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�Only two things are in�nite, the universe
and human stupidity, and I'm not sure
about the former.�

Albert Einstein, 1936





Thesis abstract

Quasars are one of the most peculiar types of objects in astronomy. The supermassive
black hole these harbour e�ectively makes the surrounding matter radiates an enor-
mous amount of energy before getting in the vicinity of the black hole horizon out of
which it will never escape. This ironically leads to the most luminous phenomenon
in the Universe while being non-transient. It is hence quite natural to rely on these
cosmic headlights, visible up to ages when the Universe was still very young, so as
to achieve some of the currently most important cosmological applications, notably
regarding the determination of the cosmological parameters H0, ΩΛ and Ωm. The
Gaia mission, on its side, is one of a kind given the one billion of celestial objects it
is intended to observe, among which more than half a million quasars are expected.
Furthermore, owing to its exceptional astrometric precision, Gaia stands out to be
extremely well suited for the detection of gravitational lens (GL) systems. In the lat-
ter, light rays coming from a distant background quasar are de�ected by the presence
of a massive galaxy being in the line-of-sight that leads to the production of multiple
images of this background quasar upon a favourable alignment between the quasar,
the galaxy and the observer. Supplemental constraints on the aforementioned cosmo-
logical parameters being then gained based on these GLs. Gaia hence provides an
unprecedented opportunity to detect and characterize quasars as well as to identify
GLs which ultimately bring a better understanding of the Universe we live in. This
thesis is accordingly concerned with the development of software solutions dedicated
to the determination of the astrophysical parameters (APs) of the quasars that Gaia
will observe, on one hand, and to the recognition of the GLs among the billion of
sources it will uncover, on the other hand.

Although Gaia provides state-of-the-art astrometric and photometric observations,
its capability in characterizing these celestial objects remains however restricted by
the relatively low spectral resolution of the blue and red spectrophotometers upon
which it is based as well as by the limited signal-to-noise ratio that is associated
with faint objects, including quasars. In addition, the overwhelming amount of data
that Gaia has to process translates into a stringent need for algorithms having both
low numerical complexities as well as low memory usages. These restrictions and
shortcomings along with the requirement for reliable APs were at the heart of this
research that led to the development of two speci�cally designed methods that are the
weighted principal components analysis and the weighted phase correlation method.
The former of these methods allowed us to extract the most signi�cant patterns out of
quasars with a view of using these in the production of a spectral library of quasars as
observed by Gaia. These were subsequently used in a fast and automated procedure
designed to guess the redshift of the quasars within the Gaia mission through the
latter mentioned method. Other APs that are the slope of the quasar continua, the
total equivalent width of their emission lines and whether these encompass broad
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absorption lines or not, being then concurrently derived based on the results of these
methods.

Finally, the identi�cation of GL candidates relies on the recognition of the struc-
tures and symmetries that are observed within lensed images through supervised learn-
ing methods. The speci�c method we choose to use, based on extremely randomized
trees, was shown to yield a low contamination rate on simulated con�gurations com-
posed of three images as well as a very high probability of detection in cases of four
image con�gurations. Real observations out of the �rst Gaia data release were pro-
cessed and resulted in the identi�cation of candidates having three potentially lensed
images which are currently waiting for con�rmation using ground-based facilities.



Résumé

Les quasars constituent l'un des types d'objets les plus singuliers en astronomie.
Le trou noir supermassif qu'ils abritent fait en e�et rayonner une énorme quantité
d'énergie à la matière environnante avant que celle-ci ne s'approche de l'horizon du
trou noir, dont elle ne pourra s'échapper. Ceci produit ironiquement le phénomène
le plus lumineux de l'Univers qui ne soit pas transitoire. Il est donc assez naturel
d'utiliser ces phares cosmiques, qui sont visibles jusqu'à des époques où l'Univers
était encore très jeune, a�n d'e�ectuer certaines des applications cosmologiques les
plus importantes de l'époque actuelle, notamment concernant la détermination des
paramètres cosmologiques H0, ΩΛ et Ωm. La mission Gaia, de son côté, est unique en
son genre étant donné le milliard d'objets célestes qu'elle observera, parmi lesquels plus
d'un demi million de quasars sont attendus. De plus, grâce à sa précision astrométrique
exceptionnelle, Gaia se trouve être particulièrement bien adapté à la détection de
lentilles gravitationnelles (LGs). Dans ces dernières, des rayons lumineux provenant
d'un quasar d'arrière plan distant sont dé�échis par la présence d'une galaxie massive
se trouvant le long de la ligne de visée, ce qui mène à la production d'images multiples
de ce quasar pour un alignement favorable entre le quasar, la galaxie et l'observateur.
Des contraintes supplémentaires sur les paramètres cosmologiques pré-cités étant alors
obtenus sur base de ces LGs. Gaia fournit dès lors une opportunité sans précédent
a�n de détecter et de caractériser les quasars ainsi que pour identi�er des LGs, ce
qui mènera, en �n de compte, à une meilleure compréhension de l'Univers dans lequel
nous vivons. Cette thèse se concentre donc sur le développement de solutions logi-
cielles dédiées, d'une part, à la détermination des paramètres astrophysiques (PAs)
des quasars que Gaia observera et à la reconnaissance des LGs au sein du milliard de
sources qu'il découvrira d'autre part.

Bien que Gaia fournisse des observations astrométriques et photométriques de
pointe, sa capacité à caractériser ces objets célestes reste cependant limitée par la ré-
solution spectrale relativement faible des spectrophotomètres bleu et rouge sur lesquels
elle repose ainsi que par le rapport signal sur bruit limité qui est associé aux objets
faibles, comprenant les quasars. Par ailleurs, la quantité importante de données que
Gaia doit traiter se traduit par la rigoureuse nécessité d'avoir des algorithmes ayant à
la fois de faibles complexités numériques et de faibles utilisations mémoire. Ces restric-
tions et inconvénients, ainsi que l'exigence d'avoir des PAs �ables étaient au c÷ur de
cette recherche qui a conduit au développement de deux méthodes spéci�ques que sont
l'analyse en composantes principales pondérées et la corrélation de phase pondérée.
La première de ces méthodes nous a permis d'extraire les modèles les plus signi�catifs
des quasars en vue de leur utilisation pour la production d'une bibliothèque spectrale
de quasars tels qu'ils seront observés par Gaia. Ceux-ci ont ensuite été utilisés dans
une procédure rapide et automatisée conçue a�n d'estimer le redshift des quasars au
sein de la mission Gaia au travers de la dernière méthode mentionnée. Les autres PAs
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que sont la pente du continu des quasars, la largeur totale de leur raies en émission et
si ceux-ci présentent des raies d'absorption larges sont ensuite dérivées sur base des
résultats précédents.

En�n, l'identi�cation des LGs repose sur la reconnaissance des structures et des
symétries qui sont observées au sein des images lentillées via des méthodes d'appren-
tissage supervisé. La méthode spéci�que que nous avons choisi d'utiliser, basée sur
les arbres extrêmement randomisés, a produit un faible taux de contamination pour
les con�gurations composées de trois images ainsi qu'une très forte probabilité de
détection dans le cas des con�gurations à quatre images. Des observations réelles issues
de la première publication des données Gaia ont été traitées et ont permis d'identi�er
des candidats à trois images potentiellement lentillées qui sont actuellement en attente
de con�rmation à l'aide d'instruments au sol.



Dedicated to my son, Arthur, and to his little sister Clémentine.
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1
Introduction

Since the discovery of the two �rst quasars, 3C273 and 3C48, in the mid-1960s
(Schmidt 1963; Greenstein & Schmidt 1964), their interest has grown steadily along
with their applications. Indeed, from their extreme luminosities (L > 109L�) and
large redshift (0.1 < z < 7), these are privileged tracers of the history, structure and
composition of the Universe. They also play a key-role in �xing the celestial reference
frames and constitute ideal candidates for the formation of gravitational lens system
upon which some of the most important cosmological parameters can be straightly
derived (Refsdal 1964; Suyu et al. 2013).

At the present time, the advent of very large surveys like the Sloan Digital Sky
Survey (Alam et al. 2015, hereafter SDSS) has allowed to pass from the few thousands
of quasars known in the 90s (see Véron-Cetty & Véron 2010, Table 1) to ∼ 3 × 105

quasars in most recent catalogues like in Pâris et al. (2017). This large amount
of quasars yields the possibility to carry out statistically signi�cant studies on the
intrinsic properties of these peculiar objects, on their environment and on their related
cosmological applications. The Gaia satellite, launched in December 2013, will also
greatly contribute to this number with 5×105 quasars that are expected to be detected.

As we can notice, the study of quasars already entered in the `big data' era where
the human expertise, although invaluable, is rendered impractical because of time
issues. Rather, like in almost all �elds of astronomy, skilful astronomers have to be
supplemented by smart computer algorithms to get their data e�ciently and quickly
reduced. The detection and characterization of quasars within the Gaia mission simi-
larly rely on such algorithms with the supplemental constraint for these to come along
with particularly low execution times as well as very limited memory consumptions.
These additional constraints arise from the one billion of objects that Gaia will ob-
serve and will have to subsequently process. As an illustrative purpose, let us assume
that the time needed for one object to go through the whole Gaia processing chain
is one second (including, amongst other things, the pre-processing time, astrometric,
photometric and spectroscopic reduction, classi�cation, characterization, variability
analysis, . . . ). It would then take about 32 years of computation in order for the
whole set of observations to be reduced on a single CPU. This problematic is explored
in the present work along with the identi�cation and determination of the parameters
of the gravitational lenses (GL) in the �eld of the Gaia mission.

The �rst chapter describes the Gaia mission from a general point of view, quasars
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and their applications as well as the gravitational lensing phenomenon. It does not
aim at being exhaustive but rather provides the reader with the minimal insights that
are required in order for this work to be fully understood. Interested readers willing to
go one step further are invited to read Gaia Collaboration et al. (2016) and references
therein for a more complete description of the Gaia mission, Beckmann & Shrader
(2012) or Peterson (1997) for a comprehensive review of Active Galactic Nuclei and
quasars and Schneider (1992) for a rigorous explanation of the gravitational lensing
phenomenon.

In the following, Chapter 2 contains the methods that we speci�cally developed
in order to determine the astrophysical parameters (APs) of quasars within the Gaia
mission as well as a supervised learning method we used in order to identify and
characterize gravitational lens systems (GLs). The precise procedure we implemented
for gathering these APs are described within Chapter 3 while the GLs identi�cation
and characterization are covered in Chapter 4.

1.1 The Gaia mission

Gaia is one of the cornerstone space mission of the Horizon 2000+ science program of
the European Space Agency (ESA) that aims to bring a consensus on the history and
evolution of our Galaxy through the survey of a billion celestial objects (Perryman
et al. 2001). Initially thought as an interferometric mission (Lindegren & Perryman
1996), it was later re-designed such as to allow fainter objects to be detected. From
this early period remains the original mission name: `GAIA'1, standing for `Global
Astrometric Interferometer for Astrophysics' though it was no longer an interferomet-
ric mission. The satellite was launched from French Guyana on 19 December 2013 at
09:12:19.6 UTC by a Soyuz-STB launcher for a nominal mission of �ve years around
the Lagrange L2 point and cost about one billion euros.

This section brie�y describes the mission objectives, the overall satellite design,
while particularly focusing on its focal plane, and �nally details the computational
structures that are put in place so as to process and analyze the huge amount of data
coming from the satellite.

1.1.1 Scienti�c objectives

The composition, formation and evolution of our Galaxy

The objectives of Gaia are multiple but the fundamental scienti�c goal is the under-
standing of the formation and of the evolution of our Galaxy: the Milky Way. This
objective is ful�lled through the repeated measurements of the astrometric positions
and of the photometric �uxes of a billion celestial objects as well as from the spectro-
scopic measurements of a subset of these objects. These will allow to determine the
parallaxes, proper motions, radial velocities and chemical compositions of a signi�cant
fraction of the stars composing our galaxy. This snapshot being then used in order to
trace the evolution of the Milky Way back to its formation.

By doing a full sky coverage, Gaia will also be able to measure the interstellar ex-
tinction in each direction it points to and to create a map of the interstellar medium
in the Milky Way. From the knowledge of its structure, kinematics and mass distri-
bution, Gaia will allow to answer one of the most intriguing questions of the present
days, that is the distribution of the dark matter in our Galaxy.

1The original mission name, `GAIA', was then set to lower cases in order to become `Gaia'.
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Finally, the combination of the absolute magnitudes of stars with their observed
metallicities will enable their individual ages to be determined such as to have a
spatial distribution of the latter amongst the Galaxy, to subsequently deduce their
birth places and tell the history of its star formation. These observations being then
complemented and assessed with those of other numerous distant galaxies.

Stellar physics, evolution and distances

The main strength of Gaia is the huge number of stars it will observe and the thorough
statistical analysis that can be conducted based on these. The ∼ 108 stellar parallaxes
that will be obtained by Gaia along with its similar number of accurate photomet-
ric records will accordingly allow to derive high-quality colour-magnitude diagrams
(i.e. Hertzsprung-Russell diagrams, hereafter HR diagrams) based on which precise
researches can be undertaken regarding stellar physics, evolution and distances. In-
deed, these numerous observations will enable the great diversity of stars to be studied
in all their evolution phases, from the pre-main sequence to their �nal fate, from the
most massive O stars down to brown dwarfs. This is even more crucial given that we
know some of these evolutionary phases to be extremely fast such as the helium core
�ash in solar-type stars. Once precisely re-calibrated, the main sequence of the HR
diagram will then enable distances from stars to be �nely determined even in the case
where no trigonometric parallax is available.

Stellar variability, supernovae and the cosmic-distance ladder

The fact that each object will be observed 70 times on average will also allow the
detection of ∼ 107 variable stars. Beyond the obvious interest of variability in under-
standing the associated stellar physics, the parallaxes of some 80, 000 pulsating stars
(RR Lyrae and Cepheids) will be used to improve their period-luminosity function
and hence their distances. Similarly, this systematic variability survey will be used in
order to discover many thousands of supernovae, amongst which type Ia supernovae
which can be equivalently used as a fair indicator of their distances. In the end, Gaia
will allow a full and independent re-calibration of the whole cosmic-distance ladder
through parallaxes, HR diagram, Cepheids & RR Lyrae stars and type Ia supernovae,
. . .

Stellar multiplicity and exoplanets

The extremely high spatial resolution of Gaia combined with variability analysis and
high resolution spectroscopy will enable the detection of many multiple systems of
stars either by resolving some of their components, by noting some astrometric wob-
bles superimposed to their parallaxes and proper motions, from their apparent periodic
changes in luminosity in the case of eclipsing stars, from microlensing events or from
the back and forth motion of their emission/absorption line(s) in spectroscopy. Simi-
larly, these techniques can easily detect exoplanets of mass equal or higher than that
of Jupiter. The collected sample will then be used by other surveys as a basis for the
search of habitable earth-size exoplanets protected by a giant planet standing further
out.

Asteroids

Although the main targets of Gaia are stars, any point-like sources with relatively
low proper motions will be detected, amongst which 105 to 106 asteroids. These
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are unaltered witnesses of the origin and formation of our solar system. The study
of their size, mass, shape, albedo and of their taxonomy reveals a vital importance
in understanding the formation of planetary systems in general. Gaia was further
shown to be able to measure the ephemeris of known asteroids with an unprecedented
accuracy while his full sky coverage will enable the discovery of many asteroids in
regions of the sky that are usually not covered for their search like those standing far
away from the ecliptic plane.

The Local Group

The resolving power o�ered by Gaia is su�cient for the brightest stars from our local
group to be observed. As an example, thousands of stars should be detected within
the Andromeda galaxy while a few millions of these should be detected within the
Large Magellanic Cloud. In parallel to what is done from stars to stars regarding
the Milky Way, the goal would be to shed light on the interactions existing amongst
the members of the Local Group through the computation of the three dimensional
positions and velocities of the stars composing these (dwarf) galaxies.

Unresolved extragalactic objects and the reference frame

Besides the intrinsic interest of the unresolved extragalactic sources that is further
explored in section 1.2.4, these objects have a particular importance in �xing the
Gaia Celestial Reference Frame (GCRF) which aims to be the extension of the Inter-
national Celestial Reference Frame (ICRF) from radio interferometry to visible light.
The apparent proper motions of quasars will then principally come from the angular
displacement of the Sun around the Galactic center. Another interesting application
stands in the comparison of the positions of quasars from the ICRF to their corre-
sponding positions in the GCRF such as to check whether these coincide in both visual
and radio wavelengths and thus correspond to similar physical phenomena.

Fundamental physics

From its extremely high spatial resolution, Gaia will have to routinely deal with
the correction of relativistic e�ects like the light bending occurring in the vicinity of
strong gravitational �elds. Again, the large set of measurements will allow to quantify
any bias that would come from the imperfections of the relativistic model we used by
simply looking at its residuals. Another experiment would consist in the measurement
of the bending of light of stars being close to the limb of Jupiter in order to assess
these models.

1.1.2 Overall design

Gaia is mainly composed of two telescopes pointing in directions separated by a basic
angle of Γ = 106.5◦. These two telescopes consist each of six mirrors numbered from
M1 to M6 (resp. from M1' to M6') and share a common focal plane composed of
a patchwork of 106 CCDs. The data acquisition is then carried out by rotating the
satellite on its spin axis at an angular velocity of 60′′s−1 while reading each CCD
column at the same rate as the objects cross the focal plane, in the so-called Time
Delay Integration (TDI) mode. The validity of this design was already successfully
demonstrated by ESA as it is inherited from its predecessor, the HIPPARCOS mis-
sion(Perryman et al. 1989). The fact that the objects coming from each �eld of view
(FOV) are mapped onto the same focal plane allows their relative positions to be
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determined in an extremely precise manner though these have large angular separa-
tions. The combination of many such relationships along with the large focal length
of both telescopes and the extremely good sampling of the CCD in their along-scan
(AL) direction, which is comparable to the one of the Hubble space telescope, then
allow to reach the astrometric precision claimed by Gaia.

From simple considerations we can show that the sensitivity of Gaia regarding the
absolute parallaxes in the AL direction is proportional to sin ξ sin Γ, where ξ is the
angle between the spin axis of the satellite and the sun (Gaia Collaboration et al.
2016). Intuitively, stars coming from a single FOV will have parallax displacements
(i.e. parallax factors) that will be oriented in very similar directions (i.e. towards
the Sun). The determination of their absolute parallaxes will hence have to rely on
their sole relative position along the (approximately unique) great circle joining these
stars to the Sun. A more interesting solution would then be to calibrate these absolute
parallaxes with stars having their parallax factors oriented in very di�erent directions,
that is at Γ = 90◦ in an ideal case. Nevertheless for the sake of the optimization of the
accuracy in the AL direction during short period of time (Makarov 1998), acceptable
values were restricted to stand either within 99.4◦ ± 0.1◦ or within 106.5◦ ± 0.1◦.
Manufacturing constraints then favoured the latter solution. Also, given that we
would like to optimize the detection of the parallax factors in the AL direction, we
would then prefer to have these apparent displacements to be always oriented in this
speci�c direction, which is the case if ξ = 90◦. However in this con�guration the sun
light would enter the aperture of the satellite instead of alimenting the solar panels
and the thermal stability would not be further ensured. A constant value of ξ = 45◦

was then chosen as a trade-o� between the e�ciency and the permanent protection of
the satellite by its sun shield and solar panels. The angular velocity of the spin axis (1
′s−1) was then chosen as a complex compromise between the observational frequency of
the sources, their reachable magnitudes, their signal-to-noise ratio (SNR), the limited
telemetry of the satellite and the blurring of the point spread function (PSF) during
the TDI integration. At last, a slow precession of the spin axis allows to spread the
sampling of the variability curves of the observed sources in a more uniform way. The
chosen precession period of 63 days still allows an overlapping of the observations over
a full revolution of the spin axis.

The two telescopes composing Gaia principally encompass the primary mirrors
(M1 and M1'), each of size 1.45 × 0.5 m and secondary mirrors (M2 and M2'), each
having �ve degrees of freedom such as to ensure a correct alignment of the whole
optical bench and a precise focusing of both telescopes. The corrections applied at
the M2/M2' mirrors account for the irregularities introduced by the launch vibrations
as well as by the routine monitoring of the focus through the Wave-front Sensor
system (hereafter WFS, see Section 1.1.3). The fourth mirrors (M4 and M4') are �at
folding mirrors designed to gather the beams of light coming from both telescopes
onto a common optical path consisting of the M5 and M6 mirrors. The M5' and
M6' mirrors being actually alternative names for M5 and M6, respectively. This
complex arrangement eventually yield a (required) focal length of 35 m for each of the
telescopes. A sketch of the disposition of the mirrors onto the optical bench of Gaia
is provided in �gure 1.1.

1.1.3 The focal plane assembly

Gaia aims to produce the most complete astrometric and photometric catalogue nowa-
days. In order to accomplish this tremendous objective, its CCDs are required to be
accurate enough so as to produce reliable measurements, to be sensitive to the faintest
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Figure 1.1: The hexagonal optical bench supporting the ten mirrors composing the
two telescopes of Gaia. Each telescope is composed of six re�ectors numbered from M1
to M6 (M1' to M6', respectively, for the second telescope), two being shared amongst
both telescopes (M5 and M6) while the beam recombination occurs at the level of
the M4/M4' mirrors. This con�guration allows simultaneous observations along two
line-of-sights (LOS1 and LOS2), separated by a basic angle of 106.5◦ along with an
e�ective focal length of 35 m. Image credit: Airbus Defence and Space.

Figure 1.2: The Gaia focal plane composed of 106 CCDs and their associated instru-
mentations. Image from ESA � A.D. Short, July 2009.
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sources as well as to come along with a high dynamic range that allows the �ux from
the brightest sources to be recorded as well, therefore producing an unbiased, complete
catalogue down to a G magnitude of 20. The focal plane is accordingly equipped with
106 CCDs that were speci�cally designed in order to ful�l the previously mentioned
requirements and that form the largest focal plane ever sent in space as illustrated in
�gure 1.2.

Each of these constituting CCDs consist in a grid of 4500 × 1966 pixels having a
size of 45×60 mm along with an individual pixel size of 10×30 µm (58.9×176.8 mas
on the sky). While their accuracy and their sensitivity are mainly and respectively
driven by well-studied characteristics of CCDs and by the angular velocity of the spin
axis of the satellite, the novelties introduced in the latter allow to outperform by far
the dynamic of `classical' CCDs. Indeed, from its design, Gaia will be able to have
some insights on the �ux that will be received from each source (see `Sky mappers'
below) and to determine whether these sources will saturate the potential well of the
pixels or not. Based on this knowledge, some electrodes standing at the junction of
prede�ned CCDs columns will be activated such as to �ush the photo-electrons that
were collected during the TDI integration of the previous columns. These bypasses,
called TDI gates, then allow the �ux coming from each object to be integrated through
a suited number of CCD columns and hence to have a well adapted exposure time.
Twelve of these TDI gates are present on each CCD composing the focal plane. These
stand at CCD column: 2900, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4 and 2. This
improvement constitutes one of the major strengths of Gaia for its journey through
the exploration of one billion stars.

In the following, we describe the instrumentation that is associated with each set
of CCDs (see �gure 1.2) which will �nally provide us with what we though to be a
satisfactory review of the Gaia satellite and of its payload.

Wave-front sensors

Each of the telescopes constituting Gaia is equipped with a Wave-front Sensor (WFS)
of Shack-Hartmann type composed of an array of 3 × 11 lenses. This WFS is used
in order to monitor the focus and the alignment of the telescopes while actuating the
M2/M2' mirrors along their �ve degrees of freedom in case of defects. To this aim,
the spots obtained from the lens focusing of bright stars are compared to those of
calibration spots and spots from other stars that were recorded once the best focusing
was achieved. This information along with the spot locations then allow the incident
wave-front to be reconstructed and further corrected.

Basic angle monitor

As already pointed out, Gaia heavily relies on the accurate measurements of sources
standing at high angular distances through its two FOV separated by an angle of
Γ = 106.5◦. The sought astrometric precision then requiring this angle to be monitored
at the µas level. To this aim, the Basic Angle Monitor (BAM) makes use of two optical
benches fed by a common laser source that is split into two parallel beams of collimated
light for each telescope that, once re-combined, will produce Young type interference
patterns based on which the basic angle, Γ, can be monitored with an accuracy of 0.5
µas. The latter being actuated every 23 s.
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Sky mappers

Sky mappers (SM) are the �rst set of CCDs that are encountered by the scienti�c
sources (i.e. that are not related to the metrology of the satellite). These are com-
posed of two strips of 7 CCDs (SM1 and SM2), each being exposed to the light coming
from a single FOV thanks to physical masks placed at the level of the M4/M4' mirrors.
Their objectives are �rst to identify the (point-like) sources that will cross the focal
plane and to match each of these to their corresponding FOV and secondly to compute
their rough apparent magnitude such as to decide whether or not we should activate
some TDI gates in the subsequent CCDs. These are the sole CCDs that are read in
full by the TDI mode though a binning of 2× 2 is applied. Indeed, the informations
gathered from the SM are used in order to produce a windowed reading of the right-
most `scienti�c' CCDs, that is: only pixels being in the vicinity of the detected source
will be read such as to spare the readout time. The size of the allocated windows
then depends on the instrumentation we use such as described in the remaining of
this section.

Astrometric �eld

The astrometric �eld (AF) consists of 62 CCDs and is therefore the most widespread
instrument of the focal plane. Its purpose is to acquire the photometric measurements
of the objects detected by the SM in the un�ltered G band2 covering the wavelength
range from 330 nm to 1050 nm. Depending on the magnitudes derived by the SM, each
source will transit the AF in allocated widows of 18 × 12 pixels in cases where these
have magnitudes brighter than 16 mag and in windows of 12 × 12 pixels for fainter
magnitudes. CCD readout will then be carried out by binning the 12 pixels in the
across-scan (AC) direction in case of objects fainter than 13 mag while no binning will
be performed for brighter sources such as to prevent saturation. A complete transit
will hence correspond to 9 such photometric records, one per CCD encountered in the
AF, at the exception of the fourth row of the AF where only 8 strips are present. The
summing of these records then allows a higher SNR to be gained.

The �rst strip of CCDs among the AF, AF1, has a particular role since it is
used in order to con�rm detections from the SM as well as to detect moving objects
for which the transition window will be extended. Also it can detect inadequacies
in the propagation of the objects through the focal plane and send the appropriate
corrections to the attitude and control subsystem, which in-turn will produce the
impulsions that are necessary in order for the satellite to keep its stable rotation.
These additional functionalities consequently require the observations from AF1 to be
read in full resolution (i.e. without binning) and to be later combined by the on-board
software.

BP/RP spectrophotometers

Gaia comes along with two low-resolution spectro-photometers, namely the blue pho-
tometer (BP), observing in the range 330�680 nm, and the red photometer (RP),
observing in the range 640�1050 nm. These measure the spectral energy distribution
(SED) of the objects transiting the focal plane such as to: (i) apply the chromatic
corrections that would otherwise shift the objects centroids because of the optical
aberrations of the telescopes (ii) allow the classi�cation of these objects concurrently
with the determination of their APs. More speci�cally, this last point will, amongst

2G standing for Gaia
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Figure 1.3: Fused-silica prisms of the blue and red spectro-photometers of Gaia. The
red photometer (up) disperses the incoming light having wavelengths between 640 nm
and 1050 nm with a dispersion curve varying between 7 and 15 nm pixel−1 while the
blue photometer (down) operates in the range 330�680 nm with a spectral dispersion
of 3�27 nm pixel−1. Image credit: Airbus Defence and Space.

other, encompass the characterization of the objects that are getting classi�ed as
quasars which is the main topic of the present work.

Both the BP and RP are made of fused-silica prisms which disperse the beams of
light over ∼ 45 pixels in the AL direction (see �gure 1.3). The associated dispersion
curves varies from 3 to 27 nm pixel−1 for the BP and from 7 to 15 nm pixel−1 for
the RP. A transition window of 60× 12 pixels for both photometers was consequently
used in order for the background to be fairly estimated as well and for the errors
in the window position and displacement to be taken into account. Similarly to the
AF, spectra are binned over the 12 pixels in the AC direction such as to produce one
dimensional SED, while spectra having a G magnitude brighter than 11.5 are read in
full resolution such as to prevent saturation.

Radial velocity spectrometer

Gaia is further equipped with a high-resolution spectrometer (R = λ/∆λ ≈ 11700)
centred around the Ca ii triplet (845�872 nm). Its objectives are manifolds but mainly
consist in the determination of the radial velocities of stars for which the magnitude
associated with the integrated �ux in the concerned band, GRVS, is brighter than
16, hence its name of radial velocity spectrometer (RVS). Some additional objectives
being the retrieval of the stellar parameters of objects having GRVS < 14.5 mag or the
derivation of the interstellar extinction for stars brighter than GRVS ≈ 12.5 mag.

The RVS instrument is an integral �eld spectrograph consisting in an array of 3×4
CCDs and in an optical module situated between the M6 mirror and the focal plane.
This optical module is a complex aggregation of a blazed-transmission grating, of four
fused-silica prismatic lenses and of a bandpass �lter such as to spread the incoming
light over 1100 pixels in the AL direction with a steady wavelength dispersion of
0.0245 nm pixel−1 (see �gure 1.4). Again RVS spectra were allocated to windows of
size 1296×10 pixels, in order to permit background subtraction and errors on windows
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Figure 1.4: The optical module of the radial velocity spectrometers of Gaia. From
left to right: two prismatic lenses, a transmission grating plate, two other prismatic
lenses and a bandpass �lter that together allow high resolution (0.0245 nm pixel−1)
spectroscopy over the wavelength range 845�872 nm. Image credit: Airbus Defence
and Space.

Table 1.1: Coordination Units from DPAC.

Label Name

CU1 System architecture
CU2 Data simulations
CU3 Core processing
CU4 Object processing
CU5 Photometric processing
CU6 Spectroscopic processing
CU7 Variability processing
CU8 Astrophysical parameters
CU9 Catalogue access and scienti�c exploration

(dis)placement, and where spectra having GRVS > 7 are binned over the 10 pixels of
the AC direction.

1.1.4 Gaia data processing and analysis

The Gaia data processing is entrusted by the Data Processing and Analysis Consor-
tium (DPAC) which is an academic consortium composed of some 450 astronomers dis-
tributed over 25 countries, mainly from Europe. This consortium is structured around
nine Coordination Units (CUs) which are specialized sub-structures with clearly-
de�ned responsibilities (see Table 1.1). These are coordinated through the DPAC
Executive (DPACE) which is a top-level structure serving as an interface between
CUs and the Gaia science team, responsible for the �nal Gaia scienti�c performances.

Amongst these CUs, CU1 is endorsed with the overall system processing, philoso-
phy, architecture and strategy. It is, amongst other, responsible for the management
and design of the data storage that is shared over the whole DPAC, the Main Database
(MDB), and of the software architecture based on which all the DPAC work packages
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will be able to exchange the results of their calculation (i.e. their software interfaces).
CU2 is in charge of the simulation of the Gaia data in a broad sense, that is from its
telemetry to its end-of-mission data passing through the simulation of the spacecraft
& instrument models, intermediate data products or pixel-level records. The goal of
these simulations being then to prepare at best the whole DPAC softwares for their
run on real observations. CU3 deals with the astrometric processing of the sources
that will be observed, from the pre-processing of their telemetry to the relativistic
and colour corrections that must be applied to the latter. CU4 is concerned with the
processing of the sources that were �agged within CU3, CU5 or CU6 as having uncom-
mon behaviours these encompass non-single stars (NSS), solar system objects (SSO)
and extended objects (EO). CU5 is responsible for the treatment, calibration and
validation of the photometric data from SM, AF and BP/RP spectro-photometers,
while CU6 has a similar role regarding the RVS spectra. CU7 aims to identify, clas-
sify and characterize the photometric and spectroscopic variability of the observed
objects. The classi�cation and the determination of the astrophysical parameters of
each detected source will be carried out within CU8 while, �nally, the content of the
�nal and intermediate catalogues as well as their access will be ensured by CU9. All
these e�orts being supported by large computing centres, the Data Processing Centres
(DPCs), situated in Madrid, Toulouse, Cambridge, Genève, Torino and Barcelona.

The previously described tasks of each CU can be alternatively classi�ed into: daily
processing regarding the nearly real-time treatment of the Gaia data, cyclic processing
regarding the iterative process-and-improve data treatment upon which Gaia is based
and the data simulation and publication.

Daily processing

The DPAC daily processing consists, on one hand, in the initial data treatment (IDT)
which aims to provide a preliminary reduction of the raw scienti�c data such as the
approximated source positions based on a coarse and instantaneous version of the
satellite attitude (i.e. the pointing of the telescopes/instruments over the GCRF as a
function of time). These approximated positions have a typical accuracy of 100 mas
which is su�cient in order for the epoch observations to be cross-matched. Other
resources coming from the IDT encompass: preliminary �uxes from AF, BP, RP and
RVS instruments, CCD window position and size as well as potential TDI gate activa-
tion. On the other hand, the First Look system will use the monitoring informations
of the satellite such as to ensure that its whole payload is working as expected through
the production of diagnostics logs and plots.

The IDT output is then primarily used as a basis for the science alerts pipeline
(http://gsaweb.ast.cam.ac.uk/alerts). Indeed, based on the cross-match per-
formed by the IDT, variability curves can be readily obtained and transient phe-
nomena (e.g. supernovae, cataclysmic variable stars, . . . ) can be straightly identi-
�ed and followed-up through ground-based telescopes. If these transients also come
along with a fast motion across the focal plane (e.g. 10 mas s−1), they are con-
sidered as solar system objects and consequently published as solar system alerts
(https://gaiafunsso.imcce.fr/) for a similar follow-up. This distinction is made
because such fast moving objects may not get re-observed by Gaia and that their sin-
gle epoch displacements are insu�cient in order to completely reconstruct their orbit,
hence necessitating an immediate ground-based follow-up.

http://gsaweb.ast.cam.ac.uk/alerts
https://gaiafunsso.imcce.fr/
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Cyclic processing

The self-calibrating nature of Gaia, where a fair calibration of the whole instrumenta-
tion is obtained from the observations which in turn rely on a good calibration of the
instrumentation, naturally translates into a cyclic processing of its data. This cyclic
processing can be viewed as two distinct but complementary parts: low-level (or core)
processing that is straightly concerned with the Gaia instrumentation and high-level
processing that has to deal with the intrinsic nature of the observed objects. Both
processing strongly depend on each other since the low-level processing will be based
on products from the high-level processing and conversely. As an example, the control
of the attitude of the satellite will be better performed if it is based on �xed points
of the celestial reference frame, like quasars, although the identi�cation of quasars is
a complex task that has to be carried out separately. Likewise, the precise knowledge
of the satellite attitude will improve the precision of the astrometry leading to bet-
ter predicted positions on the focal plane, to a better modelling of the BP/RP line
spread function (LSF) and, �nally, to better integrated BP/RP �uxes upon which the
quasars identi�cation is based.

Low-level cyclic processing mainly consists in:

� The Intermediate Data Update (IDU), which aims to provide updated images
locations and �uxes through the updates of the core astrometric and photometric
calibrations (mainly PSF model, CCD bias and dark current estimation) and
through the use of the latest attitude and geometric calibrations available. This
ultimately leads to an improved cross-matching between the epoch observations.
It is worth to mention that this task can be viewed as a more complete version of
the IDT while being based on a global approach to the problem of the astrometric
and photometric calibration (i.e. using all relevant parameters from the MDB).

� The Astrometric Global Iterative Solution (AGIS), which is the core astrometric
solution of Gaia. It consists in a simultaneous least-squares solution to a problem
encompassing the astrometric positions of 108 well-behaved (primary) sources,
the satellite attitude, geometric calibration of the SM and AF as well as other
numerous (time-dependent) global calibration parameters with respect to the
observed CCD positions and �uxes as received from the satellite.

� The photometric pipeline, which derives the calibrated photometry from the
SM, AF, BP and RP instrument. G �uxes coming from the IDU are accordingly
converted into calibrated G magnitudes while the BP/RP �uxes are aggregated
in order to provide the integrated BP/RP magnitudes, GBP and GRP. BP/RP
spectra are similarly calibrated in �ux and wavelength using standard stars for
which high quality ground-based spectra are available.

� The RVS pipeline, which takes care of the RVS spectra reduction and calibration
like the calibration of the wavelength scale, the treatment of stray-lights or the
counter-balancing of the charge transfer ine�ciency e�ects.

High-level cyclic processing consists in the already mentioned NSS treatment, SSO
treatment and EO analysis from CU4, in the variable star analysis from CU7 and in
the astrophysical parameter inference system (APSIS) from CU8. The products of
these high-level tasks are aimed to be published as parts of the Gaia data releases.

Data simulation and publication

Apart from the previously described tasks, the DPAC is also in charge of
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� The simulation of the data by the CU2 as they will be observed by Gaia. These
simulations can be classi�ed in three categories roughly corresponding to the
acquisition of these data at the pixel level in the focal plane by the Gaia In-
strument and Basic Images Simulator (GIBIS), to its telemetry by the Gaia
System-level Simulator (GASS) and to its scienti�c products through the Gaia
Object Generator (GOG).

� The relativistic modelling of the observations, mainly the bending of light owing
to the presence of massive objects being in the vicinity of the line-of-sight to-
wards the observed objects. The latter point requiring a precise and up-to-date
ephemeris to be used.

� The observation, �ltering and compilation of standard calibration objects re-
garding �uxes and wavelength scales. Accordingly, numerous observational cam-
paigns have seen the day in order to gather photometrically stable stars based
on which apparent G magnitudes can be derived, RVS calibration stars as well
as a set of FGK benchmark stars that will equivalently serve as references within
APSIS.

� The publication of the results, their documentation and validation. Even if
apparently straightforward, the publication of the results coming from the iter-
ative processing that is used within the DPAC reveals a particular complexity
given that the coherence between each output must be ensured (what to think
about an object being classi�ed as a star by the CU8 while it is considered as a
quasar by AGIS. . . ). Also the coherence between each publication of the cata-
logue should be kept as much as possible, even if this implies that only a limited
fraction of the observations will be made public. These coherences are being
achieved through strong scienti�c validation of the objects to be published.

1.2 Active galactic nuclei and quasars

Active Galactic Nuclei (hereafter AGN) are the most energetic objects of the Universe
while being non-transient. Although their origin was discussed for a while (see Section
1.2.1), these are actually and most probably thought to come from the accretion of
matter onto supermassive black holes (hereafter SMBH). Indeed, we expect these
SMBHs to be quite common in the Universe as their existence is theoretically well
predicted. Furthermore, observations yield evidences that these might stand in the
center of each galaxy. AGN thus occur in a speci�c period of the lifetime of their host
galaxy during which a signi�cant amount of matter was still available in the vicinity
of the SMBH such as to maintain this powerful accretion process. The characteristics
noticed amongst these AGN (see Section 1.2.2) then allow to guess their generating
physical processes and to further derive models of the structure, dynamic, composition
and evolution of their various constituting regions (see Section 1.2.3). The extreme
luminosities resulting from the high accretion rate of some of the most energetic
AGN, called quasars, along with the fact that these were preferably occurring in a
period of time when the Universe was still young yield a wealth of unique cosmological
applications as we will see in section 1.2.4.

1.2.1 Historical background

The �rst documented observation of an AGN goes back to 1907, where a photographic
plate consisting in a 13 hours exposure of the M77 'spiral nebula' taken through a
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prism spectrograph installed at the Lick 36-inch re�ector telescope then allowed to
obtain the spectrum of what would be recognized now as the [O ii]λ373 nm, Hγ λ434
nm, Hβ λ486 nm and [O iii]λ496, 500 nm emission lines (Fath 1909). The precise
nature of M77 (a type II Seyfert galaxy at z = 0.0038) was not recognized at that
time given that even its extragalactic nature was not yet known. The Great Debate
(or Shapley�Curtis Debate) that took place in 1920 shed light on the extragalactic
nature of these 'spiral nebulae', presently referred to as galaxies. This debate was
however de�nitely closed in 1929 thanks to the work of Edwin Hubble who studied
the period-luminosity relation of forty Cepheid stars amongst the Andromeda galaxy
through observations with the 2.5 m telescope of Mount Wilson Observatory such as
to provide a �nal distance of 275 kpc for Andromeda3, thus proving its extragalactic
nature (Hubble 1929b).

In the early 1930s, the advent of the �rst instruments that are sensitive enough
such as to collect the radio �uxes from cosmic sources (Jansky 1933) gives birth
to radio astronomy. The decades following world war II then subsequently see the
publication of the �rst maps of astronomical radio sources (Reber 1944; Ryle & Smith
1948). Nevertheless, the limited astrometric precision of these instruments solely
allowed the identi�cation of the optical counterparts of a very few number of sources,
amongst which Cygnus A, Centaurus A and M87. Two signi�cant milestones were
then gained in 1959 with the publication of the Third Cambridge Catalogue of Radio
Sources (Edge et al. 1959, hereafter 3C) and in 1962 with the revision of the latter
catalogue (Bennett 1962, hereafter 3CR). These encompassed respectively 471 and
328 sources. Many of these 3C and 3CR sources were rather easily cross-matched
with relatively nearby extended galaxies but the available angular resolution rendered
the identi�cation of point-like sources more uncertain.

The search for such point-like (or stellar-like) optical counterparts of radio sources
from the 3C and 3CR catalogues yielded to the discovery of the 3C48 and 3C273
objects (Greenstein & Schmidt 1964) that were accordingly termed quasi-stellar radio
sources, quasi-stellar objects (QSO) or quasars. Even though the nature of their
redshifts (z = 0.367 and z = 0.156, respectively) was discussed for a while: once
consisting in a gravitational redshift where photons lost their energy as they escape
the potential well of the emitting source or being due to the Doppler shift coming from
peculiar stars ejected from our Galaxy, the cosmological nature of this redshift was
however soon accepted as it was the most straightforward and the least questionable
explanation.

Though quasars were �rst identi�ed thanks to their radio emission, it was later
noticed that not all QSOs emit in the radio domain (Sandage 1965) and that 90% of
the latter are actually radio-quiet while their optical spectra show features that are
similar to those of radio-loud QSOs. Accordingly, the currently used terminology does
not actually require these objects to exhibit a radio emission or to be resolved. These
are rather part of the more general class of AGN given that both originate from the
same physical process as described in section 1.2.3. In the following, we consequently
concentrate on the characteristics and on the nature of AGN though all conclusions
can be straightly extrapolated to the case of QSOs.

1.2.2 A multi-wavelength view of AGN

One of the major characteristics of AGN is that they emit over the whole electro-
magnetic spectrum as illustrated in �gure 1.5 for the case of the 3C273 quasar. A

3the actual distance being around 778 kpc
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Figure 1.5: Multi-wavelength observations of the 3C273 quasar (Türler et al. 1999).

Figure 1.6: (left) The Cygnus A Seyfert II galaxy as seen by the VLA at 5 GHz.
Image courtesy of NRAO/AUI. (right) The M87 galaxy as seen by the HST in the
optical band. Image credit: Tod R. Lauer, Sandra M. Faber/NASA.

pluridisciplinary analysis is hence necessary in order to fully understand what these
objects are and to subsequently try to draw the general frame unifying the various
classes of AGN. A recent seminar paper from Padovani et al. (2017) provides a com-
prehensive review of the various aspects of AGN over a wide range of wavelengths.
We summarize here the main AGN characteristics and further try to isolate classes of
AGN based on the presence or the absence of some discriminant characteristics.

Radio wavelengths

The radio domain cover the frequency range from 10 MHz to 40 GHz, or equivalently
the wavelength range from 0.75 cm to 30 m. As already seen, not all AGN emit in
the radio domain and a �rst distinction should be made between radio-loud AGN and
radio-quiet AGN. Observations of sources belonging to the �rst class predominantly
show continuous �uxes in the form of a continuum power-law,

fν ∝ ναν , (1.1)

where fν is the �ux density observed at frequency ν and αν is the slope of the con-
tinuum that is equivalently termed the `spectral index'4. This continuum part of the

4Note that some authors prefer de�ning the spectral index through Fν ∝ ν−αν . The reader should
hence pay a careful attention to the used convention once using αν .
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spectrum is particularly noticeable in �gure 1.5 for wavelength having λ ≥ 1 m.
This continuum emission is reasonably well interpreted as coming from synchrotron

radiation where charged particles are radially accelerated by the presence of a magnetic
�eld which made them whirling in this magnetic �eld while emitting photons. The
strong radio luminosities that are observed require these charged particles to have a
very low mass, comparable to the one of the electron. The latter being accordingly
the most plausible constituent. The rest-frame frequency of the emitted photons
then depends on the relativistic speed of the electrons as well as on the strength of
the magnetic �eld. This hypothesis is further supported by the fact that this radio
emission is mostly seen as two strong and highly collimated jets originating from the
innermost part of the AGN as depicted in �gure 1.6. The observed radio lobes being
then produced by the interaction of these particles with the inter-galactic medium at
distances up to a few hundreds of kiloparsec from the source. Also, we can notice
that such jets are seen in the optical band as well (see �gure 1.6, right) thus requiring
electrons to move at highly relativistic speed (e.g. with a Lorentz factor of γ ≈ 106 if
we suppose a magnetic �eld of strength B = 10−4 G). Such a speed being a �rst hint
towards the presence of a SMBH in the center of such systems. For completeness, we
have to note that only one jet is frequently visible because of the relativistic Doppler
e�ect that produces a magni�cation of the jet moving towards us while the counter-jet
is conversely attenuated by the same e�ect (i.e. that is relativistic beaming or Doppler
boosting). An example of such a `single-jet' con�guration stands in the image of the
M87 galaxy (see �gure 1.6). One can further notice in �gure 1.6 (left), a compact radio
source in the center of the image. The distinction between this compact component
and the extended one is easily carried out given that the compact source is expected to
be denser and thus optically thick which leads to a �atter spectral index (i.e. αν ≈ 0)
while the extended component is optically thin causing αν ≤ −0.5.

