjunctiont0, we
define the phase angleθ at a timet to be

θ =
2π
P

(t − t0). (4)

As proposed by Kopal (1975, 1979), we focus our attention on
the area subtended by the light curve in the (l, sin2m θ) plane,

Star 1

Star 2

O2

r1

r2

δ

O1

A

r
s

Fig. 1. Geometry of the eclipse of star 1 by star 2. The integral of
Eq. (1) is evaluated over the hatched areaA(r1, r2, δ). The points
inside this area can be specified by the coordinates (r, s) corre-
sponding to the two intersections of the circle with radiusr and
centre O1 and the circle with radiuss centred on O2.

wherem is a positive integer number (m = 1, 2, 3, ...), as shown
in Fig. 2. The areasA2m between the linesl = 1, sin2m θ = 0, and
the true light curve are then given by the integrals

A2m =

∫ θfc

0
(1− l) d(sin2m θ), (5)

which are hereafter referred to as themoments of the eclipse, of
index m, whereθfc denotes the phase angle of the first contact
(δ(θfc) = r1 + r2) of the eclipse.

1

0

sin2m θ

sin sin2m 2mθ θ  l

λ

A 2m

t fc

Fig. 2. Light curve of an eclipse in the (l, sin2m θ) plane.θfc corre-
sponds to the phase angle of first contact, whilstθt represents the
phase angle corresponding to the beginning of the total eclipse.
The shaded area illustrates the momentA2m andλ = 1− l(θ = 0).

Combining Eqs. (1) and (5), Kopal (1975,1979) and Smith
(1976) demonstrated that, based on certain assumptions, itis
possible to
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• derive analytical expressions of the moments of the eclipsein
terms of the physical parameters (i, r1, r2, L1, L2) of a binary
system with a circular orbit consisting of uniformly bright
spherical stars,
• invert these relationships to determine the parameters of the

system in terms of the momentsA2m that can be empirically
obtained from the data,
• extend this treatment to the case of partial eclipses of stars

with an arbitrary (yet analytical) limb-darkening law.

Going one step further, Smith & Theokas (1980) generalised
the above concepts to derive a convenient mathematical solu-
tion to the problem of an atmospheric eclipse, i.e., an eclipse
of a limb-darkened star by a star surrounded by an extended at-
mosphere. In such an eclipse, at each position inside the area A
specified by the coordinatesr ands (see Fig. 1), a fraction of the
light emitted by star 1 is absorbed by the atmosphere of star 2.
To account for these transparency effects, a transparency func-
tion F(s) is introduced into Eq. (1), so that the total amount of
light seen by the observer becomes

l(r1, r2, δ, J, F) = 1−
∫ ∫

A
J(r)F(s) dσ. (6)

Considering that in the case of an atmospheric eclipse, it might
be interesting to give more weight to the data close to mid-
minimum, Smith & Theokas (1980) also introduced an alterna-
tive set of momentsB2m defined by

B2m = −
∫ θfc

0
(1− l) d(cos2m θ). (7)

The use of kerneld(cos2m θ) in Eq. (7) places more emphasis on
the data points close to mid-eclipse, which leads to smallerer-
rors than in the case of theA2m moments defined by means of
thed(sin2m θ) kernel (Theokas & Smith 1983, private communi-
cation). We defineε to be the mean error in an individual data
point; the relative error in the light curveε/(1−l(θ)) increases for
data points nearθfc. While these points are given more weight by
the kernel of theA2m moments, the converse situation holds for
the B2m moments, where the kernel reaches its peak for a given
m in a zone where 1− l(θ) is closer to its maximum value.

By definition, theA2m andB2m moments are related to each
other by means of

B2m =

m
∑

p=1

m!
(m− p)! p!

(−1)p+1 A2p. (8)

We now concentrate on theB2m moments because they are
equally well suited to the analysis of the primary and sec-
ondary minima with the transparency and limb-darkening func-
tions adopted in the present study (cf. Section 2.2). Since there
are a number of typos in the paper of Smith & Theokas (1980),
we provide below the mathematical details of the method.

The infinitesimal element of areadσ of Eq. (6) is expressed
as

dσ =
1
2
∂2

∂r∂s

(

πr2α(r, s, δ)
)

drds. (9)

The following general expression for theB2m moments was de-
rived by Smith & Theokas (1980)

B2m = λ +

∫ r1

0

∫ r2

0
J(r) F(s) ds dr

×
∂2

∂r∂s

(
∫ θfc

0
cos2m θ

∂(π r2α(r, s, δ))
∂θ

dθ

)

, (10)

where 1− l(θ = 0) is defined asλ (see Fig. 2).
The analytical expressions obtained for theB2m’s for m =

1, 2, 3, 4, and 5 are thus

B2 = λ − csc2 i (P− I1R1r2
2 − ψ1), (11)

B4 = λ − csc4 i (P− 2 I1R1r2
2 + I2R1r2

1r2
2 + I1R2r4

2 − ψ2), (12)

B6 = λ − csc6 i (P− 3 I1R1r2
2 + 3 I2R1r2

1r2
2 + 3 I1R2r4

2

−I3R1r
4
1r2

2 − I1R3r6
2 − 3 I2R2r2

1r4
2 − ψ3), (13)

