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ABSTRACT: Anchorage of orthopedic implants depends on the interfacial bonding between the implant and the host bone as well as on
the mass and microstructure of peri-implant bone, with all these factors being continuously regulated by the biological process of bone
(re)modeling. In osteoporotic bone, implant integration may be jeopardized not only by lower peri-implant bone quality but also by
reduced intrinsic regeneration ability. The first aim of this review is to provide a critical overview of the influence of osteoporosis on
bone regeneration post-implantation. Mechanical stimulation can trigger bone formation and inhibit bone resorption; thus, judicious
administration of mechanical loading can be used as an effective non-pharmacological treatment to enhance implant anchorage. Our
second aim is to report recent achievements on the application of external mechanical stimulation to improve the quantity of peri-
implant bone. The review focuses on peri-implant bone changes in osteoporotic conditions and following mechanical loading, prevalently
using small animals and in vivo monitoring approaches. We intend to demonstrate the necessity to reveal new biological information on
peri-implant bone mechanobiology to better target implant anchorage and fracture fixation in osteoporotic conditions. � 2017
Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res

Keywords: bone regeneration; peri-implant bone (re)modeling; osteoporosis; mechanical loading; implant anchorage; peri-implant
mechanobiology

Orthopedic implants are used in different applications
ranging from temporary fixation of fractures to perma-
nent replacement of damaged bones, joints and teeth.
Despite high success rates in healthy individuals, the
integration and stability of implants is still receiving
considerable attention as, among the millions of im-
plantation procedures yearly performed, implant in-
sertion in aged persons or in patients with bone
diseases is constantly raising.1–3 One predominant
skeletal disorders is osteoporosis,4 with typical conse-
quences being a substantial loss of bone mass5 accom-
panied by a deterioration of bone architecture and
material properties, 6,7 consequently increasing frac-
ture probability.8 Clear-cut clinical evidence that oste-
oporosis has a negative impact on implantation is still
lacking.9,10 Nevertheless, biomechanical experiments
suggest that implant anchorage may be compromised
in osteoporotic bone.11–14

Initial implant stability is of paramount impor-
tance for the biological events following implantation
and leading to osseointegration, defined as direct
formation of bone tissue in contact with the im-
plant.15,16 Once osseointegration is achieved, the
long-term stability of the implant is maintained by
bone remodeling,17 traditionally described as bone
resorption followed by formation at the same site.
Implantation also triggers reconfiguration of the peri-
implant bone, which has to adapt to new loading
patterns. This requires bone formation and resorp-
tion to happen at different locations, a process called

bone modeling. It is customary, particularly in the
biomechanics community, to refer to all processes
involving bone formation and resorption with the
term bone (re)modeling. It is well accepted that (re)
modeling is mechanically driven, with local bone
formation and resorption taking place at sites of high
and low tissue strains, respectively.18–20 Thanks to a
finely-tuned mechanosensory system, mechanical
loading have a strong anabolic effect, particularly in
healthy bone.21 The response of load-bearing muscu-
loskeletal tissues to external loading has been
attracting considerable attention, and the term
mechanobiology has been introduced to describe it.

Most of previous knowledge on osseointegration and
the effect of loading on this process is based on
analysis of joint prostheses22,23 and dental implants.24

Those studies have highlighted the potential of me-
chanical stimulation to promote early implant osteo-
genesis.17 However, there are still clinically relevant
concerns related to earliest time, magnitude and
frequency of the applied stimulation.25–28 Moreover,
implantation is often performed in aged or osteoporotic
bones, which seem to have a reduced “mechano-
responsiveness,”18,29 thus suggesting that higher me-
chanical stimulation may be required to produce a
relevant anabolic response. Nevertheless, high loads
can cause the formation of weak fibrous tissues rather
than bone, at the bone-implant interface.30

The main goal of the present review is to summa-
rize current knowledge on tissue-level peri-implant
bone (re)modeling and mechanobiology. Among the
vast literature, priority is given to studies using small
animal models to evaluate the response of osteopenic
bone to implant placement, and to investigate the
effect of external mechanical stimulation on implant
osseointegration and peri-implant bone adaptation.
Even if small animals do not exhibit (re)modeling
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patterns similar to humans (e.g., they lack osteons),
they allow well controlled mechanobiological experi-
ments which, in combination with in vivo imaging, can
improve our understanding of peri-implant bone
regeneration.