At the present time, the physical process producing these bipolar jets is still ob-
scure and stands beyond the scope of this work. Furthermore, there is still active
discussions about knowing whether the strong synchrotron radiation that is observed
in radio-loud AGN comes from the very high energy of the electrons or from the ex-
tremely strong magnetic �eld enclosing them. Whereas we would like to have insights
about the physical phenomena producing the various characteristics we will encounter
in the optical spectra of Gaia, we have to note that radio emission of AGN can be
considered as an additional and apparently independent component regarding higher
frequency wavelengths (i.e. at ν > 100 GHz). Accordingly, radio emission will be ig-
nored in the uni�ed model of AGN that will be described in section 1.2.3. Interested
readers may �nd in Urry & Padovani (1995) a detailed approach of such a uni�cation
scheme while a more recent review of the subject is provided by Tadhunter (2016).
Let us �nally note that because of the empirical independence of the radio emission in
regards to higher frequencies, these uni�cation schemes remain compatible with the
uni�ed model we will later describe.

Infrared wavelengths

The infrared domain covers the wavelength range from 1 µm to 500 µm. It can be
further subdivided into: the near-infrared (NIR) band from 1 µm to 3 µm, the mid-
infrared (MIR) band from 3 µm to 50 µm and the far infrared (FIR) band from 50
µm to 500 µm. The MIR band is of particular interest regarding AGN since some
spectra seem to encompass broad and strong absorption features at λ = 9.7 µm
as well as moderate absorption at λ = 18 µm (see �gure 1.7, the mean spectrum of
Seyfert II galaxies for example). Conversely, a potentially di�erent family of AGN (i.e.
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Figure 1.7: Mid-infrared observations of Seyfert I/II galaxies and associated mean
spectra. Flux densities were normalized to 1 Jy at λ = 22µm. Spectra were taken
from the Combined Atlas of Sources with Spitzer IRS Spectra (CASSIS) based on the
classi�cation performed in Wu et al. (2009).

Seyfert I galaxies in �gure 1.7) shows emission features�or at least weak absorption
features�in those speci�c regions that correspond to the spectral characteristics that
would be produced by dusty silicates. The major di�culty arising in the identi�cation
of these features comes from the contamination of the MIR spectra by the emission
occurring in the host galaxy of the AGN, mainly from polycyclic aromatic hydrocarbon
(PAH) features at λ ≈ 6.2, 7.7 and 11.3 µm as well from dust emission in the 10�30
µm wavelength range. This di�culty is due, amongst other, to the limited angular
resolution of the spectroscopic instruments observing in the MIR domain (several
arcsec) which do not allow the AGN signal to be disentangled from the one of the
host galaxy. It is particularly noticeable in �gure 1.7 where some Seyfert I galaxies
seem to exhibit strong absorption features while some Seyfert II galaxies exhibit only
weak absorption or even no absorption at all.

The modelling of the SED of these silicates features are compatible with the ex-
istence of an obscuring torus surrounding the extremely luminous core of the AGN
whose inner boundary is delimited by the sublimation of the grains of dust. Various
dust repartitions were studied, either consisting of gas, clumpy regions of agglomerated
dust or of a mixture between both. However, the actual geometry of the obscuring
dust is not already known in detail as it has a limited impact on the SED. It usually
varies from an irregular shape to an ideal toroid. The presence of such a torus would
�rst indicate that the spectral appearance of AGN strongly depends on the inclina-
tion of this torus with respect to the line-of-sight towards the AGN. Any realistic
uni�cation model should hence have to deal with this inclination.

Some other remarkable characteristics of the AGN in the IR domain encompass
a minimum at λ ≈ 1�2 µm corresponding to the sublimation of the dust grains as
well as a local maximum between 10 and 100 µm owing to the thermal emission of
dust that is heated by the AGN central engine which produces the overall continuum
shape of the MIR spectra. Still, the synchrotron radiation can also play a signi�cant
role in the continuum emission if the obscuring torus is observed from a favourable
angle. IR observations have the advantage over optical observations that the former
are less sensitive to obscuration and are consequently particularly well suited for the
study of the obscuring torus.

http://cassis.sirtf.com/
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Table 1.2: Dominant emission lines observed in the optical spectra of AGN.

Rest-frame Rest-frame

wavelength (nm) Element(s) wavelength (nm) Element(s)

103.382 Lyβ + Ovi 372.709 [O ii]
121.524 Lyα 388.90 He i
124.081 Nv 407.23 [S ii]
130.553 O i 410.289 Hδ
133.531 C ii 434.168 Hγ
139.761 Si iv 436.444 [O iii]
139.98 Si iv + O iv] 486.268 Hβ
148.65 N iv] 496.029 [O iii]
154.948 C iv 500.824 [O iii]
164.04 He ii 630.205 [O i]
166.585 O iii] 636.554 [O i]
185.74 Al iii 652.903 [N i]
190.873 C iii] 654.986 [N ii]
232.6 C ii] 656.461 Hα
243.95 [Ne iv] 658.527 [N ii]
279.912 Mg ii 671.829 [S ii]
334.679 [Nev] 673.267 [S ii]
342.685 [Nev]

Optical wavelengths

The optical domain covers the wavelength range from 100 nm to 1 µm and encom-
passes the UV domain at λ < 400 nm. As depicted in �gure 1.8, optical spectra of
AGN exhibit very complex morphologies in this domain which makes it extremely
pertinent for the discrimination between the various types of AGN. Furthermore, the
transparency of the Earth atmosphere at these wavelengths renders the acquisition of
good quality spectra much easier than in other domains where space observations are
often required5. This explains, for example, the higher density of observations at these
wavelengths in �gure 1.5. These advantages ultimately make it the de-facto domain
for the identi�cation, classi�cation and characterization of AGN. Nevertheless, this
domain will still su�er from some inherent selection e�ects and observational biases
like its low sensitivity to obscured AGN or its high contamination rate by massive
stars. From �gure 1.8, we notice some dominant spectral characteristics of AGN,
namely: (i) a continuum spectrum approximately following a power law, (ii) broad
emission lines with FWHM6 ≥ 1000 km s−1 coming from known permitted or semi-
forbidden atomic transitions (e.g. the hydrogen Balmer series, Lyα, C iv or C iii]),
(iii) narrow emission lines with FWHM ≤ 1000 km s−1 coming from forbidden atomic
transitions (e.g. [Ne iii] or [O iii]) (iv) narrow absorption lines at λ < 121 nm coming
from neutral hydrogen being along the line-of-sight towards the observed QSO (v)
broad absorption lines with FWHM ≥ 5, 000 km s−1 presumably coming from the
out�ow of absorbing matter in the near vicinity of the SMBH. The spectral emission
lines that are commonly observed in AGN are summarized in Table 1.2. These are

5The earth atmosphere being opaque to all wavelengths except in the high frequency radio domain
(30 MHz < ν < 10 GHz), in visible light (400 nm < λ < 700 nm) and in two narrow windows in the
NIR (1 µm < λ < 2.4 µm) and in the MIR (8 µm < λ < 14 µm).

6Full-width at half maximum
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Figure 1.8: Di�erent types of AGN as seen in the optical band: (a) a type I Seyfert
galaxy showing a combination of broad and narrow emission lines coming mainly from
the Balmer series and from the [O iii] doublet, respectively, (b) a quasar spectrum
showing patterns similar to those of the Seyfert I galaxy while having a higher Hβ/Hα
ratio, a steeper continuum slope and a globally higher absolute luminosity, (c) a
Seyfert II galaxy showing only narrow emission lines, (d) a BAL QSO showing a strong
absorption feature bluewards the Mg ii emission line as well as a very steep continuum
slope, (e) a high redshift quasar showing numerous absorption lines bluewards of the
Lyα emission line and (f) a mean rest-frame quasar spectrum from Vanden Berk et al.
(2001). Spectra (a) and (c) are taken from the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope (Cui et al. 2012) while spectra (b), (d) and (e) are taken from
the twelfth data release of the SDSS (Alam et al. 2015).
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Figure 1.9: Host galaxies of AGN viewed by the HST, from left to right: NGC 6814,
a Seyfert galaxy of type I, M77, a type II Seyfert galaxy and 3C273, a type I quasar.
AGN correspond to the bright spots seen at the center of each galaxy. In the case of
3C273, the central region was however masked in order to reveal the host galaxy. Also
note that the obscuring torus of the AGN is not necessary aligned with the galactic
planes as both NGC 6814 and M77 are seen from a rather similar angle while being
of di�erent Seyfert type. Images credit: ESA/Hubble & NASA.

the basic tools for the identi�cation, classi�cation and characterization of the AGN
and will be used extensively through the present document.

Other noticeable features of AGN in the optical band encompass a �ux excess in
the UV that is superimposed to the power law continuum. This �ux excess, called
the `big blue bump', can be seen in �gure 1.5, for example. As already mentioned in
the beginning of this section, the power-law component of the spectrum can be fairly
well modelled as a synchrotron emission extending up to the optical domain while the
origin of the big blue bump rather resides in the thermal emission of the accretion
disk which spans over the optical and UV wavelength ranges. It is also worth to
mention that narrow emission lines show very little variability when compared to the
continuum and broad emission lines, which is consistent with the fact that the region
producing these narrow emission line lies at much larger distances than the region
producing the broad emission lines and the continuum.

Going deeper in the details of these characteristics, it was soon recognized that
these can be straightforwardly explained as a same physical phenomenon that is ob-
served according to di�erent viewing angles (Antonucci 1993). This uni�ed model of
AGN is further described in section 1.2.3 but as we already have su�cient insights
in order to understand�at least partially�this model, we will still mention some of its
basic components. As already suggested by the IR observations, the presence of a
clumpy obscuring torus will have as an e�ect to hide the inner part of the AGN in
the optical domain. This inner region consists of a SMBH surrounded by an accretion
disk and clouds of gas moving at relativistic speeds which produce on one hand the
steep continuum through both its thermal radiation and the synchrotron radiation
owing to its magnetic �eld, and the broad emission lines observed in Seyfert I galaxies
and quasars on the other hand. Also, we saw that the clouds of gas producing the
narrow emission line seem to be situated further away from the plane containing this
torus. Consequently, in cases where this torus is observed nearly edged-on, only nar-
row emission lines will be visible leading to the appearance of Seyfert II galaxies. The
narrow and broad absorption lines seen is some AGN spectra being already explained
by the presence of matter being along the line-of-sight towards the observed AGN and
from the out�ow of gas out of the central region.
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The presence or absence of some of these characteristics then allow a straight,
though not unique, classi�cation of these AGN into:

� Seyfert I galaxies which have broad and narrow emission lines superposed to
their continua, have low absolute luminosities, relatively low redshifts and whose
host galaxies are often resolved (see �gure 1.9, for examples of Seyfert I/II host
galaxies).

� Seyfet II galaxies which show a strongly damped continuum and no broad
emission lines, the latter being replaced by their narrow counterparts (e.g. Hβ
emission lines with FWHM ≤ 1000 km s−1), have low redshift, luminosity and
frequently resolved host galaxies.

� Blazars which show a dominant continuum with no emission lines. This type
can be further classi�ed into Optically Violent Variable (OVV) if the AGN show
evidence of rapid variability or BL Lac objects otherwise. This peculiar type
of AGN would correspond to the case where the obscuring torus is seen nearly
face-on, giving access to the innermost part of the AGN. This central region
then outshining the spectral features that are otherwise commonly observed.

� Quasars which are intrinsically luminous Seyfert I/II galaxies having absolute
magnitude of MB[z = 2] . −23. Their host galaxies are commonly unresolved
owing to their large redshift and the strong luminosities of their cores but let
us still mention that this point is not a distinguishing characteristics since some
quasars still have their host galaxy resolved (see �gure 1.9, for example). Like
Seyfert galaxies, quasars can be subdivided into type I and II QSOs according
to the FWHM of their emission lines. The observation of type II quasars in
the optical domain is however strongly biased by the occultation of most of the
associated electromagnetic spectrum by the obscuring torus 7.

� BAL QSOs which have spectra that are similar to those of type I quasars while
having strong absorption features that are blueshifted when compared to some
of their broad emission lines.

Now, if we assume that the major di�erences between type I and type II AGN is a
matter of inclination, we will have that such a binary classi�cation will not describe
the underlying distribution of the genuine classes correctly, the latter being accord-
ingly rather smooth and continuous. This gave birth to some intermediate classes like
type 1.2, 1.5, 1.8 and 1.9 Seyfert galaxies depending on the existence of some broad
emission lines in the spectra of Seyfert II galaxies (Osterbrock 1981). Nevertheless,
a straight binary classi�cation is su�cient for the purpose of the present study. Let
us �nally mention that while quasars represent the bright end of the AGN classi�-
cation, the faint end is occupied by the Low Ionization Narrow-Line Emission Radio
galaxies (LINER). These represent the larger fraction of observed AGN but will not
be mentioned anymore in the following given they �t into the type I/II uni�cation
scheme.

X-ray wavelengths

The X-ray domain covers the wavelength range from 100 eV to 120 keV. Spectra of
this domain are emitted by the innermost part of the AGN where complex interactions
take place. Synchrotron emission from the jet as well as thermal emission from the

7Nevertheless, a type II QSO was still observed at z = 3.288 by Stern et al. (2002).



22 CHAPTER 1. Introduction

Sc
al

ed
flu

x
de

ns
ity

(ν
F ν

)

Energy (keV)

X-ray components of type I AGNs

High-energy
cut-off

Warm
absorber

Mean spectrum
Power-law continuum

Reflection hump

Soft excess
Iron Kα emission line

10−4

10−3

10−2

10−1

10−1 100 101 102 103

Figure 1.10: Mean X-ray spectrum of a type I AGN. The main contributors are a
power-law continuum declining at high energies, a re�ection hump around 10�50 keV
from Compton scattering in the accretion disk's corona, a thermal component at low
energy (the soft excess) and the Kα emission line. Note that the �ux density, Fν , was
scaled according to the photons frequency, ν, such as to highlight the deviation of the
mean spectrum from a perfect power-law continuum.

Figure 1.11: Illustration of the accretion disk and hot corona producing the main
spectral features observed in the X-ray spectrum of AGN. The thermal emission from
the accretion disk (at kBT ≈ 100 eV) radiates in the faint end of the X-ray spectrum
where it gives rise to the soft X-ray excess if observed directly. This spectrum can
nevertheless be re-processed in a hot corona (at kBT ≈ 30 keV) through inverse
Compton scattering, producing higher energy photons in the form of a power-law
continuum. Given that this continuum is emitted isotropically by the corona, the latter
can be further re�ected on the accretion disk yielding the re�ection hump observed
at 20�30 keV.
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accretion disk (T . 106 K) are indeed insu�cient to explain the wide range of X-ray
energies that are observed in some AGN (see �gure 1.10, for example). Rather, models
have to rely on the presence of a thin layer of hot electrons, a `hot corona', surrounding
the accretion disk. The existence of a similar medium was already assessed in stellar
outer atmospheres thus giving even more credibility to this hypothesis. Still, the
mechanisms allowing this corona to gain temperatures of the order of 108 K are
not yet fully understood though magnetic �elds reconnection is supposed to play
a signi�cant role (Cao 2009). If we assume the existence a such a hot corona, it will
have as an e�ect to boost the low-energy photons coming from the thermal emission
of the accretion disk into X-ray photons through the inverse Compton e�ect. At the
opposite of the classical Compton e�ect, where photons loose their energy as they
interact with low energy particles, the inverse Compton e�ect corresponds to the
case where high energy particles transfer their energy to photons during a similar
interaction. The resulting continuum will hence follow a power-law that is truncated
at very high energies (E & 100 keV) because of the limited temperature of the corona
as well as from the limited energy of the photons emitted by the accretion disk. Owing
to the isotropic emission from the hot corona, some of the high energy photons will
be reverberated on the accretion disk through simple Compton scattering yielding
the re�ection hump (or Compton hump) observed in �gure 1.10 while lower energy
photons get absorbed by the accretion disk giving rise to thermal radiation at lower
energies, the so-called `soft excess', and to the Kα emission line from the de-excitation
of the low-ionization stages of iron. The presence of a warm absorber around E ≈ 1.5
keV in some AGN corresponds to the out�ow of matter out of the central engine
as later described in section 1.2.3. A sketch of the interactions occurring between
the accretion disk and the hot corona regarding the X-ray emission of AGN is given
in �gure 1.11. The widening of the Kα emission line as well as its asymmetry are
part of ongoing debates, once originating from complex re-processing of the spectrum
coming from the accretion disk or being due to relativistic e�ects occurring in the
event horizon of the SMBH. Let us mention that the selection of AGN based on their
X-ray emission is actually the fairest one regarding its completeness and its very low
contamination rate coming from its nearly universal presence in AGN, its ability to
go through large columns densities of gas and dust at high energies and from the fact
that galactic X-ray emissions are typically weak when compared to those of AGN.

γ-ray wavelengths

The γ-ray domain covers the wavelength range from 120 keV and above (up to ∼ 50
TeV, according to current technologies). Spectra covering this band are thought to
originate from the inverse Compton scattering of the synchrotron radiation with their
emitting electrons (synchrotron self-Compton e�ect). Blazars, from the privileged
inclination of their jets, are accordingly the most probable γ-ray emitters amongst
AGN. Still, the involved energies imply that these photons can be converted into
electron/positron pairs upon interaction with a particle or another photon once the
energy carried out by these photons exceeds the one of two rest-frame electrons (2×511
keV). This yields an opacity in the high energy regime that is however tempered by
the previously mentioned Doppler boosting that tends to increase the observed photon
frequency while dimming the photon-photon opacity (i.e. the rest-frame frequency of
the photon being then Erest < 1 MeV). The �uxes measured from extragalactic γ-ray
sources might hence not correspond to the intrinsic �uxes because of the photon-
photon opacity. This opacity is mainly due to IR photons coming from the �rst stars
and proto-galaxies in the early universe, that is the extragalactic background light
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Figure 1.12: Time series of the 3C273 quasar taken between 1965 and 2006 over
the wavelength range 109�1020 Hz. Faster variability is often observed within the
high frequency domains that correspond to the innermost part of the AGN. Events
occurring in this domain propagate into the low frequency domains along with a slower
variability and lags. Observations were taken from the 3C 273 's Database (Soldi et al.
2008).

(EBL). Supposing that the intrinsic SED of AGN in the TeV regime can be guessed,
or is universal, then the EBL can be indirectly reconstructed through the impact it
has on the continuum slope of the AGN in the γ-ray domain. Let us still mention
that AGN are rather dim sources in the range 200 keV < E < 1 GeV if compared
to galactic sources while most AGN emitting in this range are found at low redshift
because of the photon-photon opacity. Consequently, this domain often yields a biased
selection of sources coming with a high contamination rate.

Variability

Variability is one of the characterizing components of AGN. The latter consists in
stochastic �ux variations over the entire electromagnetic spectrum in time scales rang-
ing between a few decades down to a few minutes depending on the wavelength range
in which this variability is observed. The multi-wavelength study of this variability
can be used as a way of selection but it principally yields strong constraints on the
sizes, interactions and disposition of each sub-structure composing the AGN. Indeed,
from the minimal time scale variation in a given band, one can set an upper size on
the region producing this variability (Terrell 1967) while the lags that are observed
between these various bands can be used such as to guess the distances separating
the various emitting components. Figure 1.12 presents the variability curves of the
3C273 quasar taken between 1965 and 2006 over the wavelength range 109�1020 Hz.
Globally, one can notice that the characteristic time scales associated with the high
frequency ranges are by far shorter than those at lower frequencies (i.e. the former
exhibiting faster variability). Also, long wavelength observations generally tend to
lag behind those of shorter wavelengths. This view is consistent with the image of
an AGN where the most energetic photons are produced within the innermost part
of the system while their propagation induces feedbacks in more distant regions that
will reactively produce lower energy components with delays. We can �nally note

http://isdc.unige.ch/3c273/
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Figure 1.13: Power density spectra of the 3C273 quasar over various observational
wavelength ranges. The optical and radio power spectrum density can be fairly repre-
sented as two power-law with spectral index αν = −2.1053 and −2.4542, respectively
while the X-ray PSD exhibits a break around νb = 100 year−1 from which useful quan-
tities can be derived. Observations were taken from the 3C 273 's Database (Soldi
et al. 2008).

that large amplitude variations are mainly driven over long time scale, potentially
corresponding to large clouds of gas being accreted.

The optical band, from its complexity regarding AGN, is particularly rich in term
of insights we can draw out of variability studies. In radio-quiet AGN, perturbations
from the accretion disk will �rst induce a higher thermal emission that will be con-
verted into X-ray radiations through its reprocessing in the corona. This will in turn
produce a rise in the (optical) continuum slope of the AGN followed by a similar
rise in the broad emission lines and subsequent reactions in the IR domain. Such
highly correlated observations allow together to probe the existence and distances of
the accretion disk, of the hot corona, of the broad emission line region and of the
obscuring torus, for example. More speci�cally, a change in the shape and amplitude
of the broad emission lines in response to a change in the continuum slope, that is
`reverberation mapping', allows to accurately measure the size of the broad emission
line region as well as the mass of the SMBH (Peterson & Horne 2004). In radio-loud
AGN, the relativistic jet is considered to be the principal source of emission, the latter
often outshining the emission from the accretion disk and corona. The interpretation
of this correlated variability being hence less straightforward than in the case of radio-
quiet AGN given that the modelling of the variability in radio-loud AGN is rendered
di�cult as the mechanisms and structure of the jet are currently not well understood.

A useful tool for variability analysis stands in the power spectral density (PSD)
de�ned as the squared amplitude of the time series taken in the Fourier domain.
More precisely, if we consider the �ux density recorded from a source at time t as
f(t),8 then the PSD of the time series at frequency ν is given by |F (ν)|2 where
F (ν) =

∫
f(t)e−2πitνdt is the Fourier transform of f(t) evaluated at ν. The resulting

PSD can then be used to straightly quantify the various frequencies that are present
within the time series and to e�ciently constrain the sizes of the emitting components.

8We supposed here that time series are continuous which is obviously unrealistic since observa-
tions are often unevenly sampled in time but this still prevents unnecessary intricacies to stem the
pedagogical goal of the present introduction to the PSD.

http://isdc.unige.ch/3c273/
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From �gure 1.13, for example, one can easily notice that the radio and optical PSD
seem to follow a power-law in �rst approximation along with slightly di�erent slopes
(αν = −2.4542 in the radio domain while αν = −2.1053 in the optical domain). This
is again consistent with the fact that higher frequency wavelengths tend to produce
faster variability in regions that are smaller in size. The X-ray PSD further shows a
break around νb = 100 year−1. The position of this break can be used as a way to set
an upper limit on the radius of the SMBH. Indeed from Terrell (1967) we have that

R .
1

z + 1

c

πνb
(1.2)

yielding in the case of 3C273 R . 8.44 × 10−4 pc. Secondly it can be used so as
to set a limit on on the SMBH mass, MBH. Indeed there seems to be a connection
between the mass of the SMBHs in AGN and the mass of galactic black hole in X-
ray binaries as both show similar shapes that might hence originate from common
e�ects (González-Martín & Vaughan 2012). Di�erently stated, matter accretion on
black holes whether these are supermassive or not tends to produce a rather universal
shape of the PSD. Supposing that this relation holds, then one can assume that the
relation log νb ∝ logMBH coming from binary X-ray studies also applies to the SMBH
mass giving MBH ≈ 1.19 × 108M� for the case of 3C273. Finally, we can note as
expected that no periodic signal can be found in time series of AGN that would
otherwise translate into a peak in the PSD.

1.2.3 A uni�ed model of AGN

We will now put all the pieces together in order to provide a concise model of AGN.
As highlighted in Netzer (2015), the model we describe here is known to be incomplete
as it can not account for the whole variety of observations that are made out of AGN.
A more complete model would indeed take into account the covering factor of the
obscuring torus, its clumpiness, the accretion rate of the SMBH and its mass, the
bolometric luminosity of the AGN, the strength of the jet as well as the host galaxy
properties. The model we consider here is based on ideas �rst introduced by Antonucci
(1993) and Elvis (2000). It allows to describe the vast majority of the characteristics
observed within the optical spectral of AGN and is accordingly considered as the
simplest model that �ts our needs. A sketch of the components intervening in this
model is given in �gure 1.14. Though most of these components were already outlined
in section 1.2.2, we detail here the main constituents of this model, their characteristics
emission/absorption features as well as their interactions.

The supermassive black hole

The presence of a SMBH as the central engine of AGN was suspected a long time ago
(e.g. Pringle et al. 1973). Their existence in the center of AGN can be probed using
some simple considerations: (i) As already mentioned, the time delays, ∆t, between
a change in the continuum slope of the AGN and the associated change in a given
broad emission line can be used so as to infer the distance of the region emitting this
broad emission through r = c∆t. Furthermore, the FWHM of this broad emission
line, ∆λ, is related to the velocity dispersion of the gas around the central massive
source through σ = c∆λ/λ where λ is the theoretical wavelength of the emission line9.
Assuming that the clouds of gas are approximately moving around Keplerian orbits

9Note that λ and ∆λ should be taken within the same reference frame, that is either in the rest
frame of the AGN or in the reference frame of the observer.
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Figure 1.14: Illustration of the components intervening in the uni�ed model of AGN
described in section 1.2.3. Di�erences between the various kinds of AGN (i.e. type I/II
AGN, BAL QSOs and blazars) are explained by the viewing angles with respect to
the plane containing the obscuring torus, here depicted as labelled arrows. Di�erent
viewing angle give access to di�erent emitting components, that together allow to
explain most of the diversity encountered within the spectra of AGN. Note that the jet
and the out�ow of matter are virtually never seen together and might hence constitute
a unique structure.
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Figure 1.15: (left) Apparent superluminal motion in the jet of the M87 galaxy. Im-
age courtesy of John Biretta, Space Telescope Science Institute (Biretta et al. 1999).
(right) Sketch explaining the apparent superluminal motion observed in the jet com-
ponent. Suppose that the jet component moves at a velocity v towards the observer
with an angle of θ with respect to the line of sight, suppose also that this component
emits at two distinct times, t = 0 and t = te. From basic geometrical considerations,
we �nd that the transverse motion of the component is given by ∆r = vte sin θ while
the time delay between both observed emissions is given by ∆t = te(1−β cos θ), with
β = v/c. The apparent speed is hence given by v′ = ∆r/∆t = v sin θ(1 − β cos θ)−1

where nothing prevent v′ to exceed c (e.g. v′ ≈ 2.4c if v = c and θ = π/4). See
Blandford & Königl (1979) for a thorough analysis of these apparent superluminal
motions.
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and that their masses are negligible, then we can use the relation (Schneider 2006,
Section 5.1.1)

M ∝ rσ2/G (1.3)

so as to have an estimation of the mass that is encompassed within the radius r.
The proportionality constant from the latter equation is related to the geometry and
viewing angle of the orbit of the broad line region (BLR) and is equal to 1 in the case of
a circular orbit viewed from the edge. The knowledge of this proportionality constant
allows us to get a precise estimation of the enclosed mass. This technique called
`reverberation mapping' yields times delays that are in the order of ∆t(Hβ) ≈ 100
days along with FWHM(Hβ) ≈ 5 nm (Kaspi et al. 2000), yielding σ ≈ 3000 km s−1

and M ≈ 2 × 108M� if we assume that the proportionality constant is 1. (ii) Hard
X-ray observations show variability over a period of a few days (as already seen in
section 1.2.2) down to a few hours (Mushotzky et al. 1993), yielding typical radius in
the order of R . 10−4 pc. Now the Schwarzschild radius that is associated with a
mass of M = 2 × 108M� (i.e. the radius for which the escape velocity against M is
equal to the speed of light), is given by

rs = 2
GM

c2
, (1.4)

in our case rs = 2 × 10−5 pc, which is of the same order of magnitude as the radius
found from X-ray variability. This is a �rst suggestion for the presence of a SMBH in
the center of some AGN.

Another evidence for the presence of a SMBH as the central engine of AGN stands
in the apparent superluminal velocities observed in the radio and optical jets of some
AGN as illustrated in �gure 1.15. In the same �gure, we derived the apparent velocity
of the jet component as

v′ =
v sin θ

1− β cos θ
(1.5)

where v is the e�ective velocity of the jet component, θ is the angle of the component's
motion with respect to the line-of-sight and where β = v/c. Considering a �xed value
of v, we �nd that the maximal apparent velocity is reached when cos θ = β yielding

v′max = γv (1.6)

where γ =
(
1− β2

)−0.5 is the Lorentz factor associated with the speed v. We hence
have that v′ ≥ c if and only if v ≥ c/

√
2 = 0.70711c. Such highly relativistic speeds

being attained only in black holes and neutron stars, the former being the privileged
solution given the previously derived masses.

The accretion disk

The driving mechanism of AGN is the accretion of matter onto a SMBH where the
potential energy of the gas is �rst converted into kinetic energy. Owing to the �nite
angular momentum of the particles and the friction occurring amongst those particles,
the infalling gas takes the form an accretion disk where the kinetic energy is converted
into heat due to the internal friction coming from the di�erential rotational velocities
that are present in the disk (i.e. the angular velocity of the particles depending on
the distance to the center of the accretion disk). At a time, thermonuclear energy
was considered to be the driving mechanism of AGN. Nevertheless, the most e�cient
nuclear reaction, that is the nuclear fusion of hydrogen into iron, yields an e�ciency of
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ε . 0.008. Considering the previously derived SMBH masses, we have that the max-
imal energy that can be produced through the burning of M ≈ 108M� of hydrogen
into iron over the whole lifetime of the AGN is given by

E = εMc2, (1.7)

yielding E = 1.4 × 1053 J. Now, given that some AGN show radio jet extending up
to a few Mpc from their core, their age should then be as large as the time that
is needed for the light to reach such distances, that is t & 107 year. The observed
bolometric luminosities of AGN being in the order of Lbol ≈ 1040 W, we have that
the total energy produced by an AGN over its lifetime considering that its luminosity
remains roughly constant over the ages is given by E = tLbol ≈ 3 × 1054 J. We can
hence reject the hypothesis according to which the energy production in AGN is due
to thermonuclear activity. This coarse derivation assesses that the conversion of the
gravitational potential into heat through the accretion of matter onto black holes must
provide a far more e�cient way of producing energy, that is ε = 0.06 in the case of
a non-rotating black hole and ε = 0.29 in the case of a black hole with an optimal
rotation period, according to current theory (Schneider 2006, Section 5.3.1). This
leads to released energies that are compatible with observations.

The hot corona

The radiation emitted out of the accretion disk is limited by the accretion rate of
the SMBH as well as by the fact that the last stable orbit around a (SM)BH stands
at r ≈ 3rs if we consider a SMBH with an averaged angular momentum (i.e. spin).
Consequently, most of the electromagnetic radiation coming from the accretion disk is
emitted in the optical/UV domain. Higher energies should hence be produced through
another mechanism that relies on the existence of a hot corona, as already described
in section 1.2.2 and through �gures 1.10 and 1.11. As a remainder, photons from
the accretion disk gain energy thanks to the inverse Compton scattering occurring in
the hot corona, the latter are then either seen directly as a X-ray continuum or are
reprocessed within the accretion disk giving rise to the X-ray soft excess and to the
re�ection hump depending on whether these are absorbed by the accretion disk or
re�ected, respectively.

The obscuring torus

The obscuring torus is the key component of the uni�ed model that is presently
described. From MIR observations one can deduce the presence of such a disk as
already demonstrated in section 1.2.2. Whereas its presence was soon assessed, its
dimension remained an open question for a long time owing to the fact that a thick
and distant torus shows a similar signature in the observables as a thin and nearby
torus. Indeed, it was long believed that the torus may extend up to ∼ 100 pc and
more according to early theoretical works. From statistical studies of Seyfert I/II
galaxies in the IR, Schmitt et al. (2001) �rst showed that the ratio of the height of
the disk to the size of its inner radius is approximately given by h/r ≈ 1. Combining
interferometry and spectroscopy, Ja�e et al. (2004) �nally provides a radius of a few
parsec for the NGC1068 galaxy along with h/r & 0.6. Subsequent observation then
allowed to resolve such a torus around the core of the Circinus galaxy with r ≤ 2
pc (Tristram et al. 2007). This size was however a hurdle for the composition of the
torus that was commonly considered at that time as being smooth and continuous.
The dust emission at 9.7µm e�ectively requires temperatures in the order of 300K,
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and hence large distances from the core that are not compatible with those observed.
This issue can nevertheless be solved if we consider the torus as being composed of
clouds contained in a toroidal structure (Nenkova et al. 2008). The clumpy nature
of the torus yields some re�nement of the present model where some AGN viewed
edge-on might hence appear as type I AGN given that, in some cases, no cloud will
hide our view toward the central source. With this anisotropic obscuration, the type
I/II classi�cation is hence based on a probabilistic approach rather than on a straight
and unique parameter that is the viewing angle.

The broad and narrow line regions

Emission lines from AGN provide a wealth of informations about the physical processes
occurring in these fascinating objects. From the shift they encounter when compared
to laboratory calibrators, one can see a straight consequence of the expansion of the
Universe through their redshift. To date, the largest redshift that was observed for
an AGN stands at z = 7.085 (Mortlock et al. 2011), meaning that the SMBH it
encompasses (with M ≈ 2× 109M�) was formed only 770 million years after the Big
Bang, according to current cosmological models10. The broadening of these emission
lines, which is a straightly measurable quantity, allows us to determine the angular
velocities of the emitting regions around the core of the AGN. The time delay noticed
between a change in the continuum slope and the corresponding change in the emission
line then allows us to determine the distance of the BLR to the core of the AGN which
together with the angular velocities of the BLR provide an estimate for the mass of the
SMBH (see the `reverberation mapping' described above). Absolute �uxes of some
of these emission lines (e.g. [O iii]) also seem to be correlated with the bolometric
luminosities of the AGN (Dicken et al. 2009) while high resolution (R & 5000) spectra
enable us to have an even �ner description of the AGN phenomenon. Nevertheless, we
here concentrate on medium to low resolution spectral resolutions like those covered
by Gaia.

Interpreting the broadening of these lines as coming from the Doppler e�ect owing
to their angular velocities, one might intuitively expect that the BLR (with veloci-
ties v & 0.01c) is situated in the near vicinity of the SMBH, while the narrow line
region (NLR) is situated further away. Assuming the latter assumption is true, we
then deduce that most of the BLR might be hidden to our view upon a favourable
alignment of the obscuring torus with respect to the line-of-sight towards the core of
the AGN. This elegant formulation, depicted in �gure 1.14, yields an e�cient (though
incomplete) explanation of the various features noticed amongst the di�erent types
of AGN while using a minimal set of parameters (i.e. the viewing angle). A major
support to this theory comes from the spectropolarimetry of type II AGN. Indeed,
while the BLR is hidden to our view by the obscuring torus, its light can get re�ected
by charged particles standing at relatively large distances from the core, these hence
act as mirrors towards the central source. In such a case, charged particles will cap-
ture photons that they will re-emit with a signi�cant degree of polarization through
Thompson scattering. Accordingly, type II AGN should then appear with broad emis-
sion lines if observed in polarimetry. Using this technique, Antonucci & Miller (1985)
e�ectively showed that the type II AGN NGC1068 consists in a type I AGN whose
BLR is hidden to our view. On the other hand, 60% of type II AGN do not show such
broad emission lines in polarized light (Wu et al. 2011) whence the potential existence
of `true' type II AGN lacking the BLR. According to the recent work of Trump et al.

10Supposing Ωm = 0.26, Ωλ = 0.74 and H0 = 72 km s−1 Mpc−1



32 CHAPTER 1. Introduction

(2011), the presence of the BLR might depend on the accretion rate of the AGN given
that only high luminosity AGN exhibit broad emission lines in polarized light.

The relativistic jet

As already pinpointed in section 1.2.2, the physical mechanisms powering the rela-
tivistic jet and the underlying magnetic �elds are presently poorly understood and
are still subject to intense debates. Still, the preferred scenario implies the Blandford-
Znajeck mechanism (Blandford & Znajek 1977) in which energy can be extracted out
of rotating black holes (i.e. Kerr black holes) in the form of magnetic �elds having
strengths that are compatible with observations. Nevertheless, this scenario comes
along with some unresolved issues and questions like the potential intervention of
the accretion disk in the jet formation, the observation of disordered magnetic �elds
while geometrically regular shapes are expected or knowing whether the jet is accel-
erated in the innermost part of the SMBH or is gradually accelerated up to larger
distances. At the opposite to the radio emission, where charged particles can travel
up to a few Mpc while emitting in this domain, the optical to X-ray radiation are re-
stricted to a few kpc to the central source owing to the loss of energy of their emitting
electrons. Given that optical and X-ray radiations are commonly observed at larger
distances, other sources of radiation are envisaged like those standing in the shocks
produced upon some �ares occurring in the jet which together with the relativistic
beaming allow us to explain the presence a such short wavelength radiations at such
high distances. Finally, extended jets occur in about 10% of the observed AGN. The
ignition of such jets may hence depends either on the intrinsic spin of the SMBH (i.e.
its angular momentum) or on evolutionary e�ects like those observed in the transi-
tion between the high/soft state of X-ray binary black holes over much longer time
scales. A better understanding of the physics at work in the jet of AGN will mainly
pass through the improvement of the computer facilities as well as through dedicated
magnetohydrodynamic simulations (Netzer 2015).

The out�ow of matter

Some 50% of AGN exhibit narrow absorption lines (NAL) with FWHM of ∼ 103 km
s−1 in their optical spectra11 as well as an absorption feature in their X-ray spectra
corresponding to a warm (T ≈ 106 K) absorber as depicted in �gure 1.10. Furthermore
10% of these AGN also show BAL with FWHM of ∼ 3× 104 km s−1 in their optical
spectra as illustrated in �gure 1.8. An empirical model explaining the appearance of
these absorption features in the most synthesized way was provided through the work
of Elvis (2000). In this model, warm gas rises vertically in a small range of radii from
the accretion disk. This �ow is then bended outwards by the radiation pressure coming
from the continuum emitting region and is accelerated from velocities comparable to
those of the BLR up to velocities corresponding to those observed in BAL QSOs.
Given the far di�erent velocities observed in BAL and NAL, one has to assume that
the vertical rise of the �ow has a �nite extension such that if the �ow is seen from
below, NAL will be produced from this vertical extension whereas if the �ow is seen
from the edge it will produce BAL features. No absorption occurs if this �ow is
seen from above. This ultimately yields a structure having the shape of a double
funnel joined by the tip as sketched in �gure 1.14. From empirical considerations, the
opening angle of the cone formed this way should stand around 60◦ so as to have an

11These NAL should however not be confused with the Lyα forest already described in section
1.2.2
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even ratio of absorbed to unabsorbed AGN. Also, owing to the fact that the radiation
pressure accelerating the �ow is not parallel to the latter, it will have a non negligible
extent of 6◦, compatible with the 10% of observed BAL QSOs. Finally, from X-ray
observations, the medium constituting this �ow must be hot (T ≈ 106 K), dense
(ne ≈ 109 cm−3) and highly ionized. These properties allow the warm highly ionized
medium (WHIM) to con�ne clouds from the BLR into the �ow. If we further suppose
this out�ow to be Thompson thick then it can straightly explain the polarization that
is observed in the optical continuum of BALs. Interestingly, no BAL QSOs are found
to exhibit extended radio emission while very few show compact radio emission (e.g.
Becker et al. 2000). An elegant solution to this issue advanced by Elvis (2000) is that
the relativistic jet might be the re-collimation of the out�ow of matter and both might
hence constitute a unique structure.

Additional components

It would be presumptuous to say that all observations that would be made out of
AGN can be explained by the sole aforementioned components. Still assuming that
these components provide a fair description of the innermost part of the AGN, we will
here mention some external components that may a�ect the view we have of an AGN.
First, the extinction by dust in our Galaxy plays a signi�cant role as it can redden the
observed SED by an amount of EB−V ≈ 0.5 mag leading to a dimming of the observed
magnitude in the V band of AV ≈ 1.5 mag at |b| ≈ 20◦. The latter can however be
partially recti�ed thanks to the use of dedicated maps like the one of Schla�y &
Finkbeiner (2011). Similarly, the extinction by dust in the host galaxy of the AGN
should also play a signi�cant role though the latter is hardly constrained and is getting
even more complicated given that most of these galaxies are unresolved. While these
extinctions dim the recorded �ux, stars in the bulge of the host galaxy conversely add a
parasitic signal to the observed SED, this contamination being even more severe upon
star formation episodes. As brie�y suggested here, strong connections exist between
AGN and their host galaxies, the former being presumably supposed to ignite star
formation episodes while the mass of the SMBH seems to correlate with the mass of
the hosting galaxy. All these connections are extensively reviewed in Beckmann &
Shrader (2012, chapter 7).

A last point we would like to address is the e�ect of evolution on AGN. From
our local universe, for example, we know that merging of galaxies are frequent and
might consequently impact the view we have of AGN. This point is even more critical
given that we are looking back in time when the Universe was denser and where most
of the gas was not yet converted into stars whence the following open question: can
the relatively regular structure of AGN described so far be applied to such mergers?
On the other hand, a redshift-dependent analysis provides us with insights about the
evolution of AGN (e.g. Kochanek et al. 2012). The luminosity function (LF) of the
AGN stands to be the best-known tool of evolutionary tracking as it compares the
density of AGN of a given range of bolometric luminosities in terms of the redshift,
or equivalently in terms of the lookback time. The general trends, already outlined in
the early work of Schmidt (1968), is that very luminous AGN (i.e. quasars) are found
to be more common in the early universe than in the present days with a peak of
presence around 2 < z < 3. Low luminosity quasars however, were found to peak at
z < 1 (Croom et al. 2009), meaning that the most massive and luminous quasars were
accreting in the early universe while the least powerful ones are more active in the
present time, that is cosmic downsizing. Beside these shifted activity periods, X-ray
spectra of AGN taken over a wide range of redshift harbour similar shapes(Saez et al.
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2011), meaning that the way their central engine works is much the same irrespectively
of this redshift.

Validity of the model

The model that is presently described accounts for most of the diversity encountered
amongst AGN, however some observations do not straightly �t in this scheme. We
will mention here some of these counter-examples while formulating the basis of the
possible extensions that can be brought to the model in order to account for these
incompletenesses. Let us still mention, that besides these very few annoying observa-
tions, this uni�ed model of AGN is empirically well supported as detailed along this
section. Though, we have to admit that it lacks of physical explanations about the
source of matter feeding the SMBH, about the stable presence of an obscuring torus
over a long time scale, about the mechanism giving rise to the relativistic jet or about
the origin of the vertical out�ows producing the NAL and BAL features, for exam-
ples. Similarly, the structure and geometry of most of its constituting components are
currently not well settled (e.g. is the obscuring torus a simple clumpy toroid? Does
the hot corona have a spherical or disk shape? . . . ) and the barrier between some
components is still blurry so that these may be merged into single constituents (e.g.
the aforementioned relation between the relativistic jet and the out�ow of matter).

One of the major pitfalls of the current model ironically comes as the counterpart
of one of its most successful predictions, namely the already mentioned fact that 40%
of type II AGN encompass broad emission lines in their polarized light. These being
mainly present in highly luminous AGN, one might wonder whether the 60% of AGN
having no trace of the BLR in their polarized light are true type II AGN or if these
simply fail to su�ciently illuminate the BLR in order for the latter to be re�ected.
Both hypotheses explain equivalently well type II AGN for which no absorption is
observed in the soft X-ray domain (Pappa et al. 2001). Another incompatibility
rising from our model stands from the fact that most luminous AGN in the hard
X-ray domain are less frequently seen with absorption in the soft X-ray than the low
luminosity ones (Beckmann et al. 2009). A potential explanation of this phenomenon
is the scenario of a `receding torus' �rst proposed by Lawrence (1991). In this scenario,
the distance of the obscuring torus to the center of the system depends on the power
of the AGN as the former will be expelled by the radiation pressure of the core. As a
consequence, luminous AGN should have more distant obscuring torus and will hence
appear as less frequently obscured. Through these examples, we might expect that
a more complete model should at least encompass the bolometric luminosity (i.e. the
power) of the AGN as one of its parameters as well as the spin of the SMBH that
might explain the production of the relativistic jet.

1.2.4 Cosmological applications

Cosmological models

With the advent of modern physics, our view of the cosmos and in a broader sense of
the world we live in has dramatically changed. While Newtonian mechanics considered
time and space as an absolute framework in which the law of motions are taking place,
special relativity taught us that space and time are intimately related as, for example,
a clock that is moving with respect to an observer will tick more slowly when compared
to the latter one. Similarly, an object moving relatively to this observer will see its
shape contracted in the direction of motion. Though very counter-intuitive, these
examples have been veri�ed by an overwhelming number of experiments, none of
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them contradicting the theory. This theory of special relativity is based on two simple
postulates:

The principle of relativity: The laws of physics must be the same in all
inertial reference frames12.

The constancy of the speed of light: The speed of light has the same value,
c, in all inertial frames, regardless of the velocity of the observer or the velocity
of the source emitting the light.

Interested readers may �nd in Jewett & Serway (2008), a very didactic and complete
review of the consequences of the two upper postulates, amongst which the famous
equivalence between rest frame energy and mass, E = mc2.

Through the postulated equivalence between the gravitational and inertial mass,
or in other words the stated fact that the gravitational `force' cannot be di�erentiated
from the factitious force that would be experienced in an accelerated frame, Albert
Einstein derived the basis of general relativity through its �elds equations. This set
of ten di�erential equations is a mathematically complex theory that tells spacetime
(i.e. the combination of space and time into a four dimensional continuum) how to
curve in presence of massive objects while the curvature of this spacetime tells objects
(massive or not) how to move.

A straightforward solution to these �elds equations stands in the Minkowski space
where an in�nitesimal change in spacetime, ds, can be expressed as

ds2 = −c2dt2 + dx2 + dy2 + dz2 (1.8)

where dx, dy, dz are the classical in�nitesimal changes in three dimensional Cartesian
coordinates and dt the in�nitesimal change in time. Equation 1.8 immediately results
from Special Relativity, in case of the absence of (strong) gravitational �elds. Note
that based on the constancy of the speed of light, c2dt2 = dx2 + dy2 + dz2, we will
then have that photons travel along null geodesics (i.e. straight lines in spacetime)
meaning that ds = 0. Minkowski space has a very limited impact on cosmology but
it still provides a pedagogical transition from the Euclidian space having a metrics
given by ds2 = dx2 + dy2 + dz2 to the expanding spacetime we will next consider.