B8 = λ − csc8 i (P− 4 I1R1r2
2 + 6 I2R1r2

1r2
2 + 6 I1R2r4

2

−4 I3R1r4
1r2

2 − 4 I1R3r6
2 − 12 I2R2r2

1r4
2 + I4R1r6

1r2
2

+I1R4r
8
2 + 6 I3R2r4

1r4
2 + 6 I2R3r2

1r6
2 − ψ4), (14)

and

B10 = λ − csc10 i (P− 5 I1R1r2
2 + 10 I2R1r2

1r2
2

+10 I1R2r4
2 − 10 I3R1r4

1r2
2 − 10 I1R3r

6
2

−30 I2R2r2
1r4

2 + 5 I4R1r6
1r2

2 + 30 I3R2r4
1r4

2

+30 I2R3r2
1r6

2 + 5 I1R4r8
2 − I5R1r8

1r2
2

−10 I4R2r6
1r4

2 − 20 I3R3r4
1r6

2 − 10 I2R4r2
1r8

2

−I1R5r10
2 − ψ5). (15)

The coefficients P, Im, Rm, andψm are defined (cf. Smith &
Theokas 1980) by the equations

P(r1, r2, J, F) =
∫ min(r1,r2)

0
J(r)F(r)2πrdr, (16)

Im(r1, J) =
∫ r1

0

J(r)

r2m−2
1

∂

∂r
(πr2m)dr, (17)

Rm(r2, F) =
∫ r2

0

F(s)

r2m
2

∂

∂s
(s2m)ds, (18)

and

ψm = ψm(r1, r2, i, J, F) =
L1

π r2
1

(

1+ 2m(r1 + r2)2

6 (r1 + r2)2

×(cos2 i − (r2 − r1)2)3/2 −
√

cos2 i − (r2 − r1)2

−
m|r2 − r1|
8 (r1 + r2)2

(cos4 i − (r2 − r1)4)

+|r2 − r1| arctan















√

cos2 i − (r2 − r1)2

|r2 − r1|





























. (19)

2.2. The transparency and limb-darkening functions

In our method, the transparency of the W-R wind is described
by an analytical function that depends on a limited number of
parameters. Since the functional form of the transparency is
adopteda priori, our choice will obviously have a direct influ-
ence on the parameters derived for the system. Therefore, itis
important to clearly specify the assumptions made in our ap-
proach. To avoid confusion with the standard symbols employed
by Smith and Theokas (1980), from now on, the various radii
in our model will be denotedρi (i=1,2,3), whereρ1 stands for
the radius of the O-star that undergoes the eclipse. The use of
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the subscriptse anda will indicate whether the components are
seen in emission or absorption.

The first simplifying hypothesis is that all composite parts
of the system are supposed to be spherically symmetrical. This
means that the method is not applicable to close binary systems
in which the components depart strongly from a spherical form
as a result of tidal distortion and whereellipticity andreflection
effects are both present.

Fig. 3. Schematical view of the transparency law across the disc
of the W-R component as given by Eq. (21). The solid line shows
the amount of light absorbed along the line of sight of impact
parameters. The individual contributions due to the opaque core
and the semi-transparent extended atmosphere are illustrated.

Because a principle objective of the proposed technique of
light curve analysis is the determination of the structure of a W-
R envelope, a composite model consisting of an opaque core
and a surrounding extended atmosphere was adopted for the
W-R component. As a consequence, while for the transparency
function F(s) of the eclipsing W-R star, of radiusr0, Smith &
Theokas (1980) simply adopted

F(s) = Fya(r0, υ) = ya















1− υ
(

s
r0

)2












for s< r0, (20)

whereυ is the coefficient of transparency, we chose as a first step
a transparency law of the form

F(s) = F1−ya(ρ3a, 0)+ Fya(ρ2a, υ), (21)

where the radius of the opaque core of the W-R star isρ3a and
that of the extended eclipsing envelope isρ2a (≥ ρ3a, see Fig. 3).
This transparency law was used in the preliminary analysis of
the light curve of HD 5980 by BP91 and is motivated by the fact
that it corresponds to a physically more realistic model of the
W-R star than that defined in Eq. (20), although the advantageof
relative mathematical simplicity is still preserved.

For the brightness distributionJ(r) over the W-R disc (im-
portant for the eclipse of the W-R component by the O-star), a
law very similar to that of the transparency function is adopted

J(r) = J(0)
[

J1−ye(ρ3e, 0)+ Jye(ρ2e, u2)
]

, (22)

whereJ(0) is the central surface brightness,u2 is the coefficient
of limb-darkening, andJye is defined as

Jye(r0, u) = ye















1− u

(

r
r0

)2












. (23)

When the W-R star is eclipsed, the radius of the core, assumed
to be of uniform brightness, becomesρ3e and that of the limb-
darkened envelopeρ2e. We note that the core and envelope radii
of the W-R component seen in emission or absorption may differ.

