

Mimicking helicoidal biological materials to improve strength of synthetic composites

MECHANICS OF BIOLOGICAL AND BIO-INSPIRED MATERIALS

Laura Zorzetto, Davide Ruffoni

University of Liege

http://www.biomat.ulg.ac.be/

Helicoidal structures in nature

E. Sjöström, Wood Chemistry, Fundamentals Fratzl, P. & Weinkamer, Prog. Mater. Sci. and Applications, Elsevier, 1993.
52, 1263–13\34 (2007).

EUROMAT 2017 - LAURA ZORZETTO

Wood hierarchical structure

E. Sjöström, *Wood Chemistry, Fundamentals* and Applications, Elsevier, **1993**.

Fratzl, P. & Weinkamer, *Prog. Mater. Sci.* **52,** 1263–13\34 (2007).

Wood hierarchical structure

L. J. Gibson, *J. R. Soc. Interface* **2012**, *9*, 2749.

E. Sjöström, Wood Chemistry, Fundamentals and Applications, Elsevier, 1993.

Wood hierarchical structure

L. J. Gibson, J. R. Soc. Interface 2012, 9, 2749.

E. Sjöström, Wood Chemistry, Fundamentals and Applications, Elsevier, 1993.

Secondary woodcell

P. Fratzl, R. Weinkamer, Prog. Mater. Sci. 2007, 52, 1263.

Aim of the study

Behavior of helicoidal composites made of one main layer reinforced with low volume fraction secondary layers:

Possibility to tranfer construction principles in polymerbased composites

Structure design

Three-layered concentric composite:

- S2 = main layer 60% of wall thickness
- S1 and S3 = reinforcement layers 20% of wall thickness

Compliant matrix + stiff fibers

- S2→ 2.8 mm <u>30% Volume fraction</u>
- S1 and S3→ 0.75 mm

- Main layer (S2) orientation
- Reinforcement position
- Reinforcement orientation

Main layer (S2) orientation

- Reinforcement position
- Reinforcement orientation

Main layer (S2) orientation

Reinforcement position

Reinforcement orientation

- Main layer (S2) orientation
- Reinforcement position

Reinforcement orientation

Stiffness and buckling load

S1

05-Oct-17

S2 = vertical

05-Oct-17

++ S1

EUROMAT 2017 - LAURA ZORZETTO

S2 = vertical

Horizontal reinforcement:

- Higher gain in critical stress than vertical reinforcement
- Decoupling Stiffness and buckling resistance

S2 = 30 degree

S2 = 30 degree

S2 = 30 degree

Vertical reinforcement: • Higher gain in

Higher gain in apparent modulus

Horizontal reinforcement:

- Higher gain in critical stress
- Block rotation

S1

3D printing multilayer composites

Vertical reinforcements

Vertical reinforcements

Horizontal reinforcements

EUROMAT 2017 - LAURA ZORZETTO

Post-buckling behavior: S2 = vertical

Post-buckling behavior: S2 = vertical

Post-buckling behavior: S2 = 30 deg

5

Post-buckling behavior: S2 = 30 deg

Conclusion

NNSYS[®]

Simulations

- Reinforcements = efficient material arrangement
 - Avoid structure stiffening
 - Enhances buckling resistance

Experiments

- Development of samples with same trend of simulations
- Reinforcements = less catastrophic failure
- Minimal increase of volume fraction of stiff phase
 - Significant toughening of the structure

Acknowledgements

Thank you for your kind attention

Question time

We would like to kindly acknowledge **Thierry Marchal** and **Thomas Dalberto**, from <u>Ansys Belgium</u> for providing free licences in the framework of an academic collaboration

05-Oct-17

Appendix 1.1 : Mesh convergence

- **s2 = 0 deg**, s1 = s3 = no reinforcement;
- **s2 = 30 deg,** s1 = s3 = no reinforcement;

1.0 1.5 2.5 3.0 3.5 4.0 2.0 Mesh size [mm] Convergence reached at 0.25 mm mesh size (difference with more refine result = 0.55%)

s2: 30 deg

Appendix 1.2 : Mesh convergence

- s2 = 30 deg, s1 = s3 = H;
 s2 = 0 deg, s1 = s3 = H;
- **s2 = 30 deg,** s1 = s3 = V;

• s2 = 0 deg, s1 = s3 = V;

Appendix 2: Fiber dimensions

Simulations		S2 = 0 deg	S2 = 30 deg	
No reinforcement		0.9295 mm	0.8693 mm	Constant volume fraction
Equivalent configurations	H - int + ext	1.0191 mm	0.9484 mm	Experiments: Dimension x 3
	H - ext	0.9804 mm	0.9124 mm	
	H - int	0.9702 mm	0.9029 mm	t = 1.8 mm Ri = 5.1 mm
	V - int + ext	0.9733 mm	0.9058 mm	
	V - ext	0.9517 mm	0.8856 mm	
	V - int	0.9517 mm	0.8856 mm	
Reinforcement fibers diameter = 0.25 mm				

Appendix 3: Boundary conditions $V_r = 0$ $U_g = 0$

Mesh

- Tetraedric mesh, average mesh size = 0.25 mm;
- Element number = 1 M

Performed analysis

- Static structural analysis \rightarrow effective Young Modulus;
- Linear buckling analyis \rightarrow critical buckling load.