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ABSTRACT

Two narrow and dense rings (called C1R and C2R) were discovered around the

Centaur object (10199) Chariklo during a stellar occultation observed on June

3, 2013 (Braga-Ribas et al. 2014). Following this discovery, we have planned

observations of several occultations by Chariklo’s system in order to better char-

acterize the ring and main body physical properties. Here, we use 12 successful

Chariklo’s occultations observed between 2014 and 2016. They provide ring pro-

files (physical width, opacity, edge structure) and constraints on their radii and

pole position. Our new observations are currently consistent with the circular

ring solution and pole position, to within the ±3.3 km formal uncertainty for the

ring radii, derived by Braga-Ribas et al. (2014). The six resolved C1R profiles

reveal significant width variations from ∼ 5.5 to 7 km. The width of the fainter

ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and

outer edges of C1R are consistent with infinitely sharp boundaries, with typical

upper limits of one kilometer for the transition zone between the ring and empty

space. No constraint on the sharpness of C2R’s edges is available. A 1σ upper

limit of ∼ 20 m is derived for the equivalent width of narrow (physical width

< 4 km) rings up to distances of 12,000 km, counted in the ring plane.

Subject headings: Rings - Centaur objects: individual (Chariklo) - Stellar Occul-

tations

1. Introduction

The asteroid-like body (10199) Chariklo is a Centaur object orbiting between Saturn

and Uranus. It probably moved recently (∼ 10 Myr ago) from the Trans-Neptunian region

to its present location, and will leave it on a similar short time scale, due to perturbations

by Uranus (Horner et al. 2004). With a radius of 119 ± 5 km, estimated from thermal

measurements (Fornasier et al. 2014), it is the largest Centaur known to date, but still

remains very modest in size compared to the telluric or giant planets. On June 3, 2013, a

ring system was discovered around this small object during a stellar occultation. Two dense

and narrow rings, 2013C1R and 2013C2R (C1R and C2R for short) were detected. They are

1Deceased on 16 July 2017
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separated by about 15 km and orbit close to 400 km from Chariklo’s center (see Braga-Ribas

et al. (2014) for details).

Until 2013, rings were only known around the giant planets. This discovery was thus

surprising, and is a key to better understanding of the planetary rings, since they now appear

to be more common than previously thought. In particular, the two rings being dense, narrow

and (at least for C1R) sharp-edged, they look like several of the dense ringlets seen around

Saturn and Uranus (Elliot and Nicholson 1984; French et al. 1991, 2016). In that context,

there was a strong incentive for planning more occultation campaigns, first to unambiguously

confirm the existence of Chariklo’s rings and second, to obtain more information on their

physical properties.

While the discovery occultation of June 3, 2013 provided the general ring physical

parameters (width, orientation, orbital radius, optical depth,...), several questions are still

pending, some of them being addressed in this work: do the rings have inner structures that

give clues about collisional processes? How sharp are their edges? What are the general

shapes of C1R and C2R? Do they consist of solidly precessing ellipses like some Saturn’s

or Uranus’ ringlets? Do they have more complex proper modes with higher azimuthal wave

numbers? Are there other fainter rings around Chariklo? What is the shape of the object

itself and its role for the ring dynamics? Based on new results, what can we learn about

their origin and evolution, which remains elusive (Sicardy et al. 2016)?

This study is made in a context where material has also been detected around the second

largest Centaur, Chiron (again using stellar occultations). The nature of this material is

still debated and it could be interpreted as a ring system (Ortiz et al. 2015) or a dust shell

associated with Chiron’s cometary activity (Ruprecht et al. 2015). Since Chariklo is presently

moving close to the galactic plane, stellar occultations by this body are much more frequent

than for Chiron, hence a more abundant amount of information concerning its rings. The

spatial resolution achieved during occultations reaches the sub-km level, impossible to attain

with any of the current classical imaging instruments. This said, the very small angular size

subtended by the rings (0.08 arcsec tip to tip, as seen from Earth) have made occultation

predictions difficult in the pre-Gaia era.

In spite of those difficulties, we could observe 13 positive stellar occultations (including

the discovery one) between 2013 and 2016, from a total of 42 stations distributed worldwide

(in Brazil, Argentina, Australia, Chile, La Réunion Island, Namibia, New Zealand, South

Africa, Spain, Thailand and Uruguay). Here, we focus on the ring detections (a total of 11

chords recorded after the discovery). We also obtained a total of 12 occultation chords by

the main body from 2014 to 2016. Their timings are derived here, but their implications

concerning Chariklo’s size and shape will be presented elsewhere (Leiva et al., 2017, in
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preparation). In Section 2, we present our observations and data analysis. In Section 3 we

concentrate on the ring structures (width, inner structures, edge sharpness) and geometry

(radius and orbital pole). The ring integral properties (equivalent width and depth) are

derived in Section 4, before concluding remarks in Section 5.

2. Observations and Data Analysis

Following the ring discovery of June 3, 2013, we predicted and observed 12 positive

stellar occultations by Chariklo and/or its rings between 2014 and 2016. In the following

list, we mark in italic the events that led to multi-chord ring detections (thus providing

constraints on the ring orientation, as discussed latter). Four occultations were observed in

2014, on February 16 (rings), March 16 (rings), April 29 (rings and body) and June 28 (rings

and body). In 2015, only two positive detections were recorded on April 26 (rings) and May

12 (body), while six occultations were recorded in 2016: July 25 (body), August 8 (rings and

body), August 10 near 14h UT (body), August 10 near 16h UT (body), August 15 (body)

and October 1 (rings and body).

2.1. Predictions

Predicting stellar occultations by Chariklo and its rings is a difficult task, as the main

body subtends about 25 milliarcsec (mas) as seen from Earth, while the rings have a span

of about 80 mas. Thus, to be effective, predictions require accuracies of a few tens of mas

on both Chariklo’s ephemeris and the star position. To meet this requirement, we used

a bootstrapping approach, in which each new detection of occultation is used to improve

Chariklo’s ephemeris, thus providing a better prediction for the next occultation. This

continuous update results in the so-called NIMA ephemeris (Numerical Integration of the

Motion of an Asteroid, Desmars et al. 2015) accessible online2.

The candidate stars for events in 2014 and in 2016 were identified during a systematic

search for occultations by TNOs using the Wide Field Imager (WFI) at the ESO/MPG 2.2m

telescope (Camargo et al. 2014), with typical accuracies of ∼ 30 mas. However, for the 2015

season, the candidate stars were observed using only the IAG 0.6m telescope at OPD/LNA

in Brazil, with lower accuracy than WFI, resulting in a larger number of missed events (two

successes out of six attempts).

2see http://lesia.obspm.fr/lucky-star/nima/Chariklo/

http://lesia.obspm.fr/lucky-star/nima/Chariklo/
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In the majority of the cases, the occulted star was imaged a few days or weeks prior

the event in order to improve the astrometry. If possible the observations were made when

Chariklo and the star were in the same Field Of View in order to cancel systematic errors.

In those cases, accuracy of the predictions was estimated down to ∼ 20 mas.

The last occultation in our list (October 1st, 2016) is special as its prediction was based

on the new GAIA DR1 catalog released on September 15, 2016 (Gaia Collaboration et al.

2016). However, the J2000 DR1 star position α = 18h16m20.0796s, δ = −33◦01′10.756′′

(at epoch 2015.0) does not account for proper motion. We estimated the latter by using

the UCAC4 star position (under the name UCAC4 285-174081) at epoch 2000 and obtained

proper motions in right ascension (not weighted by cos(δ)) and declination of

µα = −0.43± 0.008 ms/yr

µδ = −2.02± 1.05 mas/yr.

This provides a star position of α = 18h16m20.0789s, δ = −33◦01′10.760′′ at the epoch of

occultation. Combining this result with the NIMA ephemeris (version 9) finally provided a

prediction that agreed to within 5 mas perpendicular to the shadow track and 20 seconds in

terms of timing, and lead to a multi-chord ring and body detection.

2.2. Observations

The circumstances of the observations (telescope, camera, set up, observers, site coor-

dinates, star information) that lead to ring or main body detections are listed in Table 1.

Conversely, the circumstances of negative observations (no event observed) are provided in

Table 2. Note that observations were made with both small portable telescopes and larger,

fixed instruments. Each detection will be designated herein by the name of the station or

by the name of the telescope, if well known.

From the timings of the star disappearance (or “ingress”) and re-appearance (“egress”)

behind Chariklo and/or the rings, the geometry of each occultation was reconstructed, as

illustrated in Fig. 1. Currently, Chariklo’s size and shape are not known well enough to

reconstruct the occultation geometries from the events involving the main body. So, we

used instead the ring events (even single-chord) to retrieve those geometries. As a starting

point, we assume that the rings are circular with fixed orientation in space, and with the

orbital parameters derived by Braga-Ribas et al. (2014), namely a J2000 pole position of

αp = 10h05m11.0016s, δp = +41◦28′32.4891′′ and respective radii aC1R = 390.6 km and

aC2R = 404.8 km for the two rings. The reconstructed geometry allows us to derive the

observed position of Chariklo center (reported in Table 1). If the star position was perfect,



– 9 –

this derived position must coincide with the occulted star position. The difference between

the two positions is the offset between the predicted and the observed Chariklo’s position.

This offset is implemented in NIMA after each occultation, in order to improve Chariklo’s

ephemeris.

If the rings are not circular, this will impact their pole position and will eventually be

visible as discrepancies between observations and predictions. The pole position problem is

discussed further in Section 3.4.

Note that some stations did not detect any ring occultations, whereas they should have

considering the occultation geometry, see Reedy Creek on May 12, 2015 and Sydney on

August 10, 2016. Data analysis shows that those non-detections are actually consistent with

the low signal-to-noise-ratio (SNR) obtained at those stations. Thus, secondary events have

always been detected if SNR was high enough. This leads us to conclude that C1R (which

always dominates the profile) is continuous. Same conclusion on C2R is more ambiguous

as C2R was usually blended together with C1R. Nevertheless, we will assume that C2R is

continuous in this paper.