We briefly address the physical meaning of this transparency
law. First, in our model, the semi-transparent envelope of the
W-R star has a finite extension given by the radiiρ2a andρ2e.
However, the stellar winds of W-R stars do not stop abruptly
so close to the star, but instead extend to large distances (much
larger than the orbital separation in most binaries) to the shock
with the interstellar (or circumstellar) medium. How can wethen
interpretρ2a andρ2e? The radiusρ2a corresponds to the farthest
position in the stellar wind where the residual optical depth along
the line of sight produces a variation in the light curve thatcan be
distinguished against the intrinsic photometric variability of the
W-R star and the photometric errors. Similarlyρ2e is the outer
radius of the W-R envelope that emits a measurable fraction of
the light in the considered waveband.

A clear difference between our approach and that of
Antokhin & Cherepashchuk (2001) concerns the functional be-
haviour ofF(s): whereas in our model,F(s) is a convex function
over the entire rangeρ ∈ [0, ρ3a], Antokhin & Cherepashchuk
(2001) use a convexo-concave function, where the concave part
corresponds to the stellar wind. As a consequence,F(s) given by
Eq. (21) decreases at a slower rate over the wind than the trans-
parency law inferred by Antokhin & Cherepashchuk.

In contrast to Smith and Theokas (1980) who neglect the ef-
fect, we take into account the limb-darkening of the OB-type
component. Assuming that the formula employed by these au-
thors to represent the brightness distribution across the W-R
disc also applies to normal stars, we adopt the following limb-
darkening law for the OB star

J(r) =
LO

πρ2
1(1− u1 + u2

1/3)















1− u1

(

r
ρ1

)2












2

, (24)

whereLO is the luminosity of the OB star, of radiusρ1, andu1 is
the coefficient of limb-darkening at the effective wavelength of
the photometric filter considered.

Using these laws of transparency and limb-darkening, we
then derived the expressions forP, Im, Rm (see AppendixA), and
ψm, and hence the final equations for the momentsB2m, corre-
sponding to the primary and secondary minima.

2.3. The orbital eccentricity

The treatment of elliptical orbits in the frequency-domainwas
also addressed by Kopal (1979). The problem still concerns the
determination of the elements of the eclipse from the moments
– B2m in the present case – derived from the light curve, but
accounting for the eccentricitye and the longitude of periastron
ω.

In the definition of theB2m moments, the phase-angleθ is
no longer identical to the mean anomalyM but has rather to be
replaced by a linear function of the true anomalyv

θ = v+ ω − π
2
. (25)
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Thed(cos2m θ) kernel in Eq. (7) thus becomes

d(cos2m θ) = d
[

sin2m (v+ ω)
]

. (26)

As a consequence, the empirical values ofB2m cannot be derived
from the observed data until a proper conversion of the phase
angle into the true anomalies has been completed. This can be
achieved either by a numerical inversion of Kepler’s equation or
the well-known asymptotic expansion of elliptical motion (e.g.
Danjon 1959, Kopal & Al-Naimiy 1978)

v = M + (2e− 1
4

e3) sinM + (
5
4

e2 − 11
24

e4) sin 2M

+
13
2

e3 sin 3M +
103
96

e4 sin 4M + ... (27)

Regardless of the technique used to compute the true
anomaly, this conversion evidently requires ana priori knowl-
edge ofe as well asω. For a given value of the inclinationi,
these parameters can be derived by inversion of the equations
(see e.g. Kopal & Al-Naimiy 1978)

∆Φ =
1
2
+

e cosω
π
{1+ csc2 i

−e2

2
[
8
3

cos2ω − 2+O(cot2 i)]}, (28)

and

esinω =
d2 − d1

4 sin
(

d1+d2
4

)

















1− cot2 i

sin2
(

d1+d2
4

)

















−1

, (29)

where∆Φ, d1, andd2 are, respectively, the phase displacement of
the minima and the durations of the primary and secondary stel-
lar core eclipses. These latter quantities are determined directly
from the observed light curve. Since the orbital inclination of an
eclipsing binary system is likely to be rather large, theO(cot2 i)
term in the coefficient of thee3 term of Eq. (28) can be neglected.

The empirical ‘elliptical’ moments of the light curve then
provide the elements of the binary exactly as in the ‘circular’
case. One must ensure that the resulting values of the radii have
been reduced to a constant unit of length. In our code, we there-
fore report all distances in relation to the semi-major axisa of
the relative orbit.

Our composite model adopted for the W-R star has differ-
ent radii (ρ2,3a andρ2,3e) depending on whether the W-R com-
ponent is seen as an eclipsing or an eclipsed disc. Because of
this, although each individual half-eclipse provides an indepen-
dent solution for the elements, the complete determinationof the
elements requires a combination of solutions obtained for both
minima and because of the non-zero eccentricity, both the de-
scending and ascending branches of each.

