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Abstract: 

An in-depth understanding of the main factors behind built-up development is a key prerequisite 

for designing policies dedicated to a more efficient land use. Infill development policies are 

essential to curb sprawl and allow a progressive recycling of low-density areas inherited from the 

past. This paper examines the controlling factors of built-up expansion and densification processes 

in Wallonia (Belgium). Unlike the usual urban/built-up expansion studies, our approach considers 

various levels of built-up densities to distinguish between different types of developments, ranging 

from low-density extensions (or sprawl) to high-density infill development. Belgian cadastral data 

for 1990, 2000, and 2010 were used to generate four classes of built-up areas, namely, non-, low-, 

medium- and high-density areas. A number of socioeconomic, geographic, and political factors 

related to built-up development were operationalized following the literature. We then used a 

multinomial logistic regression model to analyze the effects of these factors on the transitions 

between different densities in the two decades between 1990 and 2010. The findings indicate that 

all the controlling factors show distinctive variations based on density. More specifically, the 

centrality of zoning policies in explaining expansion processes is highlighted. This is especially 
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the case for high-density expansions. In contrast, physical and neighborhood factors play a larger 

role in infill development, especially for dense infill development. 

Keywords: built-up expansion, infill development, built-up development controlling factors, 

multinomial logistic regression, regional scale. 
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1. Introduction 

Urban sprawl is increasingly acknowledged as a significant environmental, economic, and social 

challenge in both the USA (Nechyba and Walsh, 2004; Song and Zenou, 2006) and Europe (EEA, 2006; 

Hennig et al., 2015). Accordingly, policies have been developed to curb this phenomenon and foster a 

more efficient use of the land (Danielsen et al., 1999; Grant, 2009). Such policies are typically based on 

a combination of spatial planning with fiscal and economic measures, promoting infill development and 

land recycling. Infill development is expected to reduce the consumption of land and thereby lower the 

pressure on green and agricultural areas (Jehling et al., 2016; McConnell and Wiley, 2011). It 

contributes to fostering urban development through the regeneration of vacant land and/or brownfields 

within cities (Loo et al., 2017) and to promoting a more efficient use of available amenities, such as 

roads, schools, retail areas, and public spaces (Burchell et al., 2000; Downs, 2001; Ooi and Le, 2013). 

Infill development is further expected to reduce traffic congestion through a more intensive use of public 

transport, especially when designed in a transit-oriented development perspective (Litman, 2016). 

It should be stressed that infill development is not restricted to the reconversion of brownfields, even 

though it certainly has a role to play in this regard. Infill development is now increasingly targeting low- 

and medium-density urban areas, with significant densification capacities in terms of both available land 

and services. This is especially the case in countries like Belgium, where a number of built-up 

neighborhoods are characterized by low density and some discontinuity with historical urban cores 

(EEA, 2011; Thomas et al., 2008; Marique et al., 2013). Indeed, Belgium in general and more 

specifically Wallonia (the southern part of Belgium) are in a remarkable situation within the European 

context with regard to urban sprawl (Dujardin et al., 2012; EEA, 2011; Thomas et al., 2008). Hennig et 

al. (2015) measured urban sprawl trends for 32 European countries and reported that Belgium is one of 
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the countries most affected by sprawl. 

Belgium is characterized by a mixed spatial planning style, which combines regulatory with 

comprehensive planning dimensions (European Union, 1997). Land allocation is highly controlled by 

the regional zoning plan (plan de secteur) that covers the entire territory of the country. Dating back to 

the 1970s and 1980s, the zoning plan has long contributed to creating urban sprawl, as it dedicates large 

scattered zones to built-up uses throughout the country (Poelmans and Van Rompaey, 2009). 

Furthermore, the spatial planning system in Belgium is characterized by weak vertical relationships 

between territorial levels (regions and municipalities) and weak horizontal relationships between actors 

at the same territorial level (ESPON, 2005). 

The combination of these two elements—the role of an oversized zoning plan and the lack of 

coordination between stakeholders—may somehow hinder infill development, even when land recycling 

and controlling sprawl are explicitly pursued by the spatial development strategies adopted in all three 

regions of the country. 

A better understanding of the mechanisms underlying built-up development processes is essential to 

improve the efficiency of the spatial planning system. Spatial models that explore the factors that control 

built-up development and/or simulate future expected scenarios may provide valuable information in 

this respect (Poelmans and Van Rompaey, 2009). 

The objective of this paper is to compare the controlling factors of built-up expansion with densification, 

which is an essential component of spatial policies that aim to tackle urban sprawl (Nabielek, 2012; 

Tachieva, 2010). Our key motivation is to identify potential spatial drivers of low-density development 

and densification. To this end, built-up development in Wallonia was analyzed from 1990 to 2010 based 

on datasets derived from cadastral data. A multinomial logistic regression (MNL) model was employed 
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to explore the relationship between expansion/densification and a set of socioeconomic, geographic, and 

spatial planning factors. 