Based on the observation that the Universe looks identical on large scales in all
viewing directions, meaning that the Universe is isotropic and homogeneous on large
distance scales (that is the cosmological principle), Alexander Friedmann derived the
equations of motion of an expanding universe whose metrics is given by13

ds2 = −c2dt2 + a2
(
dx2 + dy2 + dz2

)
, (1.9)

where a is the unitless time-dependent scale factor of the Universe, conventionally
a(t0) = 1 at present time. The derivation of these equations is rather lengthy and
complicated as these rely on the Einstein's �elds equations. Still the interested readers
may �nd in Schneider (2006) a very pleasant and comprehensive way of deriving these
equations whose starting point is the description of an isotropic and homogeneous uni-
verse in the framework of Newtonian gravity along with a very few assumptions from

12a frame that is either at rest or moving at a constant velocity along a straight line
13For the sake of clarity, we solely consider here the case of a �at universe (i.e. κ = 0) that is also

well supported by observations
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General Relativity. Accordingly, we simply provide here the results of this derivation,
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where ρ and P are the mass-energy density and pressure of the Universe respectively
and where Λ is the cosmological constant we will soon describe. Basically, both
these equations tell us how fast the expansion of the Universe is taking place when
compared to the scale factor, a, at a given time t as well as how this expansion
accelerates/decelerates. The left hand side of equation 1.10 is hence naturally related
to the Hubble parameter, H, through

H =
ȧ

a
(1.12)

whereH0 ≡ H(t0) and whereH is hence not necessarily constant. From the individual
components that are presently known in the Universe, one can relate their respective
densities to the pressure they exert. Accordingly, equations 1.10 and 1.11 can be
written in terms of the density of matter-energy ρm in the Universe, of the radiation
density ρr and of the density of vacuum energy from quantum mechanics ρv. Further-
more, we can consider the cosmological constant Λ as emanating from a hypothetical
dark energy whose density is given by ρΛ = Λ/(8πG). This cosmological constant was
�rst inserted by Einstein as a way to enable its �elds equations to describe a static
universe (i.e. with ȧ = 0) which existence was predominantly postulated at that time.
The discovery of the expansion of the Universe by Lemaître (1927); Hubble (1929a)
dismissed the use of the cosmological constant though the recent possibility that the
Universe may encounter an accelerated expansion (Riess et al. 1998) can give it a
second birth. By de�ning the critical density as

ρc =
3H2

8πG
, (1.13)

that is the total density of the Universe at time t, we get from equation 1.10 that

Ω0 ≡ Ωm + Ωr + ΩΛ = 1. (1.14)

with Ωm = ρm/ρc, Ωr = ρr/ρc, ΩΛ = (ρΛ + ρv)/ρc. Note that equation 1.11 can be
re-written according to these normalized densities though we do not present it here
as we voluntarily skip the lengthy description of the equivalence between the density
and pressure of the various components of the Universe. A still convincing way to
understand this equivalence is to consider the �rst law of thermodynamics stating that
the change in the internal energy of a system, Ė, is compensated by a change in the
volume of the system, V̇ , according to pressure, P , through Ė+PV̇ = 0. From special
relativity, we have that E = mc2 = ρV c2 such that P = −Ė/V̇ = −c2d(ρV )/dV .
Given that V ∝ a3, we hence have that P = −c2d(ρa3)/da3. The claimed relation
then comes from the derivative standing on the right hand side of the latter equation
which obviously depends on the considered component.

Although we only considered �at models of universe, we can already draw some
general conclusions out of the previous discussion:

The big bang: given that the right hand side of equation 1.10 is always greater
than zero, we have that a is a monotonically increasing function of time. In other
words, at some point in the past we should have a � 1. That is, the Universe
used to be denser and hotter in the past (i.e. a→ 0 as t→ 0).
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Figure 1.16: Proper distance as a function of redshift in the case of a constant Hubble
parameter H(t) = H0 = 67.7 km s−1 Mpc−1. Under this assumption the age of the
Universe is given by the Hubble time, Ht = 1/H0, that consequently also does match
with the largest possible cosmological proper distance we can observe if we expressed
it in ly. This corresponds to the Hubble radius, RH, as depicted on the graph by the
dotted line.

The cosmological parameters: the past and future of the expansion of the
Universe can be determined through the sole knowledge of H0, Ωm,0 ≡ Ωm(t0),
Ωr,0 ≡ Ωr(t0) and ΩΛ,0 ≡ ΩΛ(t0). Practically, since Ωr,0 � 1, the latter term is
often neglected in the literature.

Distances and redshift in cosmology

AGN, and more particularly quasars, due to their large distances and high luminosities
play a crucial role in the parametrization and validation of the cosmological model we
just described. From the discovery of the expansion of the Universe (Lemaître 1927;
Hubble 1929a), a linear relation was established between the distance of galaxies, d,
and their radial velocity, v, such that

v = H0d. (1.15)

Supposing, for the moment, that these velocities are due to the relativistic Doppler
shift of the source, we then have that the distance of these objects can be inferred
from their observed redshift, z, through equation 1.15 while using the fact that

β =
v

c
=

(z + 1)2 − 1

(z + 1)2 + 1
, (1.16)

or in case where v � c, v = cz. From our previous discussion, and more particu-
larly from equation 1.9, we know however that these apparent velocities come from
the spacetime expansion of the Universe rather than from an intrinsic velocity of the
sources whence the need to reconsider the notion of distance and velocity. The cosmo-
logical proper distance14 is de�ned as the length of the geodesic connecting two points
of the spacetime at a given time t (i.e. we freeze t and then measure the euclidean

14Cosmological proper distance should not be confused with the proper distance and proper length
from special relativity.
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distance). From equation 1.9 and because both measurements are made at a �xed
time t, we have that −c2dt2 = 0 such that ds = adr with dr2 = dx2 + dy2 + dz2. The
cosmological proper distance being hence given by

dp = ar (1.17)

where r is de�ned as the comoving distance between both points. Because the cosmo-
logical proper distance depends on time, we can de�ne a cosmological proper velocity
that would be due to the expansion of the Universe as

vp =
ddp
dt

= ȧr =
ȧ

a
dp = Hdp. (1.18)

By comparing the latter equation with equation 1.15, we straightly see that the dis-
tance that would be inferred from the latter equation roughly corresponds to the
cosmological proper distance. One should however pay attention to the fact that
the cosmological proper distance assume that both measurements are done in a syn-
chronous way, which is obviously not the case in equation 1.15 as the light emitted
from the source takes a �nite amount of time to reach the observer. Equation 1.15
then only strictly holds in the case where H0 = H(t) is constant and provides a good
approximation to dp in case where z � 1 (assuming that H is smoothly varying). The
assumption of the constancy of the Hubble parameter still provides us with a rather
good approximation of the cosmological proper distances that are used in �gure 1.16
such as to stress the relation existing between the redshift and the cosmological proper
distance without having to rely on complex integrations implying equations 1.10 and
1.11. The Hubble time that is derived there (Ht = 14.4 × 109 years) corresponds to
the age of the Universe as if the latter had encountered a constant expansion and is
e�ectively of the same order of magnitude as the age that would be derived by more
complex considerations (∼ 13.8× 109 years).

Now, if we consider an emitter and an observer separated by an in�nitesimal
comoving distance dr, then the shift that is recorded by the observer due to the
expansion of the Universe is given by

dz =
dλ

λ
=

dv

c
=
H

c
dr = Hdt =

da

a
, (1.19)

where we used the fact that z = v/c as v � c in this case. From the latter equation,
we get dλ/λ = da/a. Supposing an in�nite number of such observers along the path
joining the source and the �nal observer and integrating over this path yield λ = Ca
where C is an integration constant related to the wavelength that is presently observed
λobs (at a = 1). We hence have that λ = aλobs such that, from the de�nition of the
redshift,

z + 1 =
λobs

λ
=

1

a
. (1.20)

The measured redshift is hence directly related to the cosmological scale factor at the
epoch of emission through the latter equation. This relation is of immense importance
as the redshift is often the sole quantity we are able to measure.

Quasars in cosmology

The major role of quasars regarding cosmology is to trace the large scale distribution
of matter in the Universe through deep statistical analyses. Indeed, as we suppose the
Universe to be isotropic and homogeneous, any noticed over-densities of an idealistic
kind of objects that would have been present from the very early phase of the Universe
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Figure 1.17: Lyman absorbers encountered along the line-of-sight towards the high
redshift quasar SDSSJ104121.11+334901.6. The observed absorption lines from the
Lyα forest are due to neutral hydrogen having column densities of NH i < 1017 cm−2.
If this column density exceeds 1017 cm−2, then this neutral hydrogen becomes optically
thick to photon having wavelengths shorter than the Lyman limit at 91.2 nm while if
this density exceeds 1020 cm−2, these constitute the so-called Damped Lyα Absorbers
(DLA) that are presumably associated with forming galaxies.

while not evolving, would be directly related to the Hubble parameter, H, as well as
to all the aforementioned cosmological parameters at the time when these objects
emitted their lights. Given that quasars are not these hypothetical objects (e.g. the
local universe at z . 0.04 does not contain any quasar), this stresses the need to have
a thorough understanding of what quasars are, on how they form and on how they
evolve. Accordingly, the cosmological parameters undoubtedly have their imprints
on the luminosity function presented at the end of section 1.2.3. Also, given its
statistical nature, a very large amount of observations will be preferred in order to
con�dently constrain these cosmological parameters. One such well-known study is the
Baryon Oscillation Spectroscopic Survey (BOSS) of the SDSS that recently allowed to
highlight the inhomogeneities that were present in the very early phase of the Universe
(Delubac et al. 2015).

From their large redshifts, quasars also have a high probability to see their light
being attenuated by intervening gas and galaxies. The spectral signature of these
absorbers being hence imprinted to the quasar SED at the various redshifts these ab-
sorbers are encountered, that is bluewards to the Lyα emission line. The intergalactic
medium being mainly composed of hydrogen, we expect the neutral hydrogen to be
the principal cause of such absorptions. Figure 1.17 depicts the three most common
sources of external absorption in the SED of (high redshift) quasars. First the Lyα
forest consists of sharp absorption lines that can be attributed to di�use neutral hy-
drogen having column densities NH i < 1017 cm−2. The structures encompassing such
column densities are supposed to have sizes that are by far larger than the typical size
of galaxies, that is larger than a few hundreds kpc. Regions having column densities
higher than 1017 cm−2 will be furthermore optically thick (i.e. opaque) to photons
having energies E ≥ 13.6 eV corresponding to the Lyman limit standing at 91.2 nm.
Finally, regions having column densities of 1020 cm−2 are supposed to be associated
with proto-galaxies and forming galaxies. These typically produce deep and broad
absorptions that are similar in shape to the already encountered BAL absorptions
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(i.e. with a Lorentz pro�le) while being unequivocally identi�ed by their detachment
from any emission lines. Note that these damped Lyα absorbers (DLAs) further allow
the kinematics of the early galaxy type to be studied in detail. A last point we would
like to address is the absorption encountered at very high redshift, where cosmological
models predict that the intergalactic medium (IGM) was mainly composed of neu-
tral hydrogen, that is hence opaque to wavelengths of 121.5 nm. Quasars situated at
redshifts higher than this re-ionization epoch hence encountered a continuous absorp-
tion of the Lyα wavelength from the redshift at which they emitted their light up to
the redshift where this opacity vanished through the re-ionization of the IGM, that
is the so-called Gunn-Peterson trough (Gunn & Peterson 1965). Quasars exhibiting
this trough are hence the witnesses of the late stages of the re-ionization process that
fenced the `dark ages' of the Universe. The work of Becker et al. (2001) �rst identi-
�ed this Gunn-Peterson trough in a z = 6.28 quasar suggesting that the re-ionization
epoch ended around z ≈ 6.

Based on ideas already described in the reverberation mapping techniques (see
section 1.2.3), Watson et al. (2011) studied the time lag, τ , between a rise of the
optical/UV continuum and a rise in the broad emission lines. He postulated that the
size of the BLR, r = τ/c, can be attributed to the ionizing �ux coming from the central
engine which acts as the inverse squared law of the distance. Accordingly, the squared
size of the BLR must be proportional to the intrinsic luminosity of the AGN, L ∝ r2,
such that the observed �ux, F , is related to the cosmological luminosity distance
through DL ∝ τ/

√
F . Besides these straight applications, AGN stand at the edge of

our knowledge as these combine quantum mechanics as well as general relativity in a
single object that is the SMBH. The raise of a new kind of physics might hence emerge
from the thorough study of these objects and through the potential observable e�ects
that this new physics might have on AGN.

1.3 Strong gravitational lensing

The previous section discussed the nature of AGN while particularly focusing on
quasars. We saw that their extreme luminosities allow these to be seen at very high
redshift corresponding to very large distances and hence to epochs when the Uni-
verse was still very young. We concluded this section by assessing that these large
redshifts also imply a greater chance to encounter some intervening object(s) along
the line-of-sight. Finally, we brie�y discussed how the spacetime is curved by the
presence of massive objects and how this curvature acts on objects through gravity
irrespectively of whether these are massive or not. Gravitational lensing (GL) is the
place where all these concepts meet. More particularly, strong GL describes the pro-
duction of multiple images of a single luminous background source whose light rays
are de�ected owing to the presence of a massive object standing in the near vicinity
of the line joining the observer and the source. Note that because of the very small
angular separation between the lensed images (∆θ � 1 ′′) resulting from the GL of
a background source by stars, these will often appear as unresolved using current
technologies. The recorded �ux being however ampli�ed thanks to the presence of
these multiple (unresolved) images as well as to the inherent ampli�cation occurring
within GL, as we will see. The study of such magni�cations/ampli�cations due to GL
is part of the weak and micro GL that will not be considered here. Accordingly, only
GL whose de�ector is a very massive object (e.g. a galaxy) and for which some lensed
images can be unambiguously separated will be discussed here. In the following, GL
then implicitly refers to strong GL. This section and the mathematical derivations
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it contain are mostly based on the book of Schneider et al. (2006) as well as on the
reference didactic report of Refsdal & Surdej (1994).

Short before the �nal formulation of the general relativity, Albert Einstein derived
the de�ection angle that would be encountered by a light ray coming from a distant
source and passing in the vicinity of a massive compact object as

α̂(ξ) =
4GM

c2ξ
(1.21)

where ξ is the impact parameter of the incoming light ray corresponding to the
perpendicular distance between the line joining the observer to the center of mass
and the path of the incoming light ray and where a massive compact object means
rs = 2GM/c2 � ξ, thus implying that α̂(ξ) is very small. The value from equation
1.21 appears to be exactly twice the value that was previously calculated by Johann
von Soldner in 1804 using the Newtonian theory of gravitation. Bene�ting from a
total solar eclipse on May 29, 1919, Sir Arthur Eddington noticed a de�ection angle
of the stars close to the limb of the sun of 1.75′′ which is exactly the angle predicted
based on general relativity through equation 1.21. This was the �rst out of many
predictions that yield a wide acceptance of Einstein's theory of gravitation. Later,
in 1936, Einstein published a note 15 on the angular size of the ring that would be
produced by the lensing of a star by another star upon a perfect alignment of the two
stars as seen by an observer situated at a distance D from the nearest star. He found
that this angular size is given by θe ∝ 1/

√
D. He consequently stated: "Of course,

there is no much hope of observing this phenomenon directly.". One year later Fritz
Zwicky pointed out that nebulae (i.e. galaxies) would produce a much more e�cient
de�ector and stated in turn: "The probability that nebulae which act as gravitational
lenses will be found becomes practically a certainty.". It was no more than forty years
later that the �rst GL, a double image of a background quasar at z = 1.405 with
image separation of ∆θ = 5.7 ′′, was discovered. To date, more than 100 GLs are
known, most of them being listed in the CfA-Arizona Space Telescope LEns Survey of
gravitational lenses (CASTLES) database as well as in the Sloan Digital Sky Survey
Quasar Lens Search (SQLS) catalogue (Inada et al. 2012). Gaia from its impressive
angular resolution is expected to discover ∼ 1600 GLs amongst which 80 have more
than two lensed images (Finet & Surdej 2016).

The present section will outline the theoretical basis of GL in section 1.3.1 while the
speci�c model that is being used in the �eld of the present study is further described
in section 1.3.2. Finally, some applications of GLs are reviewed in section 1.3.3.

1.3.1 Introduction to gravitational lens theory

Theory of GL, though being based on general relativity, can be easily interpreted in
terms of simple geometrical concepts as well as from equation 1.21. In the following,
the reader is referred to �gure 1.18 for a graphical view of the lensing phenomenon
designed to ease the understanding of the presented concepts. Let us consider now
two dimensional coordinates in the lens plane ξ = (ξ1, ξ2) whose origin is the center of
mass of the de�ector, D. We will �rst start by enunciating some working hypotheses
that allow us to e�ciently derive the lens equation, namely:

The weak �elds approximation Considering galaxies as de�ectors, we will
have that the distances between the incoming light rays and the center of mass

15This investigation was done on the request of a skilful amateur scientist, Rudi Mandl, who was
at that time dishwasher in a restaurant

https://www.cfa.harvard.edu/castles/
https://www.cfa.harvard.edu/castles/
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Figure 1.18: Geometry of the gravitational lensing phenomenon. A light ray coming
from a distant source, S, and passing in the vicinity of a massive de�ector, D, is
de�ected by an angle α̂(ξ) where ξ is the impact parameter of the light ray taken
in the lens plane. An observer, O, standing in the path of the de�ected light ray
hence sees an angular separation θ between the image of the source, I, and D. The
lens equation being then given by θs = θ − α(ξ) where θs is the angular separation
between D and S (i.e. the position of the source if no de�ector were present).

of the de�ecting galaxies will be in the order of a few dozen kpc. In this regime
of weak �elds, the Einstein �elds equations can be linearised such that the
de�ection angle of an ensemble of massive points will be equal to the vector sum
of their individual contribution.

The geometrically thin lens approximation Given that the distances in-
volved in GL are in the order of a few Gpc while the de�ection of the light rays
only occurs in the near vicinity of the de�ecting galaxy, roughly corresponding
to its size, we can assume that this de�ection occurs instantaneously in the lens
plane. From this assumption, we have that the three dimensional mass density
of the de�ector, ρ(ξ, x) where x runs along the line joining the observer to the
center of mass of the de�ector, can be squeezed onto the lens plane in order to
provide the projected mass density de�ned as

Σ(ξ) =

∫
ρ(ξ, x)dx (1.22)

The small angle approximation Equation 1.21 considers the incoming light
ray as parallel to the line-of-sight towards the de�ecting mass. However, most
astronomical objects emit their light radially which is in contradiction with
the previous assumption. Hopefully, given the cosmological distances at which
these objects stand we may still consider the incoming wavefront of photons
as �at. Similarly, the various angles that will be discussed in the following are
typically very small (e.g. 1.75 ′′= 8.484 × 10−6 rad) such that we can assume
that tanα ≈ sinα ≈ α are valid approximations.

Along with the previous assumptions and the generalization of equation 1.21 so as
to account for a vectorial impact parameter (i.e. α̂(ξ) = 4πGMc−2ξ/|ξ|2), we can
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immediately write the equation of the de�ection angle as

α̂(ξ) =
4G

c2

∫

R2

Σ(ξ′)
ξ − ξ′
|ξ − ξ′|2 dξ′, (1.23)

that is the de�ection angle that would be obtained from an arbitrary mass distribution
of the de�ector projected in the lens plane at a given impact parameter ξ. Note
that the wavelengths of the incoming photons do not appear in the latter equation
such that GL is achromatic. From the assumption of small angles, we have that
DSα(θ) ≈ DDSα̂(ξ) with ξ ≈ DDθ such that we can express the scaled de�ection
angle in terms of the classical de�ection angle as

α(θ) =
DDS

DS
α̂(DDθ) (1.24)

where DDS, DS and DD are the distances between the observer plane, the lens plane
and the source plane as sketched in �gure 1.18. Further developing the right hand
side of the latter equation allows us to describe the scaled de�ection angle in terms of
dimensionless quantities:

α(θ) =
1

π

∫

R2

κ(θ′)
θ − θ′
|θ − θ′|2 dθ′, (1.25)

where we have de�ned the dimensionless surface mass density

κ(θ) =
Σ(DDθ)

Σcr
(1.26)

with Σcr, the critical mass density, de�ned as

Σcr =
c2

4πG

DS

DD DDS
. (1.27)

From trivial geometrical considerations, the lens equation can then be expressed as

θs = θ −α(θ) (1.28)

where θ is the vectorial angular separation between the center of mass of the de�ector
and the lensed image(s) and where θs is the vectorial angular separation between the
de�ector and the source. Consequently, if the latter equation has multiple solutions,
θ, for a given source position, θs, this means that multiple lensed images of the source
will be produced. Though not developed here, we have to note that a mass distribution
having κ > 1 at some point (i.e. κ > Σcr) produces multiple images of some given
source position whereas these will be visible only if a luminous object stands at this
speci�c source position.

In �rst order approximation, the lens equation can be linearised so as to provide

θs ≈ θs(θ0) + A(θ − θ0) (1.29)

where the Jacobian matrix A = ∂θs/∂θ evaluated at θ0 is called the ampli�cation
or magni�cation matrix for reasons that will shortly become evident. From equation
1.29, we have that any small extent from the source, ∆θs ≡ θs − θs(θ0), can be
expressed as a linear transformation of the corresponding extent in the lensed image,
∆θ ≡ θ − θ0, through

∆θs = A ∆θ. (1.30)
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Figure 1.19: Illustration of a gravitationally lensed image, I, of a background source,
S, by a massive de�ector, D, as seen on the sky. In �rst order approximation, any small
extent of the source, ∆θs, can be mapped in the resulting image by a linear trans-
formation of the form ∆θ = A−1∆θs where A = ∂θs/∂θ. The solid angle subtended
by the lensed image is then given by Ω = π|∆θx||∆θx| = π|A−1∆θs,x||A−1∆θs,y| =
π|∆θs,x||∆θs,y|det A−1 = Ωs det A−1 where Ωs is the corresponding solid angle sub-
tended by the source image. Note that the source itself will not be seen by the observer
whence its dotted contour.

We hence have that a small circular extent from the lensed image can be mapped in
the source image as an ellipse and conversely as illustrated in �gure 1.19. Accordingly,
we have that the solid angle subtended by an in�nitesimally small circular extent of
the source, dΩs, can be related to the solid angle subtended by the ellipse in the
corresponding image, dΩ, through

dΩs = det A dΩ (1.31)

as derived in �gure 1.19. Given that the surface brightness of the source is conserved
upon light bending by a massive object (Etherington 1933), we have that the ampli-
�cation or magni�cation factor of the lensed image is equal to the ratio of the solid
angle subtended by the lensed image to the corresponding solid angle from the source,
that is

µ =
dΩ

dΩs
= det A−1. (1.32)

Beware that det A can become negative, this situation translating in the production
of a mirror-symmetric image of the source. The absolute value of µ must hence be
considered.

Let us �nally note that from simple vector calculus, we have that ∇ ln |x| = x/|x|2
where ln |x| is the natural logarithm of the absolute value of x, such that we can re-
write the scaled de�ection angle as

α(θ) = ∇ψ(θ) (1.33)

where
ψ(θ) =

1

π

∫

R2

κ(θ′) ln |θ − θ′|dθ′ (1.34)
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is the dimensionless de�ection potential at angular coordinates θ. For convenience,
the mapping from θ to θs can hence be seen as a gradient mapping caused by the
de�ection potential. Furthermore, using the Laplacian ∇2 ln |x| = 2πδ(x) where δ(x)
is the two dimensional Dirac delta function16 yields twice the dimensionless surface
mass density in two dimensions, that is henceforth also called the convergence in this
context,

∇2ψ(θ) = 2κ(θ). (1.35)

Along with the previous considerations, we have that the ampli�cation matrix can be
written as

Aij(θ) = δij −
∂αi(θ)

∂θj
= δij −

∂2ψ(θ)

∂θi∂θj
= δij −Ψij (1.36)

where in the last step we de�ned Ψij ≡ ∂2ψ(θ)
∂θi∂θj

. Further developing equation 1.36
yields

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(1.37)

where
γ1 ≡

1

2
(Ψ11 −Ψ22) , γ2 ≡ Ψ12 = Ψ21. (1.38)

The determinant of the ampli�cation matrix being hence given by

det A = (1− κ2)− (γ2
1 + γ2

2). (1.39)

1.3.2 The non-singular isothermal ellipsoid in presence of

an external shear

In general, we have that the de�ection angle resulting from an arbitrary mass dis-
tribution can be computed through the numerical integration of the projected mass
density over the lens plane according to equation 1.23. Analytical expressions of the
de�ection angle (or equivalently of the de�ection potential), when available, are how-
ever preferred as these often yield to straightly derivable quantities like, for example,
an instantaneous calculation of the ampli�cation factors. Regarding this point, an
interesting class of GL models are the axially symmetric lens models that are charac-
terized by Σ(ξ) = Σ(|ξ|). Indeed, for such models, we have that the de�ection angle
is simply given by

α̂(ξ) =
4GM(|ξ|)
c2|ξ|2 ξ (1.40)

where M(ξ) = 2π
∫ ξ

0 Σ(ξ′)ξ′dξ′ is the projected mass enclosed in a circle of radius
ξ centred around the axis of symmetry. Consequently, equation 1.40 allows us to
easily derive the analytical solutions of the de�ection angle for all models satisfying
Σ(ξ) = Σ(|ξ|). A simple model that ful�ls the latter condition while enabling the
basic properties of galaxies to be modelled is the singular isothermal sphere (SIS) lens
model. This model supposes that the stars constituting the lensing galaxies behave like
particles in an ideal gas of constant temperature (i.e. it is isothermal) so as to account
for the �at rotation curves that are observed in those galaxies. From the equation
of state of an ideal gas, we have that the pressure exerted by a spherical cloud of
gas of radius r at constant temperature T is given by P (r) = ρ(r)kBT/mp where kB

is the Boltzmann constant and where mp is the mean mass of the gas particles (i.e.

16δ(x) =

{
1, if x = 0
0, otherwise
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stars in our case). The velocity dispersion of the stars along the line-of-sight towards
the galaxy being related to T using the Virial theorem as σ2

v ≈ kB T/mp. Since we
suppose the cloud of gas and the galaxies to be in hydrostatic equilibrium, we further
have that dP (r)/dr = −GM(r)ρ(r)/r2 such that

ρ(r) =
σ2
v

2πGr2
, Σ(ξ) =

σ2
v

2Gξ
, M(ξ) =

πσ2
v

G
ξ. (1.41)

The attentive reader will notice here that we made a distinction between M(r), the
mass enclosed in a sphere of radius r and M(ξ), the projected mass enclosed within
the impact parameter of radius ξ. Substituting the latter value within equation 1.40
yields a de�ection angle for the SIS model of

α̂(ξ) =
4πσ2

v

c2

ξ

|ξ| , (1.42)

that is a constant de�ection angle pointing towards the center of mass of the de�ector.
The SIS lens model we just described, despite being based on a physical model of

the kinematics of the galaxies, su�ers from two main drawbacks, namely the fact that
its projected mass density diverges as ξ → 0, whence the reason why this model is
termed `singular', and its inability to model asymmetric de�ectors that are otherwise
commonly observed amongst galaxies. The SIS model would e�ectively correspond
to cases where the de�ector is a spiral galaxy that is viewed nearly face-on which
hence only covers a limited fraction of the observations. More complex models are
hence required in order to accommodate for the observed asymmetry as well as to
break the singularity at Σ(ξ = 0) or equivalently at κ(θ = 0). Kormann et al. (1994)
concurrently solved both issues by introducing the non-singular isothermal ellipsoid
(NSIE) lens model through a straight generalization of the dimensionless surface mass
density of the SIS model as given by

κ(θ) =
θe
√
f√

θ2
1 + f2θ2

2 + θ2
c

=
θe
√
f

ζ
(1.43)

where f is the ratio of the minor axis to the major axis of the isodensity contours
of the mass distribution (0 < f ≤ 1), θc is the core radius of this mass distribution
and where θe is a scaling factor termed the angular Einstein radius. The limiting case
where f = 1, θc = 0 corresponding then to the dimensionless mass distribution of the
SIS model while κ(0) has now a �nite value if θc > 0, whence the non-singularity of this
class of model. The non-singular isothermal sphere (NSIS) lens model corresponding
then to the case where f = 1, θc > 0 while the singular isothermal ellipsoid (SIE)
corresponds to the case in which we have f < 1, θc = 0. The derivation of the
normalized de�ection angle associated to the NSIE model can be found in Keeton &
Kochanek (1998) and results in

α(θ) =
θe
√
f

2f ′

[
arctanh

(
f ′θ1

ζ + fθc

)
e1 + arctan

(
f ′θ2

ζ + θc/f

)
e2

]
(1.44)

where f ′ =
√

1− f2 is de�ned as the eccentricity of the isodensity contours of the
mass distribution and where e1 ≡ (1, 0), e2 ≡ (0, 1).

A last degree of realism can be added by considering the stretching of the lensed
images owing to the presence of a massive object in the vicinity of the de�ector (Kovner
1987). This external shear being then straightly given by

αγ(θ) = γR(ω)α(θ) = γ

(
cosω − sinω
sinω cosω

)
α(θ), (1.45)
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Figure 1.20: Illustration of the NSIEg lens model parameters projected on the sky
with coordinates (θ1, θ2) and origin given by the center of mass of the de�ecting
galaxy D. The source and image position being respectively given by S and I, as
usual. The NSIEg lens model is characterized by an isothermal mass distribution
having an ellipse shape with an axis ratio of f . An isodensity contour being depicted
here as a gray ellipse having a semi-major axis corresponding to the scale factor θe,
called the Einstein radius. The singularity of the SIE model is solved by introducing
a cut-o� in the density pro�le corresponding to the angular radius of the core, θc,
depicted here as a �lled gray circle. These parameters allow us to compute the scaled
de�ection angle(s) α(θ) associated with a given source position θs. The presence of an
external massive object has as an e�ect to introduce a shear of the image(s) translating
into a counter clockwise rotation of the scaled de�ection angle corresponding to the
shear orientation ω and into a scaling of α(θ) according to the shear strength γ.
The resulting de�ection angle αγ(θ) then provides the �nal image position through
θ = θs +αγ(θ).
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Table 1.3: Parameters of the non-singular isothermal ellipsoid lens model in presence
of an external shear (NSIEg). Image(s) positions, θ, can be retrieved from the lens
equation using the scaled de�ection angle provided in equations 1.44 and 1.45. The
position of the de�ector is here supposed to stand at the origin of the coordinate
system.

Parameter Description

θs Source position
θe Scaling factor (angular Einstein radius)
θc Angular size of the radius of the core of the de�ector
f Axis ratio of the isodensity contour of the mass distribution of

the de�ector (0 < f ≤ 1) where f ′ =
√

1− f2 is the associated
eccentricity

γ Shear intensity
ω Shear orientation

where γ is a unitless constant representing the shear strength and where R(ω) is a
rotation matrix whose parameter ω is the shear orientation. We summarized the
parameters of the NSIE lens model in presence of an external shear (NSIEg) in Table
1.3 as well as in �gure 1.20.

1.3.3 Applications

GL o�ers a wide range of applications out of which we will cite those that are, ac-
cording to the author, the most relevant in the current astrophysical context. GLs
are caused by the bending of light owing to the presence of mass. Whether this mass
is luminous or not does not matter: gravitational light de�ection is independent of
the nature of the matter and of its state. A precise modelling of a given lens can be
consequently used so as to study the mass distribution of the de�ecting galaxy (see
equation 1.35) as well as to subsequently infer its total mass (e.g. Sonnenfeld et al.
2012). The comparison of this mass distribution against those that are derived from
luminous matter based on alternative techniques (e.g. rotation curves) allows us to
precisely determine the contribution and repartition of the dark matter in this galaxy.

Another point we did not yet mention is the time delay occurring in GL having
multiple lensed images. Brie�y, as light rays from multiples images propagate along
di�erent paths from the source to the observer, there will result in general a time delay
between these lensed images. Assuming that the lensed source is variable, like quasars
are, one can cross-correlate their photometric light curves so as to compute the time
delays occurring between each pair of lensed images. Refsdal (1964) further proved
that these time delays are inversely proportional to the Hubble constantH0. While the
classical distance ladder that is used so as to determine the distances of astronomical
objects is hampered by the errors propagating from the very nearby objects, through
parallaxes, up to very distant objects, through type Ia supernovae, and ultimately
provides strong uncertainties on H0, GLs on their side provide a straight way of
deriving H0 that do not rely on this distance ladder which leads to potentially fairer
predictions. While not developed here, let us still note that the other cosmological
parameters can be obtained based on GL statistics (e.g. Surdej et al. 1993; Kochanek
1996). This subject being extensively covered in (Schneider 1992, part2, chapter 6)
for the interested reader.
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Finally, thanks to the light ampli�cation occurring in GLs, these act as giant
natural telescopes that allow faint objects to be seen along with a very high signal-to-
noise ratio that would otherwise have been unattainable. This magni�cation reveals its
critical importance in identifying high redshift quasars/galaxies and provided spectra
of the Lyα forest with an unprecedented quality for some of these. Whereas the host
galaxy of quasars are currently barely resolvable, GL o�ers a unique view to these
galaxies as they will form arcs upon favourable con�gurations. Depending on the
proper modelling of the GL system, these arcs can then be back-propagated into the
source plane ultimately revealing the host galaxy of the quasar.



50 CHAPTER 1. Introduction



2
Methods for the characterization

of quasars

The main concern of the present work is the development of a software solution tar-
geting the characterization of quasars and the detection of gravitational lenses (GLs)
within the Gaia mission. However, we will mainly concentrate here on the primary
objective of this thesis, that is the determination of the astrophysical parameters
(APs) of quasars within the Gaia mission. GLs identi�cation being further covered in
Chapter 4 though the machine learning (ML) method we used for this identi�cation
is still described in section 2.4 as it concurrently yields fair predictions on the APs of
quasars, and will consequently be used for comparison purpose (see chapter 3). In the
following, sections 2.2 and 2.3 describe the methods that were speci�cally developed
in the framework of the quasar classi�er (QSOC) work package (WP), responsible
for the characterization of quasars within the CU8 data processing, and being �rst
outlined in the next section.

2.1 The quasar classi�er work package

The QSOCWP, abbreviated here as QSOC, is one of the software module constituting
the astrophysical parameters inference system (APSIS) dealing with the classi�cation
and characterization of more than one billion sources that Gaia will observe according
to the CU8 commitments towards the Gaia data processing and analysis consortium
(DPAC). Further informations on the structures underlying the Gaia data processing
can be found in section 1.1.4. We �nd interesting to provide here an exhaustive list
of the WPs constituting the APSIS chain as it allows the reader to have a global
view of the data processing that is taking place within CU8. Table 2.1 accordingly
enumerates the APSIS WPs, each having well de�ned tasks that are explicitly stated
in their name. See however Bailer-Jones et al. (2013) for a detailed description of the
latter at the time Gaia was launched.

The present section describes the general objectives of QSOC as well as its tech-
nical requirements in section 2.1.1 whereas section 2.1.2 presents the solution we en-
visaged so as to ful�l these objectives and the issues we encountered upon a straight
implementation of this solution.
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Table 2.1: Modules constituting the astrophysical parameter inference system (AP-
SIS).

Acronym Name

DSC Discrete Source classi�er
GSP Generalized Stellar Parametrizer

GSP-Phot GSP � Photometry
GSP-Spec GSP � Spectroscopy

ESP Extended Stellar Parametrizer
ESP-CS ESP � Cool Stars
ESP-ELS ESP � Emission Line Stars
ESP-HS ESP � Hot Stars
ESP-UCD ESP � Ultra Cool Dwarfs

FLAME Final Luminosity Age and Mass
MSC Multiple Star Classi�er
TGE Total Galactic Extinction
UGC Unresolved Galaxy Classi�er
QSOC Quasar Classi�er
OA Outlier Analysis
OCA Object Clustering Algorithm

2.1.1 Objectives and software requirements

The objectives of QSOC are compiled in two technical documents, that are the DPAC
software and system speci�cation (GAIA-C1-SP-DPAC-WOM-018, hereafter SSS) and
the CU8 software requirement speci�cations (GAIA-C8-SP-MPIA-CBJ-032, hereafter
SRS) 1. While the SSS de�ned the top-level requirements against which the overall
Gaia data processing must be developed, SRS instead concentrates on the require-
ments that are speci�c to CU8 and more particularly to the APSIS chain. The SRS
being hence fully compliant with the SSS. The SRS is prepared by the CU8 WP man-
agers and later approved by the CU8 con�guration control board whereas the SSS
is written by CU1 and all CU leaders and further endorsed by the DPAC executive
(DPACE).

According to the SSS and the SRS, the objectives of the QSOC module can be
respectively summarized as:

"Where possible, CU8 should provide estimates of the physical param-
eters of non-stellar sources, in particular quasars and galaxies."

and

"The QSO Classi�er (QSOC) will make use of BP/RP photometry and
errors calibrated by CU5 to estimate the APs and their associated errors of
objects classi�ed as QSOs by the DSC algorithm. The class-probabilities
delivered by the DSC thus act as a control parameter on the algorithm
through an internal test. The algorithm also makes use of an internal table
of BP/RP photometry of reference QSOs, called a reference library and
de�ned as auxiliary data."

1The access to both these documents is restricted to the DPAC members only, although these are
provided in the bibliography
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Figure 2.1: Examples of simulated BP/RP spectra of quasars of various Gmagnitudes.
Black lines: SDSS spectra, blue/red lines: BP/RP spectra. Note that since both the
SDSS �ux densities (in erg m−2 s−1 nm−1) and the BP/RP �uxes (in e- s−1) are of
the same order of magnitude, these were accordingly set on a common scale in each
plot. Although provided here as a comparison point, spectra brighter than G = 18
will be very rare in practice (e.g. from the twelfth data release of the SDSS quasar
catalogue of Pâris et al. (2017), 0.97% of spectra have G < 18 mag whereas 0.096%
have G < 17 mag). The overall bell-shape of the BP/RP spectra, their low resolution,
their limited signal-to-noise ratio (at G > 18 mag) as well as the broadening of their
emission lines owing to the BP/RP spectrometer optics constitute hurdles towards
the correct determination of their APs.
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Consequently, the QSOC module, once operational, will be in charge of the deter-
mination of the APs of objects having a high probability to be quasars according to
the discrete source classi�er module (DSC). For this purpose, it will rely on the BP
and RP spectra and errors coming from CU5 (as illustrated in �gure 2.1), possibly
using auxiliary data. The quasar identi�cation is accordingly left to the DSC module.
The aforementioned objectives are further particularized into software requirements,
that are translating these informal objectives into computer assimilable objectives.
We cite here a subset of these requirements we found the most relevant regarding the
present work. Unmentioned requirements encompassing more technical subjects like,
for example: the coding style, the documentation rules, the software interfaces, the
data access policy, . . .

Based on the SSS and SRS, these (non-exhaustive) requirements can be listed
according to their identi�ers as

CU8-QSOC-S-FUN-020 This algorithm only operates on those objects as-
signed a QSO probability by DSC above some threshold.

CU8-QSOC-S-FUN-040 Epoch data processing: the algorithm shall provide
classi�cations and/or APs for QSOs based on epoch BP/RP. This includes at
least the photometric redshift and some characterization of the rest-frame spec-
trum. Multiple solutions should be reported as appropriate.

CU8-QSOC-S-FUN-060 Combined data processing: the algorithm shall pro-
vide classi�cations and/or APs for QSOs based on combined BP/RP, as well as
astrometry and variability. This includes at least the photometric redshift and
some characterization of the rest-frame spectrum. Multiple solutions should be
reported as appropriate.

CU8-QSOC-S-FUN-080 Provide uncertainty estimates in the derived APs.
Where appropriate, covariances should also be reported. Very poor �ts (i.e.
potential misclassi�cations) should be �agged.

CU8-GEN-S-FUN-160 Algorithms shall be robust to missing data. That is,
they must still function and return sensible results if provided with one or more
unde�ned inputs.

CU8-GEN-T-PRF-020 The CPU resources required by the CU8 six-months
data processing shall not exceed the resources allocated to the CU8 subsystem.

A particularly stringent point last cited is the CPU consumption. The CPU re-
sources allocated to the whole APSIS chain by the data processing center at CNES
(DPCC) is of 1.5 × 1012 �oating-point operations (�ops)2 s−1. For a 6 months op-
eration cycle, assuming that all data shall be processed within 100 days owing to
operational overheads (e.g. data storage, synchronization, reprocessing upon errors,
. . . ) as well as to subsequent validation purposes, this gives 1.3×1019 �ops to process
6 months of data (see GAIA-C8-SP-MPIA-CBJ-032, appendix B). Ideally, these re-
sources are shared amongst the 14 WPs composing APSIS (see Table 2.1) according
to the number of sources they have to process. A distinction should be made here
between the DSC and GSP-Phot WPs that are run over the whole billion of sources of
Gaia, the GSP-spec WP that is run on 108 sources and other WPs that are run on 104�
106 sources on average (Robin et al. 2012). The CPU resources that are allocated to

2Speci�c computer instructions dealing with the �oating point representation of number in com-
puters (i.e. the IEEE 754 nom).
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Figure 2.2: Illustration of the equivalent width of an emission line. Considering an
emission line having a �ux density given by fλ and a corresponding continuum �ux
density of cλ, we have that the total equivalent width of the emission line is given by
W =

∫
(fλ − cλ)/cλdλ. In case where cλ is constant (i.e. we have a �at continuum),

W can be seen as the width that would be required for the area under the continuum,
Ac = Wcλ, to be equal to the area between the emission line and the continuum,
Ae =

∫
fλ − cλdλ.

QSOC are hence estimated to be in the order of 109 �ops per source or equivalently to
a processing time of 0.6 ms per quasar in DPCC, in agreement with Bailer-Jones et al.
(2013). Such a consumption being often reached by complex computer algorithms,
as we will see in the next section. This somewhat enforces the APSIS WPs to use
algorithms nearly exclusively coming from the �eld of ML methods, that frequently
do not have such a high complexity while still providing rather fair predictions.

Another critical point is the ability the software shall have so as to deal with
both the epoch spectra (i.e. single transit spectra) as well as with combined spectra
(requirements CU8-QSOC-S-FUN-040 and CU8-QSOC-S-FUN-060) given that both
have di�erent noise levels as well as a potentially very di�erent number of samples
(e.g. epoch spectra have 60 samples for each of the BP/RP spectra while combined
spectra may have up to 8 times more samples depending on the oversampling that
is used, see Paper III for example). Also from CU8-GEN-S-FUN-160, spectra having
some corrupted �uxes must still be treated with the highest possible e�ciency.

The previously mentioned objectives and requirements along with the intrinsic
BP/RP spectra shortcomings that are highlighted in �gure 2.1 together reveal the
intricacy of the posed problem and its need for a detailed analysis. Before going
further, we have to note that the APs we shall retrieve are not explicitly speci�ed
neither by the SSS, nor by the SRS at the exception of the redshift. It is hence a matter
of choice to include some additional APs that will be extracted out of the BP/RP
spectra of quasars for further publication in the Gaia catalogues. Unsurprisingly, we
isolated some rather classical APs applying to the widest possible range of quasars,
namely:

� The redshift of the quasar, that we have already encountered in section 1.2.4
and equation 1.20. The latter being due to the expansion of the Universe and
results in a shift of the wavelengths emitted in the quasar rest-frame, λrest, to
longer wavelengths that are �nally observed at wavelengths λobs such that the
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redshift is de�ned as
z =

λobs − λrest

λrest
. (2.1)

This parameter is the most important one as virtually all astronomical appli-
cations using extragalactic objects rely on it. It is hence critical to have the
fairest prediction of the latter along with strong physical uncertainties as well
as a secure identi�cation of the unfair predictions.

� The BAL nature of the quasar. The latter depends on the presence of
absorption features bluewards of some characteristic emission lines (e.g. C iv
being the most common). The presence of broad absorption line (BAL) in∼ 10%
of the quasar population currently lacks some convincing physical explanations
as outlined in section 1.2.3. A statistically signi�cant sample of these objects
with a very low selection bias (e.g. Gaia will be complete down to an observed G
magnitude of 20 for BP/RP spectra) is hence required so as to perform higher
resolution follow-ups that may shed the light on the physical processes causing
these BAL features. Some �ner by-products of the BAL classi�cation, like the
Balnicity index (Weymann et al. 1991) or the absorption index (Hall et al. 2002),
are not considered in this study owing to the limited capability of the BP/RP
spectra regarding the characterization of the BAL troughs (see Paper III, �gure
3.11). An example of this limitation stands in the spectrum (h) from �gure
2.1. This object e�ectively encompasses a moderate BAL feature with FWHM
∼ 1200 km s−1 bluewards of the C iv emission line (λ . 527 nm) that is largely
suppressed from the BP/RP spectra.