3. Decoding of the light curve

3.1. Empirical determination of the moments

We consider the light curve of a W-R binary system of ec-
centricity e and periodP, derived for a given photometric
bandpass. The data are assumed to consist of a list of entries
that provide for each observation the orbital phaseΦi and
the measured intensityl i . To normalize the brightness scale,
a mean intensity value is derived well outside the eclipses,
during a phase-interval where the system is assumed to display
(constant) maximum light. Thel i value of each data point is

then divided by this mean to normalize the light curve to unity.
It has to be emphasized, however, that this does not necessarily
imply that L1 + L2 = 1 for the W-R binary. The luminosity of
a third photometrically unresolved component along the line of
sight may indeed contribute to the observed brightness as well,
thereby leading to a brightness distribution such asL1 + L2 < 1
in the final solution for the eclipse. In the case of an eccentric
orbit, the eclipse-free meanl i value is preferably taken around
apastron to avoid as much as possible any luminosity increase
that could occur around periastron as a result of enhanced
interaction effects between the components.

The determination of the momentsB2m requires a smoothed
light curve, which can be obtained, for instance, from a spline
fit to the observed points with special attention to the minima.
However, this task can become difficult if the descending or as-
cending branch of either minimum is ill-defined because of an
uneven sampling of the observations or intrinsic photometric
variability in the W-R star (see e.g. the case of WR 22, Gosset
et al. 1991). A clustering of the points, in particular, is a serious
handicap for the method. A preliminary processing performed,
by filtering the observational data, to help reduce the scatter al-
lows us then to obtain a smooth light curvel(Φ).

The next step consists of determining the quantitiesd1, d2,
and∆Φ (see above) from the smoothed light curve. For an as-
sumed value of the orbital inclinationi, the parameterse andω
are obtained by means of an inversion of Eqs. (28) and (29). With
these values ofe andω, the orbital phasesΦi are converted into
true anomalies.

The momentsB2m, which take into account the eccentricity
effect, are obtained in practice by summation, using the follow-
ing expression

B2m =

N−1
∑

i=1

(

cos2m (Θi) − cos2m (Θi+1)
)

×
(

1−
l(Θi) + l(Θi+1)

2

)

, (30)

whereΘi are the predefined angles at which the smoothed light
curve is sampled,N is defined by the constant step∆Θ = Θi+1 −
Θi adopted, and the value ofΘ1 corresponds to the first contact
of the eclipse. Thel(Θi) values refer to the normalized smoothed
light curve, and by definitionl = 1 for |Θ| > |Θ1|.

Since the individual data points are affected by observa-
tional errors, the integration of the empirical moments must itself
be affected by errors. The uncertainty associated with the mo-
mentsB2m can be evaluated using the following equation (see
Al-Naimiy, 1977, Smith & Theokas 1980)

∆B2m =
1
√

n



















1
n

n
∑

j=1

[

l j − l(θ j)
]2



















1/2

×
(

cos2m θ1 − cos2m θn

)

, (31)

wheren is the number of observed points over the considered
eclipse, andl j− l(θ j) is the difference between the observed point
of index j and the smoothed light curve atθ j . The anglesθ1 and
θn refer, respectively, to the first and last observed data point over
the relevant part of the light curve.

3.2. Solution for the elements

For each half-eclipse, there are five non-linear algebraic equa-
tions to be solved simultaneously for the elementsρ1, ρ2a or ρ2e,
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ρ3a or ρ3e, i, u1 or u2, ya or ye, υ, L1 or L2 the meanings of which
are summarized below for convenience:

L1 = luminosity of the OB-type star,
L2 = luminosity of the W-R star,
i = inclination angle of the orbit,
ρ1 = radius of the OB-type star,
ρ2a,e = radius of the W-R envelope seen in absorption or

emission,
ρ3a,e = radius of the W-R opaque core seen in absorption or

emission,
u1 = limb-darkening coefficient of the OB-type star,
u2 = limb-darkening coefficient of the W-R envelope,
υ = transparency coefficient of the W-R envelope (cf. Fig. 3),

and
ya,e = contribution of the W-R envelope in absorption or

emission (cf. Fig. 3)
This large number of variables can fortunately always be re-

duced to a smaller number for both the primary and secondary
minima, as explained hereafter. The preliminary determination
of the orbit inclinationi already eliminates for instance one vari-
able.

At the primary minimum, when the OB star is in front, ac-
cording to our composite modelυ ≡ 0 by definition. Since we
must also have that 0≤ u2 ≤ 1, solutions can be searched for a
set of discrete values of the parameteru2 in this interval, so that
the remaining variables areρ1, ρ2e, ρ3e, ye, andL2.

At the secondary minimum, when the W-R star eclipses the
OB component,u1 is the limb-darkening coefficient of the OB
star. The value ofu1 can be adopted following e.g. the tabulated
values supplied by Klinglesmith & Sobieski (1970). According
to our model, we now have 0≤ υ ≤ 1, so that again, after se-
lection of a sample ofυ values, we can proceed in solving the
equations for the remaining parametersρ1, ρ2a, ρ3a, ya, andL1
only.

The solution of the system of as many as five non-linear
equations

B2m(ρ1, ρ2a, ρ3a, i, u1, ya, υ, L1, L2) = B2m(observed)

or

B2m(ρ1, ρ2e, ρ3e, i, u2, ye, υ, L1, L2) = B2m(observed)

is obtained by minimizing theχ2 compiled from the residuals of
these equations

χ2 =

N
∑

m=1

|B2m(computed)− B2m(observed)|2

∆ B2
2m

. (32)

This minimization is achieved by means of Powell’s technique
(e.g., Press et al. 1992 and references therein).