BONE REGENERATION AT THE TISSUE LEVEL
Bone regeneration around implants is a highly com-
plex and dynamic biological event. Here, we briefly
summarize the main features of this process, focusing
on tissue-level modifications in peri-implant bone (re)
modeling. A detailed description of the biology of bone
regeneration can be found elsewhere.15,17,31–33 The
first event after implantation is the absorption of
proteins on the implant surface,34 followed by the
migration of inflammatory cells. A pivotal step of
osseointegration occurs when osteoprogenitor cells
deposit a layer of non-collagenous proteins on the
implant surface.17 Such a layer is believed to favor
bonding between bone and implant and to govern the
properties of the bone-implant interface.34 When osteo-
progenitor cells differentiate into osteoblasts, bone
formation starts. The final amount of bone around an
implant strongly depends on implant location and
bone compartment. Usually cortical bone shows higher
level of osseointegration35 but trabecular bone has
faster healing kinetics.36

Measurements of Bone Response to Implantation
The most common approaches to characterize tissue-level
response to implantation are histology, backscattered
scanning electron (BSE) imaging and micro-computed
tomography (micro-CT). Histology is a two-dimensional
(2D) method requiring fairly thin (i.e., <50mm) sections,
which can be challenging in the presence of a metallic
implant.37 It allows the quantification of both static and
dynamic parameters. It also provides direct information
about different tissues around the implant.30 BSE is a 2D
technique based on electron microscopy, which is widely
used to measure osseointegration in terms of bone-
implant contact (BIC). Sample preparation for BSE is
somewhat easier than for histology as thin sections are
not required.37 Previous studies using BSE contributed to
understand the mechanisms of bone ingrowth into porous
coated implants,23,38,39 and BSE is now considered the
gold standard to quantify osseointegration in vitro. To
overcome the 2D and destructive nature of histology and
BSE, micro-CT has been used as alternative, also applica-
ble in vivo.40 This X-ray based technique offers three-
dimensional (3D) and non-destructive characterization of
peri-implant bone microstructure and requires minimal
sample preparation. However, it can be problematic to
investigate the interface between bone and a metallic
implant. This stems both from beam hardening and
increased X-ray scattering caused by the high absorption
of the metallic implant. As a result, voxels located in the
proximity of the implant have artificially high grey
values, leading to a systematic overestimation of BIC.41,42

Although metal artifacts can be minimized by image

processing,13 there is a zone around a metallic implant
which should not be analyzed. Depending on scanning
parameters and implant properties, exclusion zones rang-
ing from 50 to 1,500mm have been reported.42,43

When assessing bone response to implantation, it
is convenient to distinguish three regions: The bone-
implant interface, the peri-implant bone and the host
bone.38 Typically, the bone-implant interface has a
thickness of less than 1mm34,44 and is the location
where multiple biological events, leading to osseoin-
tegration, take place. Implantation causes bone
microdamage up to several hundreds of micrometers
away from the implant45,46 and one definition of peri-
implant bone could be the region which is damaged
by implant insertion.45,46 Host bone is the intact
bone not directly affected by implantation. Generally,
micro-CT cannot analyze osseointegration at the
interface between bone and (metal) implants but can
be used to obtain valuable information on peri-
implant as well as on host bone, as explained in the
next section.