The paper proceeds as follows. Section 2 presents previous work in the domain of land-use change 

models, stressing the need for greater consideration of built-up densities within these models. Section 3 

gives details about the study area (Wallonia), the MNL model, and data preparation. We report our 

results and discuss these in Section 4, with Section 5 presenting our conclusions. 

2. Previous work on densification 

Aguayo et al. (2007) identified three main elements for land-use change spatial models: (i) examining 

the factors that control the change (e.g., Liu and Ma, 2011; Shu et al., 2014); (ii) projecting future 

scenarios and their potential impacts (e.g., Mustafa et al., 2016; Robinson et al., 2012); and (iii) 

evaluating the impacts of different spatial policies on land-use patterns (e.g., Guzy et al., 2008; Jantz et 

al., 2003). In line with the aims of this study, we focus on exploring the factors that control built-up 

development considering both expansion and densification processes. 

A number of studies have aimed at a better understanding of built-up controlling factors. Oueslati et al. 

(2015) examine the relationship between urban sprawl and a set of controlling factors in several 

European cities. Their results show the significant role that socioeconomic, transportation, and 

environmental factors play in urban sprawl. Li et al. (2013), Nong and Du (2011), Shu et al. (2014), and 

Traore and Watanabe (2017) explore the historical effects of physical, socioeconomic, and 

neighborhood factors on urban expansion in relation to different geographical locations. Braimoh and 

Onishi (2007) identify the factors underlying residential and industrial/commercial development in 

Lagos (Nigeria) between 1984 and 2000. The findings of these studies provide important implications 
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for spatial planning. In many studies, the relationship between controlling factors and built-up 

development is analyzed with logistic regression (logit) models. These studies confirmed that logit 

models are empirically robust. 

Typically, the identification of potential factors controlling built-up/urban expansion is based on expert 

knowledge of the specific study area as well as a literature review (Cammerer et al., 2013). The variety 

of controlling factors introduced in recent urban/built-up studies is summarized in Table 1. These factors 

can be grouped into five categories: (i) accessibility factors; (ii) topological factors; (iii) neighborhood 

factors; (iv) socioeconomic factors; and (v) spatial planning policies. 

Table 1. Controlling factors of urban expansion considered in some recent studies. 

 
Accessibility 

factors 

 
Topological 

factors 

Neighborhood 

factors 

Socio-

economic 

factors 

Spatial 

planning 

policies 

Mustafa et al. (2017) ●  ● ● ● ● 

Achmad et al. (2015) ●    ●  

Chen et al. (2014) ●  ●    

Mustafa et al. (2014) ●  ● ● ● ● 

Zhang et al. (2013) ●  ●    

Li et al. (2013) ●  ● ●   

Cammerer et al. (2013) ●  ● ● ●  

Vermeiren et al. (2012) ●  ● ●   

Dubovyk et al. (2011) ●  ● ● ●  

Poelmans and Van 

Rompaey (2010) 
● 

 
●  ● ● 

Batisani and Yarnal 

(2009) 
● 

 
●  ● ● 

Verburg et al. (2004) ●  ● ● ● ● 

 

Accessibility factors, such as distance to roads, are often taken into consideration in land-use change 

modeling (Aguayo et al., 2007). Herbert and Thomas (1982) claim that sprawl is commonly controlled 

by accessibility factors. A high accessibility level plays a decisive role in decreasing travel costs and 

making far-out land more accessible, resulting in lower-density urban developments. Topological 
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factors, such as elevation, are correlated with the price of urban development. Liu et al. (2016) suggest 

that the construction cost is considerably high for rugged lands. 

Neighborhood factors, such as the proportion of urban land in the neighborhood, are especially 

important because of the fact that built-up development can be regarded as a self-organizing system in 

which neighboring interaction strongly influences new developments (Poelmans and Van Rompaey, 

2010). Many developers tend to develop land near to existing built-up areas because of the lower 

development risk for their investment (Rui and Ban, 2010). Socioeconomic factors, such as population 

density and employment potential, are quite often considered as active drivers of built-up development 

(Liu and Ma, 2011). For instance, economic activities may lead to a concentration of populations, which 

increases pressure on housing and housing prices in the center. Thus, it could be cheaper to develop land 

outside urban centers in areas characterized by lower density (Christiansen and Loftsgarden, 2011). 

The influence of these controlling factors on built-up development is usually measured on regular grids 

composed of square cells of a dimension between 3030 m and 300300 m (e.g. Feng et al., 2011; Hao 

et al., 2013; Hu and Lo, 2007; Liu et al., 2008; Vermeiren et al., 2012). Most studies assume that built-

up/urban expansion is a binary process, contrasting two classes of cells, i.e., built-up vs nonbuilt-up cells 

(e.g., Mustafa et al., 2017; Vermeiren et al., 2012). Such a binary representation of built-up environment 

somehow disregards the fuzzy nature of urban boundaries (Ban and Ahlqvist, 2009). More importantly, 

it tends to conceal the potential for further infill development within already built-up areas when their 

present density and level of services allow it. Some studies have specifically considered multiple urban 

densities (e.g. Mustafa et al., 2016, 2015; Xian and Crane, 2005; Yang, 2010). Considering various 

levels of densities is necessary to measure the influence of controlling factors on densification processes 

and infill development (Loibl and Toetzer, 2003; Tian et al., 2005); this is especially important as the 
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factors governing sprawl and infill development may not be identical in their nature or their relative 

importance. Eliciting these differences requires modeling both expansion and densification processes. 