4. Application to HD 5980

4.1. HD 5980: a peculiar system

HD 5980≡ AB 5 (Azzopardi & Breysacher 1979) is associated
with NGC 346, the largest Hii region+ OB star cluster in the
Small Magellanic Cloud. This remarkable W-R binary, which
underwent an LBV-type event in August 1994, is presently rec-
ognized as a key-object for improving our understanding of mas-
sive star evolution. HD 5980 is a rather complex system because
it consists of at least three stars: two stars form the eclipsing bi-
nary with the 19.266day period, whilst the third component,an
O-star, which is detected by means of a set of absorption lines

and by means of its third light (see also below), could be a mem-
ber of a highly eccentric 96.5 day period binary (Schweickhardt
2000, Foellmi et al. 2008). Whether or not the third star is phys-
ically bound to the eclipsing binary remains currently unclear.
Before the LBV eruption, both components of the eclipsing bi-
nary already showed emission lines in their spectra and were
thus classified as Wolf-Rayet stars (Niemela 1988). However, as
shown by the analysis of the spectra taken during and after the
LBV event, at least the star that underwent the eruption (here-
after called star A) was not a classical, helium-burning, Wolf-
Rayet object, but rather a WNha star, i.e., a rather massive star
with substantial amounts of hydrogen present in its outer lay-
ers (Foellmi et al. 2008). These WNha stars have wind proper-
ties that are intermediate between those of extreme Of starsand
classical WN stars.

A summary of the light changes exhibited by HD 5980 was
presented by Breysacher (1997). The technique of light curve
analysis described above is applied to HD 5980 prior to the out-
burst. Given that star A, the component in front of its companion
(hereafter called star B) during primary eclipse, was a WNhastar
and since there are no indications of wind effects in the primary
eclipse, we assume that this component behaves as an OB-starin
the light curve. 705 measurements with the Stroemgrenv filter,
described in BP91, are taken into consideration. The shape of
the resulting light curve does not allow us to use the ill-defined
ascending branch of the primary eclipse (star A in front) forthe
analysis. Therefore, only three half-minima will be considered.
Compared to the preliminary analysis carried out by BP91, the
software tool presently used has been upgraded, allowing usfor
instance to assess the quality of the solution by means of a syn-
thetic light curve.

4.2. Solutions of the light curve

From the smoothed light curve, the durations of the primary and
secondary stellar core eclipses as well as the separation between
the core eclipses are measured first to bed1 = 0.062± 0.005,
d2 = 0.095± 0.005, and∆Φ = 0.362. All durations are ex-
pressed as phase intervals (i.e. fractions of the orbital cycle). The
corresponding values of the eccentricitye and the longitude of
periastronω are:e= 0.314±0.007 andω = 132.5◦±1.5◦. These
values are in fairly good agreement with those derived for these
parameters by Breysacher & François (2000) (e = 0.30± 0.02,
ω = 135◦ ± 10◦) from a completely different approach based on
the analysis of the width variation of the Heii λ 4686 line using
the analytical colliding-wind model devised by Lührs (1997).
From radial-velocity studies, Kaufer et al. (2002) and Niemela
et al. (1997) also found thate = 0.297± 0.036 ande = 0.28,
respectively. The values of the moments of the light curve of
HD 5980 are listed in Table 1.

The inclination angle of the orbit can easily be derived with
reasonable accuracy. For each of the three half-minima, a quick
analysis is carried out for a number of plausible discrete val-
ues ofi (i = 82◦, 83◦, ...89◦), and the value ofi finally adopted
is the one for which closest agreement is obtained between the
three solutions provided for the radius of star A and the radius
of the opaque core of star B. These quantities are fundamental
elements of the system and the combination of the solutions of
the descending and ascending branches of both minima must in-
deed provide, at the end of the detailed analysis, a unique value
for ρ1 and very similar - if not identical - values forρ3a andρ3e.
The above conditions are fullfilled for 85◦ ≤ i ≤ 87◦, therefore
we adopti = 86◦ ± 1◦.
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Table 1. Values of the moments of the eclipses of HD 5980 used
throughout this paper. These values are derived from the light
curve prior to the 1994 LBV event.

Primary eclipse Secondary eclipse
Ingress Ingress Egress

B2 .00935± .00026 .00832± .00041 .00481± .00024
B4 .01801± .00048 .01542± .00065 .00922± .00043
B6 .02604± .00067 .02164± .00080 .01326± .00059
B8 .03351± .00083 .02721± .00088 .01699± .00071
B10 .04046± .00097 .03226± .00094 .02044± .00082

The second step in the procedure consists of solving the
equations fori = 86◦, each half-eclipse being treated in a com-
pletely independent manner. We recall that all radii are reduced
to the semi-major axis of the relative orbit.