Time-Lapsed Imaging of Bone Response to Implantation
During and after osseointegration, the bone around
an implant undergoes continue (re)modeling, trig-
gered by the need to remove microdamage and to
accommodate the implant. The introduction of time-
lapsed in vivo micro-CT has provided a new option to
analyze dynamic processes in living bone, including
(re)modeling and mineralization.21,47,48 In vivo micro-
CT has also been used to monitor the time course of
peri-implant bone (re)modeling and microstructure.
Li and colleagues43 analyzed the caudal vertebra of
mice weekly for 6 weeks after implant placement
(Fig. 1).43 Large differences in (re)modeling rates
were observed when comparing locations close (i.e.,
<0.5mm) and far from the implant, with the highest
bone formation rate measured close to the implant in
the first 2 weeks after implantation. A transient
increase in peri-implant bone formation has been
observed also by Irish and coworkers49 in a dynamic
histomorphometry study on rats receiving intrame-
dullary femoral implants. The elevated formation
rates following implantation reflect the well-estab-
lished “regional acceleratory phenomenon” reported
by Frost to describe the response of tissues to
surgical insult.50 In vivo micro-CT also allows char-
acterizing the rate of bone resorption, which is not
accessible with histomorphometry. Elevated resorp-
tion rates have been observed in the implanted
caudal vertebrae, with the tendency to be less local-
ized around the implant and being sustained for a
longer time interval than formation rates.43 A possi-
ble explanation for high bone resorption is the need
to remove microdamage produced by implantation.45

(Re)modeling in heathy bone triggers microstruc-
tural changes which favor implant anchorage.43,51

Whether such ability is still present in osteoporotic
bone will be discussed in the next section.
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INFLUENCE OF OSTEOPOROSIS ON BONE
REGENERATION
Here, we summarize recent investigations of bone
response after implantation in animal models of
osteoporosis (Table 1). The emphasis will be again on
microstructural and (re)modeling behavior at the
tissue level (Fig. 2), mainly focusing on small animals
like mice and rats. These models lend themselves well
to study osteoporosis-like bone loss using ovariectomy
(OVX) or orchiectomy (ORX) as well as to image their
entire bones with longitudinal monitoring approaches.
Studies involving larger animals have higher clinical
relevance as human implants can be used. Neverthe-
less, high-resolution in vivo imaging is also similarly
challenging as in humans. Being more demanding and
involving higher costs, they are less common than
small animal models and usually have limited sample
size.52

Osseointegration at the Bone-Implant Interface
The most used measure of osseointegration is the
bone-to-implant contact (BIC), traditionally assessed
with histology or BSE. Numerous studies compared
BIC between healthy and osteopenic animals from
1 week to several months after implantation. Different
skeletal locations have been investigated, the most

common being: Proximal tibia,53,54 distal femur,55

femoral condyle,56 jaw bone,57 and medullary
canal.58,59 Implants which are placed transcortically
(i.e., through the cortex into trabecular bone) allow
investigating the contribution of both cortical and
trabecular bone to osseointegration and are commonly
used to characterize the effects of osteopenia on
osseointegration.53,60,61 Insertion into the medullary
canal (through the knee joint) is suited to model joint
prostheses and has been adopted to assess the outcome
of pharmaceutical options.59,62 Most of those implant
models are not weight-bearing and are therefore better
suited to describe initial fixation rather than the long
term outcome of implantation.52

The majority of the literature seems to agree that
absolute values of BIC are significantly lower in OVX/
ORX than in control animals. Differences in BIC
between osteopenic and control animals are particu-
larly marked in trabecular bone (see Fig. 2a and b).
Usually, they are higher in the first weeks after
implant insertion and diminish in later time points.
BIC within the cortical compartment seems to be less
affect by OVX or ORX surgery.60,61

Microstructural Modification of Peri-Implant Bone
The amount of bone in the peri-implant region is
commonly measured in three-dimension as bone vol-
ume to tissue volume (BV/TV) or in two-dimension as
bone area fraction (BF). It is well accepted that
osteopenic animals display reduced peri-implant bone
volume when compared to control groups (see
Fig. 2c).49,54,58,63–66 Likewise, those animals have
deteriorated peri-implant bone microarchitec-
tures. 51,64,67 Clearly, structurally deteriorated bones
have a negative biomechanical impact on implant
anchorage.11–13 Conversely, the role of osteopenic
conditions on the microstructural changes taking place
after implantation is less clear. The time course of
peri-implant bone microstructure has been detailed
with longitudinal micro-CT: metal-ceramics implants43

were inserted into the sixth caudal vertebra of OVX
and sham-operated (SHM) mice and bone response
was measured weekly for 6 weeks. The study demon-
strated that not only OVX animals had initially lower
BV/TV and cortical thickness (Ct.Th) than SHM, but
also that the time courses of osseointegration in these
two groups where different, with OVX mice having a
reduced ability to augment Ct.Th of peri-implant bone
(Fig. 2d).51