Finally, measuring past densification processes and the factors behind these may help to reveal and 

activate available capacity in already built-up areas, which is in line with current land recycling policies. 

In sum, a major difference in our approach compared with previous work is that we examine the 

potential of the spatial models to explore the factors behind built-up development, considering different 

levels of density and the drivers of infill development. 

3. Material and methods 

3.1 Study area 

Wallonia (Figure 1) accounts for 55% of the territory of Belgium with a total area of 16,844 km2 – to 

give an idea, this area is slightly larger than Northern Ireland in the UK or the US state of Connecticut. 

Its main urban cores are Charleroi, Liège, Mons, and Namur, which are all characterized by a historical 

city center, around which the urban development has expanded. The total population of Wallonia in 

2010 was 3,498,384 inhabitants, corresponding to one-third of the Belgium population (Belgian Federal 

Government, 2013). The population is mainly concentrated in the northern areas, following the 

nineteenth-century industrial axis, running from east (Liège) to west (Mons) (Thomas et al., 2008). 

North of this axis, urban landscapes are highly influenced by the Brussels metropolitan area. Toward the 

far south of Wallonia, urban development is influenced by the presence of the city of Luxembourg 

(Thomas et al., 2008). Topographically, elevations in the region range from sea level to 693 m above sea 

level. 
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Figure 1: Study area. 

Wallonia is characterized by a strong sprawl and the resulting landscape fragmentation (Dujardin et al., 

2014; EEA, 2011). Densification strategies are especially important in such a context so as to limit the 

further consumption of land and to better structure existing peri-urban areas considering their 

specificities (De Smet and Teller, 2016). 

3.2 Outline of the model 

The built-up density index is calculated per 1 ha (100100 m) over Wallonia using Belgian cadastral 

data. The range of density values is then subdivided into four classes (nonbuilt-up, low-, medium-, and 

high-density built-up areas) by means of the natural breaks technique (Jenks and Caspall, 1971). To 

understand the expansion and densification processes, the methodology is tailored to identify the 

controlling factors of (i) expansion of the three density classes vs the nonbuilt-up class, and (ii) 

transitions from low- and medium-density classes to medium- and high-density classes. 
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We employ a multinomial logistic regression (MNL) model to examine the relationship between 

expansion/densification and their controlling factors. The MNL model allows for the consideration of 

several classes as the dependent variable (Yn), using a set of independent explanatory variables (Xs). 

When working with MNL models, three kinds of dependent variables should be considered: (i) the 

nominal Y responses; (ii) the categorical responses with natural ordering; and (iii) the nested responses 

when one category is nested in the previous one. In this paper, the dependent variable for the model is 

initially treated as categorical under the assumption that the levels of dependent status have a natural 

ordering (i.e., low to high density). To evaluate this assumption, the test of the proportional odds 

assumption is performed. The significance of the chi-squared statistic of the test is <0.001, which 

implies that the assumption of having a natural ordering in the dependent variable is violated. We then 

employ a nested MNL model with two levels: (i) built-up vs nonbuilt-up densities; and (ii) three built-up 

densities. The inclusive values (IVs) for the two nested levels are 0.8 and 3.9. Since at least one of the 

IVs is outside the 0–1 range, we decided not to opt for the nested MNL, as the parameter estimates are 

only consistent with utility maximization for a certain value range of the explanatory variables (Ortúzar 

and Willumsen, 1994). Accordingly, a nominal MNL model is adopted for this study. 

The general form of the MNL model can be represented as: 
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(1) 

where log(kn) is the natural logarithm of class kn vs the reference class k0, X is a set of explanatory 

variables (X1, X2,…, Xv), 𝛼𝑘𝑛 is the intercept term for class kn vs the reference class, and 𝛽is the slopes 

for the classes (the coefficient vector). Thus, the probabilities of each class can be obtained using the 

following formula: 
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(2) 

where ((Pc)ij,Y=kn) is the probability of change from the reference class to class kn occurring in cell ij. 

The MNL model employs the maximum likelihood estimation method to achieve the best-fit sets of 

coefficients for each X. 