We first consider the descending branch of the primary
eclipse. Solutions forρ1, ρ2e, ρ3e, L2, andye are searched for dis-
crete values of the parameteru2 (0.1, 0.2, 0.3, ... 1) with rather
broad variation ranges allowed to the variable parameters.Each
search sequence is based on a series of 1000 trials. A first setof
results is obtained to provide convergence rates (i.e., an estimate
of the likelihood of the derived solutions) and aσ value for each
parameter. A second iteration with reduced variation ranges (the
original one±σ) for the parameters leads to a second set of solu-
tions with improved convergence rates and lowerσ values. The
process is repeated five times, until a stabilization of the param-
eter values becomes noticeable. For the last iteration, thegrid
of u2 values is enlarged significantly and the respective conver-
gence rates of the corresponding solutions are used to determine
the best fitu2 value and to estimate the error on this parameter.
The obtained results areρ1 = 0.150±0.004,ρ2e = 0.257±0.018,
ρ3e = 0.110± 0.005,L2 = 0.300± 0.016,u2 = 0.58± 0.07, and
ye = 0.19± 0.03.

For the secondary eclipse, solutions are searched forρ1, ρ2a,
ρ3a, L1, andya. The choice of the parameteru1 for the limb-
drakening law (Klinglesmith & Sobieski 1970) of star A has lit-
tle impact on the other parameters. We repeated the fitting pro-
cedure for different values ofu1 (0.1, 0.3, 0.5, 0.7) and recov-
ered the same solutions within the errorbars. The largest sensi-
tivity was found forρ2a whenu1 = 0.7. In this rather unlikely
case,ρ2a exceeds its usual value by 1.5σ. In the following, we
thus focus on the results obtained withu1 = 0.3, which seems
a reasonable value for star A (Klinglesmith & Sobieski 1970).
The descending and ascending branches are analysed separately
and solutions are searched for discrete values of the parameter
υ (0.1, 0.2, 0.3, ... 1). The same iterative procedure as described
above for the primary eclipse is applied. The resulting solutions
for the secondary descending branch areρ1 = 0.160± 0.006,
ρ2a = 0.259± 0.018,ρ3a = 0.110± 0.005,L1 = 0.385± 0.028,
ya = 0.19± 0.03, andυ = 0.60± 0.20; and for the secondary
ascending branchρ1 = 0.163± 0.008, ρ2a = 0.290± 0.019,
ρ3a = 0.105± 0.003,L1 = 0.412± 0.026,ya = 0.20± 0.03, and
υ = 0.45± 0.15

The differences between the solutions provided by the three
half-minima are relatively small compared to the errors andaver-
age values are derived for the parameters. A distinction between
absorptionandemissionvalues does not appear to be necessary
any longer. The error in the mean for each parameterpi is com-
puted in a conservative approach using the expression

σ =













∑n
i=1(pi− < p >)2 +

∑n
i=1σ

2
i

nN













1/2

, (33)

Table 2. Final ‘best-fit’ values of the model parameters of the
stars in the HD 5980 binary system fori = 86◦ and prior to the
1994 LBV outburst.

Primary eclipse Secondary eclipse
Ingress Ingress & Egress

star A ρ1 = 0.158± 0.005
L1 = 0.398± 0.021

star B ρ3 = 0.108± 0.003
ρ2 = 0.269± 0.014

L2 = 0.300± 0.016
y = 0.19± 0.02

u2 = 0.58± 0.07 v = 0.52± 0.14

where n is the number of values used in the mean and N the num-
ber of independent sets (half-eclipses) of values. For an analysis
completed in this way, the values adopted for the parametersof
the stellar components in the HD 5980 binary system are given
in Table 2.

4.3. Discussion

Figure 4 shows how the synthetic light curve derived from the
above elements fits the observational data for both the primary
and secondary eclipses. While the bottom and the wings are
fairly well fitted, the transparency law that we adopted for the
extended envelope of star B is probably still too crude to allow
a perfect match to the observations of the descending and as-
cending sides of both minima. As a consequence, the size of this
envelope is probably slightly overestimated by our model. An
asymmetry in this envelope, inferred by BP91, is difficult to as-
certain from the present study. The difference between the values
of ρ2a provided by the two branches of the secondary eclipse is
indeed marginally significant only given the errors.L1+L2 , 1 is
independent confirmation of an unresolved source of third light
along the line of sight that accounts for an additional relative
luminosity of L3 = 0.302. In principle, one would expect a su-
perior control of the uniqueness of the solution if the bright-
ness ratiosL2/L1 andL3/L1 in the optical could be fixed inde-
pendently of our light curve analysis. However, in the specific
case of HD 5980, it is impossible to infer these brightness ra-
tios from spectroscopy. In this system, there have been changes
in both the spectroscopic and in photometric properties of the
binary components, and the brightness ratios are thus epochde-
pendent. Spectrophotometric brightness ratios would haveto be
estimated based on the dilution of the emission lines. However,
as shown by recent spectroscopic studies (e.g. Foellmi et al.
2008), these emission lines contain epoch-dependent contribu-
tions from components A and B, as well as from the wind-wind
interaction region. In our analysis of the light curve, we thus
preferred not to constrain the brightness ratiosa priori. Our re-
sults can however be checkeda posteriori against the results
obtained in the UV domain. Assuming that an O7 supergiant,
which does not partake in the orbit, was responsible for thisthird
light, Koenigsberger et al. (1994) estimated a value of 2.8 for the
ratio (L1 + L2)/L3, which was considered to be consistent with
the 2.0 obtained from the BP91 elements. It is noticeable that the
value of 2.3 derived from the present analysis is in even closer
agreement with the estimate of Koenigsberger et al. (1994).