2.3. Data Reduction

After a classical data processing that included dark subtraction and flat fielding, aper-

ture photometry provided the stellar flux as a function of time (the date of each data point

corresponding to mid-exposure time), the aperture being chosen to maximize SNR. The back-

ground flux was estimated near the target and nearby reference stars, and then subtracted,

so that the zero flux corresponds to the sky level. The total flux from the unocculted star

and Chariklo was normalized to unity after fitting the light curve by a third or forth-degree

polynomial before and after the event. In all cases, a reference star (brighter than the target)

was used to correct for low frequency variations of the sky transparency.

The light curves are displayed in Fig. 3 and 4, each of them providing a one-dimensional

scan across Chariklo’s system, as projected in the sky plane. In some cases, the readout time

between two frames caused a net loss of information as photon acquisition was interrupted

during those “dead time” intervals. The flux statistics provides the standard deviation of

the signal, which defines the 1σ error bar on each data point which was used latter for fitting

diffraction models to ingress and egress events. Note that during an occultation by the main

body, the stellar flux drops to zero, but the flux in the light curve is not zero, as it contains

Chariklo’s contribution, and in one case, the flux from a nearby companion star, see below.
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2.4. The case of the double star of April 29, 2014

This event, observed from South Africa (see Table 1), revealed that the occulted star

was a binary. As seen from Springbok, the primary star (“A”) was occulted by C1R and

C2R (but missed the main body), while the fainter companion star (“B”) disappeared behind

Chariklo along an essentially diametric chord at Springbok (Fig. 1). Because the component

B was about 9 times fainter than A (see below), and considering the drop of A caused by C1R

at Springbok, we expect a short drop in the light curve of only 8% due to the disappearance

of component B behind C1R. This is too small to be detected, in view of the SNR of about

7 per data point obtained at that station (Fig. 4).

Meanwhile in Gifberg, we obtained only a grazing occultation of the primary star by

C2R (Fig. 1). This provides the best profile of that ring ever recorded (see Section 3.3).

Finally, at the South African Astronomical Observatory (SAAO), only the component B

was occulted by the rings, while the main star missed both the rings and the main body

(Fig. 1). However, due to the high SNR obtained at that station, the partial drop caused by

the rings on component B has about the same useful SNR as the drop of component A as

seen from the smaller telescope at Springbok.

For the Springbok light curve, we can estimate the flux ratio ΦA/ΦB between the two

stars by considering the drop of component B caused by Chariklo. In doing so, we can neglect

Chariklo’s contribution to the total flux. From Chariklo’s absolute magnitude, HV = 7.0

in 2014 (Duffard et al. 2014), and heliocentric and geocentric distances of 14.8 au and 14.1

au during the event, respectively, we obtain a Chariklo apparent magnitude ∼ 18.6. This is

5.6 magnitudes fainter than the star, which has V=13.0 (NOMAD catalog3), meaning that

Chariklo contributed to the total flux of less than 0.6%, a negligible value at our level of

accuracy.

The fractional drop observed during the occultation of B by Chariklo provides its partial

contribution to the total stellar flux, ΦB = 0.1036±0.0075 (Fig. 5). This implies a flux ratio

(ΦA/ΦB)TC247 = 8.65 ± 0.65, as measured by the Texas Instruments TC247 array used at

Springbok (in broad band mode, no filter). This directly provides the baseline level for the

occultations of A by the rings (Figs. 5 and 8), i.e. the level that corresponds to a total

disappearance of component A.

A similar calibration is not possible for the SAAO ring events, as that station did not

record an occultation by the main body. Moreover, the ratio (ΦA/ΦB)TC247 cannot be used,

as the SHOC instrument (see Coppejans et al. 2013) used at SAAO (also in broad band

3See http://vizier.u-strasbg.fr/viz-bin/VizieR

http://vizier.u-strasbg.fr/viz-bin/VizieR
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mode) has a different spectral response, so that the ratio depends on the color of the two

stars.

To proceed forward, we have used the B, V, K magnitudes of the star (taken from the

Vizier page, in NOMAD catalog). We have generated combined synthetic spectra energy

distribution of the two components, and using various (and separate) effective temperature

Teff for A and B. The effect of interstellar reddening has been parametrized using the color

excess E(B− V ). We adopted the classical total to selective extinction parameter RV = 3.1

for Milky Way dust from Fitzpatrick (1999). The relative contributions of each component

were adjusted in order to fit both the observed magnitude of the star and the flux ratio as

observed with the TC247 array. Finally, accounting for the spectral response of the Andor

array, we can then estimate the ratio (ΦA/ΦB)Andor for that detector.

A difficulty stems from the fact that there is a degeneracy between the effective tempera-

tures assumed for the two components, Teff(A) and Teff(B). The star B cannot be much cooler

than A, otherwise its diameter would be larger and strong signatures in the near IR would

appear in the composite spectrum. We have opted for a difference Teff(A)−Teff(B) ∼ 1000 K,

and assume that the two stars are on the main sequence. We find a good fit to the

observed magnitudes with Teff(A) = 5000 K and Teff(B) = 4000 K, and then a ratio

(ΦA/ΦB)Andor = 7.66, corresponding to a contribution to the total flux of ΦA = 0.885±0.025

for component A, where the error bar is estimated from the typical possible ranges for Teff(A)

and Teff .

Finally, we can estimate the apparent diameter of each component projected at Chariklo’s

distance: θA = 0.199 ± 0.015 km and θB = 0.092 ± 0.015 km. Those values will be used

latter when fitting the ring profiles with models of diffracting, semi-transparent bands.

Assuming the ring radii and pole orientation of Braga-Ribas et al. (2014), see also

Section 2.2, and using the ring detections in Springbok, Gifberg and SAAO, we deduce that

star B was at angular distance 20.6 mas from star A as projected in the sky plane, with

position angle P = 209.8◦ relative to the latter (where P is counted positively from celestial

North towards celestial East).

3. Ring events analysis

3.1. Profiles fitting

In order to determine accurate and consistent timings of the ring occultations, we use

a “square-well model” in which each ring is modeled as a sharp-edged, semi-transparent
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band of apparent opacity p′ (along the line of sight) and apparent width (in the sky plane)

W⊥. We use the numerical schemes described in Roques et al. (1987) to account for Fresnel

diffraction, stellar diameter projected at Chariklo’s distance, finite bandwidth of the CCD,

and finite integration time of the instrument. Finally, considering projection effects, we

can derive the ring physical parameters (radial width, normal opacity, etc...) and orbital

elements, see Appendix for details.

For sake of illustration, we give various parameters of interest in the case of the April

29, 2014 occultation. The Fresnel scale F =
√
λD/2 for Chariklo’s geocentric distance at

epoch, D = 2.11×109 km is 0.83 km, for a typical wavelength of λ = 0.65 µm. The projected

stellar diameters have been estimated above to 0.199 ± 0.015 km and 0.092 ± 0.015 km for

the primary star and secondary star, respectively (see Section 2.4). The smallest cycle time

used during that campaign was 0.04 s (at SAAO), corresponding to 0.5 km traveled by the

star relative to Chariklo in the celestial plane. Consequently, the light curves are dominated

by Fresnel diffraction, but the effects of stellar diameters and finite integration time remain

comparable. Similar calculations for the other twelve occultations show that the effect of

finite integration time dominated in all those cases.

The synthetic ring profiles are then fitted to observations so as to minimize the classical

χ2 function:

χ2 =
∑
i

(Φi,obs − Φi,calc)
2

σ2
i

(1)

where Φ is the flux, i refers to the ith data point, “obs” refers to observed, “calc” refers to

calculated, and σ the 1σ-level error of the ith data point. The free parameters of the model

are described in the next subsection. The 1σ error bar on each parameter is estimated by

varying this particular parameter to increase χ2 from the best value χ2
min to χ2

min + 1, the

others parameters are set free during this exploration.

3.2. Mid-times and widths of the rings

The best fitting square-well model described above provides relevant parameters that

depend on the occulting object. Three cases are possible: occultations by (1) main body; (2)

resolved rings; (3) unresolved rings. The relevant parameters in each case are respectively

(1) the times of ingress and the egress of the star behind the body; (2) the mid-time of the

occultation t0, the radial width reprojected in the plane of the rings, Wr, and the local normal

opacity pN for each ring (see Appendix for details); (3) the mid-time of the occultation. Those

parameters are listed in Table 4 (resolved ring events), Table 5 (unresolved ring events), and

in Table 6 (main body events). The best fits for each occultation are plotted in Fig. 3 and
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4 (ring occultations) and in Fig. 5 (main body occultations).

The grazing occultation by C2R recorded in Gifberg (Fig. 1) requires a special analysis.

In this geometry, the radial velocity of the star relative to the ring changes significantly

during the event (while it is assumed to be constant for all the other events). To account

for this peculiarity, we first converted the light curve (time, flux) into a profile (∆r, flux),

where ∆r is the radial distance to the point of closest approach to Chariklo’s center (in the

sky plane). Then we can apply the square-well model as explained in section 3.1, except

that the flux is now given in terms of ∆r, instead of time. Best fits for ingress and egress

are plotted in Fig. 6.

Table 4 summarizes the values of Wr for each resolved profile. Fig. 7 shows Wr vs. the

true longitude L counting from the ascending node. Accounting for the most constraining

events, Wr varies between 5 km and 7.5 km in C1R and between 0.05 km and 1 km in C2R

(at 1σ-level). Fig 7 could constrain the rings proper mode. Unfortunately, the true longitude

L plotted in Fig. 7 (and latter in Fig. 11) is not the correct quantity to use in order to detect

m = 1 proper modes (the true anomaly L−$ should be used instead of L, where $ is the

longitude of periapse). As the precession rates of the rings are unknown, no conclusion can

be made. Nevertheless, those width variations are observed both for a given occultation at

different longitudes and for different occultations at different dates, see Fig. 7. Implications

are discussed in Section 6.