� The slope of the quasar continuum can be used as a discriminant for the
detection of (strong) relativistic jets amongst quasars. Spectra having a steep
continuum slope (e.g. αν & −0.5 where αν is later de�ned in equation 2.2)
being e�ectively more prone to harbour relativistic jets producing the observed
synchrotron radiation3. We will then have that the statistics based on this
spectral index, αν , as well as dedicated surveys can bring extremely valuable
informations on the physical mechanisms raising these jets as these are still
obscure at the present day (see section 1.2.3). From equation 1.1, we have that
the spectral index is de�ned through

ναν ∝ fν (2.2)

where fν is the �ux density that is observed at rest-frame frequency ν. Fur-
thermore owing to the fact that dλ/dν = −c/ν2 with fν = fλ|dλdν | we have that
the spectral index can be de�ned in terms of the rest-frame wavelength, λ, and
associated �ux density, fλ, according to

λαλ ∝ fλ, αλ = −αν − 2. (2.3)

� The total equivalent width of the emission lines. Likewise the slope of
the QSO continuum acts as a proxy for the presence of relativistic jets, the (to-
tal) equivalent width of the quasar emission line(s) correlates with the absolute
luminosity of the quasar continuum. The equivalent width (EW) of an emission
line, presented in details in �gure 2.2, is a measure of the strength of this emis-
sion line as compared to the underlying continuum. From the work of Baldwin
(1977), we know that the highest the EW of an emission line is, the lowest the

3Note that this does not necessarily imply that these jets are extended
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absolute continuum luminosity of the quasar is. The total EW of the emission
lines is a straight generalization of the EW presented in �gure 2.2 applied over
the whole observed spectrum. Mathematically, it is de�ned as

W =

∫
eλ
cλ

dλ, with eλ =

{
fλ − cλ if fλ > cλ
0 otherwise

(2.4)

where fλ and cλ are the �ux densities associated with the emission line and the
continuum, respectively (see �gure 2.2).

2.1.2 Envisaged solution and associated issues

Various solutions can be envisaged so as to guess the APs of quasars based on their
BP/RP spectra. Still, the determination of all these APs primarily relies on a cor-
rect prediction of the redshift, whence the importance to �rst have a very reliable
estimation of the latter. Solutions that are the most commonly implemented for this
purpose are:

(i) The visual inspection of the whole set of quasars (e.g. Pâris et al. 2017),
though this solution is infeasible regarding the 5 × 105 quasars that should be
treated within the six month cycle of the Gaia processing.

(ii) The matching of spectral lines (e.g. Machado et al. 2013), consisting in the
recognition of some patterns within spectra, mostly emission lines, that are sub-
sequently matched to theoretical predictions (e.g. rest-frame emission lines from
Table 1.2). This method is however restricted to medium resolution spectra hav-
ing a relatively good signal-to-noise ratio that together enable the spectral lines
to be individually isolated. The BP/RP spectra are not ful�lling these require-
ments in general (see �gure 2.1 for example). Supplemental shortcomings of this
method are that nor the line heights, nor their widths, nor their covariances4

are taken into account here. This point turns out to be extremely harmful in
case of quasars as most emissions lines have rather constant covariances (e.g.
the Balmer series Hα, Hβ, Hγ, . . . ) and more particularly in case of BP/RP
spectra as, for example, the Lyα emission line will be systematically blended
with the Nv emission line as does the Hβ emission line with the [O iii] doublet.
The presence of such very extended emission lines being a �rst hint towards the
occurrence of such a line mixing that would be regrettable not to use.

(iii) Methods based on machine learning (e.g. Claeskens et al. 2006) are plausi-
ble alternatives that were e�ectively used in past versions of QSOC (see Bailer-
Jones et al. 2013). However, these act as black-box algorithms that can lead
to unphysical and/or suboptimal predictions either coming from an incomplete
coverage of the input space of parameters or from an inappropriate choice of the
model parameter(s) (see bias/variance trade-o�, section 2.4). Moreover, these
provide a limited capability in the estimation of the uncertainties as those they
return are rather measures of the inadequacy of the ML model to match the pro-
vided sources. Accordingly, these methods should be privileged when no other
(fast) solution is available or when the set of input parameters is fairly well
covered by the learning set of observations. In case of quasars, the latter point
translates into the need for a spectral library covering most of the characteristics
encountered in quasars over the whole range of redshifts that is explored, hence
requiring an extremely huge learning dataset.

4The tendency that a line has to vary along with another line
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(iv) The phase correlation algorithm (e.g. Bolton et al. 2012) that turns out to
be the solution that is the most adapted to our problem given the shortcomings
of the alternative methods.

The phase correlation algorithm stands to be the most widespread method for
determining the redshift of quasars and galaxies. It was �rst introduced in astronomy
through the work of Brault & White (1971) though the weighted version we outline
here is based on the speci�c needs that emerged out of the Baryon Oscillation Spec-
troscopic Survey (BOSS) of the SDSS (Bolton et al. 2012). The interested reader
may �nd in the introduction of Paper II a more complete historical background of
this technique applied to astrophysics. The idea behind the weighted phase correla-
tion (WPC) algorithm is to recognize that the redshift from equation 2.1 turns into a
simple o�set if we consider the wavelength to stand on a logarithmic scale, that is

log λobs = log λrest + log(z + 1) = log λrest + Z (2.5)

where, in the last step, we de�ned Z ≡ log(z + 1). Let us assume that we have rest-
frame quasar templates that are sampled on such a logarithmic scale, T, out of which
Tij is the ith sample from the jth template. The ith sample being then associated
with the (logarithmic) rest-frame wavelength

λrest = (1 + ∆λ)i, log λrest = i log(1 + ∆λ), (2.6)

where ∆λ is the wavelength sampling we choose to use. If the observed spectrum, s,
and the associated uncertainties, σ, are both sampled over the same logarithmic scale
(i.e. same ∆λ), then the determination of the redshift of s can be formulated as a
chi-square minimization problem through

χ2(k) =
∑

i

1

σ2
i


si −

∑

j

aj(k) T(i+k) j




2

(2.7)

where aj(k) is the optimal linear coe�cient allowing to �t the jth template to the
observation if this template is shifted by k samples. The optimal redshift being then
associated with the minimum of the χ2 curve as de�ned through equation 2.7 and
illustrated in �gure 2.3.

The �rst issue raised by this solution if applied to Gaia is the unavailability of
a spectral library of quasars as seen with the BP/RP instruments. This prevents us
from building the templates upon which the χ2 curve technique relies. These spectra
can however be produced through the conversion of higher resolution spectra along
with the instrument model provided by Airbus Defence and Space (ADS) during the
commissioning phase of the satellite (see Paper III, section 4). A spectral library of
quasars having the required resolution and wavelength coverage (i.e. ∼ 300�1100 nm)
being unfortunately still non-existent at the present day, we had to extrapolate an
existing library using the method we will later describe in Paper I. Going further into
this issue, we have to note that the χ2 curve technique requires the templates to span
the whole range of rest-frame wavelengths we expect to observe. The production of
such rest-frame templates being mainly hampered by the very di�erent wavelength
coverage of the individual quasar spectra, as illustrated in �gure 2.4, as well as by the
presence of noise in these spectra.

An e�cient method often employed for the production of these quasar rest-frame
templates stands in the principal component analysis (PCA, e.g. Yip et al. 2004;
Bailey 2012; Tsalmantza et al. 2012, and references therein). The simplest version of
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Figure 2.3: χ2 curve associated with the SDSS J000313.08+274044.9 quasar standing
at z = 2.233. The curve is built by repeatedly �tting shifted versions of the templates
to the observed spectrum while reporting the χ2 we obtain this way into the graph (see
equation 2.7). 15 emission line templates as well as 5 continuum templates out of the
online material from Paper III were used for the purpose of the present illustration.
Three speci�c �ts are further provided, each corresponding to: (a) a local minimum,
(b) a local maximum and (c) the global minimum of the χ2 curve. The discrepancy
existing between the actual redshift (z=2.2329) and the redhift we derived using the
χ2 curve approach (z=2.2338) being due to the discrete sampling we used. A sub-
sampling precision on the redshift being gained by �tting a quadratic curve in the
vicinity of the global minimum of the χ2 curve.
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Figure 2.4: Rest-frame wavelength coverage of quasar spectra from the twelfth data
release of the Sloan digital sky survey quasar catalogue (Pâris et al. 2017) according
to redshift. Spectra are averaged over redshift bins of ∆z = 0.01 and over wavelength
bins of ∆λ = 0.1 nm.

this PCA technique (see Paper I, section 3) is however unable to deal with missing
and noisy data like those encountered in quasar spectra. Proposed solutions to this
problem encompass the use of an iterative procedure so as to �ll the gaps of the rest-
frame spectra (Yip et al. 2004) or the use of a weighted least-squares formulation to
the PCA problem (Bailey 2012; Tsalmantza et al. 2012). In the following, we will
solely consider weighted versions of the PCA method as these do not rely on iterative
procedures where any error made accumulates up to the �nal templates as well as
because these concurrently allow us to take the noise straightly into account. The
PCA implementations of Bailey (2012) and of Tsalmantza et al. (2012) are based
on iterative approaches to a weighted least-squares formulation of the PCA problem.
These however su�er from strong numerical instabilities in cases where a large number
of samples (∼ 30%) is missing and/or in cases of very noisy input data (see Paper I,
�gure 2.9). Furthermore, the chi-square approach they undertake aims to optimize the
reconstruction of the input dataset along with a minimal number of templates which
do not necessarily extract the most signi�cant patterns out of the input spectra, as
we will see in section 2.2.

Last but not least, the χ2 curve method requires each of the aj(k) coe�cients to
be computed in order for the templates to match at best the observation at given
shift k. The fastest method designed to solve such a weighted least squares problem is
outline in the appendix (section A.1) and results in a numerical complexity of O

(
mn2

)

�ops where m is the number of samples in our spectra and where n is the number of
templates we choose to use. Given that the linear coe�cients aj(k) must be computed
for all shifts k ∈ {0,m− 1}, we have that the overall algorithmic complexity of the χ2

curve approach is given by O
(
m2n2

)
�ops. This quadratic time dependence being a

major hurdle towards the use of this method. Indeed, assuming we would like to have
a precision on the predicted redshift that is equivalent to or better than the human
expertise (σz = 0.003 according to Pâris et al. (2017)) for all redshift up to zmax = 6,
we hence have that the logarithmic wavelength sampling we should use must satisfy

∆λ ≤ σz
zmax + 1

. 4× 10−4. (2.8)

From equation 2.6, we also have that this sampling can be expressed as a linear
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sampling on a logarithmic scale through ∆ log10 λ = log10(∆λ + 1) ≈ 1.75 × 10−4.
The rest-frame wavelength coverage of the BP/RP spectra extending from λ0 =
300/(zmax + 1) ∼ 47 nm up to λ1 ∼ 1050 nm at z = 0, the number of samples
in our templates spectra is hence given by

N =
log10 λ1 − log10 λ0

∆ log10 λ
= 7709. (2.9)

If we suppose that a reasonable amount of 3 emission line templates and 3 continuum
templates are used so as to �t the observations, we have that the expected number
of computer instructions that would be required upon a straight implementation of
the χ2 curve method is approximately given by O

(
m2n2

)
≈ 2.14 × 109 �ops, which

exceeds the 109 �ops allocated to QSOC for the processing of a single source whereas
only the redshift would have been derived.

2.2 Weighted principal component analysis

As previously mentioned, the PCA implementations of Bailey (2012) and Tsalmantza
et al. (2012) su�er from strong numerical instabilities if used along with rest-frame
spectra of quasars having large redshift discrepancies or, equivalently, having a large
fraction of rest-frame wavelengths that are unobserved. Also, they do not e�ciently
take into account the covariances that are noticed amongst the samples of the input
datasets such that they do not necessarily extract the most signi�cant patterns out
of these. For completeness, we now take some time to make the latter point a little
more explicit. Consider an input matrix X out of which the mean observation x̄ has
been subtracted. The removal of this mean observation being carried out here for
conciseness and without any loss of generality. As later explained in Paper I, the
PCA decomposition of an input matrix X can be computed through its singular value
decomposition (SVD):

X = UΣVT (2.10)

where U, V are orthogonal matrices5 and where Σ is a diagonal matrix containing the
eigenvalues of X ordered according to their magnitudes. Such a decomposition being
always existent. The �rst columns of U are then the searched principal components
P while the principal coe�cients C are associated with the �rst rows of the matrix
ΣVT (i.e. Σ′V′T). Fitting X with P such that |X− PA|2 is minimal in a least-squares
sense yields to the normal equations

A =
(
PTP

)−1
PTX = PTX = C. (2.11)

Meaning that C contains the optimal linear coe�cients so as to �t X with P in a least
squares sense6:

X
χ2

= PC. (2.12)

Furthermore, we have that the covariance matrix associated with C = PTX,

σ2 = CCT = Σ′V′TV′Σ′ = Σ′2, (2.13)

is diagonal, meaning that the linear transformation PTX allows us to have null covari-
ances between the samples (i.e. all covariances of C are equal to zero). Whereas both

5An orthogonal matrix U has the property UTU = I.
6A common misconception here is that P is the minimal set of templates that allow any observation

out of X to be �tted at best in a linear least squares sense whereas this is only valid regarding the X
matrix as a whole.
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the diagonalization of the covariance matrix σ2 as well as the least-squares decomposi-
tion of the input matrix X into PC are concurrently achieved in case of classical PCA
methods, the introduction of weights associated with each samples of X will break
this simultaneity such that any related weighted PCA method must hence choose
which objective it will accomplish. While Bailey (2012) and Tsalmantza et al. (2012)

privileged the weighted least squares decomposition of the input matrix X
χ2

= PC, we
instead favoured here the diagonalization of the weighted covariance matrix de�ned
by

σ2 =
(X ◦W) (X ◦W)T

WWT
. (2.14)

The method we present was initially developed so as to extrapolate the SDSS spec-
tra of quasars, covering the wavelength range 400�1000 nm, to a wavelength range that
enables their conversion into BP/RP spectra using the instrument model from ADS
(i.e. 300�1100 nm). It has been subsequently shown that the χ2 curve technique yields
the fairest predictions if using PCA templates coming of this method. As compared
to the implementations of Bailey (2012) and Tsalmantza et al. (2012), our method
was proven to be the method of choice regarding the extraction of the most signi�cant
patterns out of input datasets. These allow, for example, the extrapolation of missing
samples and the modelling of unseen but similar observations to be performed in an
e�cient way. It however fails to reproduce at best (i.e. in a least squares sense) an
input dataset given a minimal number of components.
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ABSTRACT
We present a new straightforward principal component analysis (PCA) method based on the
diagonalization of the weighted variance–covariance matrix through two spectral decompo-
sition methods: power iteration and Rayleigh quotient iteration. This method allows one to
retrieve a given number of orthogonal principal components amongst the most meaningful
ones for the case of problems with weighted and/or missing data. Principal coefficients are
then retrieved by fitting principal components to the data while providing the final decompo-
sition. Tests performed on real and simulated cases show that our method is optimal in the
identification of the most significant patterns within data sets. We illustrate the usefulness of
this method by assessing its quality on the extrapolation of Sloan Digital Sky Survey quasar
spectra from measured wavelengths to shorter and longer wavelengths. Our new algorithm
also benefits from a fast and flexible implementation.

Key words: methods: data analysis – quasars: general.

1 IN T RO D U C T I O N

Principal component analysis (PCA) is a well-known technique ini-
tially designed to reduce the dimensionality of a typically huge data
set while keeping most of its variance (Pearson 1901; Hotelling
1933). PCA is intimately related to the singular value decompo-
sition (SVD) since the principal components of a data set, whose
arithmetic mean is zero, will be equal to the eigenvectors of the co-
variance matrix sorted by their corresponding eigenvalue; or equiv-
alently by the variance they account for. The principal coefficients
are the linear coefficients allowing us to reconstruct the initial data
set based on the principal components. Further details about PCA
will be given in Section 3 of this paper. Interested readers are also
invited to read Schlens (2009) for an accessible tutorial on this
technique or Jolliffe (2002) for a deeper analysis.

PCA has many applications in a wide variety of astronomical
domains from the classification of the Sloan Digital Sky Survey
(SDSS) quasar spectra and their redshift determination (Yip et al.
2004; Pâris et al. 2014) to the study of the point spread function
variation in lensing surveys (Jarvis & Jain 2004). The method de-
scribed hereafter was originally developed in the framework of the
Gaia astrophysical parameters inference system (Bailer-Jones et al.
2013) where it is used to provide learning data sets of spectrophoto-
metric data based on SDSS quasar catalog spectra (Pâris et al. 2014).
The latter cover the observed wavelength range 4000–10 000 Å and

� E-mail: ldelchambre@ulg.ac.be

are extrapolated by our algorithm to the wavelength range 3000–
11 000 Å covered by Gaia. Even if developed for an astronomical
purpose, it can be used in any problems requiring PCA decompo-
sition of weighted data. The case of missing data being simply the
limiting case of weights equal to zero.

Classical PCA is a mature tool whose performance in dimension-
ality reduction and pattern recognition has been assessed for a long
time. Nevertheless, its main limitation comes from the fact that it is
not adapted to the case of samples having weighted and/or missing
data. The inherent consequence is that the classical PCA imple-
mentations made no difference between variance coming from a
genuine underlying signal and variance coming from measurement
noise.

Most of the previous works cope with these limitations mainly
by focusing on bypasses to the problem of noisy and/or missing
data; or deal explicitly with particular cases. These encompass, for
example, the interpolation of missing data (Beale & Little 1975) or
cases where the weight matrix can be factorized into per-observation
and per-variable weight matrices (Greenacre 1984). Jolliffe (2002)
in sections 13.6 and 14.2 makes the point about these proposed
solutions.

At the present time, some methods are still able to deal with
weight matrices having the same size as the corresponding data set
(Gabriel & Zamir 1979; Wentzell et al. 1997; Tipping & Bishop
1999; Srebro & Jaakkola 2003). Nevertheless, none of these are
able to provide the orthogonal principal components ordered by the
data set variance it accounts for. Rather, they provide an unsorted
set of not-necessary orthogonal vectors whose linear combination
is optimized to describe the underlying variance but whose goal is
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not compatible with the explanation of the variance given a minimal
number of vectors.

Based on the idea of Roweis (1997), Bailey (2012) and
Tsalmantza & Hogg (2012) have recently proposed methods based
upon the expectation-maximization (EM) algorithm (Dempster,
Laird & Rubin 1977) in order for the PCA to include weights as-
sociated with each variable within each observation. The objective
of these methods is globally similar to the one of this paper. Differ-
ences mainly come from the fact that Tsalmantza & Hogg (2012)
aim at finding an orthogonal decomposition of the original matrix
such that the whole data set variance is the best accounted for. In-
stead, our implementation focuses on finding the orthogonal vectors
that are the best at individually describing the data set variance at the
expense of a lower explained global variance. This trade-off comes
from the fact that in a weighted case, the solution to the problem of
finding the set of N components explaining most of the variance of
a data set is not guaranteed to contain the eigenvectors that are the
best at individually describing this variance. The implementation of
Bailey (2012) takes benefits of the flexibility of the EM algorithm
in order to interpolate between these two solutions.

In Section 2, we explain the notation used in this paper. We
summarize the properties of the classical PCA in Section 3. We see
in details two current alternative implementations of weighted PCAs
in Section 4. In Section 5, we describe our new algorithm while in
Section 6, we see its application on simulated data and real cases and
compare it against other algorithms. Finally, some properties and
extensions are discussed in Section 7 and we conclude in Section 8.

2 N OTATIO N

This paper uses the following notations: vectors are in bold italic,
x; xi being the element i of the vector x. Matrices are in uppercase
boldface or are explicitly stated; i.e. X from which the ith row
will be denoted Xrow

i and the jth column by Xcol
j , element at row i,

column j will then be Xij . Amongst matrix operators, a ◦ b denotes
the element-wise product (Hadamard product) of a and b and ‖a‖
denotes the Euclidian matrix norm of a.

Consider a problem where we have Nobs observations each con-
taining Nvar variables, from which we want to retrieve Ncomp prin-
cipal components. For reference, here are the often used matri-
ces along with their corresponding sizes: X the data set matrix
(Nvar × Nobs) from which we have subtracted the mean observation
ȳ (Xcol

i = Ycol
i − ȳ); W the weight of each variable within each

observation (Nvar × Nobs); P the orthogonal matrix of principal
components (Nvar × Ncomp); Pcol

i being the ith principal component;
C the principal coefficient matrix (Ncomp × Nobs); σ2 the symmetric
matrix of variance–covariance (Nvar × Nvar) associated with X.

Finally, A
χ2= B means that A is the nearest matrix from B in a –

potentially weighted – least-squares sense. Mathematically, this is
equivalent to have A and B such that

χ2 =
∑

ij

W2
ij

(
Aij − Bij

)2
(1)

is minimized.

3 PR I N C I PA L C O M P O N E N T A NA LY S I S

Regarding classical PCA and assuming – without any loss of gener-
ality – that we would like to retrieve as many principal components

Figure 1. A two-dimensional PCA example: PT can be seen as an orthog-
onal coordinate transformation from (Xcol

1 ;Xcol
2 ) to (Ccol

1 ;Ccol
2 ) such that the

data set variance is maximized along the vector Pcol
1 and Pcol

2 . Note that, for
a didactical purpose, we chose P to be a rotation matrix but practically it
can be any orthogonal matrix.

as the number of variables (ie. Ncomp = Nvar), then the goal of the
PCA will be to find a decomposition

X = PC, (2)

such that

D = PTσ2P = PTXXTP (3)

is diagonal and for which

Dii ≥ Djj ; ∀i < j. (4)

Note that based on equation (3) and according to the spectral
theorem,1 P will be orthogonal.

Intuitively, the matrix P can be seen as a change of basis allowing
us to maximize the variance within D and thus minimizing the
off-diagonal elements corresponding to the covariance. Differently
stated, each Pcol

i defines a privileged direction along which the data
set variance is the best explained. The fact that D is ordered implies
that for i < j, the principal component P col

i accounts for more – or
equal – variance than Pcol

j . For the sake of clarity, a comprehensive
PCA example is given in Fig. 1.

A common solution to such a classical PCA is based on the SVD
of X:

X = U�VT, (5)

where U, V are orthogonals, � is diagonal and for which |�ii | ≥
|�jj |; ∀i < j . By setting P = U and C = �VT, we find that equa-
tion (3) becomes

PTXXTP = CCT = �2, (6)

that fulfils the conditions of equations (3) and (4). Note that in equa-
tion (3) the exact variance–covariance matrix should be normalized
by Nobs but since we are solely interested in the diagonalization of
σ2, we drop it.

1 Any real symmetric matrix is diagonalized by a matrix of its eigenvectors.
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4 W E I G H T E D E X P E C T E D M A X I M I Z AT I O N
PCA

As already mentioned in Section 1, the current methods effi-
ciently dealing with the problem of weighting PCA (Bailey 2012;
Tsalmantza & Hogg 2012) aim at best explaining the whole data
set variance according to a given number of principal components,
which is equivalent to minimize

χ2 =
∑

ij

W2
ij

(
Xij − [PC]ij

)2
, (7)

where the weighted mean observation we subtracted (cf. Section 2)
is given by

ȳ =
∑

i

Wcol
i Ycol

i

/∑

i

Wcol
i . (8)

We notice that equation (7) has latent variables such that it has to
rely on an iterative procedure to be solved.

The EM algorithm is a statistical tool specifically designed to
optimize a likelihood function for models having latent – or un-
known/hidden – variables (Dempster et al. 1977). This iterative
procedure is composed of two steps.

(i) E-step: find the expectation value of the latent variables given
the parameters of the current model.

(ii) M-step: find the parameters of the model such that the likeli-
hood function is optimized.

Based on the latter, Roweis (1997) has developed a fast and
straightforward classical PCA algorithm for which the conditions
in equations (2), (3) and (4) are all fulfilled. Regarding weighted
PCA and more specifically the χ2 described by equation (7), we
will have the following weighted expected maximization PCA
(WEMPCA) algorithm:

P ←− Random orthogonal matrix
While P and C have not converged

(E-step) Find C that minimizes χ2 given P.
(M-step) Find P that minimizes χ2 given C.

Note that the convergence criterion is still relative. It can be based
on the χ2 – or the change in the principal components �P – falling
under a given threshold, the fact that the algorithm has reached
a given number of iterations or whatever criterion we consider as
relevant.

4.1 Tsalmantza’s implementation

Tsalmantza & Hogg (2012) designed a general approach to the mod-
elling and dimensionality reduction of the SDSS spectra called ‘Het-
eroskedastic Matrix Factorization’. More specifically, it attempts to
minimize

χ2
ε = χ2 + ε

∑

i>1

∑

j

[
Pij − P(i−1)j

]2
, (9)

subject to

Pij ≥ 0

Cjk ≥ 0

}
∀i, j , k. (10)

We recognize the first part of equation (9) as being equation (7)
while the second part is a smoothing regularization term whose
scalar ε defines the strength. Non-negativity constraints reflect a
particular need to have a meaningful physical interpretation of the
resulting spectra.

Regarding the fact that we would like to model the widest va-
riety of data sets, we will drop the non-negativity constraints that
otherwise would have restricted our search space. Concerning the
smoothing regularization factor, we have to note that it will be highly
problem-dependent and that it can be tricky to optimize, this will
result in a potential unfair comparison with other methods. We will
then consider the case ε = 0. Moreover, as we will see in Section
7.3, our method can deal with principal components smoothing as
well, consequently ignoring it will not constitute a major drawback
to our implementation.

The resulting function to optimize will then be reduced to the
sole equation (7). Nevertheless, and before going further, we have
to note that minimizing equation (7) will provide us a lower-rank
matrix approximation of X but it is not a sufficient condition for the
resulting matrices P and C to be considered as a PCA decomposi-
tion. According to Tsalmantza & Hogg (2012), the solution to this
problem can be solved in two steps.

First consider a lower-rank matrix decomposition of X, similar
to the one produced by the solution of equation (7),

X
χ2= AB, (11)

where for clarity, the sizes of these matrices are A(Nvar × Ncomp)
and B(Ncomp × Nobs). Now suppose an orthogonal basis P0 of A;
such an orthogonal basis always exists for full-rank matrices and
can be retrieved through a straightforward Gram–Schmidt process
for example. The associated coefficients matrix C0 is then directly
retrieved by

C0 = PT
0AB. (12)

Secondly, in a way similar to equation (6), we will take the
classical PCA decomposition of C0,

C0 = PcC, (13)

such thatCCT is diagonal. The resulting principal coefficient matrix
will then be given by

P = P0Pc, (14)

that will be orthogonal and that will provide us with the final de-
composition

X
χ2= PC. (15)

The above-mentioned steps have thus to be performed after
the EM algorithm minimizing equation (7) in order for P to be
orthogonal and for the covariance matrix CCT to be diagonal.
Sections 4.1.1 and 4.1.2 will now focus on details of the EM
algorithm.

4.1.1 E-step

As stated at the beginning of this section, the expectation step re-
garding WEMPCA will be given by the retrieval of the coefficient
matrix C that minimizes equation (7) – or equivalently that opti-
mizes equation (15) – while considering the principal component
matrix P being held fixed. Since each observation – column of X
– is a linear combination of the principal components, finding the
solution of equation (15) is equivalent to solving

Xcol
i

χ2= PCcol
i ; ∀i, (16)
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whose solutions are given by the ‘Normal Equations’:2

Ccol
i = (

PTw2P
)−1

PTw2Xcol
i , (17)

with w = diag(Wcol
i ).

4.1.2 M-step

Similarly to the E-step, solution to the M-step – that is the retrieval
of P that optimizes equation (15), given C – can be decomposed by
noting that within each observation, a given variable is the linear
combination of the corresponding principal components variables.
That is,

Xrow
i

χ2= Prow
i C; ∀i, (18)

whose solutions are

Prow
i = Xrow

i w2CT (Cw2CT)−1
, (19)

with w = diag
(
Wrow

i

)
.

4.2 Bailey’s implementation

As we have seen in Section 4.1, the implementation of Tsalmantza &
Hogg (2012) focuses on the solution of equation (7) while the PCA
decomposition can be seen as a supplemental step that is external
to the EM algorithm. Moreover, a single iteration of the algorithm
requires the solution of Nobs + Nvar systems of linear equations,
each of size (Ncomp × Ncomp), at each iteration of the EM algorithm.
This becomes quickly unmanageable regarding huge data sets.

Bailey (2012) takes the pragmatic approach that the sole solu-
tion of equation (7) can lead to good insights about the principal
components if the latter were fitted individually. This hypothesis is
reasonable since this will allow each individual principal component
to maximize the variance it accounts for.

The resulting implementation will be similar to the one of
Tsalmantza & Hogg (2012) apart from the optimization function
of the M-step. Indeed, in order for the principal components to be
fitted separately, we have to consider the cross-product decomposi-
tion of equation (15), that is

X
χ2=

∑

j

Pcol
j Crow

j , (20)

from which each Pcol
j has to be individually fitted.

Suppose that we already retrieved the (j − 1) first principal com-
ponents. Let us also assume that the data projection along these
(j − 1) principal components was already subtracted from the data
set, that is

X′ = X −
j−1∑

i

Pcol
i Crow

i . (21)

Then the retrieval of Pcol
j based on equation (20) can be decom-

posed in a way similar to equation (18) as

X′row
i

χ2= PijC
row
j , (22)

2 This method is known to suffer from numerical instabilities (Press et al.
2002) and is provided for a didactical purpose only. Methods such as SVD
for linear least squares must be preferred in order to solve equation (16).

whose solution is straightly given by

Pij = X′row
i w2CrowT

j

Crow
j w2CrowT

j

, (23)

with w = diag(Wrow
i ).

Equation (21) theoretically ensures that the last-retrieved com-
ponent, Pcol

j will be orthogonal to any previous one. Nevertheless,
due to machine round-off errors, this has to be manually checked.

Finally, we have to note that solving equation (20) will not
minimize the global χ2 – as defined by equation (7) – such that
the algorithm has to rely on a last E-step at the end of the main
EM algorithm.

5 N EW I MPLEMENTATI ON

Though both mentioned algorithms (Bailey 2012; Tsalmantza &
Hogg 2012) correctly find lower-rank orthogonal decompositions
that are suitable to explain the whole data set variance at best, none of
them assures us that the retrieved principal components will be those
that maximize the individual variance described by each of them.
These principal components are then efficient at reconstructing the
initial data set but are not the best at individually describing the
underlying data structure.

The basic idea of this new algorithm is to focus on the max-
imization of the weighted variance explained by each principal
component through the diagonalization of the associated weighted
covariance matrix. The resulting principal components will then be
those that are the most significant – under the assumption that the
definition of the used weighted variance is relevant – in identify-
ing pattern within the data set even if their linear combination is
not necessarily the best at explaining the total data set variance as
described by equation (7).

In the following, we will consider that the weighted variance of
a given discrete variable x having weights w is given by

σ 2
x =

∑
i w2

i (xi − x̄)2

∑
i w2

i

, (24)

where x̄ = ∑
i wixi/

∑
i wi and with the convention that 0/0 = 0.

The latter can be straightforwardly extended to the definition of the
weighted covariance between two discrete variables, x and y, for
which the weights are given by wx and wy respectively, that is

σ 2
x,y =

∑
i (xi − x̄) wx

i w
y
i (yi − ȳ)∑

i wx
i w

y
i

. (25)

Based on these definitions, we can write the weighted covariance
matrix of a data set X with associated weights W as

σ2 = (X ◦ W) (X ◦ W)T

WWT . (26)

We know, from the spectral theorem, that there exists an orthog-
onal matrix P such that σ2 is diagonalized, and consequently that
equation (3) is fulfilled (as well as equation 4 if P is ordered accord-
ingly). This matrix P will then constitute the principal components
of our implementation.

Fig. 2 shows a two-dimensional example of classical principal
components P′ that are unable to individually describe the underly-
ing data variance. In this example, we have supposed – for didactical
purpose – that the observations corresponding to the bright points
have far lower weights associated with the x variable. Weighted
principal components, P, diagonalizing σ2 as described by
equation (26) are given along with the variance it explains (that
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Figure 2. Comparison between weighted principal components P and clas-
sical principal components P′ in presence of underweighted observations
corresponding to the brighter points. |D11| and |D22| correspond to the
variances respectively explained by Pcol

1 and Pcol
2 .

is the diagonal elements of D = PTσP). Note that such principal
components maximize the variance explained by each variable as
described by equation (24) and consequently set to zero the associ-
ated covariance as described by equation (25).

The goal of the algorithm is then to retrieve the dominant eigen-
vector p from the covariance matrix σ2 along with its associated
eigenvalue λ, that is the dominant eigenpair 〈 p, λ〉. p will then be
the principal component explaining most of the data set variance,
λ. That is equivalent to find p in

σ2 p = λ p, (27)

such that λ is maximized.3

Equation (27), corresponding to the eigenvector definition, is a
well-studied problem for which many methods already exist. The
reference in the domain is Golub & Van Loan (1996) where the
interested reader may find a rather exhaustive list of such methods
as well as proofs of the algorithms described hereafter.

Unsurprisingly, in the context or our implementation, we choose
the fastest and simplest algorithm called the power iteration method.
The idea behind this algorithm is to recognize that given a diag-
onalizable square matrix A and a vector u(0) having a non-zero
component in the direction of p, the iterative relation

u(k) = Au(k−1) = Aku(0) (28)

will converge to a vector that is proportional to the dominant eigen-
vector p as k → ∞. Note that in practice, each vector u(k) is normal-
ized to unity in order to avoid numerical round-off errors inherent to
the computer representation of large numbers. The final eigenvector
will then be given by p = u(k)/‖u(k)‖ and the associated eigenvalue
by the Rayleigh quotient:

R (A, p) = p · A p = p · λ p = λ. (29)

3 In fact, 〈− p, −λ〉 is also solution of equation (27) but for the sake of
clarity, we will only consider the case of positive eigenvalues.

Convergence and assumptions made about this algorithm will be dis-
cussed in Section 7.1. Further principal components can be retrieved
by considering application of the above-mentioned algorithm to

A′ = A − λ p ⊗ p, (30)

that is the matrix obtained by subtracting the data variance along
the found principal components.

5.1 Refinement

As we will see in Section 7.1, the power iteration method may
have a slow convergence rate under some particular conditions.
Consequently it may be that some vectors did not effectively con-
verge to an eigenvector that would have diagonalized the covari-
ance matrix. Nevertheless, Parlett (1974) proposed an algorithm –
called Rayleigh quotient iteration – designed to tackle this kind of
problem.

Even if the proof of this algorithm is beyond the scope of this
paper, we still mention two basic facts to enable the reader to have
a minimal understanding of how it works. First, as we have seen
in equation (29), the Rayleigh quotient of a matrix with one of its
eigenvector is equal to its associated eigenvalue. Secondly, given a
matrix A with eigenvalues λ1, . . . , λn, we find that the eigenvalues
of the matrix (A − dI)−1 will be (λ1 − d)−1, . . . , (λn − d)−1. Based
upon these facts, we will have that the sequence

u(k) = (A − d (k−1)I)−1u(k−1) (31)

d (k) = R(A, u(k)), (32)

where each u(k) is normalized to the unit length, will converge
cubically to the eigenpair 〈 p, λ〉 that is the nearest – regarding the
absolute value of their Rayleigh quotient – from a starting point
〈u(0), d (0)〉 as k → ∞. Note that equation (31) is a power iteration
towards the eigenvector for which |λ − d(k − 1)| is minimized.

Finally, the principal coefficients are retrieved by solving χ2 χ2=
PC whose ‘Normal Equation’ solution is given by equation (17).

5.2 Variance regularization

Real-world data often have sparse and unevenly distributed weights
such that it may happen for some variables to have their correspond-
ing variances to be based only on a small number of observations.
Such situations may become problematic since these few variables
will have a strong impact on the resulting first principal components
in a way that is irrespective to their total weight.

Such ‘overweighted’ variables can be damped by using a regu-
larization factor within the expression of the weighted covariance,
σ 2

x, y, as defined by equation (25). The resulting regularized weighted
covariance will take the form

σ 2
x, y (ξ ) =

[∑

i

wx
i

∑

i

w
y
i

]ξ

σ 2
x,y, (33)

where the regularization parameter ξ allows us to control the damp-
ing strength.

The typical value of the regularization parameter, ξ , goes from
zero, where we get back to the classical behaviour of the algorithm,
to two for a strong damping of these rare variables. Conversely one
might want to highlight such underrepresented variables by setting
the regularization parameter to a negative value.
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6 C O M PA R I S O N

The performance of the method described in this paper was assessed
regarding the two previously described algorithms, namely the one
of Bailey (2012) and the one of Tsalmantza & Hogg (2012). The
choice of these algorithms comes from the fact that they are fairly
competitive and have goals that are comparable to those of the new
algorithm. All methods were tested on both simulated data as well
as on real observational ones.

6.1 Simulated data

Simulated data consist in random linear combinations of 10 orthog-
onal basis functions. These bases are produced by taking 10 shifted
sine functions having periods between 0.2π and 2π and by applying
a Gram–Schmidt orthogonalization process to the latter. Resulting
observations are then sampled over 100 evenly spaced points in the
interval [0, 2π]. To each variable, x, within each observation, x, we
also add a Gaussian noise having a standard deviation given by

σx = σin (1 + σobs) (1 + Uσ ) max |x| , (34)

where σ in is a user-provided parameter corresponding to the desired
noise amplitude, σ obs is an observation-specific noise ponderation
uniformly drawn from [−0.1, 0.1] and Uσ is a uniform random
variable corresponding to the noise dispersion within observations
and taking values in the range [−0.1, 0.1]. The weight associated
with the variable x will then be set to 1/σ x.

Finally, we discard Nbad contiguous and randomly positioned
variables from each observation. The latter will be used to assess
performances of the various algorithms on data extrapolation while
having their weights equal to zero during the PCA retrieval phase.
Examples of such simulated data are illustrated in Fig. 3.

In order to perform the comparison with other algorithms, we
built a given number of data sets, Nset, each containing 1000 obser-
vations. Each of these sets was duplicated and altered through the
realization of various values of the simulation parameters σ in and

Figure 3. Examples of simulated data illustrating the effect of the simula-
tion parameters σ in and Nbad.

Nbad. We then retrieved, for each of the mentioned algorithms, the
five first principal components out of the resulting altered data sets
and computed estimators based on the following χ2 definition:

χ2 =
∑

ij [W ◦ (X − PC)]2
ij∑

ij W
2
ij

. (35)

The following estimators were computed: χ2
fit, the chi-square of the

data set for which weights associated with the discarded variables
are set to zero and χ2

test where only rejected variables are considered
and for which weights associated with the unrejected variables are
set to zero. Let us note that χ2

fit will typically account for the quality
of the fit while χ2

test will account for the quality of the extrapolation.
If these estimators are to be computed based on the number of
data set, Nset, we use a 3σ -clipped mean over all the χ2

fit and χ2
test

associated with each data set, namely 〈χ2
fit〉 and 〈χ2

test〉.
For completeness, only data sets having Nbad ≤ 50 will be dis-

cussed here. This decision comes from the fact that efficiently es-
timating the principal components of such sparse data sets while
having ‘only’ 1000 observations is a really tricky task strongly de-
pending on the design of these data sets. Furthermore, as we will see
in Section 7.4, the Bailey and Tsalmantza algorithms are big time
consumers such that dealing with bigger data sets quickly becomes
unmanageable.

Since all the studied algorithms are based on iterative procedures,
we have to take into account the convergence criterion for each
of them. To this aim, we performed a preliminary study whose
goal is to determine the minimal number of iterations needed by
each algorithm in order to reach convergence. This was assessed
by running 100 times each algorithm on data sets similar to those
previously described and by setting the initial eigenvectors estimates
to random values within each run. In order to make sure we can
model unseen and potentially more complex data sets, the number
of iterations was set to twice the found number of iterations needed
to converge, giving respectively 500, 500 and 104 iterations for
Bailey, Tsalmantza and our algorithm (without refinement).

Regarding the quality of the fit, χ2
fit, differences between the var-

ious algorithms are fairly low even if – as expected – our algorithm
is proven to have somewhat larger χ2

fit with a higher dispersion over
all the data sets. Fig. 4 shows the behaviour of the mean χ2

fit regard-
ing two common cases, namely the case of increasing noise and
no missing data and the case of moderate noise (σ in = 0.1) with
increasing number of missing data. Each point on these graphs is
averaged over Nset = 1000 data sets. Practically, one cannot distin-
guish the various algorithms if all data are present since differences
are in O(10−6). In presence of missing data, differences start to be
noticeable but still reasonable with differences in O(10−3). For a
didactical purpose, let us note that if only the first component –
out of the five retrieved – was considered then our algorithm would
have had a better or equal χ2

fit than Bailey and Tsalmantza imple-
mentations over all the values of the simulation parameters σ in and
Nbad.

Regarding now the quality of the extrapolation, differences are
more noticeable. Fig. 5 illustrates these discrepancies according to
the averaged χ2

test over Nset = 100 data sets having reasonable χ2
fit

in each of the σ in and Nbad simulation parameters. At first glance,
our new algorithm shows a globally better 〈χ2

test〉 while suffering
less from missing data: the latter being dominated by noise within
the data. The Tsalmantza’s algorithm shows good performances but
has a stronger dependence on missing data, reaching a maximum
〈χ2

test〉 = 0.372 while Bailey’s algorithm shows strong numerical
instabilities for Nbad > 40 that makes it unable to converge and
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Figure 4. Averaged χ2
fit for increasing noise without missing data (top).

Subtraction of Bailey and Tsalmantza χ2
fit from our algorithm χ2

fit (middle).
Averaged χ2

fit with moderate noise and an increasing number of missing data
(bottom).

makes it reach a maximum 〈χ2
test〉 ≈ 3 × 109 for σ in = 0.9 and

Nbad = 50. Fig. 6 illustrates in more detail the behaviour of 〈χ2
test〉

averaged over Nset = 1000 data sets in the common case of moderate
noise (σ in = 0.1) with an increasing number of missing data. For
clarity, the plot of Bailey having Nbad > 40 has been removed from
the graph.

Finally, let us note that data sets having σ in = 0 and Nbad = 0
can be solved using a classical PCA algorithm. Consequently, both
the variance explained by each individual component and the total
variance can be simultaneously optimized. We will thus find – in this
particular case – that all algorithms will provide us with identical
results as it was already suggested in Fig. 4. Similarly, if we choose
to retrieve a single component, even with noisy and/or missing
data, the algorithms of Bailey and Tsalmantza will maximize the
variance explained by this component, the latter will thus match the
first component that would have been retrieved by our algorithm.

6.2 Observational data

Comparisons against a concrete case were performed using the
SDSS DR10Q quasar catalog from Pâris et al. (2014). Out of the
166 583 QSO spectra present in the initial data release, 18 533 were
rejected either due to spectra bad quality, strong uncertainties in
redshift determination, presence of BAL or insufficient number of
high-S/N points. The remaining spectra were set to the rest frame;
the continuum was then subtracted and the spectra were normalized

Figure 5. χ2 maps of averaged χ2
test regarding σ in and Nbad simulation

parameters.

such as to have a zero mean and a variance of 1. Finally, visual
inspection showed that in some cases the continuum was badly
fitted such that the variance within these spectra can mainly be
attributed to this error; these regions were removed using a k-sigma
clipping algorithm for each variable among all observations. There
remain 148 050 spectra having observed wavelengths between 4000
and 10 000 Å and for which the variance within each spectrum is
thought to be mainly caused by genuine signals. In the following
tests, the 10 first components will be retrieved from each algorithm.
We also suppose, as previously, that ξ = 0.

The number of iterations associated with each algorithm was as-
sessed by using a subset of the above-described data set (1000 ≤
λrest ≤ 2000 Å, 3 ≤ z ≤ 4) and by running 10 times the various
algorithms on it with random initial principal components. Conver-
gence was assessed by minimizing the variance amongst the final
principal components within these 10 runs. The fact that only a
subset of the above-described data set was used can be explained
by the large amount of time needed by each algorithm to run as
well as by the fact that – as we will see – Tsalmantza and Bailey
algorithms often fail to converge in presence of a large amount of
missing data. The results show that the number of iterations chosen
in Section 6.1 also match the complexity of this problem.

The initial test to be performed is similar to tests performed in
Section 6.1 in the sense that PCA were retrieved for all algorithms
using the region 5000–9000 Å in observed wavelength while regions
4000–5000 and 9000–10 000 Å are rejected and kept to assess the
quality of the extrapolation. Fig. 7 shows an example of such a
spectrum along with the fits by the various algorithms. The resulting
SDSS DR10Q data set χ2

fit and χ2
test, as defined by equation (35), are

given in Table 1.
We see that χ2

fit is quite stable for all the algorithms while being
a bit higher for our algorithm as expected. Now watching at the
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Figure 6. Averaged χ2
test for moderate noise with an increasing number of

missing data.

extreme differences of χ2
test for the various algorithms and given

the fact that we know it to be an estimator that is quite sensitive
to outliers, we found relevant to see how these discrepancies are
distributed among the observations. To this aim, we computed a
χ2

test per-observation whose distribution is summarized in Fig. 8.
Given the significant number of observations used in this test, we

can already draw some general trends. Beside the fact that the other
algorithms have a better χ2

fit, they often fail to satisfactorily extrap-
olate the spectra. Indeed, for the Bailey algorithm, 81 per cent of
observations have χ2

test ≥ 5 with a peak up to 9.59 × 1015 (median =
8.24 × 104); the Tsalmantza algorithm has respectively 33 per cent
of observations having χ2

test ≥ 5 and a peak up to 5.78 × 108 (median
= 1.789) while our new algorithm has only 1.4 per cent of ‘outliers’
with a maximal peak of 172 (median = 1.021). If the observa-
tions are individually compared, our algorithm has a lower χ2

test in
90 per cent of the time regarding Bailey algorithm and 68 per cent
of the time regarding Tsalmantza algorithm while in other cases
differences remain quite moderate with a median �χ2

test ≈ 0.3. For
completeness, we have to note that these huge discrepancies can be
mainly attributed to the large amount of missing data (76 per cent)
within the resulting rest-frame DR10Q data set.

Another quality one would often desire is the ability to have
the most general and representative set of principal components
able to model unseen observations. In this optic, two tests were
performed.

First, we split the initial DR10Q data set into two subsamples
each of 74 025 spectra spanning from 4000 to 10 000 Å (hereafter

Table 1. SDSS DR10Q data set fit and extrapolation chi-
squares followed by per-observation median chi-squares of
extrapolation and associated ratio of outliers.

New Tsalmantza Bailey

Data set χ2
fit 0.107 0.088 0.094

Data set χ2
test 1.064 2 × 105 8 × 1012

Median χ2
test 1.021 1.789 8 × 104

Ratio of observations
having χ2

test ≥ 5 0.014 0.33 0.81

Figure 8. Distribution of the observation’s χ2
test. Right-hand part represents

the number of QSOs (× 103) having χ2
test ≥ 5.