The model is performed for two observed periods, 1990–2000 and 2000–2010, using Belgian cadastral 

data. A comparison of the two periods allows the measurement of the stability of the role of the different 

factors over time. The MNL outcomes are a set of coefficients that define the contribution of each 

controlling factor to the built-up development, as well as a map of probability of being built-up for each 

class, which is generated by plugging the coefficients of the MNL model into Equation (2). The MNL 

model assesses overall model performance and the significance of individual X variables. The X 

variables were selected by entry testing based on the significance of the score statistic (P-value), which 

was set to P0.05. Only variables significant at P0.05 on at least one class were included in the final 

MNL model. 

The goodness-of-fit of the model runs was evaluated using the relative operating characteristic (ROC) 

method. The ROC is an excellent method to estimate the quality of a model that predicts the occurrence 

of an event by comparing a probability map depicting the likelihood of change occurring and a binary 

map showing where the changes actually occurred (Hu and Lo, 2007). A ROC value of 0.5 means 

completely random discrimination and 1 means perfect discrimination. 
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3.2.1 Dependent variables 

The dependent variables for the MNL model are defined using the cadastral dataset (CAD). CAD is a 

vector dataset representing buildings in two dimensions as polygons, made available by the Land 

Registry Administration of Belgium. CAD provides the construction date for each building. This 

information was used to generate three built-up maps for 1990, 2000, and 2010. CAD vector data were 

then rasterized at a very fine cell dimension of 22 m. 

One of the independent variables, elevation (DEM), is available at 1010 m cell size and therefore we 

should aggregate the rasterized CAD data to at least 1010 m (representing a building of 100 m). The 

computational time and resources required to process the 1010 m datasets, about 400,000,000 cells, are 

huge. Data aggregation can efficiently reduce the computational resources of our model. Still the 

modifiable areal unit problem (MAUP) should be considered when aggregating spatial data (Openshaw, 

1984; Openshaw and Taylor, 1979). To examine the effects of aggregation in the context of the MAUP, 

we performed a series of the first-lag autocorrelation analyses based on Moran’s I test following Jelinski 

and Wu (1996). The conceptualization of spatial relations is based on King’s (queens) case analysis, 

which considers a neighborhood window of eight cells. As a result of this sensitivity analysis (Figure 2), 

we selected an aggregated cell of 100100 m, which appears as the best combination between 

aggregation dimension and Moran’s I. Moreover, the 100100 m cell size is commonly used in regional 

land use models (e.g. Mustafa et al., 2017; Poelmans and Van Rompaey, 2010). 
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Each aggregated cell has a density value that exhibits the number of 22 m cells located within its 

boundary. This density value will be used as a built-up density index for each aggregated 100100 m 

cell. The minimum density value adopted for considering 100100 m cells as built-up is 25. The 

threshold of 25 (representing a building of 100 m2) corresponds to an average-sized residential building 

in Belgium (Tannier and Thomas, 2013). The density value is then used to represent four classes: (class-

0) nonbuilt-up, (class-1) low-density, (class-2) medium-density, and (class-3) high-density built-up. 

The natural breaks classification method was used to set the thresholds that define the different classes. 

This method effectively ensures a high internal homogeneity among classes (Fraile et al., 2016). The 

natural breaks method uses the Jenks optimization algorithm (Jenks and Caspall, 1971), which identifies 

breaks by the arrangement of classes that best groups similar values. This is done by minimizing the 

average deviation of each class from its mean and maximizing that average deviation from the means of 

the other classes. Table 2 presents the resulting thresholds, which define the different densities for the 

model implementation. The low-density and scattered built-up landscape of Wallonia resulted in low 

thresholds for medium and high densities. 
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Table 2. Range of built-up classes in the number of 22 cells. 

Class Minimum Maximum % of cells 

Class-0 (non-urban) 0 24 85.13% 

Class-1 (low-density) 25 264  10.69 % 

Class-2 (medium-density) 265  735  3.56 % 

Class-3 (high-density) 736  2500  0.62 % 

 

3.2.2 Built-up development controlling factors 

The accessibility factors included in this study are the Euclidian distance to Road1 (highways), Road2 

(main roads), Road3 (secondary roads), Road4 (local roads), railway stations, large-sized Belgian cities 

(population >90,000), and medium-sized Belgian cities (population 20,000–90,000). For the topological 

factors, slope and elevation are included. Employment rate is considered as a socioeconomic factor. The 

number of existing built-up cells from each density class within a 55 cell neighborhood is included in 

this study to consider local interaction effects. The selection of the neighborhood size was made because 

previous studies found that the defined neighborhood using all surrounding cells within a radius of one 

to eight cells can capture the operational range of the local processes being modeled (e.g., Hu and Lo, 

2007; Roy Chowdhury and Maithani, 2014). Table 3 gives the complete list of the selected controlling 

factors, Xs. 

All data used in this study are represented as a 100100 m raster grid. X variables are measured in 

different units so we standardized all continuous X variables. If some X variables relatively measured the 

same phenomena, strong collinearities would cause an erroneous estimation of the MNL model’s 

parameters. Consequently, a multicollinearity test was examined in the initial stage using variance 

inflation factors (VIF). Montgomery and Runger (2003) recommended that the VIFs should not exceed 

4. 
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Table 3. List of selected urbanization controlling factors. 