3.3. Ring inner structures

Fig. 8 shows the best radial profiles of the rings that we have obtained so far, taken from

the discovery observation of June 3, 2013 and the April 29, 2014 event. They are currently

the only profiles that clearly resolve C1R from C2R, and in the case of the April 29, 2014

event, the only profiles that resolve C1R. A W-shape structure inside C1R is clearly seen

at egress in the Springbok and SAAO profiles, and marginally detected in the Springbok

ingress profile, while being absent (to within the noise) in the SAAO ingress profile.

Note that small (2-4 km) variations of radial distances between the two rings are visible

in Fig. 8. The average gap distance between the two rings on the six profiles is thus 14.8 km.

Since the origin of radial distance has been fixed arbitrarily on the center of C2R, it is

not possible to attribute those variations to an eccentricity of C1R, C2R or both. Note also

that the April 29 profiles are montages obtained by juxtaposing the profiles of C1R recorded

at Springbok and SAAO and the profile of C2R recorded in Gifberg. So, they scan different

rings longitudes, and conclusions based on this plot can only be qualitative.
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3.4. Ring pole

By analogy with their Uranian counterparts, we expect that Chariklo’s ring orbits have

essentially elliptical shapes, corresponding to a normal mode with a m = 1 azimuthal har-

monic number. Moreover, other modes with higher values of m are possible and the two

rings may not be coplanar. However, data on Chariklo’s rings are currently too scarce to

reach those levels of details. Instead, we have to simplify our approach, considering the

observational constraints at hand.

The simplest hypothesis is to assume that the two are circular, concentric and coplanar.

Then, their projections in the sky plane are ellipses characterized by M = 5 adjustable

parameters: the apparent semi-major axis a′, the coordinates of the ellipse’s center (fc, gc),

the apparent oblateness ε′ = (a′ − b′)/a′ (where b′ is the apparent semi-minor axis), and the

position angle P of the semi-minor axis b′. For circular rings, ε′ = 1− sin(B), where B is the

ring opening angle (B = 0 and B = 90◦ corresponding to edge-on and pole-on geometries,

respectively).

Note that (fc, gc) is related to the offsets in right ascension and declination between the

predicted and observed positions of the object, relative to the occulted star. The positions

of Chariklo deduced from (fc, gc) – at prescribed times and for given star positions – are

listed in Table 1. They can be used to improve Chariklo’s ephemeris, once the star positions

are improved, using the DR1 Gaia catalog and its future updates.

This circular ring model requires at least N ≥M = 5 data points in order to provide a

unique solution for the ring radius a (coincident with a′) and its J2000 pole position (αp, δp).

Only the June 3, 2013 discovery observation with 7 chords (and thus N = 14 data points

corresponding to the chord extremities) has sufficient constraints to provide unambiguous

ring orbits. More precisely, as only one instrument (Danish telescope) could resolve the

rings C1R and C2R in 2013, this multi-chord event mainly determines the orbit of C1R,

which largely dominates the usually blended ring profiles. Then we assumed that C2R is

coplanar with C1R and separated radially from it by a constant distance ∆a = 14.2±0.2 km

(Braga-Ribas et al. 2014).

The April 29, 2014 event provides two chords (N = 4 data points) on C2R. This allows

us to definitely eliminate one of the pole positions derived from the 2013 event. Actually,

determining the angles B and P at a given date provides two possible pole positions, 1 and 2,

depending on which part of the rings, as seen in the sky plane, is the “near arm” or the “far

arm”, see Braga-Ribas et al. (2014) for details. The C2R chord observed at Springbok turned

out to be longer than the longest possible length allowed by solution 2, thus confirming that

the preferred solution 1 of Braga-Ribas et al. (2014), based on the long-term photometric
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behavior of Chariklo (see also below), was actually the correct one.

In order to constrain the pole position, even with N < M , we vary the couple (P,B)

in a predetermined grid, while the other three parameters are adjusted in order to minimize

the radial residuals in the sky plane relative to the ring center. Since the pole position

is given by two parameters (αP , δP ), the 68.7% confidence domain (called 1σ-level here) is

obtained by allowing variations of the χ2 function from χ2
min to χ2

min +2.3 (Press et al. 1992),

and by selecting values of a to ±3.3 km, the nominal error on the C1R and C2R radii:

aC1R ∼ 391 km and aC2R ∼ 405 km (Braga-Ribas et al. 2014) . The pole position derived

from the April 29, 2014 occultation is displayed in Fig. 9. Note that it is consistent with but

less accurate than the pole determined in 2013.

Finally, the October 1st, 2016 event also provided two chords (N = 4 data points)

across the rings, but without resolving C1R from C2R (Fig. 4). Thus, we assumed that the

profiles are dominated by C1R, and derived the pole position displayed in Fig. 9. It is again

consistent with the poles of 2013 and 2014, but with larger error bars due to the ill-configured

chord geometry (nearly diametric) that permits more freedom on the pole position (Fig. 1).

Further constraints are in principle provided by the long-term photometric behavior of

Chariklo’s system between 1997 and 2014, as compiled by Duffard et al. (2014), see their

Fig. 1. The observed photometric variations can be explained by the changing viewing

geometry of the rings, linked itself to the pole orientation. Contrary to the occultation

data, the photometric variations do not depend on the particular shape of the rings (e.g.

circular vs. elliptic). Fitting for the pole position and accounting for the error bars taken

from Duffard et al. (2014), we obtain the possible domain shown in Fig. 9. Note that it is

consistent with but less accurate than all our occultation results.

From Fig. 9 we can conclude that our current data set (spanning the 3-year interval 2013-

2016) is consistent with circular rings that maintain a fixed pole in space, and to within the

current formal error bar on the semi-major axis a (±3.3 km). Note that the extensions of the

error domains for the pole position (colored regions in Fig. 9) are dominated by the errors

in the data (i.e. the timings of the ring occultations), not by the formal error for a quoted

above. In other words, even if the ring shape were known perfectly, the pole position would

not be significantly improved compared to the results shown in Fig. 9. A Bayesian approach

could be used to estimate the probability that the rings are elliptic, considering the data at

hand and assuming a random orientation for the ring apsidal lines. Considering the paucity

of data and the large number of degrees of freedom, this task remains out of the scope of the

present paper. In any case, new observations will greatly help into this approach by adding

more constraints on the ring shapes and orientations.
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For all the other ring single-chord detections (N = 2 data points), neither the rings radii

nor their pole position can be constrained. Instead, assuming the pole orientation of Braga-

Ribas et al. (2014), we determined the ring center, also assumed to coincide with Chariklo’s

center of mass. Having only one ring chord introduces an ambiguity as two solutions (North

or East of the body center) are possible. However, in all cases but one (August 8, 2016) it

was possible to resolve this ambiguity as the absence of detections made by other stations

eliminated one of the two solutions. For the August 8, 2016 event, the ambiguity remains,

and we give the two possible Chariklo’s positions, see Table 1.

None of the single chords are longer than the longest chord expected from the Braga-

Ribas et al. 2014’s solution, and thus remain fully consistent with that solution.

3.5. Sharpness of C1R edges

A striking feature of the resolved C1R profiles from the April 29, 2014 event is the

sharpness of both its inner and outer edges. This is reminiscent of the Uranian rings (Elliot

et al. 1984; French et al. 1991), and might stem from confining mechanisms caused by nearby,

km-sized shepherding moonlets (Braga-Ribas et al. 2014). In order to assess the sharpness

of C1R’s edges, we use a simple model, where each edge has a stepwise profile, as illustrated

in Fig. 10. Instead of having an abrupt profile that goes from apparent opacity 0 to p′, we

add an intermediate step of radial width in the ring plane ∆wr and opacity p′/2 around the

nominal ingress or egress times, as deduced from the square-well model described before,

see also Table 4. With that definition, ∆wr is a measure of the typical edge width, i.e. the

radial distance it takes to go from no ring material to a significant optical depth.

We explored values of ∆wr by varying the χ2 function (Eq. 1) from its minimum value

χ2
min to χ2

min + 1. The results are listed in Table 3 and illustrated in Fig. 10. Note that all

edges are consistent with infinitely sharp edges (∆wr = 0) to within the 1σ level and that

upper limits for ∆wr are typically 1 km. No significant differences are noticeable between

the inner and the outer edges, contrary to, e.g., some Uranian rings (French et al. 1991).

Note finally that the width of C2R, as derived from the grazing event in Gifberg (Fig. 6)

is slightly smaller (∼ 0.7 km) than the Fresnel scale (∼ 0.8 km). As such, it is not possible

to assess the sharpness of its edges.
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4. Integral properties of rings: equivalent width and depth

We now turn to the measure of the ring’s equivalent width Ep and equivalent depth

Aτ , two quantities defined and discussed by Elliot et al. (1984) and French et al. (1991), as

detailed in the Appendix. Those quantities are physically relevant, as they are related to

the amount of material present in a radial cut of the ring, in the extreme cases of monolayer

and polylayer rings, respectively.

The values of Ep are given in Table 4 (resolved events) and in Table 5 (unresolved

events). For the resolved profiles, we have plotted Ep against the radial width Wr in Fig. 11.

Implications in terms of mono- versus polylayer models will be discussed in Section 6. For the

profiles that resolve C1R from C2R (and where both rings were detected), and those where

the two profiles are blended (the majority of our observations), we have plotted the integrated

Ep(1+2) against the true longitude L (counted from the J2000 ring plane ascending node) in

Fig. 11. From that figure, we see that the values of Ep(1 + 2) lie in the interval 1-3 km, with

no significant differences between the various measurements. In other words, no significant

variations of Ep(1 + 2) with time and/or longitude are detected in our data set.

In this preliminary study, the rings are considered as one entity C1R + C2R but further

studies should treat them independently to derive conclusions on the structure of each of

them.