LS1 and LS2). From each of these subsamples, we extract ∼8600
spectra for which the rest-frame region from 1000 to 2000 Å is
entirely covered – and consequently ‘without’ missing data – and
∼62 000 spectra for which the mentioned region is only partially
covered–and thus ‘with’ missing data. Note that according to the
selected observed wavelengths and the previous definitions, spectra
without missing data will correspond to those having 3 ≤ z ≤ 4 and
spectra with missing data to those having 1 ≤ z ≤ 9.

The consistency and convergence of each algorithm were then
tested by retrieving 10 principal components out of LS1 and LS2
data sets taken with and without missing data. Prior to discussing the
results, we have to mention that the components may be swapped
from data sets with missing data to the corresponding ones without
missing data. This is easily explained by the fact that some patterns
may be highlighted due to the uneven coverage of the wavelength
range while being damped in the total variance if a full coverage

Figure 7. Example of SDSS DR10Q spectrum fits. λχ2
test

and λχ2
fit

denote regions used to compute, respectively, χ2
test and χ2

fit for this observation.
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Figure 9. Principal components retrieved from two independent data sets (LS1 and LS2) coming from the DR10Q catalogue. The left-hand part corresponds
to the dominant eigenvectors extracted from spectra having no missing data while the right-hand part are the associated components coming from spectra
having missing fluxes.

is considered. Fig. 9 illustrates the results of this test regarding
the first component of the data set without missing data and as-
sociated component with missing data. We see that in absence of
missing data, all algorithms are consistent and succeed in converg-
ing towards the dominant eigenvector while in the case of missing
data only our algorithm shows both a good consistency and a good
convergence. More precisely, regarding our algorithm, the mean
differences per-point between LS1 and LS2 are in O(10−6) for both
subsets with and without missing data. Differences noticed between
subsets, that is mainly the general larger equivalent width and the
stronger N V λ1240 Å emission line of the subset with missing data,
are consistent with the underlying data set and make it able to model
the larger variety of spectra coming from the larger redshift range.
Let us mention, that no significant inconsistencies have been no-
ticed up to the sixth component for LS1 and LS2 on both subsets
for our algorithm. Concerning the Bailey’s algorithm, we see, as
already suggested in Section 6.1, that it fails to converge if a large
amount of data is missing. Tsalmantza’s implementation shows a
better convergence but fails to correctly reproduce some emission
lines (O VI λ1033, N V λ1240, C IV λ1549 and C III λ1908 Å) as
well as the region ≤1200 Å in subsets with missing data. Similarly
to Bailey’s algorithm, analysis show that these are due to a con-
vergence problem occurring on sparse data sets and arising from
numerical instabilities.

In the second test performed, 10 principal components were
retrieved from a set of 98 700 spectra spanning from 4000 to
10 000 Å (hereafter LS3). We tested the fact that the principal com-
ponents are the best at individually describing the underlying data
variance by fitting the remaining 49 350 spectra (hereafter VS)
using a subset of five components retrieved from LS3. That is, if
the variance explained by each individual component is maximized

then the fit of a smaller number of components to a similar data set
should be minimal. In this case, if we consider computing χ2 of VS
data set as defined by equation (35) for each of the algorithms, we
have respectively χ2 = 0.372 for the Bailey algorithm, χ2 = 0.316
for the Tsalmantza algorithm and χ2 = 0.309 for our algorithm,
thus supporting our last quality criterion. Note again that if all com-
ponents were considered, Bailey and Tsalmantza algorithms would
have had a better resulting χ2.

7 D I SCUSSI ON

7.1 Convergence and uniqueness

At first glance it is surprising that the power iteration algorithm
works at all, but in practice, it is easily demonstrated. Consider a
diagonalizable square matrix A of size (n × n) having eigenvectors
p1, . . . , pn and associated eigenvalues λ1, . . . , λn where |λ1| ≥
|λ2| ≥ ··· ≥ |λn|. Since the eigenvectors are orthogonal between
each other, we can write the starting vector of the power iteration
algorithm as

u(0) = c1 p1 + · · · + cn pn. (36)

Then we will have that the vector at iteration k given by

u(k) = Ak

n∑

i=1

ci pi =
n∑

i=1

ciλ
k
i pi

= λk
1

[
c1 p1 +

n∑

i=2

ci

(
λi

λ1

)k

pi

]
. (37)
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We see that u(k) will converge to λk
1c1 p1 as k → ∞ under the

following conditions: c1 �= 0, i.e. the starting vector has a non-
zero component in the direction of the dominant eigenvector and
|λ1| > |λ2|, i.e. the data set has only one dominant eigenvalue.
Also note that, in this case, the rate of convergence to the dominant
eigenvector will be principally given by λ1/λ2 and that in the case
of λ1 = λ2, the uniqueness of the solution is not guaranteed as it
depends on the starting vector u(0). Refinement seen in Section 5.1
obeys to the same conditions. Additionally, the dominant eigenvalue
of (A − dI)−1 will tend to ∞ as d → λ, where A is the covariance
matrix, d the current ‘eigenvalue’ (i.e. the Rayleigh quotient of A
and u, the current ‘eigenvector’) and λ a real eigenvalue of A. This
may thus lead to numerical instabilities that can strongly deteriorate
the vector used in the next step of the Rayleigh quotient iteration.

That being said, failures against convergence can be easily
checked. For example, a satisfactory solution should have A p ≈
λ p; and if not, the power iteration algorithm can be resumed with
another starting vector u(0). Under the condition that we have λ1

= λ2, we will have an infinite number of eigenvectors that are
equally good at describing the data set variance, thus choosing
one over another is irrelevant. Concretely, during the ∼100 000
tests performed in the context of this paper, no such problems
arose. Checks performed on eigenvectors from Section 6.1 and
6.2 show that the latter are orthogonal to a machine precision of
O(10−16) and that the weighted covariance matrix (as described
by equation 26) is diagonalized with the same precision. Nev-
ertheless, people wanting extreme reproducibility and/or secure
convergence may still use the SVD in order to extract all eigen-
vectors from equation (26) at the expense of a lower flexibility
(see Sections 7.2 and 7.3).

7.2 A priori eigenvectors

In some situations, one may already have an approximation of the
wanted principal components corresponding to a given data set.
Typical examples include principal components update according
to new observations added to the data set or in a real case we
encountered, the use of SDSS DR9Q eigenvectors to the DR10Q
data set. These will constitute a priori eigenvectors that it would
be regrettable not to use. The design of our algorithm allows us
to easily take benefits of these a priori vectors. Instead of using
a random vector, u(0), in equation (28) one can straightforwardly
substitute the known vectors to the random starting vector usually
used. Doing so will typically decrease the number of iterations
needed to converge towards the new vectors. Beware that vectors
may be swapped between a priori eigenvectors and effective data
set eigenvectors – as encountered in Section 6.2 – and consequently
iterations needed to converge will be the same as if we had used
a random starting vector. In this case, one can perform no power
iteration and use only the refinement seen in Section 5.1 in order to
converge to the nearest eigenvector.

7.3 Smoothing eigenvectors

It sometimes happens for some variables within eigenvectors to
exhibit some sharp features that we know to be artefacts. These
occur mainly in cases where we have noise that is comparable in
amplitude to the data variance, data regions covered only by a few
numbers of observations or data sets containing corrupted observa-
tions. Again the flexibility of our algorithm allows us to efficiently
deal with these drawbacks. Suppose that we retrieved such a ‘noisy’
eigenpair 〈 p, λ〉 from a given data set whose covariance matrix is

given by A, then, before removing the variance in the direction of
the found component through equation (30), one can filter p thanks
to any existing smoothing function. Assuming that the resulting
vector, p′, is near p regarding the norm of their difference, we can
suppose that the variance accounted for by p′ (i.e. its ‘eigenvalue’)
is similar to the one of p and then subtract it along the direction of
p′ by

A′ = A − λ p′ ⊗ p′. (38)

Note that the kind of smoothing function to use is highly data-
dependent and no rule of thumb exists. Nevertheless, a quite general
and commonly used filter producing efficient results in the field of
QSOs can be found in Savitzky & Golay (1964). Finally, let us note
that, when applying a filter, the orthogonality of the components has
to be manually checked and that they will obviously not diagonalize
the covariance matrix anymore.

7.4 Scaling performance

PCA is often used in cases where we have a lot of observations and
a reasonable number of variables, typically we have Nobs � Nvar.
We know, for example, the classical algorithm to require O(N3

var)
basic operations in order to solve for the eigenvectors of the co-
variance matrix and O(N2

varNobs) operations to build this matrix. In
the following, we will compute the algorithmic complexity of the
various explored algorithms in a similar way.

The Tsalmantza algorithm requires for each iteration (hereafter
Niter) the solution of linear systems of equations for each of the
E and M-step, respectively, in each observation and in each vari-
able. We will then have that its algorithmic complexity is given
by O(NiterN

3
comp(Nobs + Nvar)). The Bailey algorithm will be iden-

tical except for the M-step that will be in O(NvarNobsNcomp) and
can thus be discarded, giving O(NiterN

3
compNobs). Finally, our algo-

rithm mainly requires the building of the covariance matrix, Niter

matrix multiplications, potentially Nrefine matrix inversions in or-
der to refine the eigenvectors and a final single E-step similar to
the one for the previous algorithm (discarded here), thus giving
O(N2

varNobs + NiterN
2
varNcomp + NrefineN

3
var).

We see that in case Nobs � Nvar, our algorithm is much faster
than the other ones as the computing time is mainly spent in the co-
variance matrix building. As an illustration, if we take data similar
to those described in Section 6.1 with Nobs = 10 000, PCA re-
trieval takes ∼140 s for the Bailey and Tsalmantza algorithms (with
Niter = 100) and ∼3 s for the new one (with Niter = 10 000) on a
2.4 Ghz CPU.

8 C O N C L U S I O N S

We presented a new method for computing principal components
based on data sets having noisy and/or missing data. The underlying
ideas are intuitive and lead to a fast and flexible algorithm that is
a generalization of the classical PCA algorithm. Unlike existing
methods, based on lower-rank matrix approximations, the resulting
principal components are not those that aim to explain at best the
whole variance of a given data set but rather those that are the most
suitable in identifying the most significant patterns out of the data
set while explaining most of its variance. The main benefits of the
current implementation are a better behaviour in presence of missing
data as well as faster run times on data set having a large amount of
observations. Privileged problems encompass data set extrapolation,
patterns analysis and principal component usage over similar data
sets. We assessed the algorithm performance on simulated data as
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well as on QSO spectra to which many applications are already
foreseen in the field of the Gaia mission.
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2.3 Weighted phase correlation

The major drawbacks of the χ2 curve approach we described in section 2.1.2 stand
both in its quadratic time dependency as well as in the numerical instabilities that
may arise once the normal equations are used so as to �t the templates to the obser-
vations. Beside these weaknesses, we still have to note that this technique provides
extremely fair predictions on the redshift and that it allows a straight interpretation
of the errors that may arise during predictions (e.g. multiple solutions having a simi-
lar χ2 are readily identi�ed). This ultimately yields strong diagnostic tools on these
errors. For these reasons, it has a long history in astronomy and more particularly
in the processing of spectroscopic data (e.g. Simkin 1974). It has been consequently
employed in numerous spectral reduction pipelines out of which the baryon oscillation
spectroscopic survey (BOSS) pipeline of the SDSS (Bolton et al. 2012) stands to be
the most famous one. In the latter implementation an SVD decomposition (equation
2.10) is advantageously replacing the Cholesky decomposition of the normal equation
so as to gain numerical stability. It is e�ectively known that the use of such orthogonal
decomposition methods leads to a high numerical stability at the expense of higher
execution times (Golub & Van Loan 1996; Press et al. 2002).

With this aim in mind, we �rst re-write the χ2 curve equation (equation 2.7) in
terms of matrix operations as

χ2(k) =
∥∥∥Ws−WT̃a(k)

∥∥∥
2

=
∥∥∥y − X̃a(k)

∥∥∥
2
, (2.15)

where W is the diagonal matrix of weights associated with the observed spectrum s
(i.e. Wii = 1/σi), T̃ij = T(i+k)j is the matrix of shifted templates and X̃ = WT̃. For
reasons that will become clear in Paper II, we consider here an orthogonal decompo-
sition of the form

X̃ = QR (2.16)

where Q is orthogonal and R is upper triangular. Substituting the latter decomposition
into 2.15 yields

χ2(k) = ‖y −QRa(k)‖2 = ‖y −Qb(k)‖2 = ‖y‖2 − ‖b(k)‖2 . (2.17)

The χ2 curve can hence be computed (up to a constant term) through the sole knowl-
edge of ‖b(k)‖2 = ‖Ra(k)‖2 as ‖y‖2 is shift-independent (i.e. it is constant over k).
The global maximum of ‖b(k)‖2 being then associated with the global minimum of
the χ2 curve, we will accordingly term ccf(k) ≡ ‖b(k)‖2 the cross correlation function
(CCF) of s against T in the following.

In Paper II, we show how the CCF can be computed over all shifts k ∈ {0,m− 1}
in O (m logm) �ops. A rigorously derivation of this numerical complexity being also
provided in section A.3 of the appendices. Along with this low numerical complexity,
one can �nally a�ord to use this weighted phase correlation (WPC) algorithm in the
�eld of the Gaia mission. Indeed, using the numerical complexity we derived in section
A.3 as well as the number of samples and templates we probe in section 2.1.2 and
equation 2.9 (i.e. N = 7709 samples with 6 templates), we have that the numerical
complexity of this algorithm will be in the order of 3 × 106 �ops whereas 109 �ops
are allocated for the processing of a single source. This equivalently translates in an
execution time of ∼ 2 µs per source in DPCC out of 0.6 ms available. Paper II further
derives the uncertainties associated with the redshift predictions as well as it explores
the conditions for rising warning �ags.
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ABSTRACT
We present a new algorithm having a time complexity of O (N log N ) and designed to re-
trieve the phase at which an input signal and a set of not necessarily orthogonal templates
match best in a weighted chi-squared sense. The proposed implementation is based on an or-
thogonalization algorithm and thus also benefits from high numerical stability. We apply this
method successfully to the redshift determination of quasars from the twelfth Sloan Digital
Sky Survey (SDSS) quasar catalogue and derive the proper spectral reduction and redshift
selection methods. Derivations of the redshift uncertainty and the associated confidence are
also provided. The results of this application are comparable to the performance of the SDSS
pipeline, while not having a quadratic time dependence.
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1 IN T RO D U C T I O N

The advent of extremely large spectroscopic surveys like the Sloan
Digital Sky Survey (SDSS), which includes more than 2 × 106 high-
resolution spectra over 5200 deg2 of the sky (Alam et al. 2015), or
the Gaia space mission, which will provide, by the end of 2018,
150 × 106 low-resolution spectra (de Bruijne 2012), provides us
with unique opportunities to obtain a statistical view of the kinds of
object present in the Universe, along with some of their fundamen-
tal characteristics. These play a key role in the answers to some of
the currently most important astrophysical questions, like the evo-
lution scenarios of the Galaxy and the Universe or its accelerated
expansion (Perryman et al. 2001; Aubourg et al. 2015).

Along with these large surveys comes an impressive continuous
flow of data that has to be treated right on time through huge dedi-
cated processing centres. One of the most important tasks amongst
the spectral reduction processes comprises the classification of ob-
jects and determination of their astrophysical parameters (APs).
More specifically, in the case of extragalactic objects, this infor-
mation depends critically on the availability of reliable redshift
estimates.

Redshift determination, even if apparently straightforward, is in
practice a challenging problem, for which numerous solutions have
been proposed.

(i) Visual inspection procedures: a skilled observer can guess the
APs of any object efficiently and can deal with any unexpected
cases like corrupted/missing emission lines, spectra superposition
or non-physical solutions. Obviously, this choice is infeasible for
large surveys, though the analysis of any sufficiently large subset
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is invaluable, as it can serve as input to sophisticated computer
algorithms that will try to mimic this human expertise. This is the
solution undertaken by Pâris et al. (in preparation) regarding the
redshift of quasars and, accordingly, it will be used within this
article as the default quasar spectral library.

(ii) Matching of spectral lines: this method consists of extracting
some significant patterns from the input spectra and then trying to
match them to known emission/absorption lines. This procedure has
been used for a long time, but has been shown to be restricted to
relatively high signal-to-noise ratio (SNR) spectra (Machado 2013).

(iii) Computer learning methods: the goal here is to make the
algorithm guess the relations that exist between some characteristics
of already-reduced objects (e.g. observed wavelengths and fluxes)
and the parameters of interest (e.g. redshift coming from a visual
inspection procedure). The aim is then to apply these relations to the
case of objects with parameters that are still unknown. Interested
readers may find the descriptions of many such algorithms in Bishop
(2006). Note that, depending on its complexity, the relation guessed
may be non-physical and hard to interpret, leading to suboptimal
or potentially unrealistic predictions. This is the reason why these
should preferably be used for the case of highly non-linear problems
for which no other (fast) solution exists.

(iv) Phase correlation: the idea here is to find the optimal corre-
lation of a given observation against one or more templates in order
to determine its redshift. Based upon the ability of these templates
to match the observations, from the physical nature of this solution
and the shortcomings of the previously mentioned alternatives, we
will consider this to be the most trustworthy automated procedure
for redshift determination.

Based on the work of Brault & White (1971), Simkin (1974)
first suggested the use of the fast Fourier transform (FFT) as an
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efficient way of finding the redshift of galaxies based on their
cross-correlation with a single template. Tonry & Davis (1979) later
derived the formulation associated with the resulting redshift un-
certainties, which were refined further by Heavens (1993). Finally,
Glazebrook (1997) generalized the cross-correlation technique to
the case of templates coming from the principal components anal-
ysis (PCA) decomposition of spectral libraries. Although it is cur-
rently the most widespread technique for redshift determination,
the latter actually suffers from some well-known drawbacks (see
Section 3.2.1). The solution to these problems comes from the use
of a weighting scheme associated with the observed spectrum, as
implemented in Bolton et al. (2012). Unfortunately, this solution has
a quadratic time dependence that makes it fairly time-consuming.

The method proposed in the present work overcomes this high
numerical complexity and was developed in the framework of the
Gaia astrophysical parameters inference system (Bailer-Jones et al.
2013) and, more specifically, within the field of the quasar clas-
sification module (QSOC), the goal of which is to find the APs
associated with the quasars that Gaia will detect. In this domain,
the time constraints imposed by the Gaia mission restricted us to
the use of computer learning methods, but in the end the advent
of this new method will allow us to predict fair and fast redshift
estimates for the upcoming Gaia data releases.

Section 2 explains the conventions used within this article.
Section 3 gives a brief review of the phase-correlation and PCA
techniques, aimed at better understanding their main limitations.
We have developed a fast solution to the problem of the weighted
phase correlation in Section 4. Tests against real cases are then
performed within Section 5, while extensions of the algorithm pre-
sented are discussed in Section 6. Finally, we conclude in Section
7.

2 N OTATIO N

This article uses the following notations: vectors are in bold italic, x,
with xi being the element i of the vector x. Matrices are in uppercase
boldface or are explicitly stated; i.e. X, from which the ith column
will be denoted by X

col
i and the element at row i, column j by Xij . In

the following, we will consider the problem of finding the optimal
offset between an observed spectrum composed of Ns samples and
NT templates of size Np by probing various shift estimates, Z. By
considering the zero-padding necessary in order for these to be
properly used within the Fourier domain, we see that the template
matrices, P and T, will be of size (N × NT) with N = Ns + Np.
Similarly, the observation vector, s, will be of size N as well. Note
that, in order for the redshift to turn into a simple offset, we will have
to consider a logarithmic wavelength scale. If not stated otherwise,
matrices and vectors having a tilde on top of them (e.g. T̃) will be
specific to a given shift try, Z ∈ 0···N − 1. Amongst commonly
used operators, a · b denotes the inner product of a and b and a ⊗ b
their outer product; ‖a‖ the Euclidian norm of a and a∗ its complex
conjugate. Finally, F [x] and F−[x] correspond respectively to the
discrete Fourier transform (hereafter DFT) and inverse DFT of x.

3 PH A S E C O R R E L AT I O N U S I N G PC A

As already stated, the most commonly used technique for quasi-
stellar object (QSO) redshift determination consists of finding the
best correlation of an observed spectrum against templates coming
from the PCA decomposition of a rest-frame spectral library. More
specifically, these are based on spectra sampled on a uniform loga-
rithmic wavelength scale, such that the observed wavelength, λobs,

can be related to the rest-frame wavelength, λrest, through the QSO
redshift, z, as a simple offset:

log λobs = log λrest + log(z + 1). (1)

In the following, we make a brief review of the two above-
mentioned techniques, which should provide the reader with in-
sights about their way of working and is aimed at better under-
standing their main limitations regarding the redshift estimation of
QSOs.

3.1 Principal components analysis

PCA is a well-known technique designed to extract a set of templates
– the principal components – from a typically huge set of data
while keeping most of its variance (Pearson 1901). These principal
components will hence be those that are the best suited, in order to
highlight the most important patterns out of the input data set.

Mathematically, the goal of the PCA is to find a decomposition
of an input matrix X, from which we have subtracted the mean
observation, into

X = PC, (2)

such that

D = P
T
XX

T
P = P

T
σ 2P (3)

is diagonal and for which

Di ≥ Dj ; ∀i < j. (4)

P, the matrix of the eigenvectors of σ 2, is then called the matrix
of principal components; C is the associated matrix of principal
coefficients and Di are the eigenvalues of the covariance matrix, σ 2.
Note that, according to the spectral theorem,1 P will be orthonormal,
such that we have

C = P
T
X. (5)

From this orthonormality and from equation (4), we have that the
linear combination of the first principal components of P with the
associated principal coefficients of C will constitute the best linear
combination in order to fit X in a least-squares sense.

An illustrative example of PCA decomposition is given in Fig. 1.
This figure is based on spectra covering the rest-frame wavelength
range 1100–2000 Å coming from the SDSS DR12 quasar catalogue
(Pâris et al. in preparation). Notice how the main QSO emission lines
are modelled by the various components as a way to grab the vari-
ance coming from the great diversity of shapes encountered within
the spectral library. Readers wishing more information on PCA de-
composition are invited to read Jolliffe (2002) for a deep analysis
of the technique or Schlens (2014) for an accessible tutorial.

The application of this technique to the analysis of QSO spec-
tra was first covered by Francis et al. (1992); Yip et al. (2004)
later adapted it to the case of SDSS DR1 quasar classification and
redshift determination, while Cabanac, de Lapparent & Hickson
(2002) performed a similar work based upon spectra coming from
the Large Zenith Telescope survey, the spectral resolution of which
(λ/�λ ∼ 40) is of the same order of magnitude as that of the red
and blue photometers of Gaia (Bailer-Jones et al. 2013).

1 Any real symmetric matrix is diagonalized by a matrix of its eigenvectors.
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Figure 1. Rest-frame mean observation and first principal components
coming from the PCA decomposition of TypeI/II SDSS DR12 quasar spectra
having 2.3 ≤ z ≤ 2.4 (24 939 spectra).

3.1.1 Weighted PCA

One of the main limitations of the classical PCA method is that
it does not make any distinction between variance coming from
noise and variance coming from a genuine signal. Furthermore, in
its naive form, it does not know how to deal with missing data. This
last point is particularly crucial in the field of high-redshift surveys,
where the observed wavelength ranges may not overlap from object
to object.

A straightforward approach so as to avoid these shortcomings
stands in the use of a weighting scheme that allows each flux within
each spectrum to retain its own uncertainty while performing the
PCA decomposition. Such a fully-weighted PCA (WPCA) method
was first described in the astronomical literature by Tsalmantza &
Hogg (2012) and was later refined by Bailey (2012). In the field
of the present study, we will use the implementation described
in Delchambre (2015); this choice comes mainly from its high
numerical stability. This method is based on the diagonalization of
the weighted variance–covariance matrix as defined by

σ 2 =
(
X ◦ W

) (
X ◦ W

)T

WW
T , (6)

where ◦ represents the elementwise product of two matrices and
where X is supposed to have a weighted mean observation of zero.
The decomposition of σ 2 into a diagonal matrix of eigenvalues,
D, and a matrix of orthonormal principal components, P, is then
performed using either a combination of two spectral decomposi-
tion methods, namely the power iteration method followed by the
Rayleigh quotient iteration one, or the singular value decomposition

(SVD). This technique allows us to retrieve the fairest components
(i.e. those for which uncertainties are taken into account) without
having to worry about missing data: this case is the limiting case
of weights equal to zero. Consequently, this method will be used
through the rest of this article as the default process, in order to
retrieve the principal components.

3.2 Phase correlation

The goal of the phase-correlation algorithm is to find the optimal
shift between a set of orthonormal templates – or a sole unit-length
template – P and a given observation, s, that has been shifted relative
to P. The way to proceed is to compute for each potential shift, Z, the
linear least-squares solution of the shifted templates, P̃ij ≡ P(i+Z)j ,
against the observation, so as to find the offset having the minimal
resulting chi-square. More concisely, this is equivalent to finding
the minimal shift-dependent chi-square, as defined by

χ2(Z) =
∥∥∥s − P̃a(Z)

∥∥∥
2
, (7)

where a(Z) contains the optimal linear coefficients in order to fit s
based on P̃.

Extending the work of Simkin (1974), Glazebrook (1997) noticed
that in the case of orthonormal templates, like the PCA principal
components, equation (7) becomes

χ2(Z) = ‖s‖2 − ‖a(Z)‖2 . (8)

Consequently, equation (7) will be minimal for an associated max-
imal ‖a(Z)‖2. Moreover, due to the orthonormality of P, we have

a(Z) = P̃
T

s. (9)

More specifically, regarding the ith linear coefficient, ai(Z), we have

ai(Z) =
∑

j

P(j+Z)i sj =
(

P
col
i � s

)
Z

. (10)

We recognize equation (10) as being the correlation of the vec-
tor P

col
i with s, which can hence be computed efficiently in the

Fourier domain. In Brault & White (1971), interested readers will
find exhaustive hints about the practicalities surrounding the Fourier
implementation of equation (10). Let us simply point out that both
vectors, P

col
i and s, have to be extended and zero-padded so as to

deal with the periodic nature of the DFT. Note that, in the remainder
of this article, the curve obtained after evaluating ‖a(Z)‖2 at each
Z will be termed the cross-correlation function (CCF).

A sub-sampling precision on the offset can be gained by consid-
ering the fit of a continuous function in the vicinity of the maximal
peak of the discrete CCF. Simkin (1974) supposed this peak to be
Gaussian-profiled, but, with the aim of having a model-independent
estimate of Z, we will follow Tonry & Davis (1979) and use a
quadratic curve fitting that will allow us to take potential asymme-
tries in the fitted peak into account.

3.2.1 Practicalities

Some issues highlighted in Glazebrook (1997) are the subtraction
of the QSO continuum and rest-frame mean spectrum from the
observed spectrum. Here, the first issue was solved by the use of a
dedicated method that allows us to fit the QSO continuum in a fast
and redshift-independent way. This method will be described further
in Section 5.1. The second issue is often overcome by omitting the
subtraction of the mean spectrum from the input data set. We have
to note that this omission typically degrades the ability of the PCA
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Figure 2. Examples of cross-correlation functions coming from the phase correlation and weighted phase correlation of two quasar spectra against the first ten
SDSS DR12 principal components plus mean observation (top). The best-fitting solutions associated with the maximal peak of the phase correlation (middle)
and weighted phase correlation (bottom) are also provided.

decomposition to extract the most significant patterns out of this
input data set. Another solution would have been to alter the mean
spectrum so as to make it orthonormal to the template components,
P, thanks to the use of a Gram–Schmidt orthogonalization process
(Press et al. 2002), for example, and furthermore to consider it as
being an additional template. This solution will be adopted here for
the use of the phase-correlation algorithm.

Finally, the major drawback of the implementation of Glaze-
brook (1997) stands in the fact that the observed spectra typically
span only a small part of the template spectra, such that the CCF
will be computed over a substantial number of unknown points. As
a consequence, the fit of the input spectra will be disrupted by the
‘flattening’ of the principal components over the unobserved wave-
lengths. Fig. 2 illustrates the result of the phase-correlation algo-
rithm, along with the best-fitting solution associated with the max-
imal peak of the CCF. Notice how the solutions are flattened over
unobserved wavelengths. More precisely, considering the observa-
tion of SDSS J024008.93−003448.7, the Lyα, Hα and Hβ emission
lines are strongly damped, despite the fact that the optimal shift was
found, while for the observation of SDSS J132218.88+365342.0
this ‘flattening’ has led to an ambiguity in the CCF that leads to

an erroneous shift estimate. Additionally, uncertainties for the ob-
served fluxes are often available and will not be used within this
implementation.

4 W E I G H T E D P H A S E C O R R E L AT I O N

With the aim of dealing efficiently with the previously mentioned
problem of unobserved wavelengths and neglected uncertainties,
we will use a χ2 formulation similar to equation (7), but with fluxes
weighted according to the observed spectrum wavelengths. Also,
we will drop the orthonormality constraint on the fitted templates,
since in any case the previously mentioned weighting will break it
down. We will then have the following objective formula:

χ2(Z) =
∥∥∥Ws − WT̃a(Z)

∥∥∥
2

=
∥∥∥ y − X̃a(Z)

∥∥∥
2
, (11)

where W is the diagonal matrix of weights associated with s
and T̃ij ≡ T(i+Z)j is the shifted matrix of (not necessarily or-
thonormal) template observations. The fastest solution in order
to minimize equation (11) for a given Z stands in the use of a

Cholesky decomposition of the design matrix, X̃
T
X̃, followed by a
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forward–backward substitution associated with the image vector

X̃
T

y (Press et al. 2002). We have to note that this approach is
known to suffer from numerical instabilities (Golub & Van Loan
1996; Press et al. 2002) and is solely provided here as a comparison
point regarding its computational performances. From a practical
viewpoint, slower but more stable methods based on the orthogo-
nalization of X̃ should be preferred.

From a computational point of view, the evaluation of
equation (11) for each Z will require O

(
N2

)
floating operations

(flops),2 these being dedicated mainly to the building of the de-
sign matrices. This relatively high complexity constitutes the main
limitation of this implementation and makes it unaffordable for the
tight processing of a large survey like Gaia. Nonetheless, it has
been proven to provide fair redshift estimates and is currently be-
ing used effectively in the SDSS-III spectral classification redshift
measurement pipeline with a singular value decomposition (SVD)
of X̃ advantageously replacing the Cholesky decomposition of the
design matrix (Bolton et al. 2012).

4.1 Orthogonal decomposition approach

The previous section points out the risks encountered while using
a naive approach for solving the normal equations associated with
equation (11). In this optics, let us explore the effect of the orthogo-
nalization of X̃ on the latter equation. For this purpose, let us detail
the QR decomposition of X̃ = QR,3, which is such that

Q
T
X̃ = QNT−1 · · · Q1X̃ = QNT−1 · · · QiX̃i = R, (12)

where R is an upper triangular matrix of size (N × NT) and where
each Qi is a Householder reflection matrix designed to annihilate
the elements below the ith row of the ith column of X̃i (Press et al.
2002). More precisely, given X̃′

i , the not-already upper-triangular
part of X̃i, we have

Qi =
(

I 0

0 I − 2vi ⊗ vi/ ‖vi‖2

)
=

(
I 0

0 Q′
i

)
, (13)

with

vi = xi ± ‖xi‖ e1; (14)

here, xi is the first column of X̃′
i and e1 the first row of the identity

matrix. For numerical stability reasons, the choice between subtrac-
tion and addition in equation (14) should be matched to the sign of
the first element of xi (Press et al. 2002).

By using such a decomposition, we find that equation (11) be-
comes

χ2(Z) = ∥∥ y − QRa(Z)
∥∥2 = ∥∥ y − Qb(Z)

∥∥2
, (15)

with the last N − NT elements of b(Z) being zeros. The point is
now to recognize equation (15) as being the weighted counterpart
of equation (7), such that the first NT elements of b(Z) will be
equal to the first NT elements of Q

T y, the computation of which can
be performed efficiently by successive multiplication of each of the
Qi with the associated yi ≡ Qi−1 · · · Q1 y = (

b1(Z) · · · bi−1(Z) y′
i

)
,

rather than by computing the general Q matrix explicitly. This
efficiency comes mainly from the following facts.

2 The interested reader will find information and references regarding the
various algorithmic complexities used within this article in Golub & Van
Loan (1996).
3 Note that we dropped the upper tilde for the purpose of clarity.

(i) We do not need to compute any Q′
i explicitly, since we have

that the jth column of the product Q′
iX̃

′
i will be given by

(
Q′

iX̃
′
i

)col

j
=

(
X̃′

i

)col

j
− 2

vi ·
(

X̃′
i

)col

j

vi · vi
vi (16)

and, similarly,

Q′
i y′

i = y′
i − 2

vi · y′
i

vi · vi
vi . (17)

In other words, the computation of Q′
i y′

i and of any column of the
products Q′

iX̃
′
i is now reduced to a single inner product (the product

vi · vi being common to all multiplications, it can be pre-computed)
and to a single vector subtraction.

(ii) We do not need to compute any Rij . Differently stated, we do
not need to compute the first row, nor the first column, of any Q′

iX̃
′
i .

This implementation, termed the ‘factorized QR algorithm’, has a
total complexity that can compete with the Cholesky solution of the
normal equations while gaining in numerical stability. In practical
terms, it is of low interest for us, since it remains a quadratic prob-
lem that is consequently outside the limits of the time processing
required by the Gaia tight data reduction.

Let us note that equation (15) still provides us with a weighted
formulation of the CCF, i.e. ‖b(Z)‖2, such that we can already
investigate the effects of the weighting on the best-fitting solu-
tions at its maximal peak and on the CCF itself. As illustrated in
Fig. 2, the fitted spectra no longer exhibit border flatten-
ing and, thanks to this, the maximal peaks are now clearly
identified. More particularly, regarding the observation of
SDSS J132218.88+365342.0, the optimal peak of the CCF turns
out to be unambiguously identified thanks to the use of this weighted
formulation of the phase correlation.

4.1.1 Factorized QR algorithm with look-up tables

The quadratic nature of the factorized QR algorithm comes from
the large number of inner products involved in the computation of
the first NT elements of each b(Z). More specifically, by developing
each inner product coming from equations (16) and (17) in the case
of the initial reduction X̃2 ≡ Q1X̃ and associated image production
y2 ≡ Q1 y, we obtain

v1 · v1 = 2α
(
α + X̃11

)
, (18)

v1 · y = αy1 + X̃
col

1 · y, (19)

v1 · X̃
col

j = αX̃1j + X̃
col

1 · X̃
col

j , (20)

with α = sgn
(

X̃11

) (
X̃

col

1 · X̃
col

1

)1/2
. At this point, it should be

noted that

X̃
col

i · X̃
col

j = w2 ·
(

T̃
col

i ◦ T̃
col

j

)
=

N∑

k=1

w2
k

(
T

col
i ◦ T

col
j

)
k+Z

(21)

and that

X̃
col

i · y = (
w2 ◦ s

) · T̃
col

i =
N∑

k=1

w2
k skT(k+Z)i , (22)

with w ≡ diag
(
W
)
. We can readily see that equations (21) and (22)

can be computed efficiently in the Fourier domain. In order to take
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benefits from it, let us define the look-up table of the inner products
of X̃ with itself as

L̃ij = X̃
col

i · X̃
col

j = F−
[
F
[
T

col
i ◦ T

col
j

]∗
◦ F [W2]

]
Z

(23)

and the one containing the inner products of X̃ with y as

l̃ i = X̃
col

i · y = F−
[
F
[
T

col
i

]∗
◦ F [W2s]

]
Z
. (24)

Note that in the latter equations, F
[
T

col
i ◦ T

col
j

]∗
and F

[
T

col
i

]∗
are

template-specific and hence can be computed in advance.
Explicitly stated, these look-up tables allow us to have, for any

shift estimates, Z, an instantaneous evaluation of all the inner prod-
ucts associated with the initial reduction process. Furthermore,
thanks to the Q1 orthonormality, we see that the look-up tables
associated with X̃2 are also given by L̃ and l̃ . Consequently, we can
easily compute the inner product of X̃′

2 with itself based on L̃ as
(

X̃′
2

)col

i
·
(

X̃′
2

)col

j
= L̃ij − R1iR1j ∀i, j (25)

and, in the same way, we can compute the inner products of X̃′
2 with

y′
2 based on l̃ as
(

X̃′
2

)col

i
· y′

2 = l̃ i − R1ib1(Z) ∀i. (26)

Equations (25) and (26) allow us to process each subsequent X̃′
i and

y′
i recursively in a way similar to the one used to produce X̃2 and

y2; they will therefore be referred to as the look-up tables update
equations. Finally, let us note that, once these look-up tables have
been computed, only the first NT rows of X̃ and y are now needed
for the algorithm to run.

If we suppose now that NT 
 N, then most of the computa-
tion time will be spent in the building of the initial values of the
look-up tables (equations 23 and 24). More precisely, these will
correspond crudely to the DFT of w2 and of w2 ◦ s; their vector
multiplication with each combination of the templates plus the in-
verse transforms leads to these initial values. Despite the fact that the
previous derivation is a bit coarse, it still assesses the linearithmic
(i.e. O (N log N )) behaviour of the algorithm presented. Regarding
the specific problem of QSO redshift determination within the Gaia
mission (expected to be N = 104, NT = 10), tests performed on a
2.4-GHz CPU provide execution times of 180.35 ± 6.76 s for the
normal equation solution, compared with 0.173 ± 0.002 s for our
implementation; these become respectively 4.95 ± 0.19 h compared
with 1.81 ± 0.02 s for the case of N = 105 and NT = 10. Finally,
let us note that the proposed algorithm can easily be implemented
in parallel, given the fact that the estimation of each χ2(Z) can be
performed separately. As a consequence, the execution time can be
scaled by an arbitrary factor that is inversely proportional to the
number of running processes.

5 A PPLICATION

Unsurprisingly, the performance of the method presented was as-
sessed on type I/II QSOs coming from the SDSS DR12 quasar
catalogue (Pâris et al. in preparation). The choice of this catalogue
comes from the fact that all spectra contained therein were inspected
visually and hence can be considered as being extremely reliable
regarding their redshift. Additionally, it is also interesting to note
that the latter contains a non-negligible number of 297 301 QSOs,
which is adequate to derive strong statistics.

Due to time constraints and to the need for the WPCA algorithm
to have a well-covered input space of parameters (i.e. numerous

observations), we used a twofold cross-validation in order to test
our method. We split our input catalogue into two randomly drawn
parts, out of which we extract the principal components; we then
compute the redshift of spectra belonging to each part based on both
the weighted and classical phase-correlation algorithms, the inputs
of which are the principal components built on the alternative part. A
detailed description of the processes leading to this cross-validation
follows.

5.1 Procedure description

Raw spectra are generally not readily exploitable. Rather, we have
to reduce them so as to get rid of most of the contaminating sig-
nals, encompassing, for the specific case of this study, deviant points
(amongst which are night-sky emission lines and spectrograph edge
effects) and QSO continuum. Note that since the SDSS DR12 spec-
tra are already sampled on a uniform logarithmic scale, nothing
has to be done in order for equation (1) to be fulfilled, but usually
spectra have to be resampled.

The estimation of the QSO continuum turns out to be a challeng-
ing problem upon which the quality of the principal components and
redshift prediction depend strongly (Machado 2013). Four broad
kinds of approaches have been investigated so far in order to esti-
mate this continuum: (1) the fit of a ‘damped’ power-law function
to the observed spectra (Ferland 1996); (2) the use of PCA so as to
predict the shape of the Lyα forest continuum based on the red part
of the spectrum (Suzuki et al. 2005; Pâris et al. 2011; Lee, Suzuki
& Spergel 2012); (3) the modelling of the dependence between
the intrinsic QSO continuum and the absorption that it encoun-
ters as a mean to extrapolate the continuum (Bernardi et al. 2003);
(4) through the use of techniques related to the multiresolution anal-
ysis (Dall’Aglio, Wisotzki & Worseck 2008; Machado 2013). We
choose to use this last alternative, based on the fact that we do
not require the resulting continuum to have a physical basis (i.e. the
continuum subtraction is instead used as a normalization) and on the
fact that we would like to have the most empirical estimation of this
continuum. Following Machado (2013), we found that the signature
of the continuum clearly stands within the low-frequency compo-
nents of the pyramidal median transform (hereafter PMT: Starck
1996) of the input spectrum. In practice, the PMT is computed on
a flipped version of the spectrum concatenated with the original
version and another flipped version, so as to ensure continuity at the
border. After taking the inverse transform through a third-degree
fitting polynomial, we enforce the smoothness of the solution by
convolving it with a thousand-points-wide Savitzky–Golay filter, so
as to provide the final continuum. Besides its accuracy, we have to
note that the PMT, from its pyramidal nature, has an algorithmic
complexity of O (N log N ) and consequently will not degrade the
performance of the global process.

After having subtracted the derived continuum, we discard border
regions for which either λ < 3800 Å or λ > 9250 Å; we reject 4-Å
regions around each significant night-sky emission line and finally
we perform a k–σ clipping (k = 3, σ = 4) on the two first scales
of the PMT, so as to remove extremely deviant points. Finally,
we obtain an estimate of the SNR of each continuum-subtracted
spectrum through the computation of a ‘noiseless’ spectrum, using
the hypothesis that the noise within these spectra is contained en-
tirely within the five first scales of the biorthogonal spline stationary
wavelet transform of each spectrum (Cohen & Daubechies 1992;
Burrus 1997). In practice, a spline of third degree was used for
both analysis and synthesis. Fig. 3 illustrates the result of the initial
reduction process.
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Figure 3. Result of the initial reduction process, designed to decompose any input spectrum into the following: a continuum spectrum through the smoothing
of the low-frequency components of the PMT, a ‘noiseless’ spectrum through the removal of high-frequency components of the biorthogonal spline stationary
wavelet transform and a set of deviant points through k–σ clipping of the first two scales of the PMT as well as through the removal of night-sky emission lines
and border regions. Also computed is the SNR of the continuum-subtracted spectrum. The continuum drop occurring at wavelengths shorter than the Lyα limit
can be explained by the absorption induced by the intergalactic medium – mainly composed of hydrogen atoms – located along the line of sight towards the
QSO under study (Petitjean et al. 1993).

Spectra having an estimated SNR greater than 1 are then set on
a common logarithmic wavelength scale with a uniform sampling
of � log10λ = 10−4, equal to the original sampling of the spectra.
The 116 374 resulting spectra are then divided into two equal parts
– called learning sets – each of which is being used to produce the
principal components and mean observations associated with each
part of the cross-validation process. Resulting from this subdivision,
the input catalogue will be split into two parts – the test sets – each
consisting of 133 860 observations. Note that, given the fact that
the broad absorption-line QSOs are discarded, the combined sets
do not sum up to 293 301 QSOs.

We then compute the classical and weighted CCF of each spec-
trum contained within the two test sets, based on the mean observa-
tions and first ten principal components coming from the alternative
learning set. Out of these CCFs, we extract the five most significant
peaks – having a separation of at least 15 000 km s−1 – and fit
them with a second-order polynomial, so as to gain a subsampling
precision for the predicted peak position. Note that we choose to
consider multiple solutions, based on the fact that the most signif-
icant peaks may not always lead to a physical basis. For example,
we might have deep absorption lines coming from either the host
galaxy of the quasars or extragalactic objects located along the line
of sight during acquisition and leading to ‘negative’ fitted emission
lines. These can definitely prevent the highest peak – the one with
the associated minimal χ2 – from being the effective one. In order
to discriminate between these five selected solutions, we define two
score measures: χ2

r (z), defined as the ratio of the value of the peak
associated with the redshift z to the value of the maximal peak and
Zscore(z), defined as

Zscore(z) =
∏ 1

2

[
1 + erf

(
eλ

σ (eλ)
√

2

)]
, (27)

where eλ are the mean values of the emission lines covered by the
observed spectrum if we consider it to be at redshift z and σ (eλ) are
the associated uncertainties. Note that both eλ and σ (eλ) are com-
puted over a range of 11 points surrounding each emission line. We

can recognize each term of equation (27) as being the cumulative
distribution function of a normal distribution of mean zero and vari-
ance σ 2(eλ) evaluated at eλ. The use of equation (27) allows us to
have a numerical estimate of the ability for a given redshift, z, to grab
the following chosen QSO emission lines: O VI λ1033; Lyα λ1215;
N V λ1240; Si IV λ1396; C IV λ1549; C III] λ1908; Mg II λ2797;
Hγ λ4340; Hβ λ4861 and Hα λ6562 Å. Typical values of Zscore(z)
range from ∼1 for a solution with a clear match of all positive emis-
sion lines; solutions with a match of at least one ‘negative’ emis-
sion line are voluntarily penalized by giving them a Zscore(z) ∼ 0,
while values in between often occur in low SNR spectra or spectra
with strongly damped emission lines. Finally, an error in each esti-
mated peak position is derived and this will be described further in
Section 6.1.

For each spectrum, the selection of the optimal redshift out of
the five potential ones, z1, ···, z5 for which 1 = χ2

r (z1) ≥ χ2
r (z2) ≥

· · · ≥ χ2
r (z5), coming from either the classical CCF or the weighted

CCF, is done in the following way: if Zscore(z1) > 0.8, then select
z1; otherwise choose the shift having the highest χ2

r and for which
both Zscore(zi) > 1 − 10−6 and χ2

r (zi) > 0.8; otherwise choose the
shift having the highest Zscore and for which χ2

r (zi) > 0.9. Note that
the previous selection and constants therein are purely empirical
and based on an iterative visual inspection of the misclassified
spectrum. This final step provides us with what we thought to be
the most probable redshift estimate for a given input spectrum,
along with the associated uncertainty and a warning flag notifying
us of a failure and/or imprecision in the CCF computation, peak
identification or redshift selection (e.g. all fluxes to zero, low Zscore

or less precise uncertainties).