Adopting Mv = −7.5 for the global absolute visual mag-
nitude of HD 5980 (cf. Koenigsberger et al. 1994), the mag-
nitudes of the binary components areMv(starA) = −6.50 and
Mv(starB) = −6.19. Because of the difficulties in assigning the
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Fig. 4. Top panel: the observed light curve of HD 5980 in the Stroemgrenv filter as a function of orbital phase. The lower left and
lower right panels show the synthetic light curves for the primary and secondary eclipses respectively compared to the actual data.
The synthetic light curves were computed using the mean parameters of the solutions found by our programme.

various lines of the spectrum of HD 5980 to a specific compo-
nent, there have been few attempts to establish a full SB2 orbital
solution (Niemela et al. 1997, Foellmi et al. 2008). Therefore,
our knowledge of the component masses of the eclipsing binary
remains uncomfortably poor, even though we are dealing withan
eclipsing system. Foellmi et al. (2008) used a multi-component
fit of the Niv λ 4058 and Nv λ 4603 lines to derive absolute
masses of 58 – 79 M⊙ for star A and 51 – 67 M⊙ for star B.
These values differ significantly from the estimates of Niemela
et al. (1997), who attributed the entire Niv λ 4058 line to star A
and the entire Nv λ 4603 emission to star B when inferring mini-
mum masses ofm sin3 i = 28 and 50 M⊙, respectively. Adopting
the solution of Foellmi et al. (2008), the sum of the masses of
the components of the eclipsing binary equals 109 – 146 M⊙.
This corresponds to a semi-major axis of 0.67 – 0.74 AU (144 –
159 R⊙) for the binary orbit, and to stellar radii of 22.7 – 25.1 R⊙

for star A, 15.6 – 17.2 R⊙ for the core of star B, and 38.7 – 42.8
R⊙ for its envelope.

Alternatively, one could estimate absolute masses from the
visual magnitudes evaluated above by means of mass-luminosity
relations derived e.g., from massive star evolutionary models.
However, this approach is hampered by a lack of precise knowl-
edge of the spectral types of the stars (and hence their bolometric
corrections) and by the fact that the components of HD 5980 can
probably not be considered as ‘normal’ early-type stars.

We considered the correlations between the various free pa-
rameters by plotting them in pairs (see Fig. 5). For this purpose,
we used the results of 10 000 trials for each eclipse. In most
cases, we do not observe obvious correlations; the solutions are
scattered over a limited part of the parameter plane (see e.g., the
radius of the core of star B,ρ3, versus that of star A,ρ1, de-
rived from the primary eclipse). However, the solutions show a
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Fig. 5. Distribution of the parameters derived from the inversion of the moments of the light curve in various parameter planes.
The left and middle panels are derived from the primary eclipse, whilst the rightmost panel presents the solutions of thesecondary
eclipse. The final solutions derived from each eclipse as well as their 1− σ error bars are overplotted in each panel.

clear trend, if we plot the luminosity of star A (L1) as a function
of the radius of the envelope of star B (ρ2a, evaluated from the
secondary eclipse), and fall even along a clearly defined locus if
we plot the luminosity of star B (L2) as a function of the radius
of star A (ρ1, derived from the primary eclipse). These trends
can be understood at least qualitatively. In fact, for the primary
eclipse (the opaque core of star A occulting star B), an increase
in the radius of star A implies that a larger fraction of the light of
star B is removed. To account for the observed depth of the light
curve, the total luminosity of star B must decrease. On the other
hand, during secondary eclipse (star B in front of star A), anin-
crease in the radius of the semi-transparent envelope of star B
will produce deeper and broader wings of the secondary eclipse.
To account for the observed eclipse shape, the model must react
in terms of an increase in the surface brightness (and hence the
luminosity) of star A.

In principle, the photometric variability of HD 5980 as de-
tected through medium-band filter observations could be af-
fected by the Doppler shift of strong emission lines that fall
in the wavelength range covered by the photometric filters. To
quantify this effect, we simulated an observation of the star
through the ESO Stroemgren filters. For this purpose, we used
the spectrum of HD 5980 taken from the spectrophotometric cat-
alogue of Morris et al. (1993) kindly provided to us by Dr. J.-M.
Vreux. Our calculations indicate that less than 1% of the flux
in thev band comes from emission lines. Therefore, we do not
expect the Doppler shift to have any significant effect on the pho-
tometric variability discussed here. The situation would be quite
different, if we were dealing with data taken in theb band. There,
about 30% of the flux is produced by emission lines (especially
the strong Heii λ4686 line). In this case, the Doppler motion as
well as variations in the line intensity caused by the wind-wind
interaction (e.g., Breysacher et al. 1982, Breysacher & François
2000) could lead to significant variations in the observedb mag-
nitude.