Factor  Name Type Unit SD* Source 

X1 Elevation (DEM) Continuous Meter  148.8 Belgian National Geographic 

Institute 

X2 Slope Continuous Percent rise 5.6 Own calculation based on DEM 

X3 Dist. to Road1 Continuous Meter 8264.8 Own calculation based on 

NAVTEQ 2002 map 

X4 Dist. to Road2 Continuous Meter 3740.1 Own calculation based on 

NAVTEQ 2002 map 

X5 Dist. to Road3 Continuous Meter 1419.5 Own calculation based on 

NAVTEQ 2002 map 

X6 Dist. to Road4 Continuous Meter 834.7 Own calculation based on 

NAVTEQ 2002 map 

X7 Dist. to railway 

stations 

Continuous Meter 5690.2 Own calculation based on 

WALPHOT s.a. data 

X8 Dist. to large-sized 

cities 

Continuous Meter 25688.1 Own calculation based on 

WALPHOT s.a. data 

X9 Dist. to med-sized 

cities 

Continuous Meter 12865.4 Own calculation based on 

WALPHOT s.a. data 

X10 Number of class1 

cells within a 5x5 

window 

Continuous Number  4.1 Own calculation based on 

CAD data 

X11 Number of class2 

cells within a 5x5 

window 

Continuous Number 2.5 Own calculation based on 

CAD data 

X12 Number of class3 

cells within a 5x5 

window 

Continuous Number 1.1 Own calculation based on 

CAD data 

X13 Employment rate Continuous Percent 5.3 Own calculation based on Belgian 

statistics 

X14 Zoning Categorical  Binary  0.4 Own calculation based on Wallonia 

authorities data 

* standard deviation 

X variables may exhibit spatial autocorrelation, which would bias the results of the regression analysis 

(Overmars et al., 2003). To address this issue, logistic regression land-use models are commonly 

calibrated based on a data sampling approach (e.g. Cammerer et al., 2013; Huang et al., 2010; Puertas et 

al., 2014). An alternative solution is the autologistic regression model, which considers an 

autocorrelative term in the regression model. A number of studies have argued that autologistic models 

outperform logistic models (e.g., Lin et al., 2011; Shafizadeh-Moghadam and Helbich, 2015). In 

contrast, some authors (e.g., Dormann, 2007) have reported that the logistic regression model tends to 

outperform the autologistic model in terms of estimation of model parameters. However, comparison of 
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both modeling approaches (logistic vs autologistic) is beyond the scope of the present paper. Our model 

was calibrated through a data sampling approach, which is commonly used in land-use change 

modeling. The selection of samples is based on 100 runs of the MNL model with different random 

samples. The best sample set, evaluated by ROC, was then selected. 

4. Results and discussion 

Figure 3 shows the spatial distribution pattern of density classes in 1990. High-density cells are 

concentrated in existing metropolises, whereas medium-density cells tend to be located in their 

surroundings and low-density lands are likely to be found in rural and remote locations. 

 
Figure 3: Urban density classes in 1990. 

Table 4 summarizes class-to-class transitions from 1990 via 2000 to 2010. It can be seen that the 

transition from nonbuilt-up to low-density developments (i.e., class-0 to class-1) largely dominates over 

both periods. However, a progressive trend toward infill development, namely densification of built-up 
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areas, can also be identified from this table. This trend should be amplified especially in the transitions 

from medium- to high-density developments (i.e., class-2 to class-3) in those areas that are best located 

in terms of accessibility to transport and services. This finding can be related to some recent spatial 

policies. Since 2005, the definition of a new zone to be urbanized in the regional zoning plan in 

Wallonia must be compensated by the downzoning of a similar-sized area that was to be urbanized 

beforehand to a nonurban zone (Prokop et al., 2011). 

Table 4. Class-to-class changes (% of total changes). 

1990-2000  Class-0 Class-1 Class-2 

Class-0  - - - 

Class-1  14675 (60.91) -  - 

Class-2  1785 (7.41) 6327 (26.26) - 

Class-3  550 (2.28)  102 (0.42) 653 (2.71) 

2000-2010  Class-0 Class-1 Class-2 

Class-0  -  - - 

Class-1  9665 (58.45) -  - 

Class-2  1202 (7.27) 4714 (28.51) -  

Class-3  340 (2.06) 91 (0.55) 524 (3.17) 

 

Table 4 shows that the transitions from class-1 to class-3 over the study period are marginal. Thus, 

densification is considered as the transitions from class-1 to class-2 and from class-2 to class-3, whereas 

expansion is seen as the transitions from class-0 to classes 1–3. 

The VIF test values (<1.59) for all standardized explanatory variables suggest that all X variables can be 

incorporated in the MNL model. 