5. Search for faint ring material

The best light curve available in terms of photometric quality is from the Danish Tele-

scope. It was acquired at a rate of 10 frames per second during the 30 minutes bracketing the

occultation of June 3, 2013 (Braga-Ribas et al. 2014). It can be used to search for additional

material orbiting Chariklo, assuming semi-transparent, uninterrupted, and permanent rings

coplanar to C1R and C2R.

For this purpose, we consider the equivalent width Ep(i) of the putative ring material

intercepted during the acquisition interval ∆t(i) corresponding to the ith data point, and

counted radially in the ring plane. Using the results of the Appendix (see also Boissel et al.

2014 for details), we obtain

Ep(i) =
| sin(B)|

2
[1− φ(i)]∆r(i) (2)

where ∆r(i) is the radial interval travelled by the star during ∆t(i) (projected in the ring

plane), and where φ(i) is the normalized stellar flux. Due to projection effects, the value of
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∆r(i) varied between the extreme values of 3 to 4 km during the acquisition interval, which

sets the radial resolution of this particular data set.

The values of Ep(i) vs. radial distance r is displayed in Fig. 12. Note that the light

curve probes radial distances of up to ∼ 12, 000 km, about 30 times the ring radii. Using bins

of width 60 km, we evaluate the variance of the difference between two consecutive points

in each box, thus eliminating low frequency variations of Ep(i). Dividing this variance by

two (to account for the fact that the data points are uncorrelated) and taking the square

root, we obtain the 1σ level, standard deviation of Ep(i), denoted Ep(1σ), see the red line in

Fig. 12. The value of Ep(1σ) remains stable in the entire range considered here, with typical

values of 20 m. Thus, at the 1σ level, we do not detect narrow (Wr < 3-4 km) rings coplanar

with C1R and C2R with equivalent width larger than about 20 meters. This is about ten

times fainter than the equivalent width of C2R (Fig. 11). Note that this limit corresponds to

extreme cases of either opaque rings with width ∼ 20 m, or semi-transparent rings of width

∼ 3-4 km and normal opacity 0.007-0.005, and all the intermediate solutions that keep Ep(i)

at 20 m.

6. Concluding remarks

We detected Chariklo and/or its rings during a total of thirteen stellar occultations

between 2013 and 2016. They demonstrate beyond any doubt that this Centaur is surrounded

by a system of two flat rings, C1R and C2R. All the observations at hand are consistent

with the circular ring solution of Braga-Ribas et al. (2014), with C1R orbiting at 391±3 km

from Chariklo center and with C2R orbiting outside C1R at an average distance of 14.8 km

(Fig. 8). This definitely rules out interpretations of the initial observation of June 3, 2013

by a 3D dust shell, or a set of cometary-type jets being ejected from the surface of the body.

In fact, the changing aspect of the rings seen during the occultations is entirely attributable

the changing position of Chariklo relative to Earth, with a ring pole position that remains

fixed in space (Fig. 9).

Our best resolved observation (April 29, 2014) reveals a W-shaped structure inside the

main ring C1R (Fig. 8). Moreover, the radial width Wr of C1R measured on the best profiles

exhibits significant variations with longitude, with a peak to peak variation of δWr ∼ 2.5 km

between 5 and 7.5 km, see Table 4 and Fig. 7. All the resolved profiles of C1R exhibit

edges that are consistent with infinitely sharp boundaries, once diffraction and star diameter

effects are accounted for. The typical 1σ upper limits for the edge transition zones is about

one kilometer (Table 3 and Fig. 10). Note finally that none of our observations permits to

resolve the profile of ring C2R, whose width is constrained between 100 m to 1 km (Fig. 11).
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Remarkably, C1R properties (W-shaped profile, variation of width with longitude and

sharp edges) are reminiscent of the narrow eccentric ringlets found around Saturn (French

et al. 2016) or Uranus (Elliot and Nicholson 1984; French et al. 1991). The maintenance of

apse alignment could be due to self-gravity (Goldreich and Tremaine 1979), viscous effects at

the edges (Chiang and Goldreich 2000), or a combination of self-gravity and viscous effects

(Mosqueira and Estrada 2002). If validated, those models may provide insights into the ring

physical parameters. For instance, the overdensities of material at some 100’s m from the

edges (as seen in Fig. 8) is predicted by viscous models and deserve more detailed observa-

tional support in the case of Chariklo. Also, the measure of the eccentricity gradient across

the rings, qe, could be related to the surface density of the ring material, once Chariklo’s

dynamical oblateness J2 is known (Pan and Wu 2016). However, our current data set is too

fragmentary for drawing any reliable conclusions in that respect, since both a comprehensive

ring orbit model and the knowledge of Chariklo’s J2 are missing.

In their simplest forms, the Saturn or Uranus ringlets are described as sets of nested

elliptical streamlines, with a width that varies as Wr = [1− qe cos(f)]δa, where f is the true

anomaly, qe = aδe/δa measures the eccentricity gradient across the ring, δa and δe being

the changes of the semi-major axis a and eccentricity e across that ring. Consequently,

the interpretation of Fig. 7 remains ambiguous, since only the true longitude corresponding

to the events is currently known, while the true anomaly f is unknown. In fact, any (ex-

pected) apse precession between observations impairs a correct interpretation of that figure.

At this point, only the total eccentricity variation across the ring can be estimated, i.e.

δe = δWr/2a ∼ 0.003 from the estimations of Wr and a given above. This sets a lower

limit of the same order for e, close to the eccentricity of Uranus’ ε ring, 0.008 (French et al.

1991).

A much better case for modeling the rings would be to derive Wr vs. the ring radial

excursion r− a relative to the mean radius r. The formula above predicts a linear behavior,

u. Unfortunately, the ring center is currently undetermined: we assume on the contrary

a circular ring to derive it, and determine its pole. The fact that the circular hypothesis

provides satisfactory fits to our data, to within the accuracy of C1R’s radius determination

(some ±3 km), suggests that r−a should also vary by a few kilometers at most. In any case,

the degeneracy between the ring eccentricity and its pole position can be lifted by obtaining

several multi-chord occultations and more accurate pole positions than shown in Fig. 9

(and thus distinguish between projection and eccentricity effects). Also, as expected apsidal

precession rates are of the order of a couple of months (Sicardy et al. 2016), observations

closer than that in time should be done to derive Chariklo’s J2.

Turning now to the integral properties of the rings, we have determined the equivalent



– 20 –

widths Ep of C1R and C2R, when resolved, and the sum of the two when unresolved (Fig. 11).

We see that C1R, with Ep(C1R) ∼ 2 km, contains about ten times more material than C2R,

Ep(C2R) ∼ 0.2 km. On one hand, if the equivalent width is constant within radial width,

the ring can be considered as monolayer (French et al. 1986), as no shadowing by neighboring

particules occurs (except in nearly edge-on view). On the other hand, if the ring is polylayer,

the equivalent depth is independent from Wr. In that latter case, the equivalent width can

be expressed as a function of ring width Wr and the constant value of equivalent depth Āτ :

Ep(Wr) = Wr(1− e−2Āτ/Wr) (3)

(this equation, based on the work of French et al. 1986 has been corrected by the factor 2

in optical depth due to the diffraction by ring particules - see Appendix). Fig. 11 shows Ep
vs. Wr assuming several values of Āτ between 1.15 and 2 km for C1R and between 0.15 and

0.4 km for C2R (no real measurement of this parameter has been made in this work, the

lines show the expected trends - see Appendix). Contrary to French et al. (1986), the data

do not allow any discrimination between Ep or Aτ constant within the radial width. Thus,

no choice between the mono- or polylayer models can be made.

Finally, we have searched for faint material ring around the already discovered rings.

The best data set at hand provides 1σ upper limits of ∼ 20 m for the equivalent width of

narrow (< 3-4 km physical width) rings coplanar with C1R and C2R, up to distances of

12, 000 km (counted in the ring plane). Note that in 2015, direct images of Chariklo have

been recorded using HST and SPHERE (Sicardy et al. 2015a,b). The goal was to image the

rings and/or look for possible shepherd satellite(s) and jets. Considering material of same

albedo as the rings (p=0.1), following limits have been inferred: (1) no satellite bigger than

∼ 2 km (being brighter than V ∼ 26.1) up to 6400 km (∼ 8 times the ring size) from Chariklo

center. (2) no satellite bigger than ∼ 1 km (V ∼ 27.5) up to 8 arcsec. For comparison the

Hill radius is 7.5 arcsec. (3) no jet, coma or material brighter than V ∼ 28 corresponding

to jets of width ∼ 10 km or material of optical depth of around 2 × 10−5 per pixel. Note

that HST resolution did not allow to look closer than 1000 km from Chariklo’s center, so

the rings were not detected.

Future observations will benefit greatly from the Gaia catalog. A flavor of it has been

provided by the Gaia-based prediction of the October 1st, 2016 occultation, which turned

out to be correct to within 5 mas in declination (respectively 9 mas in right ascension),

corresponding to about 50 km (respectively 90 km). The improvement of Chariklo’s orbit

stemming from successful occultation observations and the sub-mas accuracy of forthcoming

Gaia catalogs will provide predictions accurate to the few-kilometer level. This will allow

a much better distribution of stations (using portable instruments), with an optimal ring

longitude coverage aimed at improving the ring orbital models. It will also be possible to
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plan multi-wavelength observations to constrain the ring particle sizes. Multi-wavelength

instruments are rare, and difficult to obtain unless a strong case is made, based on reliable

predictions. Higher SNR light curves will also be obtained in order to calculate the equivalent

depths of both rings and definitely answer if the rings are monolayer or polylayer. Finally,

the Gaia catalog will allow a much better coverage of Chariklo’s limb, which is currently

poorly mapped. The general shape and local irregularities of the body will in turn have

important consequences for a better understanding of the ring dynamics.