Finally, we note that the data points of the light curve suggest
an increase in the brightness of the HD 5980 system at orbital
phases afterφ ∼ 0.04 (see Fig. 4). Whilst this increase could
be caused by light reflections from the wind interaction region
(which should have its concavity roughly turned towards theob-
server) near periastron, we caution that this apparent trend is ac-
tually inferred from observations from a single campaign (cycle
39 in Fig. 6) and could therefore be related to intrinsic variabil-

cycle 1
cycle 3
cycle 4
cycle 5
cycle 39
cycle 40
cycle 43

Fig. 6. Observedv magnitudes of HD 5980 in the phase interval
0.04 – 0.16. The various symbols indicate data from different
orbital cycles. Periastron passage occurs at phase 0.061.

ity of the WR star rather than represent a genuine phase-locked
effect.

5. Conclusions

We have presented a method that allows us to treat the problem
of atmospheric eclipses in the light curves of moderately wide,
eccentric Wolf-Rayet+ O binary systems in a semi-analytical
way. We have then applied this method to the light curve of the
peculiar system HD 5980 prior to its 1994 outburst. Despite the
non-uniform sampling of the light curve, the fact that we are
analysing data from different orbital cycles (hence affected dif-
ferently by the intrinsic variability of the WR star) and thelimi-
tations of our assumptions on the properties of the WR envelope,
our method yields consistent results when applied to the primary
or secondary eclipse. We have been able to constrain some of the
physical parameters of this system, although the lack of a consis-
tent SB2 spectroscopic orbital solution prevents us from obtain-
ing fully model independent parameters. As a next step, we will
try to generalize our method to the analysis of the eclipses of a
system harbouring two stars, both with extended atmospheres.
This should allow us to analyse the light curve of HD 5980 ob-
served after the LBV eruption.
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Appendix A: Analytical expressions for the
moments of the eclipses

A.1. Primary eclipse (OB star in front)

Here the relevant radii are:ρ1, the radius of the OB-star;ρ2e

andρ3e, the radii of the W-R core and envelope in emission. We
note that we have assumed thatρ2e ≤ ρ1. Adopting a surface
brightness law for the W-R star given by Eqs. (22) and (23) and
F(s) = 1 (for s ≤ ρ1), we find that its total luminosity is given
by

LW−R = J(0)π ρ2
2e
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and

P = LW−R
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, (A.3)

whereg(ρ1, ρ2e) = min
(

1,
(

ρ1

ρ2e

)2
)

. The expression ofP reduces
to

P = LW−R if ρ2e < ρ1, (A.4)

and finally,

Rm = 1. (A.5)

A.2. Secondary eclipse (W-R star in front)

Hereρ2a andρ3a are the radii of the W-R core and envelope in
absorption, respectively. Again, we have assumed thatρ2a ≤ ρ1.
Adopting a transparency law for the W-R star given by Eqs. (20)
and (21), we find that

LO = J(0)π ρ2
1













1− u1 +
u2

1

3













, (A.6)

Im =
LO

1− u1 −
u2

1
3













1− 2u1 m
m+ 1

+
u2

1 m

m+ 2













, (A.7)

and

P =
LO

1− u1 +
u2

1
3















(1− ya)













ρ2
3a

ρ2
1

− u1
ρ4

3a

ρ4
1

+
u2

1

3

ρ6
3a

ρ6
1













+ ya h

























1− u1 h+
u2

1 h2

3













− υ g

(

1
2
− 2u1 h

3

+
u2

1 h2

4



































, (A.8)

where g(ρ1, ρ2a) = min
(

1,
(

ρ1

ρ2a

)2
)

and h(ρ1, ρ2a) =

min
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1,
(
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)

.

Finally, we obtain

Rm = (1− ya)

(

ρ3a

ρ2a

)2m

+ ya

(

1− mυ

m+ 1

)

(A.9)
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Niemela, V.S., Barbá, R.H., Morrell, N.I., & Corti, M. 1997, in Luminous Blue
Variables: Massive Stars in Transition, eds. A. Nota & H.J.G.L.M. Lamers,
ASP Conf. Ser. 120, 222

Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. 1992,Numerical
Recipes in Fortran 77, Cambridge University Press

Schweickhardt, J. 2000, PhD thesis, Landessternwarte Heidelberg/Königsstuhl
Smith, S.A.H. 1976, Ap&SS, 40, 315
Smith, S.A.H., & Theokas, A.C. 1980, Ap&SS, 70, 103
Sterken, C., & Breysacher, J. 1997, A&A, 328, 269


	Introduction
	Analysis of the light changes in the frequency-domain
	The basic equations
	The transparency and limb-darkening functions
	The orbital eccentricity

	Decoding of the light curve
	Empirical determination of the moments
	Solution for the elements

	Application to HD5980
	HD5980: a peculiar system
	Solutions of the light curve
	Discussion

	Conclusions
	Analytical expressions for the moments of the eclipses 
	Primary eclipse (OB star in front)
	Secondary eclipse (W-R star in front)