Peri-Implant Bone (Re)Modeling
Current studies on peri-implant bone (re)modeling in
osteoporotic small animal models are sparse and not
conclusive. Irish and colleagues49 compared (re)model-
ing in OVX and SHM rats. Animals received intra-
medullary femoral implants and were sacrificed at 4,
8, and 12 weeks post-implantation to evaluate (re)
modeling with dynamic histomorphometry. Implant
placement increased peri-implant bone formation rates

Figure 1. Overview of the different steps necessary to perform
in vivo monitoring of peri-implant bone changes with micro-CT.
(a) Implantation is performed in mice caudal vertebra. (b) After
image acquisition, image processing involved registration of
subsequent scans, segmentation of bone/implant system and
identifications of different regions to be analyzed. (c) Three-
dimensional visualization (left) of local bone formation and
resorption events in the implanted bone. Corresponding in vivo
quantification (right) of peri-implant (re)modeling (bone forma-
tion rate, BFR) and microstructure (cortical thickness, Ct.Th).
Figures modified from43,51 with permission.
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transiently in both SHM and OVX animals; however,
no evidence was found that peri-implant (re)modeling
was different between normal and osteopenic bone.
Others, using molecular analysis combined with static
histomorphometry, have indicated the possible influ-
ence of ovariectomy on peri-implant (re)modeling to be
confined to immediate (2 days)68 or early (up to
4 weeks)69 stages of implant osseointegration; at later
time points no differences in (re)modeling behavior
shall be expected. There is large evidence, however,
that peri-implant bone in osteopenic animals is
less responsive than healthy bone to treatments for
augmenting implant fixation.53,58,59,70 This calls for an
improved understanding of the interaction between
(re)modeling and osteopenia in the process of bone
regeneration.

The difference in peri-implant bone (re)modeling
between OVX and SHM can be elucidated with
longitudinal imaging. As mentioned in the previous
section (Microstructural Modification of Peri-Implant
Bone), Li et al.51 monitored peri-implant bone forma-
tion and resorption using in vivo micro-CT (Fig. 2f).
The authors were able to attribute the lower increase
in peri-implant cortical thickness observed in OVX
mice in comparison to SHM (Fig. 2d) to impaired

peri-implant bone formation. With a similar in vivo
approach, Kettenberger et al.71 investigated the
impact of locally delivered bisphosphonates on peri-
implant bone remodeling in the femur of OVX rats
(Fig. 2e). They demonstrated a dual effect of the
medication: A factor of 2 increase in formation and
almost a factor of 10 decrease in resorption.

In addition to pharmacological treatments,52 me-
chanical loading is unanimously considered an alterna-
tive to pharmaceutical interventions to augment bone
mass. Its impact on per-implant bone regeneration and
implant osseointegration will be discussed in the next
section.

EFFECT OF MECHANICAL LOADING ON BONE
REGENERATION
At the tissue level, several animal studies demon-
strated that mechanical stimuli have a dual effect:
Enhance bone formation and inhibit bone resorption,
thereby leading to an overall increase of bone
mass.18,20,21 There is evidence that aging and estro-
gen removal cause dysregulation in the mechanical
control of bone (re)modeling, resulting in decreased
sensitivity to mechanical stimulation.18,19 There are
also concerns that implantation surgery as well as

Table 1. Studies of Peri-Implant Bone Regeneration in Small Animal Models of Osteoporosis

Study
Animal
Model

Implantation
Site Method Bone Architecture

Bone
Remodeling

Study
Period

Zhang et al.55 OVX mice Distal femur Static histomorphometry BIC, BV/TV � 2 weeks