5.2 Results

Fig. 4 illustrates the result of the cross-validation process for both
the classical phase-correlation and weighted phase-correlation al-
gorithms and illustrates a comparison with the redshift predicted
by the SDSS-III pipeline. We can readily see that the performance
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Figure 4. Results of the classical phase-correlation and weighted phase-
correlation algorithms based on the cross-validation of observations coming
from the SDSS DR12Q quasar catalogue plus predictions coming from
the SDSS-III pipeline. The information provided comprises the correlation
factor between z and z̄ and P(|�z| < 0.05), the ratio of observations having
an absolute error lower than 0.05 (depicted as black dots). Dotted numbered
lines correspond to known mismatches between common emission lines:
(1) Mg II with Lyα; (2) Mg II with C IV; (3) Mg II with C III] and (4) C IV

with Lyα (see Section 5.2).

of the classical phase-correlation algorithm is strongly degraded
compared with the weighted version, with a correlation factor of
0.557 compared with 0.984 and a ratio of observations having
|�z| < 0.05 of 0.838 compared with 0.992, respectively. These
differences come mainly from the previously mentioned problem
of border flattening, which translates into frequent emission-line
mismatches and errors coming from the difficulty of the algorithm
in extrapolating the regions surrounding the Lyα and Hα emis-
sion lines. This difficulty arises because of the prominence of these

lines, as well as the high correlation they have with the other emis-
sion lines (Yip et al. 2004). As a consequence, the algorithm is
often constrained to consider the Lyα or Hα lines to be embed-
ded within the observed spectra, which results graphically in a gap
around 0.4 < z̄ < 2.12. Note that the systematic errors occurring
at z̄ ∼ 0.4 and at z̄ ∼ 2.12 can be attributed to the fitting of these
specific emission lines to the residual spectrograph edge effects –
particularly significant within the low SNR spectra – and that these
errors account for ∼2 per cent of the observations with |�z| ≥ 0.05.

Investigation of the most significant errors coming from the
emission-line mismatch, illustrated in Fig. 4, shows that the latter
can be modelled as a linear relation between the predicted red-
shift and the effective redshift. Indeed, if we consider an emission
line observed at wavelength λ and falsely considered to stand at a
rest-frame wavelength λf instead of λt, we find that the predicted
redshift, zf, can be related to the effective redshift, zt, through

zf + 1

zt + 1
= λt

λf
. (28)

These mismatches do not constitute, in themselves, real cases of
degeneracy regarding our χ2

r and Zscore selection criteria. Indeed,
each of the configurations mentioned within Fig. 4 has unconfused
emission lines that make the resulting redshift unambiguous. Rather,
the observed degeneracies come also from the low SNR of the ob-
served spectra. Fig. 5 illustrates the distribution of the SNR of both
observations having |�z| ≥ 0.05 and those having |�z| < 0.05
for our three cases of study. We notice that, for all three cases,
the SNR of the maximal peak of the fair redshift estimate is ap-
proximately twice that of the erroneous ones; this is especially
significant in the cases of the weighted phase correlation and the
SDSS-III pipeline, where the errors come nearly exclusively from
this line mismatch problem. Furthermore, a visual inspection of
these degenerated spectra shows both potential redshifts to be in-
distinguishable from one another in most cases, thus constituting in
fine effective cases of degeneracy. Consequently, some of the low
SNR spectra will unavoidably have ambiguous redshift estimates
that will stand in very specific regions defined by equation (28).
Nevertheless, these will be easily identified as having a low Zscore

and/or a low redshift confidence (see Section 6.1).
Finally, we notice that our implementation seems to have a bet-

ter tolerance to noise compared with the SDSS-III implementation
(within Fig. 5, see the lower peak of the erroneous curve as well
as its globally smaller width). This higher tolerance does not come
from differences in the algorithms, since both implementations are
based on the sole solution to equation (11), but rather from either
(1) the higher number of PCA components we used (11 compared
with 4), (2) the fact that the components we used were more suitable
to represent the observed spectra or (3) the fact that the redshifts
coming from the visual inspection procedure are also subject to
errors, especially since we are concerned with low SNR spectra,
where degeneracy may occur.

In order to reject the fact that this higher tolerance comes from
the larger number of components we used, we repeat the cross-
validation procedure described by using only three components
(plus mean observation) instead of ten. The results of this config-
uration lead us to the same conclusions, with a correlation factor
of 0.976 (compared with 0.967) and a ratio of observations having
|�z| < 0.05 of 0.989 (compared with 0.988). Although the differ-
ences in the erroneous SNR curves are less perceptible, the curve
coming from our implementation still remains globally sharper. Fur-
thermore, we should mention that, within the SDSS-III pipeline, no
more than four principal components were used, because any larger
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Figure 5. Histograms of the SNR distribution for observations having
|�z| < 0.05 and those having |�z| ≥ 0.05, for cases of classical phase
correlation, and also of the weighted phase correlation and SDSS pipeline
output. A bin width of �SNR = 0.1 was used in each of these graphs. The
position of the maximal peak of each histogram is also highlighted.

number of components would make the error higher. In regard to
this point and the fact that we succeeded in getting good predic-
tions using 11 components, we might suppose, in any case, that
the components we used were of higher quality in order to model
this specific data set. Nevertheless, let us mention that we cannot
reject totally the hypothesis according to which this better tolerance
comes from a fortuitous statistical fluctuation itself produced by

the degeneracy occurring during the visual inspection of some low
SNR spectra.

6 D I S CU SSI O N

6.1 Redshift confidence and uncertainty estimation

In order for the derived redshift to be used effectively within sub-
sequent scientific applications, it is mandatory for it to have an
estimation of its uncertainty and a confidence level such that the
chosen redshift is indeed in the vicinity of the real redshift. To make
this clear, we may have a redshift estimation with a reasonable un-
certainty (e.g. z = 2.31 ± 10−3) but degenerated in such a way
that we are not sure whether it stands in the neighbourhood of the
effective redshift. Fortunately, the computed CCF offers us simple
and efficient ways to evaluate both the redshift uncertainty and the
confidence we can set on it.

Generally speaking, we know that, for a sufficiently large sample
of observed points, the χ2 map defined in the parameters {a1, ···, an}
can be approximated in the neighbourhood of the global minimum,{
a�

1, · · · , a�
n

}
, as

χ2(ai) ≈
(
ai − a�

i

)2

σ 2(a�
i )

+ C, (29)

where C is a function depending on aj, j �= i and thus is considered
here as a constant. In other words, the approximation of the χ2 map
near a global minimum can be evaluated for each of the parame-
ters independently from the others as a simple quadratic curve, the
curvature of which depends on the uncertainty of the varying param-
eter. As a consequence, if χ2(ai) increases by one compared with
the optimal χ2, then we have σ 2(ai) = (

ai − a�
i

)2
. The reader will

find more information about the variation of χ2 near the optimum
and more particularly about the derivation of equation (29) in Bev-
ington & Robinson (2003, section 8.1). Regarding the uncertainty
in the predicted redshifts, we used a second-order polynomial such
as to fit the optimal peak of the CCF, Z, and derived its associated
uncertainty,4 σ (Z). We then use the propagation of the uncertainty,
so as to obtain the error in the estimated redshift:

σ (z) = (z + 1)σ (Z)s log b, (30)

where b is the base of the logarithmic scale we used (in our case
b = 10) and s is the sampling of the spectra on this logarithmic scale
(in our case s = � log10λ = 10−4).

Secondly, we have to evaluate the confidence we have in the
predicted redshift. First estimators of this confidence are the already
mentioned Zscore(z) and χ2

r (z) (see Section 5.1). Indeed, a secure
estimate will typically have Zscore(z) ≈ χ2

r (z) ≈ 1. Unfortunately,
these estimators do not take into account the potential ambiguity that
might be present during the selection of the CCF peak associated
with the predicted redshift. In order to tackle this lack, we defined
the chi-squared difference associated with a redshift estimate, zi,
as

�χ2
r (zi) = min

∣∣χ2
r (zi) − χ2

r (zj )
∣∣ ∀j �= i, (31)

where each zj corresponds to a redshift associated with a peak
selected within the CCF. We notice that any redshift that is unsure
due to the ambiguity in the CCF peak selection will now be marked

4 Beware that the shift value corresponding to the uncertainty will have an
associated decrease by one, compared with the maximal peak of the CCF.
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as having �χ2
r (z) ≈ 0. Also note that, compared with Bolton et al.

(2012), we use the distance between all χ2
r and not only those for

which χ2
r (zi) ≥ χ2

r (zj ), because we adopt the hypothesis that any
solution having χ2

r (zi) < χ2
r (zj ) might have been falsely rejected

while being a valid solution.

6.2 Dealing with zero weights

It commonly happens that the weight matrix, W from equation (11),
has a lot of successive weights set to zero; this is especially true if
we consider that the observation can be padded so as either to match
the size of the templates or to deal with the periodic nature of the
phase correlation. Additionally, nothing prevents us from shifting
the observation in a circular way, so as to have this set of successive
zeros in the first rows of the weights matrix, and to get rid of this
artificial shift later by sliding back the CCF. This is particularly
interesting if we have a number of zeroed weights equal to – or
greater than – the number of components we used, NT. In this case,
the NT first rows of the matrix X̃ and of the vector y used within
the factorized QR algorithm with look-up tables will all be equal to
zero and, as a consequence, none of the X̃′

i , as well as none of the y′
i ,

has to be computed. Differently stated, in addition to the building
of the look-up tables and their updates, we solely have to compute
Rij and bi(Z) through equations (16) and (17):

Rij = − L̃ij√
L̃ii

(32)

and

bi(Z) = − l̃ i√
L̃ii

. (33)

This allows us to simplify our algorithm greatly and leads to exe-
cution times of 0.082 ± 0.001s for the case N = 104, NT = 10 and
0.912 ± 0.026s for the case N = 105, NT = 10. A rough comparison
shows these execution times to be twice as fast as those presented
at the end of Section 4.1.1.

6.3 Template weighting

Although the weighting of the observed spectra is most impor-
tant regarding the redshift determination of QSOs, one might also
want to have a template weighting such as, for example, to high-
light some patterns or to reflect the fact that these templates of-
ten come with their own uncertainties. To this aim, we plug into
equation (11) the diagonal matrix of weights associated with the
template observations, WT, i.e.

χ2(Z) =
∥∥∥W̃TWs − WW̃TT̃a(Z)

∥∥∥
2

=
∥∥∥ ỹ − X̃a(Z)

∥∥∥
2
. (34)

After orthogonalization of the matrix X̃ = Q̃R̃, we obtain

χ2(Z) = ‖ ỹ‖2 − ‖b(Z)‖2 , (35)

with the first NT elements of b(Z) being equal to the first NT el-

ements of Q̃
T

ỹ. We can already note that, since ỹ is now shift-
dependent, knowledge of b(Z) alone is no longer sufficient to find
the optimal shift, so that χ2(Z) must be evaluated explicitly through
equation (35).

Computation of the first NT elements of b(Z) is done straight-
forwardly using the procedure described in Section 4.1.1, with ỹ
replacing y and both look-up tables given by

L̃ij = F−
[
F
[
WT

2
(

T
col
i ◦ T

col
j

)]∗
◦ F [W2]

]
Z

(36)

and

l̃ i = F−
[
F
[
WT

2
T

col
i

]∗
◦ F [W2s]

]
Z
. (37)

Finally, we see each ‖ ỹ‖2 will be given by

‖ ỹ‖2 = F−
[
F
[
WT

2
]

◦ F [W2s2]
]

Z
. (38)

7 C O N C L U S I O N S

We have presented a new method for computing the weighted phase
correlation of an observed input signal against templates that are
not necessarily orthogonal. This method is found to be the preferred
alternative to classical phase correlation in the case of input obser-
vations having a limited coverage and/or very distinct weights. The
implementation of this method is based on a weighted chi-squared
problem solved through a highly modified version of the QR orthog-
onalization algorithm, designed to benefit from the performance of
the fast Fourier transform, so as to compute the numerous inner
products present within the original QR algorithm. This implemen-
tation provides us with a numerically stable algorithm, which has a
linearithmic time complexity that makes it affordable for the tight
spectral processing of QSOs within the Gaia mission.

We have presented a complete application of this method to the
case of the redshift determination of type I/II QSOs coming from the
SDSS DR12 quasar catalogue through a twofold cross-validation
procedure. This application is based on templates coming from the
weighted principal components analysis decomposition of indepen-
dent spectra from the same catalogue. We described in detail the
reduction of those input spectra, as well as the method we used in
order to select the most probable redshift from amongst the set of
possible ones. Results of this cross-validation show our method to
be the one of predilection for QSO redshift determination and show
that it is comparable with the SDSS-III pipeline output, while not
being an O

(
N2

)
process.

Finally, we showed how we can obtain both the uncertainty in the
predicted redshift and the confidence we can set on it. We further
discuss two extensions of our method, namely the time saving we
can achieve if we have a sufficient number of successive zeroed
weights and the weighting of the template observations.

A free implementation of the algorithm described has been re-
leased under the GNU Public License5 and can be downloaded
freely at https://github.com/ldelchambre/wcorrQRL.
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86 CHAPTER 2. Methods for the characterization of quasars

Figure 2.19: Example of a binary tree node working in regression mode. Given an in-
put learning set of observations (LS) whose instances are composed of input attributes
a = {a1, . . . , an} and of a numerical output variable y, the goal of the learning phase
is to �nd an input attribute and an associated threshold among the values of this
attribute such that LS is split at best according to a given score measure (e.g. the
reduction of the variance amongst the output variable being a commonly used score
measure in regression mode). The henceforth produced learning subsets (LS1 and
LS2) being then recursively processed until an end condition is met or until no further
split is possible.

2.4 Extremely randomized trees

We brie�y outline here the supervised learning method we used so as to compare the
results of the WPC method based on the predictions of the redshift and of the BAL
nature of quasars out of BP/RP spectra of Gaia (see Paper III). This method reveals
a particular interest as it also provides a fair identi�cation of the gravitational lenses
(GLs) that will be observed by Gaia (see section 4) and allows a good estimation of
the parameters of the GL model if we assume these can be represented through a
non-singular isothermal ellipsoid lens model in presence of an external shear (NSIEg
lens model, see section 1.3.2). Supervised learning is an extremely extended �eld of
research such that giving it a detailed overview would require more pages than we can
a�ord in the present thesis. A reference book covering most of the machine learning
(ML) aspects is to be found in Bishop (2006). We rather provide here a concise
description of the supervised learning methods based on classi�cation and regression
trees (CART).

The goal of supervised learning methods can be summarized as follow:

Supervised learning methods aim to guess the relations that may exist
between a set of input parameters and a corresponding ensemble of output
variables out of a learning set of observations so as to generalize these
relations to cases where output variables are unknown.

This objective is attained in CART through the recursive splitting of the input learning
set of observations (LS) according to the input attributes and associated thresholds
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within these attributes that together allow to optimize a given score measure for each
split, as depicted in �gure 2.19.

More speci�cally, given a LS whose instances are composed of numerical input
attributes a and of an output variable y, we have that the split performed according
to the attribute ai and associated threshold ti is such that

y1 = {y(j) | ai(j) < ti}, y2 = {y(j) | ai(j) ≥ ti}, (2.18)

where j is used as an index within LS (e.g. ai(j) is the value of the ith attribute
within the jth observation). The score that is associated with this split is commonly
expressed in terms of the reduction of the impurity of the output variables, y, as

S(y, ai, ti) = I(y)− |y1||y| I(y1)− |y2||y| I(y2) (2.19)

where I(y) is a measure of the impurity of y and |y| corresponds to the number of
observations contained in it. The signi�cation of I(y1), I(y2), |y1|, |y2| being then
trivially extrapolated from the latter de�nitions. Depending on the nature of the
output variable, we have that the measure of the impurity I(y) is either associated
with the sample variance of y,

I(y) =
1

|y|
∑

j

(y(j)− ȳ)2 , ȳ =
1

|y|
∑

j

y(j), (2.20)

in case of numerical output variables or with the circular variance (Berens 2009)

I(y) = 1−R, R =
1

|y|




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j

sin yj


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+


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

1
2

, (2.21)

in case of cyclic output variable7 having a period of 2π. In case of discrete output
variable, the measure of the impurity is frequently associated with the concept of
entropy from information theory (MacKay 2003)

I(y) = −
∑

i

pi log pi, pi =
|{y(j) | y(j) = yi}|

|y| , (2.22)

where pi represents the probability that a randomly picked up element of y contains
the value yi. For completeness, we have to note that the Gini index is also a frequently
used alternative for measuring the impurity of a discrete output variable and is de�ned
as I(y) =

∑
i pi(1− pi).

As long as identical input attributes lead to similar output values, one can exactly
match the input attributes to the output variables through the recursive splitting of
LS. Now, real-world observations always come with some noise that is present on both
the input attributes as well as on the output variables such that a perfect �t of LS is
often not desirable. The over�tting of LS would e�ectively lead to the modelling of
noise that is deleterious for subsequent predictions and conversely, the use of a tree
having an insu�cient number of nodes may fail to reproduce the structure underlying
the true function. The trade-o� existing between models being very speci�c to LS
while providing poor predictions over unseen observations and simpler models giving
less accurate predictions but having a higher generalization potential is termed the
bias/variance trade-o� and stands at the heart of ML techniques as illustrated in
�gure 2.20.

7Any cyclic variable being easily converted so as to have a period of 2π, only the latter case will
be covered here
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Figure 2.20: Modelling of a noisy sine function using: (up) a single node and a
fully developed regression tree, (down) individual extremely randomized trees (ERT)
and averaged predictions out of these individual ERT. One can note that the single
node regression tree is not complex enough so as to allow the overall shape of the
sine function the be correctly reproduced (i.e. it has a high prediction bias). At the
opposite, a fully developed regression tree considers the noise as being part of the
underlying function and will accordingly replicate it in all subsequent predictions (i.e.
it has a high variance). Individual ERT, similarly to fully developed trees, typically
have a low bias coming along with a high variance. This high variance is however
lessened once the individual predictions are averaged.

Table 2.3: The confusion matrix is a special kind of contingency table that is par-
ticularly well-suited for the analysis of the results of classi�cation problems. The
mentioned condition corresponds to whether or not an observation belongs to a given
class we choose to consider. Similarly, the predicted condition is positive only if
the observation is predicted to belong to that class according to the ML model we
used. The confusion matrix then compares the number of observations having posi-
tive/negative conditions and corresponding positive/negative predicted conditions. In
this table, P and N are the total number of observations having a positive/negative
condition, respectively, whereas TP is de�ned as the number of observations having
both a positive condition and a positive predicted condition. Other quantities being
straightforwardly derived in the same way.

Predicted Condition
condition Positive (P ) Negative (N)
Positive True positive (TP) False positive (FP)
Negative False negative (FN) True Negative (TN)

Derived quantities: True positive rate (TPR = TP/P)
False positive rate (FPR = FP/N)
Accuracy (TP+TN)/(P+N)
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Given that we would ideally like to have the best compromise between the bias
and the variance or equivalently we would like to have the fairest predictions on ob-
servations having missing output variable(s), the performances of the ML methods
are accordingly assessed on an independent test set of observations (TS) rather than
on LS. The idea is to build the ML model based on LS, potentially using a validation
set of observations (VS) so as to tune the model parameters, and to further retrieve
output variables based on TS, these predictions being then compared to the e�ective
output variables of TS in order to assess the model performances. In case of numeri-
cal variables, classical estimators are used so as to measure these performances as, for
example, the correlation factor, the mean absolute error or the circular�circular corre-
lation (Berens 2009) whereas in case of discrete output variables (i.e. in classi�cation
mode), one can use the confusion matrix we present in Table 2.3. Out of the latter
table, we have that TPR corresponds to the probability of a positive observation to
be predicted as positive (i.e. the probability it is detected), FPR corresponds to the
probability that a negative observation is classi�ed as positive (i.e. the probability of
false alarm) while the accuracy corresponds to the ratio of correctly classi�ed observa-
tions in this binary positive/negative classi�cation scheme. To make it clear, consider
a ML model having a TPR of 95% regarding GL identi�cation coming along with a
FPR of 1% and an accuracy of 85%. Assuming we used well-behaved LS and TS, this
implies that a genuine GL being processed by this ML model has a probability of 95%
to be detected as such whereas a fortuitous cluster of stars will be rejected at the 99%
level, 85% of the observations being correctly classi�ed in general. Finally, one has to
note that most ML classi�ers provide a probability of the processed observations to
belong to each class rather than a straight classi�cation of the latter. The belonging of
the observations to these classes hence primarily relies on a threshold value we set on
this probability. All values from the confusion matrix can hence be adjusted through
the tuning of these probability thresholds. The analysis of the e�ect of this tuning
on the TPR and on the FPR being easily performed through the receiver operating
characteristic (ROC) curve that is described in Paper III.

Despite their ease of interpretation, CART are often not as accurate as alterna-
tive methods like arti�cial neural networks or support vector machines, for example
(Bishop 2006). These low performances arising mainly because of their limited ca-
pability in generalizing the LS upon which these are built. Furthermore, owing to
their top-down development strategy, any small change in LS can result in a very
di�erent resulting tree, itself leading to very distinct predictions. Solutions to these
shortcomings are principally found in variance reduction techniques that aim at build-
ing ML models that are not too speci�c to the used LS (i.e. that have generalization
capability) while keeping the associated bias as low as possible. One such technique
standing, for example, in the bootstrap aggregating (bagging) method where many
trees are constructed based on a random re-sampling of the initial LS (with replace-
ment) and whose predictions are further combined so as to dim the �nal resulting
variance. Another related solution is to disturb the learning phase of many trees built
on the same LS before combining their individual predictions. This is the solution un-
dertaken by the extremely randomized trees (Geurts et al. 2006, hereafter ERT) ML
method. Instead of choosing at each node the optimal attribute/threshold allowing
to maximize a given score measure, ERT rather select K random attributes as well
as a random threshold amongst each of these attributes in order to isolate the one
maximizing the chosen score measure. The building of N trees then allows to reduce
the associated variance as in bagging. The individual tree development being either
stopped once no more split is possible or in case where the number of observations
in all leaf nodes falls under a given limit, nmin. An illustration of the generalization
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capability of the ERT is provided in �gure 2.20 and compared to the prediction of
simple regression trees.

Though the combination of the ERT predictions �rst aims to reduce the variance
that is otherwise associated with each individual tree, it concurrently allows uncertain-
ties on these predictions to be derived. Considering the predictions of N individual
ERT, y1, . . . , yN , for a given observation. We have that the �nal prediction of the
ERT for this observation in case of a numerical output variable is given by the mean
prediction, y, while the associated uncertainty, σy, is given by the standard deviation
around y as

y =
1

N

N∑

i=1

yi, σy =

[
1

N

N∑

i=1

(yi − y)2

] 1
2

. (2.23)

In case of a cyclic output variable, the �nal prediction turns out to be

y = arctan2

(
N∑

i=1

sin yi,

N∑

i=1

cos yi

)
(2.24)

while the resulting uncertainty is associated with the 1σ con�dence interval of the Von
Mises distribution8 as given by Upton (1986). Finally, the prediction and uncertainty
of discrete output variables are associated with the frequency of appearance of each
discrete class amongst the individual predictions, normalized such that these sum up
to one.

8The Von Mises distribution being the circular counterpart of the normal distribution. Note that
given the lengthy description of the associated con�dence intervals, these are not reproduced here.



3
Determination of the astrophysical
parameters of quasars within the

Gaia mission

Although most of the issues we highlighted in section 2.1.2 are presently solved through
the introduction of a weighted principal component analysis (WPCA) technique de-
scribed in Paper I and of a fast weighted phase correlation (WPC) algorithm described
in Paper II, the determination of the astrophysical parameters (APs) of quasars using
these techniques however remains inapplicable to BP/RP spectra like those illustrated
in �gure 2.1. The main reasons for this inability are the facts that:

� BP and RP spectra have characteristic bell shapes coming from the instrumental
response of the BP/RP spectrometers. This prevents the production of rest-
frame WPCA templates out of these spectra. Similarly, the WPC algorithm is
also not able to deal with this instrumental response as the latter depends on
the observed wavelengths.

� BP/RP spectra are not sampled on a logarithmic wavelength scale such that the
redshifts do not translate into simple o�sets, as depicted in equation 2.5. This
would otherwise had enable the WPC algorithm to be used.

� BP/RP spectra are distinct although these are overlapping. Considering the
extraction of WPCA templates out of the sole BP or RP spectra and/or per-
forming the determination of the redshift based on these two separate spectra
would e�ectively lead to a tremendous loss of e�ciency as, for example, char-
acteristic emission lines often span over both the wavelength range covered by
these spectra (e.g. at z & 2.35, the Lyα emission line will always be found in BP
whereas the C iii] emission line will stand in RP). This is even more damageable
given that the separation between these emission lines is one of the most impor-
tant criterion for determining redshift, that is the presence of a single emission
line (or a few emission lines) in a given spectrum inevitably leads to frequent
ambiguities as it can be �tted by virtually all emission lines from the templates.

� Finally, a library of BP/RP spectra of quasars being still non-existent at present
day, the production of WPCA templates that would be used in WPC can not
hence be carried out. Also the �nal performances of the implemented approach
can not be assessed without such a library.

91
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This section addresses these aforementioned problems and details the exact proce-
dures we employed so as to guess the APs of quasars. These encompass: the redshift
of the quasar, their BAL nature, the slope of their continua and the total equivalent
width of their emission lines (see section 2.1.1 for more information on these APs).
The performances in predicting these APs is �nally provided for a range of G mag-
nitudes where we expect quasars. These ultimately correspond to the end of mission
performances of the quasar classi�er (QSO) work package.
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ABSTRACT
We describe methods designed to determine the astrophysical parameters of quasars based
on spectra coming from the red and blue spectrophotometers of the Gaia satellite. These
methods principally rely on two already published algorithms that are the weighted principal
component analysis and the weighted phase correlation. The presented approach benefits
from a fast implementation, an intuitive interpretation as well as strong diagnostic tools on
the potential errors that may arise during predictions. The production of a semi-empirical
library of spectra as they will be observed by Gaia is also covered and subsequently used for
validation purpose. We detail the pre-processing that is necessary in order for these spectra to
be fully exploitable by our algorithms along with the procedures that are used to predict the
redshifts of the quasars, their continuum slopes, the total equivalent width of their emission
lines and whether these are broad absorption line (BAL) quasars or not. Performances of
these procedures were assessed in comparison with the extremely randomized trees learning
method and were proven to provide better results on the redshift predictions and on the ratio of
correctly classified observations though the probability of detection of BAL quasars remains
restricted by the low resolution of these spectra as well as by their limited signal-to-noise
ratio. Finally, the triggering of some warning flags allows us to obtain an extremely pure
subset of redshift predictions where approximately 99 per cent of the observations come along
with absolute errors that are below 0.1.

Key words: methods: data analysis – quasars: general.

1 IN T RO D U C T I O N

Gaia is one of the cornerstone space missions of the Horizon 2000+
science program of the ESA that aims to bring a consensus on the
history and evolution of our Galaxy through the survey of a billion
celestial objects (Perryman et al. 2001). This objective is achieved
by capturing a ‘snapshot’ of the present structure, dynamic and
composition of the Milky Way by means of precise astrometric
and photometric measurements of all the observed objects as well
as by the determination of the distances, proper motions, radial
velocities and chemical compositions of a subset of these objects
(Gaia Collaboration et al. 2016).

The on-board instrumentation is principally composed of two
1.45 × 0.50 m telescopes pointing in directions separated by a ba-
sic angle of 106.5◦, the light acquisition being then carried out by
slowly rotating the satellite on its spin axis while reading each CCD
column at the same rate as the objects cross the focal plane (i.e. in
the so-called Time Delay Integration mode, hereafter TDI mode).

� E-mail: ldelchambre@ulg.ac.be

The high astrometric precision of Gaia then comes from: (i) its lack
of atmospheric perturbations, (ii) its large focal length of 35 m,
(iii) the combination of the beams of light coming from both tele-
scopes on to a single focal plane composed of a patchwork of 106
CCDs that allows to relate the positions of the objects coming from
the two fields of view with an extremely precise angular resolution
and (iv) its scanning law that enables to maximize the number of ob-
served objects as well as the number of positional relations arising
from the previous point (Lindegren et al. 2012).

In addition, a high-resolution (R = λ/�λ = 11 700) spectrome-
ter, called Radial Velocity Spectrometer (RVS), centred around the
Ca II triplet (845–872 nm) will allow us to determine the radial ve-
locities of some of the most luminous stars (GRVS < 16 mag), while
two low-resolution spectrophotometers, namely the Blue Photome-
ter (BP) observing in the range 330–680 nm (13 < R < 85) and
the Red Photometer (RP) observing in the range 640–1050 nm
(17 < R < 26), will allow us to classify and characterize the
objects having G < 20 mag. The interested reader is invited
to read de Bruijne (2012) and Gaia Collaboration et al. (2016)
for a more complete description of the Gaia spacecraft and of
its payload.
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Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from https://academic.oup.com/mnras/article-abstract/473/2/1785/4191290
by U D Sciences de la Terre, Ludovic Delchambre
on 17 November 2017



1786 L. Delchambre

The previously described instrumentation, combined with the
fact that Gaia is a full-sky survey where each object will be ob-
served 70 times on average, is a unique opportunity in order to
achieve some additional objectives. A non-exhaustive list of such
applications consists of a finer calibration of the whole cosmolog-
ical distance ladder (i.e. through parallaxes, Cepheids & RR Lyrae
stars, type-Ia supernovae,...) (de Bruijne 2012), a better understand-
ing of the stellar physics and evolution through the refinement of the
Hertzsprung-Russell diagram (Jordi et al. 2008), the discovery of
thousands of high-mass exoplanets (Perryman et al. 2014) as well
as new probes regarding fundamental physics (Mignard 2009).

Amongst the most peculiar objects that Gaia will observe stand
quasars also termed as quasi-stellar objects (QSOs) for historical
reasons. Quasars are active galactic nuclei originating from the mat-
ter accretion that was occurring in the vicinity of supermassive black
holes being at cosmological distances. Due to their high luminosity
(L > 1012L�) and their large redshift (0 < z < 7), these objects play a
key role in fixing the celestial reference frame used by Gaia, but they
also have their own intrinsic interest in various cosmological appli-
cations like in the evolution scenarios of the galaxies (Hamann &
Ferland 1999), as discriminants over the various universe model
and their parametrization (López-Corredoira et al. 2016), as tracers
of the large-scale distribution of Baryonic matter at high redshift
(Yahata et al. 2005) or as a means to independently constrain the
Hubble constant if the latter are gravitationally lensed (Schneider &
Sluse 2013).

The identification and characterization of the 500 000 quasars
that Gaia is expected to observe take place in the framework of
the Data Processing and Analysis Consortium (DPAC), which is
responsible for the treatment of the Gaia data in a broad sense,
that is: from data calibration and simulation to catalogue publi-
cation through intermediate photometric/astrometric/spectroscopic
processing, variability analysis and astrophysical parameters (APs)
determination. The DPAC is an academic consortium composed of
nine coordination units (CUs), each being in charge of a specific
part of the data processing (O’Mullane et al. 2007). One of these, the
CU8 ‘Astrophysical Parameters’, is dedicated to the classification of
the objects observed by Gaia and to the subsequent determination
of their APs (Bailer-Jones et al. 2013).

This paper describes the algorithms that are to be implemented
within the CU8 Quasar Classifier (QSOC) software module in order
to determine the APs of the objects classified as QSOs by the CU8
Discrete Source Classifier (DSC) module while relying on their low-
resolution BP/RP spectra. The collected APs aiming to be published
within the upcoming Gaia data release 3 catalogue. The covered APs
encompass the redshift, the QSO type (i.e. type I/II QSO or Broad
Absorption Line QSO, hereafter BAL QSO), the slope of the QSO
continuum and the total equivalent width of the emission lines.

In the following, Section 2 explains the conventions we used
along this paper. Section 3 makes a brief review of the methods that
were specifically developed in the field of this study. We present
the production of a semi-empirical library of BP/RP spectra of
QSOs used in order to train/test our models in Section 4. The AP
determination procedures are covered within Section 5, while their
performances are assessed in Section 6. Some discussion on the
latter takes place in Section 7. Finally, we conclude in Section 8.

2 C O N V E N T I O N S

This paper uses the following notations: vectors are in bold italic,
x; xi is the element i of the vector x. Matrices are in uppercase

boldface or are explicitly stated; i.e. X from which element at row
(variable) i, column (observation) j will be denoted by Xij .

Flux will here denote the spectral power received per unit area
(a derived unit of W m−2), while flux density will represent the
received flux per wavelength unit (derived units of W m−3). If not
stated otherwise, input spectral energy distributions (SED) will be
considered to be expressed in terms of flux density while BP/RP
spectra will be expressed in terms of flux by convention.

3 M E T H O D S

One of the main characteristics of the Gaia data processing is the
large amount of information that has to be handled (e.g. about 40
GB of compressed scientific data are received from the satellite
each day) and the consequent need for fast and reliable algorithms
in order to reduce those data. These last requirements led the CU8
scientists to use techniques coming nearly exclusively from the field
of the supervised learning methods whose underlying principle is to
guess the APs of each observed object, which are unknown, based
on the interpolation of the APs of some similar template objects
(Bailer-Jones et al. 2013).

These methods have been proven to be fairly fast and reliable
but often consist in black-box algorithms having no physical sig-
nificance and having only basic diagnostic tools in order to identify
the potential problems that may occur during the APs retrieval.
This last point is particularly crucial in the case of medium- to
low-quality observations, like BP/RP spectra, or in the case where
the problem is itself prone to error, like the existing degeneracy in
the redshift determination of low signal-to-noise ratio (SNR) QSOs
(Delchambre 2016).

With these constraints and shortcomings in mind, we have devel-
oped two complementary algorithms that are specifically designed
to gather the quasar APs within the Gaia mission based on the object
BP/RP spectra while providing a clear diagnostic tool and ensur-
ing an execution time that is limited to O (N log N ) floating point
operations (i.e. conventionally considered as ‘fast’ algorithms).

3.1 Weighted principal component analysis

Principal component analysis (PCA) aims to extract a set of tem-
plates – the principal components – from a set of observations while
retaining most of its variance (Pearson 1901). Mathematically, it is
equivalent to find a decomposition of the covariance matrix associ-
ated with the input data set,

σ 2 = PDP
T, (1)

that is such that P is orthogonal and D diagonal and for which

Di ≥ Dj ; ∀i < j. (2)

The first columns of P are then the searched principal components.
A decomposition such as the one of equation (1) is straightforwardly
given by the singular value decomposition of the covariance matrix
(Press et al. 2002).

Consider now the building of a set of rest-frame quasar templates
based on a spectral library having a finite precision on the fluxes and
a limited wavelength coverage. From the definition of the redshift,
we will have that the observed wavelength, λobs, can be related to
the rest-frame wavelength, λrest, through

λobs = (z + 1)λrest, (3)

and as a consequence, we will have that every quasar within the
input library will cover a specific rest-frame wavelength range that
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depends on its redshift. Furthermore, the measurement of the quasar
fluxes often comes along with an estimation of their associated un-
certainties originating, for example, from the Poisson nature of the
photons counting; from the CCD readout noise; from the sky back-
ground subtraction or from spectra edge effects. These uncertainties
are not taken into account within the classical PCA implementation.

In Delchambre (2015), we solved the previously mentioned is-
sues by considering the use of a weighted covariance matrix inside
equation (1). For this purpose, we defined the weighted covariance
of two discrete variables, x and y having weights, respectively,
given by wx and w y and weighted mean values given by x̄ and ȳ as

σ 2
x, y =

∑
i (xi − x̄) wx

i w
y
i (yi − ȳ)∑

i wx
i w

y
i

. (4)

The suggested implementation relies on two spectral decomposi-
tion methods, namely the power iteration method and the Rayleigh
quotient iteration, that allow us to gain flexibility, numerical stabil-
ity as well as lower execution times1 when compared to alternative
weighted PCA methods (Bailey 2012; Tsalmantza & Hogg 2012).

3.2 Weighted phase correlation

The redshift has a particular importance over the whole quasar APs
because any error committed on the latter would make the other
APs diverge. It is then critical to have the most precise estimation
of it along with a strong diagnostic tool in order to flag the insecure
predictions. A technique fulfilling these requirements stands in the
phase correlation algorithm (Glazebrook, Offer & Deeley 1998)
whose goal is to find the phase at which an input signal and a set of
templates match at best in a chi-square sense.

For reasons already enumerated within Section 3.1, we will con-
sider here a weighted version of the previously mentioned algo-
rithm. We are then searching for the shift at which an input spec-
trum, s, associated with a weight vector, w, and a set of templates,
T, matches at best in a weighted chi-square sense. Mathematically,
it is equivalent to find the shift, Z, for which

χ2(Z) =
∑

i

w2
i

⎛
⎝si −

∑

j

aj (Z)T(i+Z)j

⎞
⎠

2

(5)

is minimal given that a(Z) are the linear coefficients minimizing
equation (5) for a specific shift.

In Delchambre (2016), we showed that the latter equation can be
re-written as

χ2(Z) =
∑

i

w2
i s

2
i − ccf(Z), (6)

where ccf(Z) is the so-called cross-correlation function (CCF) at
shift Z, which can be evaluated for all Z in O (N log N ) floating
point operations and N is the number of samples we used. Given
that the first term of equation (6) is independent of the shift, we will
simply have that the minimum of equation (5) will be associated
with the maximum of the CCF.

Practically, both s and T must be sampled on a uniform logarith-
mic wavelength scale in order for the redshift to turn into a simple
linear shift (i.e. log λobs = log (z + 1) + log λrest) and must be ex-
tended and zero-padded such as to deal with the periodic nature of
the phase correlation algorithm. A sub-sampling precision on the

1 Under the condition that the number of observations within the input data
set is much larger than the number of variables.

Table 1. Rest-frame wavelengths and relative intensities of the
emission lines used in the computation of Zscore(z). Listed values
come from the PCA mean spectra described in Section 5.

Emission Rest-frame wavelength Relative intensity
line(s) nm compared to Lyα

O VI 103.07 0.13161
Lyα 121.81 1.00000
C IV 154.63 0.30834
C III] 190.24 0.16413
Mg II 280.18 0.21778
H β+[O III] 488.06 0.42182
H α 656.86 1.17143

shift can then be gained by fitting a quadratic curve in the vicinity of
the optimum of the CCF while the curvature of this quadratic curve
will be used as an approximation of the uncertainty associated with
the found shift.

The described weighted phase correlation algorithm relies on the
assumption that the most probable redshift is associated with the
maximal peak of the CCF, which is not always verified in the case
of QSOs. The reason for this is twofold:

(i) The highest peak of the CCF may not always lead to a physical
solution like the omission of some characteristic emission lines (e.g.
Ly α λ121, Mg II λ279 or H α λ656 nm) or the fit of a ‘negative’
emission line coming from the presence of matter being in the line-
of-sight towards the observed QSO. The origin of this issue mainly
stands in the imperfections of the templates we used as well as in
the assumption we made that quasar spectra can be modelled as a
linear combination of these templates.

(ii) In the case of low-SNR spectra, it may also happen that the
signal of some emission lines starts to be flooded within the noise
such that these will not be recognized as a genuine signal but rather
as a variance coming from noise. As a result, ambiguities can emerge
within the CCF (i.e. multiple equivalent maxima) and hence within
the redshift determination.

In order to identify these sources of errors, we defined two com-
plementary score measures associated with each redshift candidate:
(i) χ2

r (z), defined as the ratio of the value of the CCF evaluated at z
to the maximum of the CCF and (ii) Zscore(z) defined as

Zscore(z) =
∏

λ

[
1

2

(
1 + erf

eλ

σ (eλ)
√

2

)]Iλ

, (7)

where eλ is the mean value of the continuum-subtracted emission
line standing at rest-frame wavelength λ if we consider the observed
spectrum to be at redshift z, σ (eλ) is the associated uncertainty and
Iλ is the theoretical intensity of the emission line standing at λ nor-
malized such that all the covered emission lines intensities sum up
to 1. Equation (7) can then be seen as the weighted geometric mean
of a set of normal cumulative distribution functions of mean zero
and standard deviations σ (eλ) evaluated in eλ. Table 1 summarizes
the various emission lines and theoretical intensities we used in the
context of this study.

We can already notice that these two score measures can eas-
ily highlight the sources of errors that may occur within the CCF
peak selection, namely the choice of an unphysical solution and the
choice of an ambiguous candidate, respectively, through a low Zscore

and through a low absolute difference between the chosen candi-
date’s χ2

r and the one from another candidate. These will constitute
in fine strong diagnostic tools regarding our implementation.
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Figure 1. Results of the pre-processing and extrapolation procedures. The input spectrum is decomposed into a continuum part, a noiseless spectrum and a set
of deviant points (night sky emission lines and spectrograph edge effects being here depicted as shaded regions). This decomposition allows us to compute the
SNR associated with each spectrum and to set those having an SNR > 1 on a common logarithmic rest-frame wavelength scale so as to extract PCA templates
out of them. The fit of these templates to each input spectrum provides the final extrapolation. Note that the illustrated input spectrum has some corrupted
samples in the region encompassing the C IV emission line which are successfully recovered through this extrapolation procedure. Similarly, the unobserved
Lyα emission line seems to be consistently reproduced as well.

4 SEMI-EMP IRIC A L B P/ RP SPECTRAL
L I B R A RY BU I L D I N G

Similarly to supervised learning methods, the undertaken approach
is based on the availability of a learning library of BP/RP spectra
for which the various APs are known. Such a library being non-
existent at the present time, we had to convert an already-released
spectral library of QSOs into BP/RP spectra according to the most
up-to-date instrument model. We focused, for this purpose, on the
12th data release of the Sloan Digital Sky Survey quasar catalogue
(Pâris et al. 2017, hereafter DR12Q). The choice of this specific
catalogue comes from (i) the fact that each spectrum in it was
visually inspected yielding extremely secure APs, (ii) the large
number of 297 301 QSOs it contains (amongst which 29 580 BAL
QSOs), (iii) its medium resolution of 1300 < R < 2500 and (iv)
its spectral coverage which is comparable to the one of the Gaia
BP/RP spectrophotometers (360 < λ < 1000 nm).

This spectral library will then have to be extended so as to
match the wavelength range covered by the Gaia BP/RP spectra
and be subsequently convolved with the instrumental response of
the BP/RP spectrophotometers so as to provide the final library.

4.1 Spectra extrapolation

Besides the fact that the DR12Q spectra have a narrower wavelength
coverage (360 <λ< 1000 nm) when compared to the BP/RP spectra
(330 < λ < 1050 nm), we also have to mention that the regions
where λ < 380 and where λ > 925 nm often tend to be unreliable
because of spectrograph edge effects while some other inner regions
might be discarded because of bad CCD columns, cosmic rays,
significant scattered light or sky background subtraction problems,
for example (Bolton et al. 2012; Dawson et al. 2013). In order to
solve these shortcomings, we have extracted a set of rest-frame PCA
templates out of the DR12Q library that were later fitted to each
individual spectrum as a mean to extrapolate them. Note that since
the DR12Q spectra are already sampled on a logarithmic wavelength
scale (at a sampling rate of �log10λ = 10−4), no re-sampling will
be needed before extrapolation.

Raw spectra are not readily exploitable, rather they have first to
be pre-processed so as to get rid of contaminating signals and to
have some insights about their usability. For this purpose, we used
a procedure that is identical to the one described in Delchambre
(2016, section 5.1). We will hence concentrate here on the results of
this procedure rather than on the underlying implementation details.
We will then get, for each spectrum: (i) the set of deviant points
coming from a k–σ clipping algorithm applied to the high-frequency
components of the spectrum as well as from the removal of the night
sky emission lines and spectrograph edge effects, (ii) an empirical
estimation of the QSO continuum coming from the low-frequency
components of a multiresolution analysis of the spectrum, (iii) a
smoothed version of the provided spectrum that we will consider
here as being noiseless and (iv) an evaluation of its SNR coming
from the ratio of the variance that is present within the noiseless
and continuum-subtracted spectrum over the variance that can be
attributed to noise (i.e. raw fluxes from which we subtracted the
deviant points; the QSO continuum and the noiseless spectrum).
Fig. 1 illustrates the results of the previously described procedure
and provides a self-explanatory example of the necessity we have
to pre-process our input spectra.

Spectra having an SNR larger than 1 are then normalized so as
to have a weighted norm of 1 and are subsequently set on a com-
mon logarithmic rest-frame wavelength scale. These will constitute
the input data set upon which we will extract our PCA templates.
We choose to consider the retrieval of the BAL QSO templates
separately from the type I/II QSOs as a way to ensure that the
characteristic features of the BAL QSOs are correctly reproduced
within our extrapolated spectra. Doing otherwise would have re-
quired a much larger number of PCA components to be fitted
in order to accurately model those features (the latter being not
seen in the vast majority of QSOs, they would have been omit-
ted from the dominant PCA components). Also, we required the
continuum to rely on an empirical basis so as to restrain at most
any unphysical behaviour within our extrapolation. We will conse-
quently subtract each empirical continuum from each input spec-
trum as a way to extract the PCA components from both these sub-
tracted spectra as well as from the continua themselves. By way of
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Figure 2. Mean observations (black lines) and first two principal components coming from the PCA decompositions of the DR12Q emission lines and
continuum spectra regarding type I/II QSOs (up) and BAL QSOs (down). Notice how the entire emission lines are modelled by the type I/II QSOs templates
while the BAL QSOs templates rather focus on the O VI; Ly α; Si IV and C IV emission lines where most of the BAL characteristics are found.

comparison, continuum templates are frequently taken as being a
combination of power-law and exponential functions (Claeskens
et al. 2006) that often succeed in reproducing the observed spec-
trum but that tend to diverge over the unobserved wavelengths.
Consequently, four sets of PCA templates were built based upon
the algorithm described in Section 3.1: one set of templates for the
type I/II QSO emissions lines; one similar set associated with the
BAL QSOs and two corresponding sets of continuum templates.
Fig. 2 provides the mean observation and two first principal compo-
nents for these four sets of templates. For the sake of completeness,
let us also mention that, during PCA retrieval, weights were taken
as the inverse standard deviation on the fluxes regarding the emis-
sion line PCAs while these were simply set to 1 if the continuum
we computed was associated with some observed fluxes and zero
otherwise.