4.1 Built-up expansion 

Table 5 presents the results of the expansion process, i.e., transitions from nonbuilt-up cells with a 

density of 0–24 to cells with built-up density classes 1–3. For the relative measurement of the 

contribution of each controlling factor to the expansion process, the odds ratio (OR), which equals 
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exp(), is calculated. An OR >1 (coefficients greater than 0) indicates a positive effect, i.e., the 

probability of development increases with an increasing OR of the variable, whereas an OR <1 indicates 

a negative effect. The results indicate that the impact of the different controlling factors varies along 

with density. 

Expansion of all density classes is highly correlated with zoning status (X14), which is in line with 

findings by Poelmans and Van Rompaey (2010). In both periods, the result shows a gradual upward 

trend in the zoning status from low density to high density. For instance, in 1990–2000, the expansion of 

classes 1, 2, and 3 is respectively around 11, 20, and 68 times more likely to be located in zones 

designated for urban use than in zones designated for other land uses. To minimize administrative and 

financial risks, high-density developments are typically located in areas where the legally binding plan 

allows such developments. In contrast, built-up developments in areas adjacent to urban cores (medium 

density) such as suburbs do not strictly follow land use plans. The impact of zoning on transitions to 

low-density classes is lower than the one observed in other classes. Such transitions can be considered as 

remote areas, consisting of scattered buildings (1–3 buildings/ha), which can sometimes deviate from 

existing zoning plans, especially in agriculture-related zones. 

In both periods, elevation (X1) is a positive determinant for low- and medium-density expansions, 

whereas slope (X2) has a remarkable negative effect on all expansion processes, as in Poelmans and Van 

Rompaey (2010), especially on the expansion of medium- and high-density classes. The model predicts 

that a 5.6% rise in slope decreases the odds of expansion by a factor of 0.4 for the medium-density class, 

and by 0.3 and 0.4 for the expansion of the high-density class in 1990–2000 and 2000–2010, 

respectively. 
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All statistically significant distances to road classes have OR values <1 implying that the closer to roads, 

the higher the expansion probability, as reported in Cammerer et al. (2013) and Poelmans and Van 

Rompaey (2010). 

Table 5. The coefficients () of the MNL model for urban expansion (reference: class-0). Sample size 16,360. 

 1990-2000  2000-2010 

Factor Coefficients β (Odds Ratio) Coefficients β (Odds Ratio) 

  Class-1 Class-2 Class-3  Class-1 Class-2 Class-3 

Intercept  -1.106 -3.669 -6.402 -1.106 -3.526 -6.288 

X1 0.217* 

(1.242) 

0.129* 

(1.138) 

-0.054 

(0.947) 

0.135* 

(1.144) 

0.154* 

(1.167) 

-0.064 

(0.938) 

X2 -0.218* 

(0.804) 

-0.951* 

(0.386) 

-1.307* 

(0.271) 

-0.234* 

(0.791) 

-0.845* 

(0.429) 

-1.000* 

(0.368) 

X3 -0.058 

(0.944) 

-0.134 

(0.874) 

-0.564* 

(0.569) 

-0.100* 

(0.905) 

-0.261* 

(0.771) 

-1.170* 

(0.310) 

X4 -0.042 

(0.959) 

-0.236* 

(0.790) 

-0.539* 

(0.583) 

0.033 

(1.034) 

-0.251* 

(0.778) 

-0.505* 

(0.603) 

X5 -0.133* 

(0.875) 

-0.334* 

(0.716) 

-0.263* 

(0.769) 

-0.098* 

(0.907) 

-0.252* 

(0.778) 

-0.093 

(0.911) 

X6 -0.214* 

(0.807) 

-0.157* 

(0.855) 

-0.211 

(0.810) 

-0.205* 

(0.814) 

-0.144* 

(0.866) 

-0.026 

(0.975) 

X7 0.017 

(1.017) 

-0.161* 

(0.851) 

-0.301* 

(0.740) 

0.021 

(1.021) 

-0.129* 

(0.879) 

-0.365* 

(0.694) 

X8 0.005 

(1.005) 

-0.059 

(0.942) 

0.186* 

(1.204) 

0.105* 

(1.110) 

0.044 

(1.045) 

0.271* 

(1.311) 

X9 -0.028 

(0.972) 

-0.168* 

(0.845) 

-0.237* 

(0.789) 

0.064* 

(1.066) 

0.002 

(1.002) 

0.126 

(1.134) 

X10 1.286* 

(3.619) 

0.619* 

(1.856) 

0.098 

(1.103) 

1.260* 

(3.524) 

0.512* 

(1.669) 

0.255* 

(1.290) 

X11 0.306* 

(1.358) 

0.433* 

(1.541) 

0.289* 

(1.336) 

0.485* 

(1.623) 

0.709* 

(2.031) 

0.529* 

(1.697) 

X12 0.009 

(1.009) 

0.204* 

(1.227) 

0.287* 

(1.333) 

0.040 

(1.041) 

0.286* 

(1.331) 

0.432* 

(1.541) 

X13 N.S. N.S. N.S. N.S. N.S. N.S. 