Li et al.51 OVX mice Caudal

vertebra

In vivo micro-CT BV/TV, Ct.Th BFR, BRR 0–6 weeks

Giro et al.57 OVX rats Jaw bone Static histomorphometry BIC � 9 weeks

Alghamdi

et al.56
OVX rats Femoral

condyle

Ex vivo micro-CT, static

histomorphometry

BIC, BA � 12 weeks

Alghamdi

et al.63
OVX and

ORX rats

Femoral

condyle

In vivo micro-CT BV/TV, Tb.Th, Tb.N,

Tb.Sp

� 4–6 weeks

Kettenberger

et al.71
OVX rats Femoral

condyle

In vivo micro-CT BV/TV, Tb.Th, Tb.N,

Tb.Sp

BFR, BRR 0–8 weeks

Virdi et al.58 OVX rats Femoral

medullary

canal

Ex vivo micro-CT, dynamic

histomorphometry

BIC, BV/TV, Ct.Th BFR, ES 4–12 weeks

Kurth et al.59 OVX rats Femoral

medullary

canal

Static histomorphometry BIC � 4 weeks

Irish et al.49 OVX rats Femoral

medullary

canal

Ex vivo micro-CT, dynamic

histomorphometry

BV/TV, Tb.Th, Tb.N,

Tb.Sp, Ct.Ar

BFR, MS,

MAR, ES

4–12 weeks

Yamazaki

et al.53
OVX rats Proximal tibia Static histomorphometry BIC � 1–24 weeks

Du et al.54 OVX rats Proximal tibia Static histomorphometry BIC, BA � 4–12 weeks

Duarte

et al.61
OVX rats Tibia Static histomorphometry BIC, BA � 8 weeks

Vidigal

et al.70
OVX

rabbits

Proximal tibia Static histomorphometry BIC � 12 weeks

OVX, ovariectomized; ORX, orchiectomized; micro-CT, micro-computed tomography; BIC, bone-to-implant contact; BV/TV, trabecular
bone volume fraction; BA, peri-implant bone area; Tb.Th, Trabecular thickness; Tb.N, trabecular number; Tb.Sp, Trabecular
separation; Ct.Ar, Cortical area; BFR, bone formation rate; BRR, bone resorption rate; ES, eroded surface; MS, mineralizing surface;
MAR, mineral appostition rate.
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the presence of the implant may alter the mechanobi-
ology of peri-implant bone, causing a different re-
sponse to mechanical loading than bone without an
implant.25

This section summarizes recent efforts to under-
stand peri-implant bone behavior following in vivo
controlled mechanical stimulation in small animal
models (Table 2). Three different modalities to admin-
ister mechanical loading are considered: (i) loading
applied directly to the implant (Fig. 3a); (ii) selective
local stimulation of single implanted bone through
loads applied via adjacent bones or joints (Fig. 3b); and
(iii) generalized whole body loading, commonly in the
form of either high or low frequency vibrations
(Fig. 3c).

Mechanical Loading Applied Directly to the Implant
This loading option has been extensively investigated
in the context of orthodontic implant fixation,72–74

with the final aim to increase bonding strength at the
bone-implant interface. One of the biggest concerns
when loading implants is the effect of micromotion on
the process of osseointegration, and several pioneering
studies investigated this critical aspect.75–78 The work
of Søballe et al.,75 for instance, analyzed the impact of
micromotion on trabecular bone ingrowth into porous
coated implants placed into the femoral condyle of
dogs. The authors designed special implants that could
be loaded during gait cycle allowing for 500mm of axial
displacement and compared bone response against
mechanically stable implants. The latter showed the
strongest anchorage and the greatest amount of

ingrowth, thus suggesting that a micromotion of
500mm is too high to allow osseointegration. The
authors also noticed that unstable hydroxyapatite-
coated implants were surrounded by fibrocartilage
whereas unstable titanium-coated implants were not.
In a subsequent work, the same group demonstrated
that hindering micromotion allowed the replacement
of fibrocartilage (formed during unstable growth) into
bone.76 Another system which is particularly suited to
investigate the effect of micromotion is the so-called
bone chamber, characterized by the absence of an
initial contact between implant and host bone.79