Finally, we used 15 emission line templates (the mean observa-
tion and the first 14 PCA components) for both the fit of the type
I/II and BAL observations along with 5 continuum templates for
the type I/II QSOs and 6 continuum templates for the BAL QSOs.
These fits ultimately provide the extrapolated spectra, as illustrated
in Fig. 1. The number of templates we used allows us to explain
68.27 per cent of the weighted variance2 that is present within the
type I/II emission lines and 99.82 per cent of their continuum vari-
ance. These become, respectively, 66.1 per cent and 99.85 per cent
in the case of BAL QSOs. Even if apparently low, these ratios prac-
tically reflect the fact that the spectra we used come along with
noise that will not be grabbed by the dominant PCA components.
Consequently, the produced extrapolation will be considered here as
being noiseless.

2 Weighted variance naturally results from equation (4) in the case where
x = y while having expected values, x̄ = 0 in the case of the weighted
variance of the input data set or equal to the optimal linear combination of
the templates in the case of the explained weighted variance.

4.2 BP/RP instrumental convolution

The optical system of the Gaia BP/RP spectrophotometers consists
for each in six mirrors, a dispersing prism and a set of dedicated
CCDs (either blue- or red-enhanced) that can be modelled as

S(x) =
∫

NλRλLλ(x − xλ)dλ, (8)

where S(x) is the dispersed flux in the one-dimensional comoving3

focal plane position x, Nλ is the input SED at the observed wave-
length λ, Rλ is the global instrumental response at λ and where
Lλ(x − xλ) is the monochromatic line spread function (LSF) stand-
ing at λ and being evaluated at x − xλ, xλ is the comoving focal plane
position associated with λ. In more details, the global instrumental
response Rλ encompasses the mirrors reflectivity, the attenuation
that is due to particulate and molecular contamination, the attenu-
ation coming from the mirror roughness, the prism transmissivity
and the CCD quantum efficiency at the observed wavelength λ. Note
that in the following, we will consider a mean instrumental model
averaged over each field-of-view and over each row of CCD within
the focal plane given that our goal is to simulate end-of-mission
(combined) spectra that will consist in an aggregation of individual
(epoch) observations.

The BP/RP sampled fluxes, s, will then be given by

si =
∫ +0.5

−0.5
S

(
x + i

Nover

)
dx, (9)

where Nover is the oversampling we choose to use. This oversampling
arises from the higher SNR that is gained by the combination of
the epoch spectra, which, in turn, provide the opportunity to reach a
higher sampling rate when compared to the initial 60 pixels provided
by the BP/RP acquisition window (e.g. through flux interpolation).
A common consensus within the CU8 is to consider an oversampling

3 Sliding at the same rate as the TDI mode drift each CCD column.
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Figure 3. Example of produced BP/RP spectrum and associated flux uncertainties for G magnitudes of 18, 19 and 20. Spectra normalization allows us to fairly
compare the noise levels that are present amongst the various provided magnitudes. We can straightly figure out the effect of the global instrumental response
and of the LSF convolution applied to the extrapolated spectrum as respectively producing characteristic bell shapes as well as very broadened emission lines
within the resulting BP/RP spectra. The noticed non-uniform spectral resolution arises from the varying wavelength dispersion function of each of the BP/RP
spectrophotometers.

of Nover = 8, which results in 480 samples for each of the BP and
RP spectra. This convention will be adopted here.

The instrument model described so far is not able to deal with
the various sources of noise that will contaminate our actual ob-
servations. Instead, the spectra produced through equations (8) and
(9) will consist in the approximated noise-free counterparts of what
Gaia will observe. Extending the aperture photometry approach de-
veloped in Jordi et al. (2010), we can still have an estimation of the
noise variance that is associated with each sampled flux, si, as

σ 2
i = m2

σ 2
epoch

Nepoch/Nover
+ σ 2

cal, (10)

where m is an overall mission safety margin designed to take into
account the potentially unknown sources of errors (m = 1.2, by
convention); σ 2

epoch is the variance of the noise associated with si

if the latter was coming from a single epoch observation; Nepoch is
the number of epoch observations used to compute the combined
spectra and σ 2

cal is the uncertainty arising from the flux internal
calibration. The scaling of the single epoch variance, σ 2

epoch, reflects
the assumption we made that each flux within the combined spectra
comes from the mean value of a set of Nepoch/Nover epoch fluxes.
In extreme cases, for example, we will have that each combined
flux is averaged over the whole epoch observations (i.e. in the case
of Nover = 1) while in the case of Nover = Nepoch, each flux within
the combined spectra can be seen as gathered directly from the
epoch spectra. Next, the variance coming from the uncertainties in
the flux internal calibration, σ 2

cal, is taken to be equal to the inner
product of the fluxes that are present within the pixels surrounding
each sample with a linear function that is inversely proportional to
the global instrumental response, Rλ, evaluated in those pixels. Its
objective is to take into account the fact that the precision on the flux
calibration will principally depend on the instrumental response in
the vicinity of the pixel of interest. Because of the intricacy that is
inherent to the modelling of these calibration errors, the latter were
voluntarily tuned so as to stand within a moderate range of values.

We can then decompose the epoch variance, σ 2
epoch, into variance

coming from photon and CCD noise, σ 2
flux, and variance coming

from the uncertainties in the background estimation, σ 2
bg, as

σ 2
epoch = σ 2

flux + σ 2
bg

τ 2
, (11)

where τ is the effective CCD exposure time, and the latter is depen-
dent on the G magnitude of the objects based on the activation of
bypasses within some specific CCD columns which aim to prevent
luminous objects from saturating (de Bruijne 2012). Both terms
within equation (11) can then be simply extended as

σ 2
flux = (si + b)τ + r2, (12)

σ 2
bg = bτ + r2

Nbg
, (13)

where r is the total CCD detection noise including, amongst other,
the CCD readout noise and the CCD dark noise; b is the back-
ground flux we subtracted from our observation and that we will
consider here as a constant based on a typical sky-background sur-
face brightness and where Nbg is the number of pixels we used in
order to estimate b, that is taken here as being equal to the width of
the BP/RP acquisition window (i.e. Nbg = 12 pixels).

Being now able to model the entire instrumental response along
with the associated uncertainties, we first choose to normalize our
input spectra to G magnitudes where we expect QSOs to be ob-
served, that is at G = {18, 18.5, 19, 19.5, 20}. This normalization
allows us to study the behaviour of the implemented methods under
an increasing level of noise. BP/RP spectra were then produced
based on the most up-to-date instrument model coming from tests
carried out by EADS Astrium (later renamed Airbus Defence and
Space) during the commissioning phase of the satellite. We have
to note that this instrument model still has to be updated in or-
der to match the actual operational condition of the satellite even
if the latter is not expected to vary too much from the model we
used. Noisy spectra can then be obtained by adding the appropriate
random Gaussian noise (i.e. having a variance of σ 2

i ) to each of
the (noise-free) spectral fluxes, si. An example of produced BP/RP
spectra is illustrated in Fig. 3.
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Figure 4. Illustrative synthesized spectrum coming from the linear combination of the interpolated and flat-fielded BP/RP spectra of magnitude G = 19. The
observed BAL features allow us to highlight the capability of pre-processing we used in order to recover the general shape of the extrapolated spectrum. Flux
uncertainties were also pre-processed accordingly, and the BP/RP transition region was unequivocally recognized as a bump around 635 nm. We have to note
that the noiseless synthesized spectrum comes from a similar pre-processing applied to a noise-free version of the BP/RP spectra.

5 A STRO PHYSICA L PARA M E T E R
D E T E R M I NAT I O N

The bell shape of the BP/RP spectra prevents us from using both
algorithms described in Section 3. This is even more damageable
given the fact that these are not sampled on a logarithmic wave-
length scale and that the wavelength coverage of each pixel is not
uniform. In order to tackle these problems, a resampling of the
spectra fluxes and uncertainties was first performed using cubic
spline interpolation (Press et al. 2002). The uniform logarithmic
sampling we used, �log10λ = 1.75 × 10−4, ensuring a sampling
on the redshift that is better than 0.003, which is comparable to hu-
man expertise, while producing a reasonable amount of 7.7 × 103

sampled points in the final templates (assuming that z ≤ 6). Note
that such a logarithmic interpolation will obviously introduce co-
variances between the resulting samples. Nevertheless, given that
the specific resampling we used stands in a wavelength range where
the corresponding logarithmic function is approximately linear and
that both the numbers of samples within the BP/RP spectra and
within the synthesized spectra are of the same order of magnitude,
we will have that these covariances will be restricted to close neigh-
bouring samples while having moderate magnitudes. These will
consequently have a limited impact on the resulting predictions and
will hence be ignored in the following. The division of these inter-
polated spectra by a flat BP/RP spectrum (i.e. coming from a flat
input SED) concurrently fixes the bell-shape issue, that is mostly
due to the global instrumental response, as well as the problem of
the non-uniform wavelength coverage of the pixels, that is due to
the inconstant wavelength dispersion function of the BP/RP spec-
trophotometers. Accordingly, these flat-fielded spectra can then be
considered as being approximately proportional to the convolution
of the input SED by the LSF over a linear wavelength scale, plus
noise. Now, we will have that the resulting spectra will be disjoint
although they are overlapping, which would yield to a tremendous
loss of efficiency if these were to be considered individually. A
more interesting solution stands in the linear combination of the
flat-fielded BP/RP spectra according to a given weighting scheme
such as to produce a single synthesized spectrum. In more detail,
if we consider s

bp
λ and s

rp
λ as being the interpolated fluxes of the

BP and RP spectra; σ
bp
λ , σ

rp
λ , as their associated uncertainties; F

bp
λ ,

F
rp
λ , as their corresponding flat BP/RP fluxes and w

bp
λ , w

rp
λ as the

weighting coefficient used to join these spectra, then we have that
the synthesized fluxes, fλ, can be represented as

fλ = w
bp
λ

s
bp
λ

F
bp
λ

+ w
rp
λ

s
rp
λ

F
rp
λ

, (14)

and their associated uncertainties, σλ, as

σλ =
⎡
⎣
(

w
bp
λ

σ
bp
λ

F
bp
λ

)2

+
(

w
rp
λ

σ
rp
λ

F
rp
λ

)2
⎤
⎦

1
2

. (15)

In the context of this study, the weighting coefficients we selected
are given by

w
rp
λ = 1 − w

bp
λ = tr650

620(λ), (16)

where

trλ1
λ0

(λ) = 1

2
tanh

[
2π

(
λ − λ0

λ1 − λ0
− 1

2

)]
+ 1

2
(17)

is the hyperbolic tangent transition function from λ0 to λ1. The spe-
cific weighting used in equation (16) ensures a smooth transition
between the flat-fielded BP and RP spectra while keeping most of
their significant regions. A continuum spectrum was then gathered
and subsequently subtracted from each synthesized spectrum using
a procedure similar to the one described in Section 4.1. An illus-
trative synthesized spectrum produced through equations (14) and
(15) is shown in Fig. 4.

Having now exploitable input spectra, we decided to split our
input spectral library into two parts. The first part is used as a
‘learning set’ (LS1) in order to produce the PCA templates upon
which we will base the analysis of the second part, the ‘test set’
(TS1). Conversely, the second part will be subsequently used as
a learning set (LS2) for the analysis of the first part (TS2). This
twofold cross-validation procedure will finally provide the APs for
the whole set of observations as if these were gathered based upon
a totally independent data set. The splitting criterion we used relies
on the uniform selection of half the input library sorted according
to the QSOs redshifts so as to ensure an even repartition of the latter
amongst these two data sets.
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Figure 5. Mean observations (black lines) and first two principal components coming from the PCA decompositions of BP/RP synthesized spectra out of
LS1 and LS2 regarding type I/II QSOs (up) and BAL QSOs (down). Both learning sets show extremely good agreement for both QSO types, the noticed
discrepancies in the BAL components at wavelength longer than the Hγ emission line being explained by the small number of BAL QSOs having z ≤ 1.42
(∼1 per cent of the learning sets). We can further notice that most of the BAL features standing between the O VI and C IV emission lines were retained from the
DR12Q library (see Fig. 2) while the removal of the fine QSO structures by the BP/RP instrumental convolution now allows the first BAL templates to model
the entire emission lines.

Two sets of rest-frame PCA templates were then produced for
each of the learning set according to the QSO type (type I/II or
BAL). These were based on the noise-free, continuum-subtracted
and synthesized BP/RP spectra having both un-normalized G mag-
nitudes and SNR > 1 within the extrapolation procedure. From the
noiseless nature of these input spectra, we had to select custom
weights associated with the synthesized fluxes, fλ, as

wλ = tr380
330(λ)tr925

1050(λ)
[
0.7

(
2tr650

620(λ) − 1
)2 + 0.3

]
, (18)

where the first two terms practically reflect the limited confidence
we set on the spectra edges due, for example, to the potential inac-
curacies in the spectra extrapolation or to low fluxes within the flat
BP/RP spectra leading to numerical instabilities and where the last
term stands for the uncertainties introduced in the BP/RP spectra
combination. Fig. 5 provides the mean observation and first two
principal components of the synthesized spectra of the type I/II and
BAL QSOs for both learning sets.

It is worth to mention that, at first glance, it might seem mislead-
ing from the point of view of the validation process to retrieve PCA
components from synthesized spectra which are themselves based
on the linear combination of templates. Nevertheless, let us first
remind that it is one of our assumptions that any (noiseless) DR12Q
quasar spectrum can be fairly represented as the linear combina-
tion of a sufficient number of such templates. Secondly, we have
to note that BP/RP spectra come from the instrumental convolution
of the extrapolated spectra in the observed wavelengths. The latter
is then set on rest frame, and we will have that the resulting PCA
components will have to reflect the averaged convolution applied
over the whole observed wavelengths. Finally, this convolution will
have the effect of smoothing the high-frequency components from
the extrapolated spectra. These are concurrently the main source of
unexplained variance within the DR12Q templates, and we expect
the produced library to be consistent regarding an hypothetical real
noise-free BP/RP spectral library.

Table 2. Warning flags used in the redshift selection procedure. These can
be combined through bitwise OR operator.

Warning flag Value Condition(s) for rising

Z_AMBIGUOUS 1 More than one peak have both
0 < z < 6 and χ2

r (z) > 0.85
Z_LOWCHI2R 2 χ2

r (z) < 0.9
Z_LOWZSCORE 4 Zscore(z) < 0.9
Z_NOTOPTIMAL 8 We did not choose the optimal

peak (i.e. χ2
r (z) < 1)

The extracted PCA components were then used in order to pro-
duce their CCF against the noisy synthesized BP/RP spectra of
magnitude G = {18, 18.5, 19, 19.5, 20} through the algorithm de-
scribed in Section 3.2. The redshift identification is based on the
CCF peak having a corresponding redshift in the range 0 < z < 6;
a χ2

r (z) > 0.85 and a minimal scaled distance from the ideal point
(1, 1) ∈ (χ2

r (z), Zscore(z)) as given by

d(z) =
√(

0.8
[
1 − χ2

r (z)
])2 + (0.2 [1 − Zscore(z)])2. (19)

The selected redshift was then flagged for potential inaccuracies in
the peak selection according to the values provided within Table 2.
Constants used in the peak selection procedure as well as within
Table 2 are purely empirical and based on a visual inspection pro-
cedure.

The optimal number of PCA components to use was chosen
as a trade-off between the ratio of explained variance, the ability
of the templates to model BAL QSOs and the potential overfit of
the observations coming from the use of a too large number of
templates. This overfitting is being characterized by frequent ambi-
guities in the corresponding CCFs that eventually results in a large
number of erroneous redshift predictions (though these will have a
non-zero warning flag). Tests performed on each learning set show
that the use of 3 PCA components is a satisfactory compromise
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between these constraints that ultimately lead to a ratio of explained
variance of 94.6 per cent (LS1) and 93.42 per cent (LS2) regarding
the type I/II QSOs and of 86.22 per cent (LS1) and 88.14 per cent
(LS2) regarding the BAL QSOs.

The BAL QSO identification is based on the comparison of the
value of the CCF peak we selected using type I/II templates, y(z),
against the value of the CCF peak selected from BAL templates,
yb(zb), through

pb = yb(zb)

yb(zb) + y(z)
, (20)

where z is the redshift selected from type I/II templates and zb is
the redshift selected from BAL templates. Though straight classi-
fication between these two types of QSOs is sometimes practical,
it is however commonly motivated by the specific needs of the
end-users. As an example, studying the physics of BAL QSOs will
require an extremely pure subset of observations (e.g. with pb > 0.7)
while a re-observation survey can easily deal with a ‘hint’ on the
BAL nature of the observed QSOs (e.g. with pb > 0.5). Still, the fre-
quent discrepancies observed between the redshift predicted based
upon these two kinds of templates enforce us to use such a classi-
fication. Accordingly we will consider, in the following, zb as the
default reshift whenever pb > 0.55 and G ≤ 19 while keeping pb as
a discriminant value for further application-specific classification.
The effect of the thresholding of this discriminant value on the re-
sulting ratio of correctly/incorrectly classified observations will be
deferred to Section 6.2.

The slope of the QSO continuum corresponds to the spectral
index, αν , as defined by

fλ ∝ λ−αν−2 (21)

or more compactly expressed in terms of frequency, ν, as fν ∝
ναν . This index is obtained from the fit of a power-law func-
tion to the observations over wavelength regions that are com-
monly devoid from emission/absorption features, that is: 145–148;
170–180; 200–260; 325–470 and 525–625 nm. The exact procedure
employs a k-sigma clipping algorithm (with k = 3, σ = 1) so as
to underweigh iron emission blends as well as other fortuitous ab-
sorption/emission structures by a factor of 100. This procedure was
applied to both the input DR12Q spectra and the synthesized BP/RP
spectra as a way to fairly compare the resulting predictions while
discarding any bias that can be due to the differences in the used al-
gorithms. Because of their high numerical complexities, non-linear
optimization algorithms were not used for the least-squares solution
of equation (21). Rather, each power-law function was fitted through
a linear regression of the wavelengths against the fluxes by taking
the logarithm of both sides of the latter equation. Although this
choice seems to be harmless from the point of view of the DR12Q
spectra, synthesized spectra will have to cope with the large amount
of discarded samples coming from the frequent negative fluxes en-
countered within the spectra edges. With these discarded samples
leading to a large bias towards positive fluxes (see Fig. 4, for exam-
ple), we consequently decided to reject samples standing outside
the observed region 350–950 nm for these specific spectra.

Finally, the total equivalent width of the emission lines can be
represented as

W =
∫

eλ

cλ

dλ (22)

where cλ is the continuum slope we fitted based upon equation (21)
and eλ are the emission lines fluxes, with the latter being set to fλ − cλ

if λ belongs to an emission line region and to zero otherwise. The

Table 3. Mean predicted continuum slope, αν , and total emission line equiv-
alent width, W, based on DR12Q spectra and synthesized spectra with vari-
ous G magnitudes.

Mean αν Mean log10W

DR12Q spectra − 0.697 ± 0.626 1.74 ± 0.236
Synthesized spectra

G = 18.0 − 0.561 ± 0.721 1.668 ± 0.298
G = 18.5 − 0.560 ± 0.722 1.662 ± 0.306
G = 19.0 − 0.561 ± 0.724 1.648 ± 0.321
G = 19.5 − 0.569 ± 0.726 1.626 ± 0.344
G = 20.0 − 0.584 ± 0.723 1.590 ± 0.377

Figure 6. Histograms of the differences between the continuum slopes, αν ,
and total emission line equivalent widths, W, predicted based upon DR12Q
spectra and synthesized spectra regarding various normalization magnitudes.

identification of these emission line regions is based on parts of
the spectrum where smoothed fluxes coming from a 45 points wide
Savitsky–Golay filtering (Press et al. 2002) stands higher than the
continuum. In agreement with what was previously done, equation
(22) was integrated over the interval 380–925 nm regarding DR12Q
spectra and over the interval 350–950 nm regarding the synthesized
spectra. The rest-frame total equivalent width is hence straightly
given by Wrest = W/(z + 1).

The results of these continuum slope and total emission line
equivalent width determination procedures are summarized within
Table 3 and Fig. 6, regarding DR12Q spectra and synthe-
sized spectra of various normalizing magnitudes. We can eas-
ily see that the continuum slopes predicted from synthesized
spectra tend to be bluer than those of the DR12Q spectra.
This bias comes from the spread of the Si IV and C IV emission
lines over the continuum region 145–148 nm and, to a lesser
extent, from a similar spread of the C IV and C III] emission lines
over the continuum region 170–180 nm as depicted within Fig. 7.
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Figure 7. Mean spectra coming from the aggregation of DR12Q spectra normalized so as to have a weighted norm equal to 1 and from synthesized spectra
being normalized in the same way. Flux densities were normalized between 200 and 260 nm. Shaded regions correspond to wavelength ranges that were used in
order to fit the QSO continuum slopes through equation (21). One can notice the higher flux densities of the synthesized mean spectrum within the continuum
regions 145–148 and 170–180 nm when compared to the DR12Q mean spectrum while the lower flux encountered within regions 325–470 and 525–625 nm
often yield a red bias during the continuum fitting procedure.

The noticed relation between the flattening of the continuum slope
and the normalizing magnitude comes from the increasing number
of negative samples that are rejected within the continuum regions
325–470 nm and 525–625 nm where faint fluxes are usually found
and which ultimately tend to artificially redden those regions. Also,
we can observe that the total equivalent widths of the emission lines
predicted based upon synthesized spectra are underestimated com-
pared to the ones predicted using DR12Q spectra. The reason for
this similarly stands within the globally overestimated continuum
flux as well as from the reddening of the spectrum at wavelengths
longer than 300 nm according to the magnitude. Note that the miss
of some narrow emission lines because of the LSF convolution also
tends to lessen the predicted W. The reader should hence pay a
careful attention to these systematic effects once using these mea-
surements.

Given these shortcomings, one might rightfully wonder whether
the use of non-linear optimization algorithms is worth to be en-
visaged in order to predict the continuum slope of the QSOs
at the expense of a 10 times longer execution time. Doing so
will provide us with a mean value of the continuum slopes of
−0.691 ± 0.657 for the DR12Q spectra and a correlation factor
of 0.966 if these are compared to the results of our approach. In the
case of synthesized spectra, these numbers become, respectively,
−0.563 ± 0.721, −0.562 ± 0.737, −0.564 ± 0.737, −0.575 ± 0.739
and −0.601 ± 0.738 for the mean continuum slopes of magnitudes
G = {18, 18.5, 19, 19.5, 20} with associated correlation factors of
0.988 for G ≤ 19 and of 0.985, 0.975 for G = 19.5 and 20, respec-
tively. The observed flattening of the predicted continuum slopes
at G > 19 ironically comes from the non-rejection of the negative
fluxes from the red part of the spectra which tends to give larger
weights to these regions (i.e. the fraction of red fluxes is then more
significant). While this effect will have a negligible (but still no-
ticeable) impact on the G ≤ 19 predictions because of the sufficient
SNR of the red part of the spectra at these magnitudes (e.g. the fit
of the red part of the spectra is providing a good approximation of
the continuum slopes at these magnitudes), it will have a deleteri-
ous impact on fainter magnitudes where the red part of the spectra
is often better approximated by a flat curve. This effect gets fur-
ther amplified through the subsequent rejection of the blue fluxes
by the k-sigma clipping algorithm. Let us still mention that this

non-linear approach remains the most rigorous in a statistical point
of view though the strong similarities noticed in both approaches
and their common difficulties in predicting the continuum slopes
of faint sources do not justify its use regarding its larger time con-
sumption.

6 PE R F O R M A N C E C O M PA R I S O N

The performances of our approach were assessed in comparison
with the Extremely Randomized Trees learning method (Geurts,
Ernst & Wehenkel 2006, hereafter ERT). While classical tree-based
learning methods usually try to find, at each node, a splitting cri-
terion (i.e. an attribute and a threshold within this attribute) that is
such that the learning set of observations associated with this node
is split at best with respect to a given score measure (e.g. variance
reduction in regression problem or information gain in classifica-
tion problem), the ERT instead picks up K random attributes as
well as a random threshold associated with each of these attributes
in order to select the one maximizing the provided score measure.
This procedure is then recursively repeated until the number of
learning set observations in all leaf nodes falls under a given limit,
nmin. The averaged prediction of a set of N trees then allows us to
subsequently lessen the variance of the model (i.e. the sensitivity
of each individual tree to the used learning set). The choice of this
specific method mainly comes from both its fast learning phase
as well as from its high performances regarding other competing
methods like Artificial Neural Networks or Support Vector Machine
while having only a few numbers of parameters to tune. Let us also
note that this method is the one that is presently in use within the
QSOC software module in order to predict most of the QSO APs
(Bailer-Jones et al. 2013).

First of all, let us mention that the QSO continuum slope and that
the total equivalent width of the emission lines will not be considered
within this performance comparison because these can be straightly
predicted based on observable quantities. Regarding the adjustment
of the parameters of the ERT models, tests have shown that the
prediction of the QSO redshift and type are rather insensitive to
the K and nmin parameters if these stand within reasonable ranges
of values. Consequently and according to Geurts et al. (2006), the
default values of K = Nattr, nmin = 5 and K = √

Nattr, nmin = 2
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Figure 8. (top) Distribution of the predicted redshifts coming from ERT models, zert, and WPC model, zwpc, for quasars with G magnitudes equal to 18, 18.5,
19, 19.5 and 20 with respect to the DR12Q redshift, z. (middle) Histogram of the absolute error, |�z|, between DR12Q redshifts and redshift predicted based
upon ERT models, WPC models and WPC models while having an empty warning flag (see Table 2). (bottom) Ratio of observations having an absolute error
on the redshift that is lower than some threshold limit as given by zlim.

were accepted, respectively, for the redshift regression problem and
BAL classification problem, and Nattr is here the number of points
contained within our BP/RP spectra (i.e. Nattr = 960 if Nover = 8).
The number of trees to build, N, should be ideally as large as
possible. Nevertheless, based on time and memory constraints we
have, the latter was set to N = 1000.

In the following, the ERT models will be built based upon the
noisy learning sets LS1 and LS2 where the observations having an
SNR > 1 are selected and normalized such as to have a unit norm
for the whole set of magnitudes. Their predictions are then gathered
from the associated test sets of corresponding magnitude within TS1
and TS2. We have to note that because of selection effects and ob-
servational bias within the DR12Q catalogue, neither LS1 nor LS2
will follow a realistic distribution of the redshift (Pâris et al. 2017).
Similarly, these will not contain a genuine fraction of BAL QSOs
(Reichard et al. 2003; Knigge et al. 2008; Gibson et al. 2009). Con-
sequently, the ERT models that will be built based on these learn-
ing sets will be particularly suited for the prediction of the QSO

redshifts and type that are the most frequently encountered within
LS1 and LS2. In that sense, these will constitute data-oriented mod-
els whose predictions on TS1 and TS2 will be optimistic when
compared to those based on real observations. Finally, we can fur-
ther note that the weighted phase correlation algorithm (hereafter
WPC) is not sensitive to this data unbalancing and that the as-
sociated results will remain valid irrespectively of the actual APs
distribution we will encounter.

6.1 Redshift determination

The distribution of the predicted redshifts against DR12Q redshifts
is given within the upper part of Fig. 8 for the case of the ERT
predictions as well as for the case of the WPC predictions regarding
the various normalizing magnitudes. We can already notice a trend
of the ERT predictions standing at z ≤ 2 to be driven towards zert ≈
2.3 where most of our learning set observations stand. This effect is
particularly noticeable at z ≈ 0.8 where our second most numerous
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source of QSOs stands and it further tends to strengthen along with
an increasing magnitude (though these misclassified observations
will typically have strong associated uncertainties). To a lesser ex-
tent, we may also note an opposite trend where the observations
standing between z = 2 and z = 3 tend to be underestimated. These
effects potentially reflect the inability of our models to fully grab
the information that is present within our learning sets and/or the
incompleteness of the latter. The fact that very high redshift objects
(z > 3) get correctly predicted presumably comes from the entrance
of the Lyα forest within the observed wavelength range where the
extremely faint fluxes found therein allow us to unequivocally char-
acterize these observations.

Although roughly performed here, the analysis of the results
coming from machine learning methods often suffer from a lack of
physical significance and interpretation that mostly arises because of
their underlying complexity. Furthermore, these methods strongly
depend on the completeness of the learning set we used in order
to build them. In an illustrative purpose, let us consider that a
given QSO spectrum is getting a correct redshift prediction from
such a model, suppose now that a similar spectrum has a slightly
higher redshift which results in a mean shift by a few pixels in the
observed spectrum, then nothing ensures that this shifted spectrum
will get a correct prediction from the previous model since this
ultimately depends on whether or not a somewhat similar spectrum
was encountered within the used learning set. According to this, a
learning method dedicated to the redshift determination of QSOs
should ideally be based on a learning set of observations covering
the vast majority of QSO shapes and characteristics over the entire
range of redshift we are looking for. With these arguments in mind,
we may still suppose that the ERT models we used (and in a broader
sense, any model based on machine learning method) are not the
best suited in predicting the redshift of QSOs.

Regarding the redshift distribution from WPC (see Fig. 8, up),
we can readily notice a tighter dispersion of the errors when com-
pared to the ERT predictions with median absolute errors of 0.0057,
0.0061, 0.0069, 0.0088 and 0.0130 for the WPC predictions of
magnitudes G = {18, 18.5, 19, 19.5, 20}, respectively, and corre-
sponding ERT median absolute errors of 0.0419, 0.0586, 0.0755,
0.1164 and 0.1723 (see Fig. 8, middle). Similarly, 4.83 per cent,
6.66 per cent, 10.56 per cent, 17.6 per cent and 28.93 per cent of the
observations have a catastrophic prediction on their redshift (i.e.
|�z| > 0.1) within the WPC for the same set of magnitudes
while the corresponding ratios of ERT observations become, respec-
tively, 35.04 per cent, 40.37 per cent, 45.09 per cent, 52.97 per cent
and 63.19 per cent (see Fig. 8, down).

Most of the WPC errors come from mismatches between emis-
sion lines. These mainly consist in the confusions of H β with C III];
Mg II with Ly α; Mg II with C IV; Mg II with C III] and C IV with
Ly α. We have to note that these mismatches do not constitute by
themselves real cases of degeneracy but rather arise because of the
effect of noise on the emission lines identification as we will soon
see. Still, this effect is already unambiguously depicted in Fig. 8
(top), where the number of observations suffering from such an
emission line mismatch problem tends to increase along with an
increasing magnitude. In the same figure, we may also note that
low SNR spectra (G ≥ 19) tend to produce constant predictions
at zwpc ≈ 0.5, 1.35 and 1.8. These correspond to the fit of deviant
fluxes from spectra edges by the H α, C IV and Ly α emission lines,
respectively. Though unavoidable, most of these errors will come
along with a non-empty warning flag (see Table 4) which offers the
possibility to discard these insecure predictions. By doing so, we
rejected 46.2 per cent, 50.99 per cent, 57.72 per cent, 67.09 per cent

Table 4. Ratio of observations triggering warning flags and associated ratio
of observations having |�z| > 0.1 while triggering these warning flags.

Triggered G magnitude
warning flag 18.00 18.50 19.00 19.50 20.00

Ratio of observations triggering warning flags

Z_AMBIGUOUS 0.1125 0.1393 0.1853 0.2882 0.3935
Z_LOWCHI2R 0.0084 0.0107 0.0149 0.0310 0.0440
Z_LOWZSCORE 0.4198 0.4602 0.5153 0.5833 0.6733
Z_NOTOPTIMAL 0.0330 0.0427 0.0594 0.1115 0.1636
Any 0.4620 0.5099 0.5772 0.6709 0.7758
None 0.5380 0.4901 0.4228 0.3291 0.2242

Ratio of observations having |�z| > 0.1

Z_AMBIGUOUS 0.2934 0.3221 0.3644 0.4290 0.5071
Z_LOWCHI2R 0.5607 0.5744 0.5795 0.6085 0.6474
Z_LOWZSCORE 0.0964 0.1240 0.1814 0.2684 0.3884
Z_NOTOPTIMAL 0.4434 0.4690 0.5032 0.5478 0.6077
Any 0.1018 0.1279 0.1798 0.2592 0.3688
None 0.0023 0.0028 0.0043 0.0064 0.0142

and 77.58 per cent of the total number of observations regarding
magnitudes G = {18, 18.5, 19, 19.5, 20}, respectively. This leads
to corresponding median absolute errors of 0.0053, 0.0055, 0.0058,
0.0063 and 0.0072 and associated ratios of catastrophic redshift pre-
dictions of 0.23 per cent, 0.28 per cent, 0.43 per cent, 0.64 per cent
and 1.42 per cent for the same set of magnitudes.

From our previous discussion, we can notice that the perfor-
mances we gained were achieved at the expense of a very high rejec-
tion rate of the observations having a non-empty warning flag. The
distribution of these warning flags amongst the observations is given
in Table 4 along with their associated ratio of catastrophic redshift
prediction once triggered. We first have to note thatZ_LOWZSCORE
is the most frequently triggered warning flag amongst these obser-
vations and is hence the one that contributes at most in their removal.
The reason for this stands in the fact that the Zscore measure is pri-
marily designed such as to be sensitive to the presence of all the
emission lines that are theoretically covered at a given redshift es-
timate. The miss of one such a line can be attributed either to the
wrong redshift estimate we made or to its misidentification owing
to its noise or its strong damping by the instrumental convolution,
though the right redshift was selected. This misleading distinction
is clearly depicted in Table 4, where solely 9.64 per cent of the
observations having G = 18 and Z_LOWZSCORE flag set comes
along with |�z| > 0.1, thus arguing for the frequent misidentifi-
cation of some emission lines while at G = 20 this ratio becomes
38.84 per cent, hence consisting in a larger fraction of effective red-
shift confusions. Secondly, the Z_AMBIGUOUS flag is frequently
set because of the intrinsic degeneracy existing in the prediction
of the redshift of quasars albeit we can assess from Table 4 that
in 70.66 per cent of the cases the right redshift is selected amongst
these ambiguous solutions at G = 18 while this ratio drops to
49.29 per cent at G = 20. For completeness, we have to mention
that 49.29 per cent of successful identifications is still better than
the ratio that would be obtained from a random selection of the so-
lution, given that the observations having Z_AMBIGUOUS flag set
often consist in more than two ambiguous solutions (see Fig. 8, for
example). We can further note that, once an ambiguity is detected
(i.e. Z_AMBIGUOUS warning flag triggered), the optimal peak of
the CCF is commonly selected as the most probable redshift esti-
mate as these do not additionally trigger a Z_NOTOPTIMAL warn-
ing flag. Now, if a sub-optimal peak of the CCF is selected, then
55.66 per cent of the observations come along with |�z| ≤ 0.1 at
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Figure 9. Ratio of observations having Zscore and χ2
r greater than or equal to the provided values (i.e. completeness) and ratio of observation having |�z| > 0.1

amongst the latter (i.e. impurity).

G = 18 while this ratio becomes 39.23 per cent at G = 20. Given that
the latter observations must have a Zscore that is greater than or equal
to the one associated with the optimal peak of the CCF in order
to be selected, these eventually reveal the effective degeneracy that
exists in the redshift prediction of quasars once based on low SNR
spectra. Finally, the Z_LOWCHI2R warning flag is rarely triggered
given the strong constraints we set on it (see equation (19)). This
decision is further supported by the fact that the associated ratio of
catastrophic redshift prediction stands to be the highest amongst the
whole set of warning flags.

As pointed out within Section 5, the thresholds that were used
in order to trigger the Z_LOWZSCORE and Z_LOWCHI2R warning
flags are somewhat arbitrary and other values might be better suited
regarding the specific needs of the end user. This is particularly true
given that these were shown to have a strong impact on the trade-off
between the completeness and the impurity of our predictions as we
have just seen. These ratios of completeness and impurity are given
in Fig. 9 for varying thresholds on χ2

r and Zscore. Note that we do
not consider the Z_AMBIGUOUS and Z_NOTOPTIMAL warning
flags in this analysis, given that χ2

r < 1 automatically implies that
both these flags are set. Also remind that we required χ2

r > 0.85 so
as to limit the number of ambiguous solutions that are potentially
associated with each observation.

6.2 BAL binary classification

The data unbalancing has a particularly insidious impact on the
analysis of the results coming from the binary classification of BAL
QSOs. Indeed, based on the fact that solely 9.95 per cent of the
DR12Q observations are BAL QSOs, a model that will systemi-
cally classify the observations as type I/II QSO would then provide
a satisfactory ratio of correctly classified observations (i.e. an ac-
curacy) of 90.05 per cent while no BAL QSO will be identified.
Consequently, this ratio will not constitute an objective analysis
tool if considered alone. We will hence use two additional and com-
plementary statistical measures that were specifically designed for
the analysis of the performance of binary classifiers. First, the true
positive rate (hereafter TPR) will here denote the fraction of BAL
QSOs that are correctly identified by a given model. It constitutes
an estimator of the probability of detection of the BAL QSOs by

this model. Secondly, the false positive rate (hereafter FPR) will
denote the fraction of type I/II QSOs that are wrongly classified
as BAL QSOs. A perfect binary classifier should hence have TPR
= 1 along with FPR = 0. Note that both these statistical measures
can be adjusted by varying the user-defined threshold that was set
either on pb, for the case of the WPC, or on the number of trees
that voted for the BAL class regarding the ERT. By doing so and
reporting the corresponding TPR against FPR, we obtain the so-
called Receiver Operating Characteristics (ROC) curve as depicted
within Fig. 10 for the case of the WPC and ERT models for quasars
with magnitudes G = {18, 18.5, 19, 19.5, 20}. These curves allow
us to straightly compare the performances of these two competing
models while depending neither on the data unbalancing, nor on the
specific thresholds we used. The area under the ROC curve is then
often taken as a fair indicator of their global performances.

Now, like many data-reduction pipelines, our primary objective
will be to optimize the accuracy of our model with respect to the
fraction of BAL QSOs that will be encountered amongst the real
observations. We will then have to take into account the potential
unbalancing that will be present within the Gaia observations. How-
ever, because of the uncertainties surrounding the selection effect
from DSC as well as the observational bias, this unbalancing is not
known a priori. Consequently, we decided to consider a fraction of
BAL QSOs, rb, equal to the one that is present within the DR12Q
catalogue (i.e. rb = 0.0995). The presented accuracies should hence
be updated once a realistic ratio will be available though the gen-
eral conclusions drawn out of these are not supposed to change
(assuming that rb remains small). We can then easily figure out
that the regions of the ROC curves where the accuracy is constant
correspond to lines whose equations are given by

TPR = 1 − rb

rb
× FPR + C. (23)

Our goal will then be to find the point(s) of the ROC curve that
intersect such a line while maximizing C. Note that the trivial case
where C = 0 corresponds to the accuracy that would be obtained by
a constant type I/II classifier which is thereby always achievable.
Stated otherwise, the point(s) of the ROC curve having an optimal
associated accuracy correspond(s) to the one (or those) whose dis-
tance to the line of constant type I/II accuracy is the greatest while
being on its left side.
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Figure 10. ROC curves of BAL binary classification regarding the WPC and ERT models for quasars with G magnitudes equal to 18, 18.5, 19, 19.5 and 20.
Shaded areas correspond to regions where the accuracy stands higher than or equal to the one coming from a constant type I/II classifier. The points of the
ROC curves associated with the optimal accuracies stand at the highest distances from the border of these regions while being contained in it.

Table 5. Optimal accuracies of the ERT and WPC models for quasars
with G magnitudes of 18, 18.5, 19, 19.5 and 20 along with their associated
thresholds, TPR and FPR.

G magnitude Threshold TPR FPR Accuracy

ERT

18.00 552 0.15553 0.01048 90.644%
18.50 604 0.07920 0.00448 90.428%
19.00 604 0.05204 0.00345 90.252%
19.50 598 0.02857 0.00235 90.119%
20.00 617 0.00352 0.00029 90.058%

WPC

18.00 0.5341 0.31992 0.01666 91.725%
18.50 0.5517 0.21295 0.01105 91.169%
19.00 0.5843 0.09140 0.00437 90.562%
19.50 0.6102 0.03348 0.00203 90.198%
20.00 0.6486 0.00413 0.00023 90.069%

Fig. 10 focuses on the regions of the ROC curves where the
accuracy stands higher than the one of a constant type I/II classifier.
From our previous discussion, we can readily see that the WPC
models have overall better accuracies when compared to the ERT
models for the whole set of G magnitudes. The best achievable
accuracies are summarized in Table 5 along with their associated
thresholds, FPR and TPR for G magnitudes of 18, 18.5, 19, 19.5
and 20. The extremely low TPR found therein can be explained by
both the relatively low SNR of the synthesized spectra as well as by
the removal of most of the narrow absorption features by the LSF
convolution and/or by the undersampling of these spectra. The effect
of noise can be readily recognized based on Fig. 10, where the ROC
curves tend to match the ones that would be obtained from a random
classifier (i.e. a diagonal line) as we increase the G magnitude. This
translates as a drop of the point of optimal accuracy along the ROC
curves which consists in both a lower TPR and a compensating
lower FPR (see Table 5). In extreme cases, BAL QSOs become
barely identifiable with a probability of detection within the WPC
of 3.348 per cent for G magnitude of 19.5 and of 0.413 per cent for
the case of G = 20. Fig. 11 compares the TPR of the WPC with the
Balnicity index of the C IV trough (Weymann et al. 1991, hereafter
BI) for the various normalizing magnitudes. This BI can be seen
as a modified equivalent width of the BAL absorption occurring
in the blue part of the C IV emission line. We can notice a strong
dependence of the TPR according to BI, which reflects the difficulty

Figure 11. Comparison of the Balnicity index of the C IV trough with re-
spect to the TPR of the WPC models regarding BAL QSOs with various
magnitudes.

in identifying BAL QSOs having narrow absorption features. We
can finally notice that if one can afford to have a high FPR, then
the ERT provides a better TPR than the WPC. This would be the
case, for example, if we would like to filter the Gaia catalogue by
keeping most of the the BAL QSOs while rejecting a still significant
number of type I/II QSOs.

7 D ISCUSSI ON

Although already fully operational, the presented software module
may still experience some minor improvements that will be sum-
marized in the remainder. First, we did not consider any extinction
by the interstellar medium. The associated correction relies on the
availability of a wavelength-dependent extinction law such as the
one of Fitzpatrick (1999) as well as on a map of galactic extinction
like the one that will be produced by the Total Galactic Extinction
software module from CU8 (Bailer-Jones et al. 2013). The total
equivalent width of the emission lines as well as the continuum
slope from equation (21) might benefit from this correction. Never-
theless, due to the fact that the continuum slopes we subtracted from
our synthesized spectra are purely empirical (see Section 5), these
will also contain most of the encountered extinction. Accordingly,
this correction is not expected to bring any major improvement
neither on the prediction of the redshift of QSOs nor on the subse-
quent calculation of the BAL discriminant value, pb. Furthermore,
based on the fact that most of the DR12Q spectra stand at relatively
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high galactic latitude (i.e. |b| > 30◦) where the extinction is weak,
the spectra we used in this study were not much affected by this
extinction. A more challenging objective would be to enable the
prediction of this extinction based on the BP/RP spectra of quasars.
This problem is currently being investigated but seems to be hardly
attainable because of the degeneracy existing between the extinc-
tion curve and the intrinsic continuum slope of the QSOs. Secondly,
the computation of a χ2 value from the optimal point of the CCF
(see equation (6)) can straightly allow us to send feedback about
the potential misclassification of the quasars we received from the
DSC module.

8 C O N C L U S I O N

We have described in this work the processing of the BP/RP spectra
coming from the Gaia satellite in order to determine the APs of
quasars within the QSOC module of the CU8 CU from the DPAC.
These APs encompass: the redshift of the QSOs, their continuum
slopes, the total equivalent width of their emission lines and whether
or not these are broad absorption lines (BAL) QSOs. We have high-
lighted the necessity to have fast and reliable algorithms so as to
deal with the huge amount of spectra that Gaia will provide as well
as with their limited signal-to-noise ratio and resolution. We have
introduced two already developed algorithms, namely the weighted
principal component analysis and the weighted phase correlation,
that were specifically designed in order to fulfil both these men-
tioned objectives and whose combination allows both to securely
predict the redshift of the QSOs and to set a discriminant on their
type. We have presented the construction of a semi-empirical library
of BP/RP spectra based on the Gaia instrumental convolution of the
observations coming from the Sloan Digital Sky Survey which were
extrapolated in order to cover the wavelength range of the BP and
RP spectra. We saw the pre-processing that is required in order for
these BP/RP spectra to be fully exploitable by our algorithms as
well as the methods we used for predicting the various APs. Some
systematic bias was noticed within the prediction of the continuum
slopes and of the total equivalent width of the emission lines. This
bias can be mostly explained by both the spread of the Si IV, C IV

and C III] emission lines over the continuum regions situated be-
tween 145–148 nm and 170–180nm as well as by the rejection of
the negative fluxes that are usually found within the red part of the
pre-processed spectra.