X14 2.371* 

(10.705) 

2.974* 

(19.576) 

4.216* 

(67.728) 

2.446* 

(11.539) 

2.967* 

(19.437) 

4.103* 

(60.546) 

ROC 0.903 0.887 0.959 0.906 0.889 0.973 
* Indicate significance at P≤ 0.05 level 
N.S. non-significant at P≤ 0.05 level 

Distance to high-speed roads (X3 and X4) has a notable impact on the development of high-density areas, 

although it should be considered that a number of urban cores are directly accessible via high-speed 

roads in Wallonia. Distance to secondary roads (X5) contributes to the expansion of different density 

classes, especially the medium-density class, whereas distance to local roads (X6) has a remarkable 
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impact on the expansion of low-density areas in both periods, which is what can be expected, as many 

low-density areas are only accessible via local roads. The findings suggest that the new developments of 

medium- and high-density projects are likely to be located near train stations (X7) in 1990–2000 and 

2000–2010. 

Interpretation of the contribution of distance to large- and medium-sized cities (X8 and X9) in Wallonia 

indicates a decentralizing and suburbanizing trend over time. In 1990–2000, the impact of distance to 

large-sized cities positively affected high-density expansion. In 2000–2010, the distance to large-sized 

cities had a positive impact on low- and high-density classes. This means that the likelihood of low- and 

high-density developments increased with increasing distance to large-sized cities in both periods. In 

contrast, distance to medium-sized cities was a negative determinant of medium- and high-density 

expansion in 1990–2000 and remained positive on low-density expansion in 2000–2010. 

The increasing number of existing low-density cells within a neighborhood of 55 size (X10) reveals a 

strong relationship with low-density expansion: every four low-density neighbors increase low-density 

expansion odds by around four times in 1990–2000 and 2000–2010. The probability of medium-density 

expansion is greater by increasing the number of existing low-, medium-, and high-density cells (X10, 

X11, X12), whereas the probability of high-density expansion is greater by increasing the number of 

existing medium- and high-density cells (X11, X12) within a neighborhood. The lack of significant 

contribution of employment rate (X13) to the expansion processes indicates that it was not a limiting 

factor of the built-up expansion processes, as it was the case in Hu and Lo (2007) and Poelmans and Van 

Rompaey (2010). 
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4.2 Built-up densification 

Built-up densification is defined as transitions from low- to medium-density class, as well as transitions 

from medium- to high-density class. As such, it corresponds to infill development. In general, the 

magnitude of the unique effects of land-use policies (zoning) and accessibility factors declined along 

with the densification process. Table 6 lists the MNL model’s results of the densification process. 

Table 6. The coefficients () of the MNL model for urban densification. 

 1990-2000  2000-2010 

Factor Coefficients β (Odds Ratio) Coefficients β (Odds Ratio) 

 Reference: class-1 

Sample size: 9000 

Reference: class-2 

Sample size: 1000 

Reference: class-1 

Sample size: 9000 

Reference: class-2 

Sample size: 1000 

  Class-2 Class-3  Class-2 Class-3 

Intercept  -1.507 -0.174 -1.547 -0.173 

X1 N.S. N.S. N.S. N.S. 

X2 -0.431 

(0.650) 

-0.256 

(0.774) 

-0.467 

(0.627) 

-0.424 

(0.654) 

X3 -0.106 

(0.900) 

-0.397 

(0.672) 

-0.165 

(0.848) 

N.S. 

X4 -0.091 

(0.913) 

N.S. -0.095 

(0.909) 

-0.282 

(0.754) 

X5 -0.054 

(0.948) 

N.S. N.S. N.S. 

X6 N.S. N.S. N.S. N.S. 

X7 N.S. N.S. N.S. N.S. 

X8 N.S. N.S. 0.059 

(1.061) 

N.S. 

X9 -0.110 

(0.895) 

N.S. N.S. N.S. 

X10 0.089 

(1.093) 

-0.448 

(0.639) 

0.073 

(1.075) 

-0.458 

(0.632) 

X11 0.271 

(1.311) 

N.S. 0.276 

(1.318) 

N.S. 

X12 N.S. 0.183 

(1.201) 

N.S. 0.230 

(1.259) 

X13 N.S. 0.078 

(1.081) 

N.S. 0.195 

(1.216) 

X14 1.123 

(3.074) 

N.S. 1.314 

(3.723) 

N.S. 

ROC 0.738 0.762 0.738 0.757 

* Indicate significance at P≤ 0.05 level 

N.S. non-significant at P≤ 0.05 level 

 

The slope’s OR values (X2) <1, as in densification processes, signify that the process of conversion from 
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lower to higher densities tends to occur in flat areas. The estimated coefficients of slope in both periods 

highlight that slope—the only variable that has a statistically significant impact on all built-up 

development processes—continues to play an important role in explaining both expansion and 

densification processes, compared with other variables in our model. When considering infill 

development policies, it could be expected that some variables, such as distance to train stations or 

accessibility to employment areas, would play a more significant role in driving urban development, by 

contributing to reducing home-to-work distances and increasing the use of sustainable modes of 

transport. Our results indicate that in Wallonia this is not yet the case; urban development processes 

continue to be determined by physical factors, i.e., low slope areas that are scattered across the entire 

region. 