Leucht et al.30 used an in vivo bone chamber model to
assess the role of mechanical stimuli on de novo bone
formation around small cylindrical implants inserted
in the proximal tibia of mice, as a model for implant
integration into cortical bone. The authors applied
daily controlled axial displacement of 150mm (at 1Hz
and for 60 s), starting immediately after implant
placement. Enhanced osteoblastic differentiation and
bone matrix deposition were observed in the loaded
group already after 7 days of loading. One drawback of
the bone chamber is the difficulty to investigate the
response of pre-existing peri-implant and host bone to
mechanical loading. To overcome this, others have
designed a miniaturized loading device80,81 to adminis-
ter well controlled in situ local loading directly to
peri-implant bone82 or to implants during the osseoin-
tegration phase.83,84 Willie et al.,83 for example, used
such a device to characterize the effect of loading on
trabecular bone ingrowth into a porous titanium foam
implanted into the femur of rabbits. The authors
applied compressive loads (1MPa, 1Hz, 50 cycles/day,
4 weeks) and evaluated the response of bone with
BSE. They reported a positive effect of loading only on
trabecular bone ingrowth, whereas the amount of peri-
implant trabecular bone was not different between
loaded and control animals. A similar approach was
followed by Grosso et al.84 to analyze the combined
effect of intermittent parathyroid hormon (iPTH) and
loading on peri-implant trabecular bone. They found
that peri-implant BV/TV increased significantly (about
50%) with respect to control animals both with loading
and iPTH, but the combination of the two treatments
had only a modest additive effect, that is, þ13%
increase in BV/TV compared to iPTH alone. The
authors interpreted the poor additive effect in terms of
molecular changes of individual genes which showed
little evidence for synergy.

Different types of vibrational loading were investi-
gated in the extensive study of Zhang et al.,85 using a
titanium screw inserted into the medio-proximal site
of the tibia of rats, where mainly cortical bone is
present (Fig. 3a). The authors considered different
loading scenarios designed to assess the effect of
loading frequency and magnitude. Loading was ap-
plied five times a week for 10min for either 1 or
4 weeks and bone changes were analyzed with histol-
ogy. The main result is that high frequency and low

Figure 2. Summary of different tissue-level aspects of peri-
implant bone regeneration considered in the present review.
Starting from the bone-implant system (left, image courtesy of Y.
Gabet and H. van Lenthe, ETH Zurich), the response of bone
after implantation is characterized in terms of (i) amount of bone
at the bone-implant interface, typically measured with histology
or BSE (a and b); (ii) microstructural modifications within peri-
implant bone measured with ex vivo (c) or in vivo (d) micro-CT;
and (iii) bone (re)modeling (both formation and resorption)
around the implant assessed with longitudinal in vivo micro-CT
in rats (e) and mice (f). Figures modified from 51,54,58,71 with
permission.
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magnitude (HF-LM, i.e., 40Hz and 8mm) was the only
loading regime able to augment BIC in cortical bone
after 4 weeks, whereas no effects could be detected
within the medullary cavity or in peri-implant bone.
This study raises the question whether different
locations and different bone compartments would
require specific loading protocols.

Jariwala et al.27 adopted in vivo micro-CT
to characterize the time course of trabecular bone
regeneration around loaded and non-loaded implants.
The authors inserted titanium-coated high perfor-
mance plastic implants into proximal tibia of rats.
The cyclic loading protocol had two loading magni-
tudes (60 or 100mm) applied at 1Hz for 60 s every
other day for 14 days. Changes in peri-implant bone
volume fraction (BV/TV) and remodeling rates (BFR
and BRR) were characterized with longitudinal mi-
cro-CT at 2, 5, 9, and 12 days post-surgery. The
authors reported a significant increase in peri-
implant BV/TV following implantation as well as
different time course for BFR and BRR, but could not
detect a significant effect of loading on those param-
eters. However, a substantial increase in pull-
out strength was measured only for the loaded group,
indicating that mechanical stimulation applied to the
implant has a positive effect but only confined to the
bone-implant interface. In conclusion, loading applied
directly to the implant, which is a model for load-
bearing scenarios, has always a large influence on
osseointegration at the bone implant interface. Con-
versely, the effect on peri-implant bone is more
debated and probably only present if the implant is
able to efficiently transmit the external stimulation
to the peri-implant bed.