A comparison with the currently used machine learning method
showed that our approach is the one of predilection for the de-
termination of the redshift of the quasars while benefiting from
a straight physical significance as well as from strong diagnos-
tic tools on the potential errors that may arise during predictions.
Cross-validation tests showed that 95.17 per cent, 93.34 per cent,
89.44 per cent, 82.4 per cent and 71.07 per cent of the observations
come along with an absolute error on the predicted redshift that
is lower than 0.1 for the case of quasars with G magnitudes equal
to G = {18, 18.5, 19, 19.5, 20}. These ratios become, respec-
tively, 99.77 per cent, 99.72 per cent, 99.57 per cent, 99.36 per cent
and 98.580 per cent once the insecure predictions are discarded
based on the triggering of some warning flags. We explored the
repartition of these warning flags amongst the observations and
studied the effect of setting customized warning thresholds on the
trade-off between the completeness and the impurity of our predic-
tions. Our methods were proved to yield the best ratio of correctly
classified observations regarding the identification of BAL QSOs
assuming that these will be observed much less frequently than
the type I/II QSOs. Machine learning methods may still provide

a better probability of detection of these BAL QSOs at the ex-
pense of much higher contamination rates. Finally, we have that
91.725 per cent, 91.1069 per cent, 90.562 per cent, 90.198 per cent
and 90.069 per cent of the observations were correctly classified by
our methods regarding quasars with G magnitudes of 18, 18.5, 19,
19.5 and 20, respectively.
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4
Identification of gravitational lens
candidates within the Gaia mission

As outlined in section 1.3, quasars reveal a supplemental interest once their light rays
get de�ected by a foreground galaxy being in the line-of-sight. Upon a favourable
alignment between the observer, the de�ecting galaxy and the background quasar,
multiple images of this quasar can be produced that may lead to some of the currently
most important cosmological applications, as already explained in section 1.3.3. As
a reminder, an immediate bene�t of such a gravitational lensing (GL) phenomenon
stands in the fact that some of these images are magni�ed versions of what would be
observed if no de�ector was present. This allows high quality observations of these
very distant objects to be obtained. Also, independent estimations of the cosmolog-
ical parameters can be gained if the time delays occurring between the photometric
variability curves of each of these images is taken into account. Gaia, on its side,
is expected to have an astrometric precision of σ0 = 462 µas along with an angular
separation power of 200 mas and a photometric precision of σG = 0.0312 mag re-
garding quasars of magnitude G = 20 mag, assuming these have an observed color
V − I = 0.225 mag on average (Gaia Collaboration et al. 2016). Owing to these high
performances and to its full sky coverage, Gaia hence o�ers a unique opportunity to
identify strong gravitational lens (GL) systems. This problematic being explored in
the present chapter.

The goal of the GL identi�cation is then to predict whether compact con�gurations
of three or four point-like images constitute plausible GL candidates based on the sole
positional and photometric informations of these images. A GL candidate being here
de�ned as a con�guration of images that is compatible with the one that would be
produced through a non-singular isothermal ellipsoid in presence of an external shear
(NSIEg) lens model. The reason for considering this particular model stands in the
fact that it is rather general as it allows most of the commonly observed GLs to
be modelled. GLs whose de�ectors are a cluster of galaxies will accordingly not be
addressed here as these require more complex mass distributions to be considered (see
however Keeton 2001, for an overview of these methods).

This e�ort is conducted through the gravitational lenses in Gaia (GraL) working
group composed of a dozen scientists, mainly coming from the data processing and
analysis consortium (DPAC). The GraL activities are carried out in parallel through
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Figure 4.1: Probability density function of the axis ratio of early type galaxies (Choi
et al. 2007).

the GravLens chain out of the DPAC CU4 as well as through the systematic explo-
ration of lenses from astrometry (SELenA) pipeline. This distinction is made here
because the GravLens chain, although having access to privileged informations like
sky mappers or IDTs under the DPAC data access policy, is contractually restricted
to provide its results in the �nal data release of the Gaia catalogue. Still, as earlier
releases are already fully exploitable, a concurrent implementation (i.e. the SELEnA
pipeline) was developed so as to accomplish similar objectives while only relying on
public data releases.

Two approaches can be envisaged to identify GLs:

� Quasars represent only a small fraction of the celestial objects at G . 22 mag,
the presence of a companion object in the near vicinity of a known quasar being
hence a �rst hint of a GL candidate, this probability is furthermore reinforced if
this companion object is itself a quasar. A cross-match performed between the
Gaia data release 1 (GDR1) and the large quasar astrometric catalog (Souchay
et al. 2015, hereafter LQAC) accordingly provided ∼ 1300 con�gurations com-
posed of two images, ∼ 70 con�gurations having three images and 10 con�gu-
rations having four images. Although most of these con�gurations correspond
to fortuitous combinations of foreground star(s) and quasar(s) projected on the
celestial sphere, some well-known GLs as well as some GL candidates are still
recovered thanks to this technique.

� Secondly, as an important fraction of the quasars that Gaia will identify will
be new discoveries, the search around known quasars from the previous point
su�ers from a critical lack of completeness. This is particularly true as the
classi�cation of the objects that will be detected by Gaia through the DSC
module only aims to be published in the third data release of the Gaia catalogue.
A blind identi�cation of GLs performed over the whole sky can accordingly bring
a non-negligible additional set of GL candidates before we get the whole quasar
identi�cations from DSC.

The method we describe below was primarily designed in order to provide an estima-
tion of the capability of the NSIEg lens model to reproduce the observed con�gurations
of the lensed images without having to rely on slow procedures that are commonly
used for this purpose as, for example, the sampling of the posterior probability func-
tion based on a Bayesian approach to the problem (Keeton 2010). This identi�cation
being particularly well suited for an analysis through machine learning (ML) methods
as those described in section 2.4.
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Figure 4.2: Illustration of the caustic curves obtained by projecting a uniform grid of
points from the image plane back into the source plane for a given GL model (left)
and associated square deviation function (right). The parameters of the NSIEg GL
model we consider here are given by θe = 1.23 ′′, θc = 0.19 ′′, f = 0.56, γ = 0.07 and
ω = 1.89.

Supervised learning methods however require a rather exhaustive learning set of
observations (LS) to reliably guess the relations that may exist between a set of input
attributes and an output variable (see section 2.4). This output variable being here
associated with a binary value depending on whether a given con�guration of images
can be modelled through a NSIEg lens model, or equivalently if this con�guration
is a GL candidate. A very limited sample of GLs (∼ 100) is actually available such
that a simulation of these GL systems has to be performed so as to yield an arbitrary
large LS. The idea is then to build a set of GL lens candidates based on a realistic
sampling of the parameters of the NSIEg lens model as summarized in Table 1.3.
More precisely, if we assume the Einstein radius, θe, to be a simple scaling factor, all
these parameters turn out to follow uniform distributions at the exception of the axis
ratio, f , where a Monte-Carlo Markov chain (MCMC) sampling of the probability
distribution function illustrated in �gure 4.1 had to be used. Other parameters were
then uniformly drawn from the interval θe ∈ [0.1, 1] in the case of the Einstein radius,
in the range θc ∈ [0, 0.1 θe] for the angular size of the core of the de�ector, in the range
γ ∈ [0, 0.1] for the shear intensity and with ω ∈ [0, π] regarding the shear orientation.
Once these parameters are correctly settled, we randomly probed 100 source positions
for each so built NSIEg de�ector while only keeping those providing more than three
lensed images (one of these images being systematically strongly de-ampli�ed it will
generally not be detected and can be safely ignored).

Although apparently straightforward, the derivation of the image positions turns
out to be a challenging problem as it requires the lens equation, θs = θ − α(θ), to
be inverted. That is �nding the image positions, θ, that are associated with a source
position θs is a complicated task for which analytical solutions rarely exist. At the
opposite, �nding the source position θs that match an image position θ is trivial
as it only requires the lens equation to be evaluated. Numerical methods are hence
frequently employed to `invert' the lens equation that relies on this straight evaluation.
Based on this idea and on the previous work of Keeton (2010), we used a tiling of
the image plane we propagated back into the source plane to approximate the caustic
curves that are associated with the GL system (see �gure 4.2 for an illustration). The
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overlapping of these tiles in the source plane e�ectively provides the number of images
that will be produced for a given GL system. The positions of these images are then
re�ned through the use of a Nelder-Mead optimization algorithm (Nelder & Mead
1965) applied to the square deviation function (Schramm & Kayser 1987, hereafter
SDF) as de�ned by

S2(θ) = ‖θs − θ +α(θ)‖2 . (4.1)

Let us note that this equation yields the squared distance between the source position
and the projection of a point θ from the image plane back into the source plane as
illustrated in �gure 4.2. More particularly, S2(θ) = 0 implies that the position θ is
associated with an image of the source according to the current GL model and source
position.

The previous simulation resulted in 8×106 GL candidates having more than three
images, 97.4% out of these having �ve images as expected from the odd number the-
orem (Burke 1981). According to this theorem, GLs having a smooth surface mass
density which decreases faster than |θ|−1 always produce an odd number of images.
The remaining 2.6% of GLs having four images hence corresponds to cases where we
voluntarily considered two of these lensed images as being indistinguishable one from
another (i.e. in cases where |∆θ| < 0.1θe). The removal of one or two of the faintest
image(s) out of these 8× 106 candidates �nally provides us with two sets of simulated
observations having an approximately equal size and corresponding to GL candidates
having four and three lensed images, respectively. Alternative sets of contaminant
observations were also subsequently built based on the Besançon model of stellar pop-
ulation (Robin et al. 2003), out of which three and four image con�gurations were
randomly drawn. These have a di�erence in magnitude of ∆G ≤ 2.5 mag and a
minimal image separation of |∆θ| ≥ 0.1 ∆θmax, where ∆θmax is the maximal separa-
tion between any two images. Half of the simulated GL candidates as well as half of
the contaminant observations were then merged for each of the three and four image
datasets to yield LS, the other half being kept as test sets of observations (TS). Three
noise realizations were produced out of these TS corresponding to: a perfect instru-
ment (σθ = 0 mas, σG = 0 mag), the expected performances of Gaia on typical GLs
(σθ = 10 mas, σG = 0.02 mag) and to a defeatist approach (σθ = 100 mas, σG = 0.05
mag). Finally, all observations were normalized so as to have their brightest images
standing at θ = (0, 0) along with a G magnitude of 0 and their second brightest image
standing at θ = (1, 0). Figure 4.3 illustrates the result of this simulation procedure
on TS.

Before building the ML models upon which the identi�cation of the lens candidates
will be performed, one might rightly wonder what is the fraction of GL candidates
as compared to the number of fortuitous clusters of celestial objects. The exact
answer to this question is however not as straightforward as it may seem given that
it requires strong lensing probability to be taken into account as well as the precise
inhomogeneities of stars (e.g. galactic plane, globular clusters, . . . ) to be considered.
Rather, an approximate lower limit on the fraction of GL candidates will be derived
here based on simple assumptions. We suppose �rst that most GLs whose de�ectors
are galaxies are found within a radius of 2.5 ′′centred around these galaxies such that
we are only interested in clusters of celestial objects standing in a spherical cap of
similar radius. From Poisson statistics, we have that the probability that k celestial
objects stand within a given spherical cap of radius r is given by

P (k ∈ Ωr) =
λke−k

k!
(4.2)
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Figure 4.3: Examples of simulated GL candidates and contaminants taken from TS
regarding various realizations of the noise. The origin of the system stands on the
brightest image which is also normalized so as to have a magnitude of G = 0 mag,
the second most luminous image standing then at θ = (1, 0). Images are labelled by
their relative magnitudes as compared to the brightest image. The associated sets
of observations coming along with three images are then obtained by removing the
faintest image out of these con�gurations.
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Table 4.1: Extremely randomized trees (ERT) performances obtained in the identi�-
cation of GL candidates once requiring the FPR to be comparable to the fraction of
GL candidates that will be present in the observations (i.e. 0.1% of the con�gurations
composed of three images will consist of GL candidates while 1% of the con�gurations
composed of four images will be candidates, as derived in the text). This eventually
yields a contamination ratio among the predicted GL candidates of ∼ 50%.

Number

of images σθ (mas) σG (mag) Threshold TPR FPR

3 0 0 > 0.999 0.25992 0.0013024
3 10 0.02 > 0.999 0.22410 0.0012945
3 100 0.05 > 0.999 0.13693 0.0012994
4 0 0 > 0.199 0.99957 0.0098688
4 10 0.02 > 0.197 0.99940 0.0099865
4 100 0.05 > 0.237 0.98938 0.0099954

where λ is the expected number of celestial objects in a spherical cap of radius r,
subtending a solid angle Ωr on the sphere. In the case of Gaia, 1.1× 109 sources are
expected to be observed (Robin et al. 2012), supposing these are uniformly distributed
over the celestial sphere1, we have that

λ = 1.1× 109 Ωr

4π
, with Ωr =

∮ ∫ r

0
sin θdθdφ = 4π sin2 r

2
, (4.3)

leading to λ = 0.04 if r = 2.5 ′′. We hence have that P (2 ∈ Ωr) = 10−4 and that
P (3 ∈ Ωr) = 5.5 × 10−7 such that if we consider spherical caps centred on all of the
1.1 × 109 Gaia sources, the approximate number of fortuitous con�guration of three
and four images we obtain are respectively given by 1.1×105 and 605. These numbers
have to be compared to the ∼ 80 GLs having more than two lensed images as well as
to the few GLs having four lensed images that Gaia is expected to observe (Finet &
Surdej 2016). Accordingly, we estimate a contamination ratio among GLs candidates
in the order of 99.9% in the case of three image con�gurations and in the order of 99%
in the case of four image con�gurations. These ratios must however be taken with the
caution they deserve given their coarse derivation as well as the strong assumptions
we made.

An ensemble of N = 500 extremely randomized trees (ERT) was then built based
on LS for each of the three and four image con�gurations. Tests have shown that
the present problem is rather insensitive to the nmin parameter of the ERT that was
accordingly set to its default value nmin = 2. On the other hand, all attributes were
considered regarding the K parameter (see section 2.4). The predictions of these
models are assessed based on TS having varying noise realizations, as we already
described. Figure 4.4 and Table 4.1, present the result of this validation procedure.
Although three image GL candidates are barely identi�ed (13% < TPR < 26%) owing
to the high contamination rate among these con�gurations which in turn results in a
required extremely low FPR < 0.1%, four image GL candidates are easily identi�ed
as, for example, a TPR of 90.1% is still associated with a FPR of 0.007%.

These ERT models were then ran on GDR1 though no serious GL candidates
having four images were identi�ed. The reason for this stands in the �ltering that is

1This assumption is obviously false but it still provide us with an upper limit on λ given that
most of the GLs will stand at high galactic latitudes (i.e. |b| & 30◦) where the stellar density is low
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Figure 4.4: Performances of the Extremely randomized trees (ERT) on GL candidate
identi�cations for the cases of three and four image con�gurations with varying noise.
The false positive rate (FPR) corresponds here to the probability that a random
cluster of stars will be considered as a GL candidate while the false negative rate
(FNR) corresponds to the probability that a GL candidate will be missed (i.e. FNR
= 1-TPR). Both these values depending on the threshold we set on the probability
that is returned by the ERT so as to consider a given con�guration as a GL candidate
(see section 2.4).
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Table 4.2: ERT performances on GL candidate characterization for σθ = 10 mas and
σG = 0.02 mag. The source position is here given by θs = (xs, ys) while the de�ector
position is given by θd = (xd, yd), the overall orientation of the system being given
by $. Performances are assessed based on the mean absolute error (MAE) as well as
on the correlation between the predicted parameters and the e�ective parameters of
genuine GL candidates.

ERT 3 image GL candidates 4 image GL candidates

Parameters MAE Correlation MAE Correlation
θe 0.235 0.9485 0.172 0.9739
f 0.057 0.8734 0.039 0.9378
$ 0.151 0.9746 0.092 0.9911
θc 0.042 0.6904 0.034 0.7827
xs 0.040 0.9187 0.016 0.9901
ys 0.055 0.9936 0.014 0.9996
xd 0.042 0.7648 0.018 0.9613
yd 0.062 0.9932 0.020 0.9992
γ 0.023 0.3100 0.017 0.7024
ω 0.533 0.7890 0.304 0.9259

applied to each source of the catalogue before it is made public. This aims to prevent
variable objects to contaminate the catalogue as well as it removes sources for which
the astrometric positions have large uncertainties. Accordingly, most of the known
GLs come along with only one or two images and can hence not be identi�ed by our
procedure. Still 137 con�gurations composed of three images have a probability of
being GL candidates that is higher than 90%, one of these even has a probability of
100%. A visual inspection procedure then selected 42 of these promising candidates for
further observations using the Devasthal optical telescope (Sagar et al. 2011, hereafter
DOT). Those observations are being planned for the beginning of 2018.

Finally, as the GL identi�cation relies on the ability of the NSIEg model to repro-
duce the observed con�gurations, the determination of the parameters of this model
should be equivalently doable. Table 4.2 accordingly lists the expected performances
of the ERT in retrieving the parameters of the NSIEg lens model regarding GL candi-
dates having a typical noise of σθ = 10 mas and σG = 0.02 mag. An important result
appearing in this table is that both the source position θs as well as the de�ector po-
sition2 θd are determined with a relatively high accuracy. Also the axis ratios, f , have
rather fair associated predictions. All these estimated parameters are intended to be
used as starting conditions in a Bayesian modelling of the most promising candidates
out of the Gaia and DOT observations. This point being the subject of an ongoing
research.

2The de�ecting galaxies often having smooth luminosity pro�les, they will generally not be de-
tected by Gaia



5
Conclusions

During this PhD thesis we have developed software solutions designed to solve the
problems of the characterization of quasars and of the detection of gravitational lens
candidates within the Gaia mission. The speci�c approach we have implemented
regarding the former of these objectives (Delchambre 2018) relies on intuitive ideas
that yield to the currently most accurate predictions of the astrophysical parameters
of quasars out of the blue and red spectrophotometers of Gaia, hereafter abbreviated
as BP and RP, respectively. The ease of interpretation that is associated with this
implementation eventually provides strong diagnostic tools on the potential errors
that may arise during predictions as, for example, a straight identi�cation of the
degenerated cases where di�erent values of the redshift of a quasar can lead to the
�ts of the observed spectrum with comparable accuracies. Other possibilities o�ered
by this technique is a fair recognition of the insecure predictions, upon which warning
�ags can be triggered, as well as the availability of straightly computable uncertainties
for each of the estimated astrophysical parameters. A major challenge we had to
face during the development of these quasar characterization methods stands in the
restricted computer resources that are allocated to the processing of each quasar
owing to the one billion of sources that Gaia has to manage in total. This requirement
translates in a limited amount of 109 �oating point operations (�ops) that are allocated
to the treatment of each of these sources, or equivalently to a processing time of 0.6
ms per source in the data processing center at CNES (DPCC).

Practically, the development of a dedicated weighted principal components analysis
algorithm (Delchambre 2015), based on the diagonalization of the weighted covariance
matrix, �rst enabled the creation of templates upon which the spectra of quasars
are best modelled. This algorithm concurrently allowed quasars spectra from the
Sloan digital sky survey (SDSS) to be extrapolated over wavelength ranges that are
comparable to those covered by the red and blue spectrophotometers of Gaia with
a view to their conversion into BP/RP spectra. The development of a weighted
phase correlation algorithm (Delchambre 2016) designed to �nd the phase at which
an input signal and a set of templates match at best in a weighted chi-squared sense
subsequently allowed us to securely determine the redshift of the observed quasars.
The speci�c implementation we elaborated is based on a highly modi�ed orthogonal
decomposition of the normal equations that are associated with the �t of the templates
to the observation at each trial redshift. The resulting algorithm has a numerical
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complexity of O (N logN) �ops that makes it a�ordable for the tight data processing
of Gaia as the determination of the redshift of each source only requires ∼ 3 × 106

�ops (assuming our template comes along with N = 7709 samples and that we use
6 of them). This equivalently translates into a processing time of ∼ 2 µs per source
in DPCC. The orthogonal decomposition we considered also ensures a high numerical
stability of the whole algorithm. We detailed the building of a library of BP/RP
spectra out of the SDSS observations and de�ned the appropriate processing that
is necessary for these BP/RP spectra to be fully exploitable by the aforementioned
algorithms. Finally, we properly derived the way the other astrophysical parameters
were retrieved, amongst which: the slope of the quasar continuum, the equivalent
width of their emission lines and whether these encompass broad absorption lines
(BAL) or not.

Tests performed using a cross validation procedure show that 95.17%, 93.34%,
89.44%, 82.4% and 71.07% of the observations come along an absolute error on the
predicted redshift, |∆z|, that is lower than 0.1 regarding BP/RP spectra of magnitude
G = {18, 18.5, 19, 19.5, 20}, the associated mean absolute errors being then respec-
tively given by 0.0057, 0.0061, 0.0069, 0.0088 and 0.013. Considering the removal
of the predictions triggering warning �ag(s), that encompass 46.2%, 50.99%, 57.72%,
67.09% and 77.58% of the total number of observations, we have that 99.77%, 99.72%,
99.57%, 99.36%, 98.58% of the remaining observations come along with |∆z| < 0.1
while the associated mean absolute errors become 0.0053, 0.0055, 0.0058, 0.0063,
0.0072 regarding the same set of magnitude. The accuracy in classifying BAL quasars
being then respectively given by 91.725%, 91.169%, 90.562%, 90.198% and 90.069%
along with a probability of detection of the BAL quasars of 31.992%, 21.295%, 9.14%,
3.348% and 0.413%. The slope of the quasar continua is however overestimated on
average by an amount of ∆αν ≈ 0.1 owing to the spread of the Si iv and C iv emission
lines over the continuum regions 145�148 nm, because of the convolution occurring
in the BP/RP optics, and, to a lesser extent, from a similar spread of the C iv and
C iii] emission lines over the continuum region 170�180 nm. This overestimation con-
sequently leads to an underestimation of the total equivalent width of the emission
lines that is of the same order of magnitude.

The identi�cation of gravitational lens (GL) candidates, on its side, had to rely on
simulated con�gurations as the presently known sample of GLs is insu�cient large in
order to permit machine learning methods to e�ciently guess the relation that may
exist between the magnitudes and positions of some images and whether these are
part of a GL system or not. We considered for this purpose a non-singular isother-
mal ellipsoid GL model in presence of an external shear (NSIEg) as it allows most
of GLs whose de�ector is a galaxy to be modelled. A learning set of observations
was accordingly built based on a realistic distribution of the parameters of the NSIEg
model as well as on fortuitous arrangements of stars coming from usual stellar pop-
ulation models. The determination of the lensed image positions out of a given GL
model revealed a particular intricacy as it required the lens equation to be inverted.
These positions were consequently obtained through a dedicated numerical method
that only relies on straight evaluations of the latter equation. A supervised learning
model, consisting of extremely randomized trees, was then trained on the available
learning sets of observations composed of three and four image con�gurations and
was subsequently tested using an independent test set of observations. Assuming we
have typical positional and photometric uncertainties as well as given the theoretical
fraction of GLs as compared to clusters of stars, we therefore estimated that 22.41%
of the GLs composed of three images will be detected along with an associated prob-
ability for a cluster of stars to be identi�ed as a GL of 0.129%. In case of four image
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con�gurations, these numbers are respectively 99.94% and 0.009% such that these will
be undoubtedly identi�ed in the upcoming data releases of the Gaia catalogue. 42
promising GL candidates composed of three images were already identi�ed out of the
�rst Gaia data release and are currently awaiting con�rmation through ground-based
facilities.
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A
Numerical complexities

A.1 Weighted least-squares solution to a system

of linear equations

This section aims to describe the fastest method designed to �nd the weighted least-
squares solution to a system of linear equations and to properly derive its underlying
numerical complexity. The method presented here potentially su�ers from strong
numerical instabilities (Press et al. 2002) and should not be used in practice, the
latter being solely outlined in a comparison purpose regarding its low execution time.

Suppose we have a system of linear equations of the form

Ax = y (A.1)

where A ∈ Rm×n, x ∈ Rn and y ∈ Rm. The goal of the weighted least-squares
solution to equation A.1 is to �nd a vector x such that

χ2 =
∑

i

1

σ2
i


yi −

∑

j

Aijxj




2

(A.2)

is minimized. Note that we introduced in the latter equation σ, the vector of the
uncertainties that are associated with y. Taking the partial derivatives of equation
A.2 with respect to x and rearranging yields

ATWAx = ATWy, Wij =

{
1/σ2

i , if i = j
0, otherwise

, (A.3)

that are the normal equations associated with the least-squares minimization of equa-
tion A.1.

From basic considerations, we have that the construction of the normal equations
matrix B = ATWA requires n2m + mn �ops as the matrix multiplication A′ = WA
consumes nm �ops whereas the matrix multiplication ATA′ takes n2m �ops. The
vector z = ATWy is then requiring nm + m �ops based on the same principles.
The overall numerical complexity that is needed for the construction of the normal
equations being hence given by

tnorm = m(n+ 1)2 (A.4)
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�ops.

Algorithm 1 Cholesky decomposition. Decompose a symmetric positive-de�nite
matrix A ∈ Rn×n into a lower triangular matrix L and an upper triangular matrix LT

such that A = LLT. The L matrix being stored in the lower triangular part of A upon
return.
1: for i = 1 to n do
2: for j = 1 to i do
3: S ← Aij

4: for k = 1 to j − 1 do
5: S ← S − AikAjk

6: end for

7: if i = j then
8: Aij ←

√
S

9: else

10: Aij ← S/Ajj

11: end if

12: end for

13: end for

Assuming that B is positive-de�nite, then it can be decomposed through algorithm
1 as

B = LLT (A.5)

where L is a lower triangular matrix. The numerical complexity of algorithm 1 can
be derived if we recognize the inner loop (see line 4) as being composed of j− 1 �ops1

while the last step (either line 8 or 10) requires 1 �op. The loop at line 2 is executed
i times, giving a complexity of

∑i
j=1 j = (i2 + i)/2 �ops. Finally, the outer loop (line

1) is executed n times giving a �nal algorithmic complexity of

tchol =
n∑

i=1

i2 + i

2
=
n(n+ 1)(n+ 2)

6
(A.6)

�ops.

Algorithm 2 Forward substitution. Given a lower triangular matrix L ∈ Rn×n and
an image vector y ∈ Rn, the algorithm �nds the vector x such that Lx = y.
1: for i = 1 to n do
2: xi ← yi
3: for j = 1 to i− 1 do
4: xi ← xi − Lijxj
5: end for

6: xi ← xi/Lii
7: end for

The vector x can then be retrieved through the consecutive solutions of the systems
of linear equations

Lb = y, LTx = b. (A.7)

1We assume here that any operation of the form x ← x ± ab can be executed in one �op, as
implemented in all modern CPUs.
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that are respectively called forward substitution and backward substitution. The for-
ward substitution algorithm (algorithm 2) consists in i − 1 operations from the in-
nermost loop while the last step is a single division. This gives a total algorithmic
complexity of

tfwd =

n∑

i=1

i =
n2 + n

2
(A.8)

�ops. Note that the backward substitution algorithm (with an upper triangular ma-
trix) has trivially the same complexity, (i.e. tbwd = tfwd).

The overall numerical complexity of the weighted least-squares solution to equation
A.1 being hence given by

tlsqr = tnorm + tchol + tfwd + tbwd = m(n+ 1)2 +
n(n+ 1)(n+ 8)

6
. (A.9)

Since we often have n� m, the �rst term of equation A.9 will be dominant (i.e. most
of the CPU resources being consumed in the building of the normal equation matrix)
such that the numerical complexity of the algorithm is given in general by O

(
mn2

)

�ops.

A.2 Fast Fourier transform

As a foreword to the analysis of this fast Fourier transform (FFT) algorithm, we
have to note that many FFT algorithms actually exist. Each of these algorithms is
optimized for a given input vector's size and/or for some data pattern. Consequently,
a precise analysis�as previously done in this section�would not be possible as it would
require the exploration of the huge variety of algorithms as well as it will necessitate a
very thorough mathematical background in order to understand these. Indeed, FFT
is still a very active topic in the research communities and their implementations
are rarely simple (see Frigo & Johnson 2005; Johnson & Frigo 2007, for examples).
Rather, this section aims at giving the reader the insights that the FFT is e�ectively
an algorithm with a complexity of O (N logN).

In algorithm 3, the loop at line 5 is used to split the input vector x into an `even'
and an `odd' part, each of them being recursilvely processed respectively by line 9
and 10. The sorting appears explicitly here in a didactical puprose, but practically
it is implemented using an appropriate indexing of x and is thus costless. Suppose
now that tfft(N) is the complexity of the present algorithm, then lines 9 and 10 will
have a complexity of 2tfft(

N
2 ) �ops to which we have to add the complexity of the

loop at line 11. W factors (line 12) are almost always pre-computed in all modern
implementation and are consequently costless, while lines 13 and 14 requires 2 �ops
to be executed giving the loop at line 11 a complexity of N . We will then have a total
complexity of

tfft(N) = N + 2tfft

(
N

2

)

= 2N + 4tfft

(
N

4

)

...

= kN + 2ktfft

(
N

2k

)
. (A.10)
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Algorithm 3 Find the discrete Fourier Transform (DFT), y ∈ CN , of the input
vector x ∈ CN with N = 2n;n ∈ Z+ using a recursive Cooley-Tukey algorithm.
1: function �t(x, N)
2: if N = 1 then
3: y ← x
4: else

5: for j = 1 to N
2 do

6: e← (e x2j−1)
7: o← (o x2j)
8: end for

9: ê←�t(e,N2 )
10: ô←�t(o,N2 )
11: for j = 1 to N

2 do

12: W ← exp (−2iπ(j − 1)/N)
13: yj ← êj +Wôj
14: yj+N

2
← êj −Wôj

15: end for

16: end if

17: end function

The basic case will occur when N
2k

= 1, that is when k = log2N , replacing within Eq.
A.10 gives the non recursive complexity as

tfft(N) = N log2N +N = N log2 (2N) (A.11)

�ops.
That being said, one often needs to compute the FFT of real-valued data. In this

case, by taking advantage of the symmetry Fi = F ∗N−i, we can reach a complexity
twice better that the one of the presented algorithm. Similarly, passing from a Fourier
Transform having this kind of symmetry to its (real) inverse can be performed in half
the time needed by the classical algorithm.

A.3 Weighted phase correlation through factor-

ized QR decomposition and lookup tables

The weighted phase correlation algorithm we detail here is �rst introduced in section
2.3 as well as it is extensively covered in Paper II. Accordingly we refer the reader
to these speci�c sections regarding the implementation details we straightly provide
here. The solution we present in algorithm 4 is used so as to rigorously derive its
numerical complexity, it is however fully operational and can be straightly translated
in any computer language.

Out of algorithm 4, we have that lines 2, 3, 6 and 8 all correspond to (inverse) FFT
of real signals (see section A.2). These hence require m �ops in order to perform the
vector element-wise multiplications (ie. computing w2, w2◦s, ŵ∗◦T̂ij and ŝ∗◦ t̂i) plus
1
2 tfft(m) in order to switch between the time and the frequency domain, leading to a
complexity of m2 log2(2m)+m = m

2 log2(8m) �ops for each of these lines. Furthermore,
we have that line 6 is executed (n+ n2)/2 times and line 8, n times. The building of
the lookup tables (from line 2 to line 9) hence requires

tlup(m,n) =
m

4
log2(8m)(n2 + 3n+ 4) (A.12)
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�ops.
For a given shift k, the line 23 is executed

∑n
i=1 i(i − 1) = (n3 − n)/3 times in

order to update the matrix X based on the (n2 − n)/2 values of γ computed at line
21. Similarly, the line 29 is executed (n2 + n)/2 times so as to update y. Lines 16,
19 and 27 being �nally executed n times while lines 13 and 14 respectively require n2

and n �ops so as to initialize X and y. The construction and update of the X matrix
and of the y vector (lines from 13 to 30) hence require

txy(n) =
n+ 2

6
(2n2 + 8n+ 3) (A.13)

�ops. Now, the update of the lookup table takes (n2−n)/2 �ops regarding the update
of l̃ as well as

∑n−1
i=1 (i2 − i)/2 = (n − 2)(n − 1)n/6 �ops regarding the update of L̃,

yielding an overall complexity for these updates of

tup(n) =
n(n2 − 1)

6
(A.14)

�ops. The computation of each ccf(k) (line 40) is �nally requiring n �ops.
Given that the algorithm is executed for all k ∈ {0,m − 1} between lines 13 and

40, we have a �nal complexity for the WPC algorithm of

twpc(n,m) = tlup (m,n) +m [txy (n) + tup (n) + n]

= tlup (m,n) +
m

2

(
n3 + 4n2 + 8n+ 2

)
(A.15)

�ops. If we assume that n� m, then most of the time is spent in building the lookup
tables such that the numerical complexity of the whole algorithm is approximately
given by m log2(8m)n2 �ops.
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Algorithm 4 Compute the weighted cross correlation function (CCF) of a given
input vector s ∈ Rm having weights w ∈ Rm against a set of templates T ∈ Rm×n
where T(i+m)j = Tij . The returned CCF, ccf(k), is such that the optimal χ2(k)

resulting from the �t of s with T̃ (T̃ij ≡ T(i+k)j) using weight w satis�es χ2(k) =

‖w ◦ s‖2 − ccf(k). We assume here that the matrices T̂ij = �t(Tcol
i ◦Tcol

j ,m) and the
vectors t̂i = �t(Tcol

i ,m) are computed in advance.

1: � Build the lookup tables L̃ij and l̃i �
2: ŵ ← �t(w2,m)
3: ŝ← �t(w2 ◦ s,m)
4: for i = 1 to n do
5: for j = i to n do
6: L̃ij ← i�t(ŵ∗ ◦ T̂ij,m) {i.e. L̃ij(k) =

∑
l w

2
l T(l+k)iT(l+k)j}

7: end for

8: l̃i ← i�t(ŝ∗ ◦ t̂i,m) {i.e. l̃i(k) =
∑

j w
2
j sjT(j+k)i}

9: end for

10:

11: � Evaluate the cross correlation function in each shift k �
12: for k = 0 to m− 1 do
13: Xij ← wiT(i+k)j ∀i, j ∈ {1, n}
14: yi ← wisi ∀i ∈ {1, n}
15: for i = 1 to n do
16: α← sgn(Xii)

√
L̃ii(k)

17: � Perform a Householder re�ection so as to annihilate the elements �
18: � below the ith row of the ith column of X �
19: Xii ← Xii + α
20: for j = i+ 1 to n do
21: γ ←

(
Xij + L̃ij(k)/α

)
/Xii

22: for l = i to n do
23: Xlj ← Xlj − γXli

24: end for

25: end for

26: � Perform a similar re�ection on y �
27: γ ←

(
yi + l̃i(k)/α

)
/Xii

28: for j = i to n do
29: yj ← yj − γXji

30: end for

31: � Update the lookup tables �
32: for j = i+ 1 to n do
33: for l = j to n do
34: L̃jl(k)← L̃jl(k)− XijXil

35: end for

36: l̃j(k)← l̃j(k)− Xijyi
37: end for

38: end for

39: � Compute the cross correlation function at shift k �
40: ccf(k)←∑n

i=1 y
2
i

41: end for



List of Figures

1.1 Gaia optical bench and mirrors . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The focal plane of Gaia . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Prisms of the blue and red spectro-photometers of Gaia . . . . . . . . 9
1.4 Optical module of the radial velocity spectrometer of Gaia . . . . . . . 10
1.5 Multi-wavelength observations of the 3C273 quasar . . . . . . . . . . . 15
1.6 Radio jets observations in AGN . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Mid-infrared observations of Seyfert I/II galaxies . . . . . . . . . . . . 17
1.8 Di�erent types of AGN as seen in the optical band . . . . . . . . . . . 19
1.9 Host galaxies of AGN viewed by the HST. . . . . . . . . . . . . . . . . 20
1.10 Mean X-ray spectrum of a type I AGN . . . . . . . . . . . . . . . . . . 22
1.11 Illustration of the accretion disk and hot corona of AGN. . . . . . . . . 22
1.12 Multi-wavelength variability of the 3C273 quasar . . . . . . . . . . . . 24
1.13 Power density spectra of the 3C273 quasar . . . . . . . . . . . . . . . . 25
1.14 A uni�ed model for AGN . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.15 Apparent superluminal motion in the jet of M87 . . . . . . . . . . . . 28
1.16 Proper distances as a function of redshift . . . . . . . . . . . . . . . . . 37
1.17 Lyman absorbers in a high redshift quasar . . . . . . . . . . . . . . . . 39
1.18 Geometry of the gravitational lensing phenomenon . . . . . . . . . . . 42
1.19 Gravitationally lensed image projected on the sky . . . . . . . . . . . . 44
1.20 Illustration of the NSIEg lens model parameters . . . . . . . . . . . . . 47

2.1 Examples of simulated BP/RP spectra of quasars having various G
magnitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Illustration of the equivalent width of an emission line . . . . . . . . . 55
2.3 χ2 curve of the SDSS J000313.08+274044.9 quasar . . . . . . . . . . . 59
2.4 Rest-frame wavelength coverage of quasar spectra according to redshift 60
2.5 Paper I: a two-dimensional PCA example . . . . . . . . . . . . . . . . 64
2.6 Paper I: weighted and classical PCA in two dimensions . . . . . . . . . 67
2.7 Paper I: simulated data for the comparison of WPCA methods . . . . 68
2.8 Paper I: averaged χ2

fit of WPCA methods based on simulated data . . 69
2.9 Paper I: averaged χ2

test of WPCA methods based on simulated data . . 69
2.10 Paper I: averaged χ2

test of WPCA methods in presence of missing sim-
ulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.11 Paper I: SDSS DR10Q spectrum �t with WPCA methods . . . . . . . 70
2.12 Paper I: observation's χ2

test out of the SDSS DR10Q dataset . . . . . . 70
2.13 Paper I: components retrieved with and without missing data out of

the SDSS DR10Q dataset . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.14 Paper II: mean observation and �rst principal components of SDSS

quasar spectra at 2.3 ≤ z ≤ 2.4 . . . . . . . . . . . . . . . . . . . . . . 77

129



130 LIST OF FIGURES

2.15 Paper II: examples of cross-correlation functions . . . . . . . . . . . . . 78
2.16 Paper II: result of the initial processing of SDSS spectra . . . . . . . . 81
2.17 Paper II: results of the phase correlation and WPC algorithms on SDSS

spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.18 Paper II: histograms of the SNR distribution of redshift according to

various phase correlation methods . . . . . . . . . . . . . . . . . . . . . 83
2.19 Example of a binary tree node . . . . . . . . . . . . . . . . . . . . . . . 86
2.20 Modelling a noisy sine function using regression trees and ERT . . . . 88

3.1 Paper III: results of the pre-processing and extrapolation procedure on
a DR12Q spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Paper III: principal components out of DR12Q emission lines and con-
tinuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Paper III: example of simulated BP/RP spectrum . . . . . . . . . . . . 98
3.4 Paper III: illustration of a synthesized spectrum . . . . . . . . . . . . . 99
3.5 Paper III: principal components out of synthesized spectra . . . . . . . 100
3.6 Paper III: histogram of the errors of predicted continuum slopes and

total emission lines equivalent widths . . . . . . . . . . . . . . . . . . . 101
3.7 Paper III: mean quasar spectrum from synthesized spectra and DR12

spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.8 Paper III: distribution of the predicted redshift from WPC and ERT . 103
3.9 Paper III: impurity and completeness of observations according to Zscore

and χ2
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.10 Paper III: ROC curves of BAL binary classi�cation . . . . . . . . . . . 106
3.11 Paper III: comparison of the TPR of BAL classi�cation with the bal-

nicity index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1 Probability density function of the axis ratio of galaxies . . . . . . . . 110
4.2 Caustic curves and square deviation function of a GL model . . . . . . 111
4.3 Examples of GL candidates and contaminants out of TS . . . . . . . . 113
4.4 ERT performances on GL candidates identi�cation . . . . . . . . . . . 115



List of Tables

1.1 Coordination Units from DPAC. . . . . . . . . . . . . . . . . . . . . . 10
1.2 Dominant emission lines observed in the optical spectra of AGN. . . . 18
1.3 Parameters of the NSIEg lens model . . . . . . . . . . . . . . . . . . . 48

2.1 Modules constituting the astrophysical parameter inference system . . 52
2.2 Paper I: χ2

fit and χ
2
test statistics out of the SDSS DR10Q dataset . . . . 70

2.3 Confusion matrix for classi�cation problems . . . . . . . . . . . . . . . 88

3.1 Paper III: emission lines used in the computation of the Zscore . . . . . 95
3.2 Paper III: warning �ags used in the redshift prediction procedure . . . 100
3.3 Paper III: mean predicted continuum slopes and total emission lines

equivalent widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.4 Paper III: ratio of observations triggering warning �ags . . . . . . . . . 104
3.5 Paper III: optimal accuracies of the BAL classi�cation . . . . . . . . . 106

4.1 ERT performances on GL candidates identi�cation . . . . . . . . . . . 114
4.2 ERT performances on GL candidate characterization . . . . . . . . . . 116

131



132 LIST OF TABLES



List of Abbreviations

3C Third Cambridge Catalogue of Radio Sources
3CR Revision of the 3C catalogue
AC ACross scan

ADS Airbus Defence and Space
AF Astrometric Field

AGIS Astrometric Global Iterative Solution
AGN Active Galactic Nucleus/Nuclei
AL ALong scan
AP Astrophysical Parameter

APSIS Astrophysical Parameter Inference System
BAL Broad Absorption Line
BAM Basic Angle Monitor
BH Black Hole

BLR Broad Line Region
BOSS Baryon Oscillation Spectroscopic Survey

BP Blue Photometer
CART Classi�cation And Regression Trees

CASSIS Combined Atlas of Sources with Spitzer IRS Spectra
CASTLES CfA-Arizona Space Telescope LEns Survey of GLs

CCD Charged Coupled Device
CCF Cross Correlation Function

CNES Centre National d'Études Spatiales
CPU Central Processing Unit
CU Coordination Unit

DFT Discrete Fourier Transform
DLA Damped Lyα Absorber
DOT Devasthal Optical Telescope

DPAC Data Processing and Analysis Consortium
DPACE DPAC Executive

DPC Data Processing Centre
DPCC DPC at CNES
DSC Discrete Source Classi�er
EBL Extragalactic Background Light
EO Extended Object

ERT Extremely Randomized Trees
ESA European Space Agency
EW Equivalent Width
FFT Fast Fourier Transform
FIR Far-infrared

133



134 LIST OF ABBREVIATIONS

FNR False Negative Rate
FOV Field Of View
FPR False Positive Rate

FWHM Full Width at Half Maximum
GASS GAia System-level Simulator
GCRF Gaia Celestial Reference Frame
GDR Gaia Data Release
GIBIS Gaia Instrument and Basic Image Simulator

GL Gravitational Lens(ing)/ Gravitational Lens system
GOG Gaia Object Generator
GraL GRAvitational Lenses in Gaia
HR Hertzsprung-Russell
HST Hubble Space Telescope
ICRF International Celestial Reference Frame
IDT Initial Data Treatment
IDU Intermediate Data Update
IGM Inter-Galactic Medium
IR Infra-Red
LF Luminosity Function

LINER Low Ionization Narrow-Line Emission Radio galaxies
LQAC Large Quasar Astrometric Catalog

LS Learning Set of observations
LSF Line Spread Function

MAE Mean Absolute Error
MCMC Monte-Carlo Markov Chain
MDB Main DataBase
MIR Mid-infrared
ML Machine Learning

NAL Narrow Absorption Line
NIR Near-infrared
NLR Narrow Line Region
NSIE Non-Singular Isothermal Ellipsoid
NSIEg NSIE lens model in presence of an external shear
NSIS Non-Singular Isothermal Sphere
NSS Non-Single-Star
OVV Optically Violent Variable
PAH Polycyclic Aromatic Hydrocarbon
PCA Principal Components Analysis
PSD Power Spectral Density
PSF Point Spread Function
QSO Quasi-Stellar Object

QSOC QSO Classi�er
ROC Receiver Operating Characteristic
RP Red Photometer
RVS Radial Velocity Spectrometer
SDF Square Deviation Function
SDSS Sloan Digital Sky Survey
SED Spectral Energy Distribution
SIE Singular Isothermal Ellipsoid
SIS Singular Isothermal Sphere
SM Sky Mapper



LIST OF ABBREVIATIONS 135

SMBH Super Massive Black Hole
SNR Signal-to-Noise Ratio
SQLS SDSS Quasar Lens Search
SRS Software Requirement Speci�cations
SSO Solar System Objects
SSS Software and System Speci�cation
SVD Singular Value Decomposition
TDI Time Delay Integration
TPR True Positive Rate
TS Test Set of observations
UV Ultra-Violet

VLA Very Large Array
WFS Wave-Front Sensor

WHIM Warm Highly Ionized Medium
WP Work Package

WPC Weighted Phase Correlation
WPCA Weighted Principal Components Analysis



136 LIST OF ABBREVIATIONS



List of symbols and notations

Symbol Description Unit Comments

z Redshift �
λ Wavelength m
ν Frequency s−1

l Galactic longitude degree
b Galactic latitude degree
L Absolute luminosity erg m−2 s−1

E Energy eV
T Temperature K
ẋ Time derivative of x unit of x s−1 ẋ = dx/dt
ẍ Time curvature of x unit of x s−2 ẍ = d2x/dt2

x Vector x � Element i is given by xi
X Matrix X � Element at row i, column

j is given by Xij

∇x Gradient of x �
∇2x Laplacian of x �
‖x‖ Norm2 of x � .
◦ Element-wise product � e.g. x ◦ y
R The set of real numbers �

R0: real numbers except
0

C The set of complex num-
bers

�

Z The set of integer num-
bers

�

χ2

= Nearest in a least-squares
sense

� e.g. x
χ2

= y

2If not stated otherwise, Euclidean norm is considered (i.e. |x|2 =
∑
i x

2
i )
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List of constants and units

Symbol Description Value

c Speed of light in vacuum 2.99792458× 108 m s−1

G Gravitational constant 6.67384× 10−11 m3 kg−1 s−2

h Planck constant 6.6260696× 10−34 J s
kB Boltzmann constant 1.3806488× 10−23 J K−1

eV Electron-volt 1.6021766× 10−19 J
M� Mass of the sun 1.9891× 1030 kg
L� Luminosity of the sun 3.845× 1026 J s−1

R� Solar radius 6.957× 108 m
H0 Current value of the Hubble parameter

(i.e. Hubble constant)
∼ 67.7 km s−1 Mpc−1

pc Parallax second (parsec) 3.0856776× 1016 m
ly Light year 9.46073047× 1015 m
◦ Degree π/180
′ Arcminute 1/60

◦

′′ Arcsecond 1/60 ′

mas Milli-arcsecond 1/1000 ′′

µas Micro-Arcsecond 1/1000 mas
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