A. Appendix: Equivalent width and equivalent depth definitions

We define p′ as the apparent opacity of the ring. It measures the fractional drop of stellar

flux 1−I/I0 as observed from Earth (where I0 and I are the incident and transmitted fluxes,

respectively). Thus, p′ = 0 means a transparent ring and p′ = 1 means an opaque ring. By

“apparent”, we mean here as observed from Earth in the plane of the sky. The apparent

quantities will be primed hereafter to distinguish them for the actual quantities at the level

of the ring, see below. The apparent ring optical depth is defined as τ ′ = − ln(1− p′).

Appropriate transformations, accounting for the ring opening angle B and distance D

to the ring, must be applied to derive the opacity pN and optical depth τN at the ring level,

where “N” means normal to the ring plane. Once this is done, one may define the equivalent

width Ep and equivalent depth Aτ of the ring as the integrals of pN and τN , respectively,

over the ring radial profile of width Wr (measured radially in the plane of the ring):

Ep =

∫
Wr

(vrpN)dt (A1)

Aτ =

∫
Wr

(vrτN)dt, (A2)

where vr is the radial velocity of the star relative to Chariklo in the ring plane.

The quantities Ep and Aτ are relevant for two extreme cases of ring structures. One is

a monolayer ring, in which case pN = | sin(B)| · p (for | sin(B)| ≤ 1/p), where p is the ring

opacity as seen under an opening angle B. The other model is a polylayer ring (where the

ring thickness is much larger than the particle sizes), in which case τN = | sin(B)| · τ , where

τ is the ring optical depth, seen again under an angle B, see details in Elliot et al. (1984).

In principle, Ep and and Aτ can be determined by numerically performing the inte-

grations | sin(B)| ·
∫

(vrp)dt and | sin(B)| ·
∫

(vrτ)dt over the observed profiles. Since the

convolutions of the profiles by both Fresnel diffraction and stellar diameter conserve energy,

those integrations provide the correct values of Ep and and Aτ . Those two quantities are
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eventually measures of the amount of material (per unit length) contained along a radial

cut of the ring, in their respective domains of validity (monolayer vs. polylayer), see French

et al. (1991).

However, complications arise because of two effects: (1) the ring is not an uniform screen

of opacity p, but rather a set of many particles that cover a fractional surface area p of the

ring, while individually diffracting the incoming wavefront, and (2) in several cases, the ring

profiles are not resolved, i.e. the entire stellar drop occurs inside an individual acquisition

interval, thus “diluting” the opacity p over that interval. We now comment these points in

turn.

First, individual ring particles of radius r diffract the incoming wave (with wavelength

λ) over an Airy scale FA ∼ (λ/2r)D, as seen by the observer at distance D from the rings.

With r ∼ of a few meters and D ∼ 2×109 km, and using wavelengths in the visible range, we

obtain FA >∼ 500 km, which is significantly larger than typical values of a few kilometers

for W⊥, the width of ring as seen in the sky plane. This results in a loss of light in the

occultation profiles, making the rings appear more opaque than they actually are. It can be

shown that the ring apparent optical depth τ ′ (in the sky plane) is actually twice as large

as its actual value τ , i.e. the one would have for an observer close to the ring: τ ′ = 2τ ,

see Cuzzi (1985). An equivalent way to describe that effect is to note that the actual ring

opacity p is related to p′ by (1− p)2 = 1− p′. Thus, the ring acts as a screen of amplitude

for the incoming wave, instead of screen of intensity, see details in Roques et al. (1987).

If the ring profile is resolved, it is enough to estimate numerically the integrals:

Ep = | sin(B)| · vr
∫

profile

(1−
√

1− p′)dt (A3)

Aτ = −| sin(B)|
2

· vr
∫

profile

ln(1− p′)dt (A4)

The second point to examine is the fact that the ring profile may not be resolved during

the integration time ∆t. In this case p′ is not known, and the integrals above cannot be

evaluated without an independent piece of information. Let us consider the simple case of a

uniform opacity p across the ring profile (square-well model). Then, the apparent equivalent

width E ′ = p′W⊥ (where W⊥ is the width of the ring as observed in the sky plane) can be

evaluated from energy conservation by E ′ = f ′v⊥∆t, where v⊥ is the velocity of the star

normal to the ring in the sky plane, and f ′ is the fractional stellar drop during ∆t. From

the definition of Ep above (Eq. A3) and from (1− p)2 = 1− p′, one obtains:

Ep = | sin(B)| vr
v⊥
· E ′

2− p
(A5)
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Since 0 ≤ p ≤ 1, we have:

| sin(B)| · vr
v⊥
· E
′

2
≤ Ep ≤ | sin(B)| · vr

v⊥
· E ′, (A6)

i.e. a uncertainty factor of two, depending on the assumption on p.

For unresolved events, the fit of the best square-well model to the data allows measure-

ments of Ep. The problem is that p is badly constrained (0 ≤ p ≤ 1) by the fits. Eq. A6

shows that error bars will be much larger than for resolved events. It could be possible to

solve that problem by noting that p′ = E ′/W⊥ = (E ′/Wr)(vr/v⊥). As we know Wr we can

constrain p′, and thus Ep. Assuming that Wr,C1R+C2R lies between 3 and 14 km (see Table 4),

the error bars values of Ep remain similar to those without the width constraint. As we are

not certain that 3 and 14 km are the width minimum and maximum, we choose not to use

this constraint.

Note that the case of Aτ is in general harder to solve. Even when the profile is resolved,

the densest parts of the ring have high opacities p′ ∼ 1, and thus large uncertainties on

τ ′ = − ln(1 − p′) stemming from the data noise and uncertainties on the baseline levels

(Fig. 8). Consequently, we have not attempted to derive Aτ for our current data set.
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scope of the Deutsche Höhere Privatschule (DHPS) in Windhoek and the use of the Meade

14 telescope of Space Observation Learning (Rob Johnstone). Funding from Spanish grant

AYA-2014-56637-C2-1-P is acknowledged, as is the Proyecto de Excelencia de la Junta de
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Jiménez-Teja, Y., Silva, J.S., Bramich, D.M., 2014. The Centaur 10199 Chariklo: in-

vestigation into rotational period, absolute magnitude, and cometary activity. Astron.

Astrophys. 568, L11.

French, R.G., Elliot, J.L., Levine, S.E., 1986. Structure of the Uranian rings. II - Ring orbits

and widths. Icarus 67, 134–163.

French, R.G., Nicholson, P.D., Hedman, M.M., Hahn, J.M., McGhee-French, C.A., Col-

well, J.E., Marouf, E.A., Rappaport, N.J., 2016. Deciphering the embedded wave in

Saturn’s Maxwell ringlet. Icarus 279, 62–77.

French, R.G., Nicholson, P.D., Porco, C.C., Marouf, E.A., Dynamics and structure of the

Uranian rings 1991 pp. 327–409 pp. 327–409.

Gaia Collaboration, Brown, A.G.A., Vallenari, A., Prusti, T., de Bruijne, J.H.J., Mignard,

F., Drimmel, R., Babusiaux, C., Bailer-Jones, C.A.L., Bastian, U., et al., 2016. Gaia

Data Release 1. Summary of the astrometric, photometric, and survey properties.

Astron. Astrophys. 595, A2.

Goldreich, P., Tremaine, S., 1979. Towards a theory for the Uranian rings. Nature 277, 97–99.

Horner, J., Evans, N.W., Bailey, M.E., 2004. Simulations of the population of Centaurs - I.

The bulk statistics. Mon. Not. R. Astron. Soc.354, 798–810.

Mosqueira, I., Estrada, P.R., 2002. Apse Alignment of the Uranian Rings. Icarus 158, 545–

556.



– 27 –

Ortiz, J.L., Duffard, R., Pinilla-Alonso, N., Alvarez-Candal, A., Santos-Sanz, P., Morales,

N., Fernández-Valenzuela, E., Licandro, J., Campo Bagatin, A., Thirouin, A., 2015.

Possible ring material around centaur (2060) Chiron. Astron. Astrophys. 576, A18.

Pan, M., Wu, Y., 2016. On the Mass and Origin of Chariklo’s Rings. Astron. J. 821, 18.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical recipes in FOR-

TRAN. The art of scientific computing 1992.

Roques, F., Moncuquet, M., Sicardy, B., 1987. Stellar occultations by small bodies - Diffrac-

tion effects. Astron. J. 93, 1549–1558.

Ruprecht, J.D., Bosh, A.S., Person, M.J., Bianco, F.B., Fulton, B.J., Gulbis, A.A.S., Bus,

S.J., Zangari, A.M., 2015. 29 November 2011 stellar occultation by 2060 Chiron:

Symmetric jet-like features. Icarus 252, 271–276.

Sicardy, B., Benedetti-Rossi, G., Buie, M.W., Langlois, M., Lellouch, E., Camargo,

J.I.B., Braga-Ribas, F., Duffard, R., Ortiz, J.L., Bérard, D., Meza, E., Boc-

caletti, A., Bockelée-Morvan, D., Dumas, C., Gratadour, D., 2015a. Obser-

vations of Chariklo’s rings in 2015. European Planetary Science Congress

2015, held 27 September - 2 October, 2015 in Nantes, France, Online

at ¡A href=“http://meetingorganizer.copernicus.org/EPSC2015/EPSC2015”¿

http://meetingorganizer.copernicus.org/EPSC2015¡/A¿, id.EPSC2015-750 10,

EPSC2015–750.

Sicardy, B., Buie, M.W., Benedetti-Rossi, G., Braga-Ribas, F., Bueno de Camargo, J.I.,

Duffard, R., Ortiz, J.L., Gratadour, D., Dumas, C., Constraints on Chariklo’s rings

from HST and VLT observations. in: AAS/Division for Planetary Sciences Meeting

Abstracts vol. 47 of AAS/Division for Planetary Sciences Meeting Abstracts 2015 p.

104.01.