Mechanical Loading Applied to the Implanted Bone
A second option is to administer mechanical loading only
to the single implanted bone with the goal of increasing
peri-implant bone quantity. The bone-implant system

Table 2. Studies of the Influence of Mechanical Loading on Peri-Implant Bone Regeneration

Study
Animal
model

Implantation
Site Type of Load Loading Regime

Bone
Architecture

Bone
Remodeling

Leucht
et al.30

Mice Proximal
tibia

Micromotion to implant Immediate, daily,
3–25 d

Bone matrix
deposition

�

Jariwala
et al.27

Rats Proximal
tibia

Cyclic loading to implant Immediate, bi-daily,
2 wk

BV/TV BFR, BRR

Ogawa
et al.89

Rats Proximal
tibia

LMHF loading via WBV Immediate, 5 d/wk,
3–25 d

BIC, BF �

Chen
et al.64

OVX rats Proximal
tibia

LMHF loading via WBV Delay 1 wk, 5 d/wk,
8 wk

BIC, BF �

Liang
et al.91

OVX rats Proximal
tibia

LMHF loading via WBV Delay 1 wk, daily,
4 wk

BIC, BF BFR, MAR,
MS

Zhang
et al.85

Rats Proximal
tibia

LMHF loading to implant Immediate, 5 d/wk,
4 wk

BIC, BF �

Zhang
et al.86

Rats Proximal
tibia

LMHF compressive load
through tibia

Immediate, 5 d/wk,
1–4 wk

BIC, BF �

Grosso
et al.84

Rabbits Distal femur Compressive loads to
implant

Delay 1 day, 5 d/wk,
4 wk

BV/TV �

Willie
et al.83

Rabbits Femoral
condyle

Compressive loads to
implant

Immediate, daily,
4 wk

Bone ingrowth MAR

Soballe
et al.76

Dogs Femoral
condyle

Micromotion to implant Immediate,
continuously, 4–12 wk

Bone ingrowth �

OVX, ovariectomized; LMHF, low-megnitude high-frequency; WBV, whole-body vibration; BIC, bone-to-implant contact; BF, peri-
implant bone fraction; BV/TV, trabecular bone volume fraction; Tb.Th, Trabecular thickness; Tb.N, trabecular number; BFR, bone
formation rate; BRR, bone resorption rate; MAR, mineral apposition rate; MS, mineralizing surface.

Figure 3. Overview of the main modalities reviewed here to
apply controlled mechanical loading to implanted bones. Consid-
ering small animal models, mechanical stimulation can be (a)
applied directly to the implant through miniaturized devices, (b)
administered to the single implanted bone through loads coming
from adjacent bones or joints, and (c) delivered through general-
ized whole body vibrations. Figures modified from85,86,91 with
permission.

6 LI ET AL.

JOURNAL OF ORTHOPAEDIC RESEARCH MONTH 2017



can be selectively loaded in a quasi-physiological way by
using well-established tibia-loading models, where exter-
nal load is applied at the proximal and distal end of the
tibia. Zhang et al.86 implanted titanium screws into the
medio-proximal site of the tibia of rats and used a
protocol consisting of four loading phases and two
loading periods. Histology was used to measure changes
in the amount of cortical bone at the bone-implant
interface as well as in peri-implant bone. The authors
observed a positive effect of local vibrational loading in
peri-implant bone, albeit confined to regions adjacent to
the implant (i.e., less than 100mm away from implant
surface) and only when using 1 week of low frequency-
high magnitude (LF-HM) loading. Conversely, bone-
implant contact was enhanced by HF-LM and LF-HM
protocols in both loading regimes.