Distance to high-speed roads (X3 and X4) negatively contributes to all densification processes. Other 

distance-related factors have no impact except for secondary roads, which contributed to the 

densification of low-density areas in 1990–2000, and distance to large-sized cities, which contributed to 

the densification of low-density areas in 2000–2010. 

Neighborhood plays a significant role in densification processes. In both periods, the odds of conversion 

of low-density lands into medium density are increased by a factor of 1.1 for every four low-density 

neighbors. Each medium-density neighbor increases the odds of low-density densification by ~0.5 times. 

The odds of conversion of medium density into high density are increased by ~1.2 for each high-density 

neighbor. 

These findings suggest that existing high-density locations will generally experience a higher 

densification rate. Unlike the expansion processes, where the employment rate is not significant, the 

employment rate (X13) contributes positively to the densification of medium-density areas. However, the 
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contribution of this variable to the densification process is small compared with the other variables. The 

nonsignificant role of employment rate could be explained by the fact that many commuters (even car 

users) can deduct their transport costs from their income tax (De Decker, 2008). Together with the 

density of the road network, this may encourage people to choose to live in low-density settlements far 

from their workplaces. 

Interestingly, the magnitude of the zoning status effect (X14) on the densification process decreases 

compared with the expansion process. The effect of zoning status on the change from medium- to high-

density class is not significant. It also shows a moderate effect on the change from low to medium 

density in both periods. 

The ROC values differ between the distinct processes of built-up development. The expansion process 

shows a relatively high goodness-of-fit with ROC values of 0.89–0.97. Estimation of the potential urban 

densification process produced many false-positives, which were estimated at ROC values of 0.74–0.76. 

This implies that the densification process is less predictable than the urban expansion process, which 

can be explained by the fact that most of the selected controlling factors were not statistically 

significant. The ROC values for 1990–2000 and 2000–2010 were almost identical, indicating that there 

were no major changes in the built-up development trend over the study period. 

5. Conclusions 

Using a multinomial logistic regression model, this study explores the relationship between built-up 

expansion/densification and their controlling factors. It considers the three classes of built-up densities 

of low, medium, and high density. Previous built-up expansion models assumed a binary process of 

expansion, i.e., built-up vs nonbuilt-up. Tables 5 and 6 show that the assumption of a binary approach 
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may lead to inaccurate conclusions as the relative importance of the controlling factors typically varies 

with density, for both expansion and densification processes. 

This study highlights significant factors that control low-density development, which is one of the main 

characteristics of urban sprawl. Spatial planning, road accessibility, and neighborhood interactions are 

important determinants of the low- and medium-density developments in Wallonia, Belgium. This 

finding is in line with those of other studies conducted in other regions of the world (e.g. Aguayo et al., 

2007; Hu and Lo, 2007). 

Our results indicate that there is a progressive shift from expansion to densification in Wallonia even 

though expansion processes remain very active. The densification processes show a nonsignificant 

relationship with railway stations, which means that infill development does not yet follow a transit-

oriented development approach that would foster high-density developments around train stations. 

Proximity to medium- and large-sized cities does not appear to be a key factor in densification 

processes, even though it is certainly where infill development is most expected in terms of both real 

estate value and contribution to sustainable development. This phenomenon may be related to the fact 

that densification appears highly correlated with neighborhood characteristics, which may conceal the 

effect of proximity to medium- and large-sized cities where denser neighborhoods may be expected. 

Our study reveals that infill development is mainly driven by local factors in Wallonia and that 

expansion remains controlled by the zoning plan. In contrast, the influence of zoning on densification is 

not major. Infill development does not obey an official spatial policy adopted at the regional level that is 

articulated along clear sustainability principles. Hence, the impact of zoning on expansion and 

densification appears counterproductive in some respects, which is quite unsatisfactory in terms of land-

use policy. It should be stressed that zoning documents were drawn up in the 1970s and 1980s in 
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Wallonia, well before the current sustainability agenda. Even though these documents have been 

partially revised since then, areas open to urban development remain overabundant in some parts of the 

region. A mechanism for the transfer of development rights should be designed to better allocate urban 

zones to places/nodes where infill development can be supported. At the same time, streamlining the 

modification of land-use plans and planning permission procedures in selected areas of the region may 

provide appropriate support for those processes. 

The results of this study emphasize that the MNL model incorporating various classes of built-up 

densities provides useful information for policy makers who want to explore the relationships between 

spatial drivers of infill development. Contrasting the drivers underlying expansion and densification 

processes is essential for designing spatial policies that support improved land recycling and infill 

development. 
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