Sicardy, B., El Moutamid, M., Quillen, A.C., Schenk, P.M., Showalter, M.R., Walsh, K.,

2016. Rings beyond the giant planets. ArXiv e-prints.

van Belle, G.T., 1999. Predicting Stellar Angular Sizes. PASP111, 1515–1523.

This preprint was prepared with the AAS LATEX macros v5.2.



– 28 –

Table 1. Circumstances of positive detections (main body and/or rings)

Date

Rmag (NOMAD catalog), (α, δ) star coordinates, θ? stellar diameter(a)

(αCk, δCk) derived Chariklo’s geocentric coordinates at specified date

Site Longitude Telescope Instrument Observers Results

Latitude Exposure Time (s)

Altitude (m)

June 3, 2013

R = 12.070, α = 16h56m06.4876s, δ = −40◦31′30.205′′, θ? = 2.18 km

at 06:25:30 UT: αCk = 16h56m06.3202s, δCk = −40◦31′30.2803′′

See details in Braga-Ribas et al. (2014)

February 16, 2014

R = 16., α = 17h35m55.3333s, δ = −38◦05′17.184′′, θ? = 0.265 km

at 07:45:35 UT: αCk = 17h35m54.980s, δCk = −38◦05′17.449′′

Paranal 24 37 31. S UT4 8.2 m HAWK-I F. Selman, C. Herrera C1R and C2R

Chile 70 24 07.95 W H-filter 0.25 G. Carraro, S. Brillant partially

2635.43 C. Dumas, V. D. Ivanov resolved

San Pedro Atacama 22 57 12.3 S 50 cm APOGEE U42 A. Maury Main body

Chile 68 10 47.6 W 10 N. Morales

2397

March 16, 2014

R = 15.45, α = 17h40m39.8690s, δ = −38◦25′46.887′′, θ? = 0.121 km

at 20:31:45 UT: αCk = 17h40m39.7743s, δCk = −38◦25′46.4198′′

Doi Inthanon 18 34 25.41 N TNT 2.4 m ULTRASPEC P. Irawati C1R and C2R

Thailand 98 28 56.06 E R’-filter 3.3 A. Richichi unresolved

2450

April 29, 2014

R
(b)
A = 12.72, α

(b)
A = 17h39m02.1336s, δ

(b)
A = −38◦52′48.801′′, θ

(b)
?A = 0.199 km

at 23:14:12 UT: αCk = 17h39m01.7943s, δCk = −38◦52′48.858′′

SAAO 32 22 46.0 S 1.9 m SHOC H. Breytenbach C1R and C2R

Sutherland 20 48 38.5 E 0.0334 A. A. Sickafoose resolved

South Africa 1760 Main body

Gifberg 31 48 34.6 S 30 cm Raptor Merlin 127 J.-L. Dauvergne Grazing C2R

South Africa 18 47 0.978 E 0.047 P. Schoenau

338

Springbok 29 39 40.2 S 30 cm Raptor Merlin 127 F. Colas C1R and C2R

South Africa 17 52 58.8 W 0.06 C. de Witt sharp and resolved

900

June 28, 2014

R = 13.65, α = 17h24m50.3821s, δ = −38◦41′05.609′′, θ? = 0.167 km

at 22:24:35 UT: αCk = 17h24m50.2954s, δCk = −38◦41′05.7445′′

Hakos 23 14 11 S 50 cm AK3 Raptor Merlin 127 K.-L. Bath C1R and C2R

Namibia 16 21 41.5 E 0.2 unresolved

1825

Kalahari 26 46 26.91 S 30 cm Raptor Merlin 127 L. Maquet Main body

South Africa 20 37 54.258 E 0.4
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Table 1—Continued

Date

Rmag (NOMAD catalog), (α, δ) star coordinates, θ? stellar diameter(a)

(αCk, δCk) derived Chariklo’s geocentric coordinates at specified date

Site Longitude Telescope Instrument Observers Results

Latitude Exposure Time (s)

Altitude (m)

861

Twee Rivieren 26 28 14.106 S 30 cm Raptor Merlin 127 J.-L. Dauvergne Main body

South Africa 20 36 41.694 E 0.4

883

April 26, 2015

R = 12.04, α = 18h10m46.1450s, δ = −36◦38′56.368′′, θ? = 0.361 km

at 02:11:58 UT: αCk = 18h10m45.9676s, δCk = −36◦38′56.608′′

Los Molinos 34 45 19.3 S OALM FLI CCD S. Roland CR and C2R

Uruguay 56 11 24.6 W 46 cm 0.8 R. Salvo unresolved

130 G. Tancredi

May 12, 2015

R = 15.93, α = 18h08m29.2962s, δ = −36◦44′56.814′′, θ? = 0.219 km

at 17:55:40 UT: αCk = 18h08m29.2447s, δCk = −36◦44′56.7965′′

Samford Valley 27 22 07.00 S 35 cm G-star J. Bradshaw Main Body

Australia 152 50 53.00 E 0.32 Emersion of unresolved

80 rings only

July 25, 2016

R = 14.02, α = 18h20m35.3645s, δ = −34◦02′29.590′′, θ? = 0.234 km

at 23:59:00 UT: αCk = 18h20m35.3640s, δCk = −34◦02′29.0378′′

Liverpool Telescope 28 45 44.8 N 2 m RISE J.-L. Ortiz Main Body

Canary Islands 17 52 45.2 W 0.6 N. Morales

2363

August 08, 2016

R = 13.67, α = 18h18m03.6927s, δ = −33◦52′28.392′′, θ? = 0.204 km

at 19:57:00 UT: αCk = 18h18m03.8297s, δCk = −33◦52′28.181′′

or αCk = 18h18m03.8449s, δCk = −33◦52′28.196′′

Windhoek (CHMO) 22 41 54.5 S 35 cm ZWO / ASI120MM H.-J. Bode Main Body

Namibia 17 06 32.0 E 1 C1R and C2R

1920 unresolved

August 10, 2016

R = 16.53, α = 18h17m47.3492s, δ = −33◦51′02.516′′, θ? = 0.053 km

at 14:23:00 UT: αCk = 18h17m47.3089s, δCk = −33◦51′02.478′′

Murrumbateran 34 57 31.50 S 40 cm WATEC 910BD D. Herald Main Body

Australia 148 59 54.80 E 0.64

594

August 10, 2016

R = 16.22, α = 18h17m46.4827s, δ = −33◦50′57.826′′, θ? = 0.083 km

at 16:43:00 UT: αCk = 18h17m46.4457s, δCk = −33◦50′57.523′′

Les Makes 21 11 57.4 S 60 cm Raptor Merlin 127 F. Vachier Main Body

La Réunion 55 24 34.5 E 2

972
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Table 1—Continued

Date

Rmag (NOMAD catalog), (α, δ) star coordinates, θ? stellar diameter(a)

(αCk, δCk) derived Chariklo’s geocentric coordinates at specified date

Site Longitude Telescope Instrument Observers Results

Latitude Exposure Time (s)

Altitude (m)

August 15, 2016

R = 14.64, α = 18h17m06.2228s, δ = −33◦46′56.315′′, θ? = 0.103 km

at 11:38:00 UT: αCk = 18h17m06.1638s, δCk = −33◦46′56.513′′

Darfield 43 28 52.90 S 25 cm WATEC 910 BD B. Loader Main Body

New Zealand 172 06 24.40 E 2.56

210

October 1, 2016

R = 15.36, α = 18h16m20.0796s, δ = −33◦01′10.756′′, θ? = 0.119 km

at 10:10:00 UT: αCk = 18h16m20.0324s, δCk = −33◦01′10.841′′

Rockhampton 23 16 09.00 S 30 cm WATEC 910BD S. Kerr Main Body

Australia 150 30 00 E 0.320 C1R and C2R

50 unresolved

Adelaide 34 48 44.701 S 30 cm QHY 5L11 A. Cool Main body

Heights School 138 40 56.899 E 1 B. Lade C1R and C2R

Australia 167 unresolved
(a) projected at Chariklo’s distance (using van Belle 1999, except for the April 29, 2014, see text for details).
(b) The index A refers to the primary of the binary star.
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Table 2. Circumstances of observations that detected no event or during which no data

was acquired

Site Longitude Telescope Instrument Observers

Latitude Exposure Time (s)

Altitude (m)

February 16, 2014

Cerro Tololo 30 10 03.36 S 0.4 m PROMPT J. Pollock

Chile 70 48 19.01 W 4 telescopes 6.0/2.0

2207

La Silla 29 15 16.59 S TRAPPIST FLI PL3041-BB E. Jehin

Chile 70 44 21.82 W 60 cm 4.5

2315

La Silla 29 15 32.1 S NTT 3.55 m SOFI L. Monaco

Chile 70 44 01.5 W H-filter 0.05 + visitor team

2375

April 29, 2014

Hakos 23 14 50.4 S 50 cm AK3 Raptor Merlin 127 K.-L. Bath

Namibia 16 21 41.5 E 0.075

1825

Hakos 23 14 50.4 S 50 cm RC50 i-Nova R. Prager

Namibia 16 21 41.5 E 1.