The minor effect of loading on peri-implant bone
contrasts with the large anabolic response on intact
bone reported in many studies,20,87,88 therefore sug-
gesting that in the complex context of peri-implant
bone regeneration, the local mechanical control of the
(re)modeling process may be disturbed. As literature
on this topic is sparse, more investigations would be
needed to elucidate further aspects of peri-implant
mechanobiology.

Mechanical Loading Applied to the Whole Body
Mechanical loading at the whole body level, referred to
as whole body vibration (WBV), is receiving considerable
attention, especially as non-pharmacological therapy for
osteoporosis. The application of WBV is relatively
straightforward but its mechanisms of action at tissue
and cellular level are less understood. The effect of
mechanical stimulations on bone regeneration in the
form of low (�1–10Hz) or high (�10–100Hz) frequency
vibrations have been investigated in animal
models.64,89–91 Ogawa et al.89 placed titanium screws in
the proximal tibiae of rats and applied daily (5 days a
week) WBV starting immediately after implantation.
The loading protocol consisted of 15 consecutive steps of
increasing frequency (from 12 to 150Hz), each step
comprising 2,000 cycles (at 0.3g). Peri-implant trabecu-
lar bone was analyzed with histology after 3, 7, 14, and
25 days post-implantation. BIC as well as the amount of
bone in a region close to the implant (i.e., less than
0.5mm away from the surface) were always significantly
higher in the loading group and showed a significant
increasing trend with time. Only loading but not time
related effects could be detected further away from the
implant (i.e., from 0.5 to 1mm), which may reflect that
the effect of mechanical stimulation is independent from
peri-implant bone regeneration and may give an estima-
tion of the extent of the bone region influenced by
implantation.

Another comparison between pharmaceutical (i.e.,
based on bisphosphonates) and non-pharmaceutical
(i.e., based on WBV) options on peri-implant bone
quantity and implant fixation in estrogen-depleted

rats was carried on by Chen and colleagues.64 The
authors used either alendronate or WBV to augment
bone regeneration around implants inserted in the
femoral medullary canal of rats. The WBV therapy
lasted for 8 weeks and was delivered 5 days per week
(20min per day) with vibration frequency and acceler-
ation being 30–35Hz and 0.3 g, respectively. Histologi-
cal examination was used to measure bone response at
the implant interface as well as within a circular
region extending 100mm away from the implant.
Although WBV significantly increased BIC and peri-
implant bone area, its effects were smaller in compari-
son with alendronate, and also significantly smaller
than load-driven augmentation in peri-implant bone
mass occurring in sham-operated rats. This last study
emphasizes that current physical therapies cannot
completely replace pharmacological treatments but
may be used in combination with them, possibly to
reduce their dosage.

CONCLUSIONS AND OUTLOOKS
The present review has highlighted that (i) osteopo-
rotic conditions may compromise implant osseointe-
gration and anchorage due to a reduced ability of
modifications in peri-implant bone (re)modeling, and
that (ii) mechanical stimulation is able to augment
implant osseointegration and peri-implant bone mass
both in healthy and diseased bone. However, the
effect of mechanical loading seems to be confined to
the vicinity of the implant and the response of
implanted bones to mechanical loading is generally
inferior to the one of intact bones. Moreover, in
estrogen-depleted scenarios, mechanical loading
alone is not enough to lead to the same increase of
peri-implant bone quantity as observed in healthy
conditions.

The combination of in vivo longitudinal micro-CT to
measure local bone (re)modeling with in silico finite
element analysis to compute local strains has recently
allowed to experimentally assess the so-called Wolff’s
law of bone (re)modeling in animals18,29 as well as in
human subjects.19 These studies have demonstrated
that both bone formation and resorption are mecha-
noregulated processes and that in ageing or estrogen-
depletion, the mechanical signal has a decreased
ability to stimulate osteoblasts or inhibit osteo-
clasts.18,29 Our review demonstrates the necessity to
reveal similar biological information on peri-implant
bone mechanobiology, possibly to better combine
pharmaceutical strategies regulating bone formation
and resorption with mechanical loading for
improving early and long term stability of implants in
osteoporotic bone.
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