1825

Windhoek (CHMO) 22 41 54.5 S 35 cm Raptor Merlin 127 W. Beisker

Namibia 17 06 32.0 E 0.1

1920

June 28, 2014

Les Makes 21 11 57.4 S 60 cm WATEC 910HX A. Peyrot

La Réunion 55 24 34.5 E 0.4 J-P. Teng

972

April 26, 2015

Bigand 33 26 11 S 15 cm Canon Ti S. Bilios

Provincia Santa Fé 61 08 24 W 5

Argentina 90

Bigand 33 26 11 S 15 cm Canon EOS J. Nardon

Provincia Santa Fé 61 08 24 W 3.2

Argentina 90

La Silla 29 15 16.6 S TRAPPIST FLI PL3041-BB E. Jehin

Chile 70 44 21.8 W 60 cm 4.5

2315

Bosque Alegre 31 35 54.0 S 76 cm QHY6 R. Melia

Argentina 64 32 58.7 W 1.2 C. Colazo

1250

Santa Rosa 36 38 16 S 20 cm Meade DSI-I J. Spagnotto

Argentina 64 19 28 W 3

182

Santa Martina 33 16 09.0 S 40 cm Raptor Merlin 127 R. Leiva Espinoza

Chile 70 32 04.0 W 0.5

1450

Buenos Aires (AAAA) 34 36 16.94 S 25 cm ST9e A. Blain

Argentina 58 26 04.37 W 4

0
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Table 2—Continued

Site Longitude Telescope Instrument Observers

Latitude Exposure Time (s)

Altitude (m)

May 12, 2015

Reedy Creek 28 06 30.4 S 25 cm WATEC 120N+ J. Broughton

Australia 153 23 52.90 E 0.64

66

July 25, 2016

Granada 37 00 38.49 N 60 cm Raptor Merlin 127 S. Alonso

Spain 03 42 51.39 W 0.4 A. Román

1043

Albox 37 24 20.0 N 40 cm Atik 314L+ J.-L. Maestre

Spain 02 09 6.5 E 3

493

August 10, 2016 - 14h UT

Blue Mountains 33 39 51.9 S 30 cm WATEC 910BD D. Gault

Australia 150 38 27.9 E 5.12

286

Samford Valley 27 22 07.00 S 35 cm WATEC 910BD J. Bradshaw

Australia 152 50 53.00 E 0.64

80

Rockhampton 23 16 09.00 S 30 cm WATEC 910BD S. Kerr

Australia 150 30 00.00 E 1.28

50

Dunedin 45 52 20.83 S 36 cm Raptor Merlin 127 F. Colas

New Zealand 170 29 29.90 E 2. A. Pennell

154 P.-D. Jaquiery

Sydney 33 48 35.04 S 36 cm Raptor Merlin 127 H. Pavlov

Australia 150 46 36.90 E 2.2

37

August 15, 2016

Canberra 35 11 55.30 S 40 cm WATEC 910BD J. Newman

Australia 149 02 57.50 E 2.56

610

Murrumbateran 34 57 31.50 S 40 cm WATEC 920BD D. Herald

Australia 148 59 54.80 E 0.32

594

Greenhill Observatory 42 25 51.8 S 1.3 m Raptor Merlin 127 K. Hill

Tasmania 147 17 15.8 E 0.5 A. Cole

641

Rockhampton 23 16 09.00 S 30 cm WATEC 910BD S. Kerr

Australia 150 30 00.00 E 1.28

50

Linden Observatory 33 42 27.3 S 76 cm Grasshopper D. Gault

Australia 150 29 43.5 E Express with ADVS R. Horvat

574 0.533 R.A. Paton

L. Davis
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Table 2—Continued

Site Longitude Telescope Instrument Observers

Latitude Exposure Time (s)

Altitude (m)

WSU Penrith Observatory 33 45 43.31 S 62 cm Raptor Merlin 127 H. Pavlov

Sydney 150 44 30.30 E 2 D. Giles

Australia 60 D. Maybour

M. Barry

October 1, 2016

Blue Mountains 33 39 51.9 S 30 cm WATEC 910BD D. Gault

Australia 150 38 27.9 E 0.64

286

Linden Observatory 33 42 27.3 S 76 cm Grasshopper M. Barry

Australia 150 29 43.5 E Express with ADVS

574 0.27

Miles 26 39 20.52 S 25 cm WATEC 120N+ D. Dunham

Australia 150 10 19.44 E 0.64 J. Dunham

277

Reedy Creek 28 06 30.4 S 25 cm WATEC 120N+ J. Broughton

Australia 153 23 52.90 E 1.28

66

Samford Valley 27 22 07.00 S 35 cm WATEC 910BD J. Bradshaw

Australia 152 50 53.00 E 0.16

80

The following stations were cloudy or had technical failure, no data were acquired:

February 16, 2014: Santa Martina (Chile), Bosque Alegre (Argentina)

April 29, 2014 : Rodrigues, Sainte Marie, Les Makes (La Réunion) ; Calitzdorp and LCOGT (South Africa)

April 26, 2015 : Cerro Tololo (Chile)

July 25, 2016: TRAPPIST Nord (Marocco), TAD (Canary Islands), Teide Observatory (Canary Islands)

August 8, 2016 : Les Makes (La Réunion)

August 15, 2016: Mount John Observatory, Dunedin, Bootes-3, Wellington (New Zealand)

October 1, 2016: Murrumbateran, Canberra (Australia)
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Table 3: Sharpness of C1R edges, ∆wr, from April 29, 2014 events

Event Inner edge (km) Outer edge (km)

(1σ level)

Springbok Ingress 1.1 1.1

Springbok Egress 1.2 1.5

SAAO Ingress 0.6 0.9

SAAO Egress 0.8 0.4

Table 4. Ring occultation timings and derived physical parameters (resolved events)

Date Event t0 UT(a) v
(b)
⊥ v

(b)
r L(c) W

(d)
r E

(e)
p p

(e)
N

(km/s) (km/s) (deg.) (km) (km)

C1R

Jun 3, 2013 Danish ingress(f) 06:25:21.166±0.0007 20.345 36.113 341.76 6.16± 0.11 1.90± 0.022 0.308± 0.003

Danish egress(f) 06:25:40.462±0.0012 22.031 36.504 124.38 7.14± 0.04 1.73± 0.023 0.24± 0.004

Feb 16, 2014 VLT ingress 07:45:25.541+0.010
−0.004 19.532 28.794 183.37 5.316+0.868

−1.916 1.996+0.092
−0.031 0.375+0.125

−0.025

VLT egress 07:45:45.133+0.313
−0.332 21.293 29.602 300.99 4.833+1.667

−0.476 2.04+0.36
−0.14 0.443+0.078

−0.103

Apr 29, 2014 Springbok ingress 23:14:25.884±0.007 13.432 16.493 287.42 5.575± 0.398 1.80+0.122
−0.143 0.3125+0.024

−0.027

Springbok egress 23:15:04.362±0.006 10.720 16.655 157.83 6.75+0.48
−0.21 2.595+0.148

−0.166 0.33+0.017
−0.033

SAAO ingress 23:13:56.191±0.007 12.756 13.895 266.656 5.68± 0.2 1.88+0.22
−0.12 0.32+0.037

−0.021

SAAO egress 23:14:28.964±0.008 9.260 14.249 198.899 6.625± 0.2 1.695+0.175
−0.115 0.241+0.024

−0.022

C2R

Jun 3, 2013 Danish ingress(f) 06:25:20.765±0.011 20.412 36.283 341.76 3.380+1.424
−1.797 0.168± 0.02 0.05+0.05

−0.01

Danish egress(f) 06:25:40.847±0.006 22.029 36.632 124.38 3.231+0.899
−1.124 0.228± 0.02 0.07+0.03

−0.01

Feb 16, 2014 VLT ingress 07:45:25.285+0.057
−0.033 19.532 28.794 183.37 5.053+1.000

−2.385 0.491+0.445
−0.227 0.091+0.495

−0.00

VLT egress 07:45:45.473+0.037
−0.053 21.293 29.602 300.99 3.333+1.667

−1.333 0.522+0.078
−0.050 0.119+0.609

−0.118

Apr 29, 2014 Springbok ingress 23:14:24.990±0.020 13.430 16.460 287.42 0.34+1.37
−0.24 0.125+0.076

−0.064 0.368+0.632
−0.288

Springbok egress 23:15:5.324±0.019 10.722 16.620 157.832 0.6+1.7
−0.1 0.253+0.079

−0.069 0.582+0.32
−0.45

Gifberg ingress(g) 23:14:30.109+0.015
−0.008 (g) (g) 227.190 0.522+0.227

−0.399 0.090+0.039
−0.000 0.186+0.814

−0.043

Gifberg egress(g) 23:14:33.750±0.008 (g) (g) 217.761 0.181+0.008
−0.091 0.129+0.000

−0.039 0.814+0.186
−0.671

(a)t0 is the mid-time of the event in hours:min:sec. The error bars quoted are given at 1σ level.

(b)v⊥ and vr are respectively the perpendicular velocity in the sky plane and the radial velocity in the ring plane.

(c)L is the true longitude counted from the J2000 ring plane ascending node.

(d)Wr is the radial width, measured in the plane of the rings.

(e)Ep is the equivalent width: Ep = Wr · pN where pN is the normal opacity in the plane of the rings.

(f)Timings given by Braga-Ribas et al. (2014).

(g)As the occultation was grazing, the velocity changes consequently between ingress and egress and to give fixed values is not relevant in

this case (see text section 3.2)
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Table 5. Ring occultation timings and derived physical parameters (unresolved events)

Date Event t0 UT† v⊥(km/s)† vr (km/s)† L(deg)† Ep (km)†

June 3, 2013 Iguacu ingress 06:24:17.5±1.7(a) 18.059 28.899 2.44 7.602+2.198
−5.195

Iguacu egress 06:24:34.1±2.0(a) 21.246 30.446 104.20 2.580+3.712
−1.713

Bosque Alegre 154 egress 06:25:11.44±0.14(a) 18.889 32.663 176.11 3.806+1.199
−2.198

Ponta Grossa ingress 06:23:58.6±2.5(a) 19.781 34.398 348.04 9.600+0.400
−4.795

Ponta Grossa egress 06:24:18.0±2.5(a) 21.965 35.520 120.30 4.605+3.596
−3.340

PROMPT ingress 06:25:20.0.46±0.011(a) 21.373 38.269 326.56 2.208+3.196
−0.200

Santa Martina ingress 06:25:21.03±0.29(a) 17.556 18.537 264.53 2.208+2.997
−0.200

Santa Martina egress 06:25:31.811±0.025(a) 14.605 22.124 200.07 2.408+5.394
−0.200

SOAR ingress 06:25:18.8±1.3(a) 21.444 38.320 325.16 2.208+4.196
−0.400

SOAR egress 06:25:38.4±1.4(a) 21.660 38.310 140.37 5.205+0.799
−3.596

Bosque Alegre C11 ingress 06:24.55.45±1.85(a) 21.522 30.340 287.37 4.206+3.297
−2.597

Bosque Alegre C11 egress 06:25:09.45±1.75(a) 17.882 30.062 183.50 4.206+3.396
−2.597

TRAPPIST ingress 06:25:20.9±1.9(a) 20.293 36.229 341.31 4.605+3.796
−2.198

March 16, 2014 Thailand ingress 20:31:37.640±1.33 3.656 3.821 95.06 1.856+0.948
−1.197

Thailand egress 20:31:53.885±0.175 3.990 4.290 60.85 1.856+0.150
−0.801

June 28, 2014 Hakos ingress 22:24:25.796±0.041 19.127 28.619 5.064 1.472+0.455
−0.517

Hakos egress 22:24:44.218±0.035 20.971 29.744 117.061 1.983+0.598
−0.508

April 26, 2015 Los Molinos ingress 02:11:45.707±0.058 3.503 3.513 238.857 2.914+0.151
−0.149

Los Molinos egress 02:12:09.195±0.070 2.957 3.989 199.749 2.400+0.28
−0.320

May 12, 2015 Brisbane egress 17:55:56.823±0.012 11.823 16.567 357.23 2.707+2.398
−1.198

Aug 8, 2016 Windhoek (CHMO) ingress 19:57:18.209 ± 0.249 15.920 21.878 332.963(b) 2.043+2.762
−0.734

Windhoek (CHMO) egress 19:57:51.870 ± 0.382 15.216 21.950 180.196(b) 3.806+2.598
−2.297

Oct 1, 2016 Rockhampton ingress 10:12:26.284 ± 0.072 10.795 13.121 123.960 2.523+3.481
−0.615

Rockhampton egress 10:13:22.928 ± 0.049 12.573 13.146 278.911 2.586+3.818
−0.778

Adelaide ingress 10:10:19.826± 0.186 12.421 12.597 91.347 1.867+4.073
−0.539

Adelaide egress 10:11:14.558 ± 0.218 9.942 12.651 311.914 2.047+3.534
−0.719

†Same parameters as Table 4

aTimings given by Braga-Ribas et al. (2014).

bTwo geometries are possible for this occultation. We choose arbitrary the closest to the prediction. The other geometry provides

different longitudes: Lingress = 0.154 and Legress = 152.948
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Table 6. Occultation timings for the main body.

Date Event tingress UT tegress UT

June 3, 2013 Danish 06:25:27.861±0.014 06:25:33.188±0.014

PROMPT 06:25:24.835±0.009 06:25:35.402±0.015

TRAPPIST 06:25:27.893±0.019 06:25:33.155±0.007

SOAR 06:25:24.34±0.59 06:25:34.597±0.009

February 16, 2014 San Pedro de Atacama 07:45:27.450±0.6 07:45:31.125±0.57

June 28, 2014 Kalahari 22:24:07.383±0.126 22:24:14.854±0.096

Twee Rivieren 22:24:06.689±0.093 22:24:16.481±0.105

April 29, 2014 Springbok 23:14:30.02±0.075 23:14:48.03±0.075

May 12, 2015 Brisbane 17:55:35.530±0.010 17:55:44.135±0.075

July 25, 2016 Liverpool Telescope 23:59:05.494 ±0.054 23:59:12.310 ± 0.054

August 8, 2016 Windhoek (CHMO) 19:57:28.469 ± 0.042 19:57:41.886 ± 0.045

August 10, 2016 - 14h UT Murrumbateran 14:18:35.030 ± 0.3 14:18:45.145 ± 0.125

August 10, 2016 - 16h UT Les Makes 16:42:51.305 ± 0.530 16:43:07.917 ± 0.848

August 15, 2016 Darfield 11:38:27.465 ± 0.385 11:38:38.019 ± 0.873

October 1, 2016 Rockhampton 10:12:44.664 ± 0.041 10:13:03.199 ± 0.051

Adelaide 10:10:41.818 ± 0.118 10:10:54.102 ± 0.064

The error bars quoted are given at 1σ level.
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Fig. 1.— Reconstructed geometries of the occultations. The dotted lines are the trajectories of the

occulted star relative to Chariklo in the plane of sky as seen from each station (the arrow indicates the

direction of the apparent movement of the star). The red segments are the 1σ level error bars on each chord

extremity, derived from the corresponding error bars on timings (see Table 4, 5 and 6). For those plots, we

use the pole position and the radii from Braga-Ribas et al. (2014): rC1R = 390.6 km, rC2R = 404.8 km and

rCk = 124 km. The center of ring system (blue cross) in each panel represents the offset in right ascension

and declination between the predicted and observed positions of the Chariklo relative to the occulted star,

as given in Table 1. This offset was used to improve Chariklo’s ephemeris.
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Fig. 3.— Best fits to ring and main body occultations. The black dots are the data points of the light

curves (vertical axis represents the normalized flux). They are normalized between zero and unity. The

latter corresponding to the full flux from Chariklo and the star occulted. The dotted lines correspond to

the zero-level of the occulted star. The green curves are the best fitting square-well models used to generate

the synthetic profiles, plotted in red. The physical characteristics of the rings extracted from these plots are

listed in Tables 4 and 5. The blue dots are the residual between the synthetic light curves and the data at

each data point. Figure 4 shows the fits of remaining rings occultations.
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Fig. 4.— Best fits to ring and main body occultations (following and completing Fig. 3). Same legend

as in Figure 3, except in the case of the occultation on April 29, 2014 where two stars were occulted. In

this case unity corresponds to the flux of the two stars and Chariklo. As SAAO observed an occultation of

a secondary star (see Section 2.4), its vertical scale is different from other light curves, for better viewing.
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Fig. 5.— Same as Figure 3, but for events with only main body detections.
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Fig. 6.— Fits to grazing event in Gifberg (April 29, 2014) using a common width (W⊥ = 0.422 km and

p′ = 0.4) for both rings into 1σ level (see Table 4). The star motion relative to C2R was grazing, so that its

velocity perpendicular to the ring changed significantly during the occultation. In this case, it is therefore

necessary to express the flux against the distance to the point of closest approach to Chariklo’s center in km

in the sky plane, ∆r. Other than that, color conventions and vertical axis are the same as in Fig. 3.
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Fig. 8.— Best radial profiles of rings C1R and C2R. The profiles have been plotted arbitrarily against

the radial distance (in the ring plane) to the center of the C2R profile, using the pole position of Braga-

Ribas et al. (2014). This choice enhances possible changes in the relative distances of the two rings, due for

instance to eccentricities of C1R and/or C2R. The horizontal dashed lines correspond to the unocculted star

+ Chariklo flux. The horizontal gray boxes correspond to the respective zero stellar fluxes. The thickness of

a gray box indicates the uncertainty of the photometric calibrations, see text for details (Section 2.4). The

left (resp. right) panel corresponds to ingress (resp. egress). Top panels: the June 3, 2013 profiles from the

Danish Telescope. Middle and bottom panels: montages constructed from the April 29, 2014 event. The

Gifberg profiles showing C2R have been combined with SAAO light curve (middle panel) and Springbok

light curve (bottom panel).
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Fig. 9.— Constraints on ring pole. The uncertainty domains (1σ level) on the pole position (αp, δp) for the

event on June 3, 2013, April 29, 2014 and October 1, 2016 are plotted in red, blue and green, respectively. The

black dots outline the uncertainty domain derived from the long term variations in Chariklo’s photometry

(Duffard et al. 2014).
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Fig. 10.— Measurement of C1R’s edges sharpnesses with an example taken from the Springbok egress

profile (April 29, 2014). The green line is the step-wise model of width ∆wr described in Section 3.5. The

red dots are the resulting synthetic points (the blue dots showing the residuals). The sharpness parameters

∆wr shown here are the maximum values that are compatible with the data at the 1σ level, with values

∆wr = 1.2 km for the left (inner) edge and ∆wr = 1.5 km for the right (outer) edge. Table 3 lists the values

of ∆wr obtained with the other resolved C1R profiles.
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Fig. 11.— Top left: Equivalent width Ep (using Eq. A3) of C1R versus the radial width for resolved

events. For information, theoretical lines Ep vs Wr expected from a polylayer ring, see Eq 3, have been

plotted in black: with Āτ = 1.15 km (solid line), Āτ = 1.5 km (dotted line), Āτ = 2. km (dashed line). Top

right : Same for C2R. The black lines are now with Āτ = 0.15 km (solid line), Āτ = 0.25 km (dotted line),

Āτ = 0.40 km (dashed line). Bottom: the integrated equivalent width Ep(1 + 2) of C1R and C2R versus the

true longitude L, counted from the J2000 ring plane ascending node, from our best events (resolved or not).

As SAAO detected only a C1R occultation, and Gifberg only a C2R event, they have been removed from

the plot. The dashed line indicates the mean value of the data points.



– 48 –

Radial	distance	(km)	

Eq
ui
va
le
nt
	w
id
th
	(m

)	

C1R	 	
Egress	à		

	
Ingress	ß		

			2000 	 		4000 					6000	 					 			8000 							10	000 	12	000	

0

100	

0

100	

Fig. 12.— Search for faint ring material using the Danish light curve (June 3, 2013 event). Black solid

lines: the equivalent width Ep of possible ring material (Eq. 2) vs. the radial distance (in the ring plane)

to Chariklo’s center. The data points corresponding to the detections of the main body and C1R and C2R

have been removed for clarity (for comparison Ep,C1R ∼ 2 km and Ep,C2R ∼ 500 m - see Table 4). The black

vertical dotted line indicates the location of C1R, and the horizontal dash-dotted blue lines mark the zero

level for Ep. Red solid lines: standard deviation (1σ level) of Ep(i) estimated in bins of width 60 km, see

text for details.
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