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Abstract

Introduction: In migraine most studies report an interictal deficit of habituation of visual-evoked potentials (VEP-hab) and
reduced thresholds for phosphene induction (PT) by transcranial magnetic stimulation (TMS). We searched for a possible
correlation between VEP-hab and PT in migraine patients and healthy controls to test whether they reflect the same
pathophysiological abnormality.

Methods: We assessed PT and VEP-hab measured as the percentage change of NI/PI amplitude over six blocks of 100
responses in |5 healthy volunteers (HV) and in |3 episodic migraineurs without aura (MO) between attacks. Results
were compared using Mann-Whitney U test. Interrelationships were examined using Spearman’s correlation.

Results: In MO patients VEP-hab was reduced compared to HV (p =0.001), while PT were not significantly different
between HV and MO. There was no correlation between PT and VEP-hab in either group of participants.

Conclusions: We confirm that in interictal migraine VEP habituation is deficient, but magnetophosphene threshold normal.
VEP-hab and PT were not correlated with each other in healthy controls or in migraineurs. This finding suggests that they
index different facets of cortical excitability in migraine, i.e. a punctual normal measure of the cortical activation

threshold for PT and a dynamic response pattern to repeated stimuli for VEP habituation.
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Introduction

Migraine is one of the most common neurological dis-
orders, with a high prevalence in the general population
(1), and is the result of genetic, environmental and
endogenous cognitive-emotional factors (2). The result-
ing “‘migraine susceptibility” differs among individuals
and fluctuates in the same person over the so-called
“migraine cycle.” Since interictal symptoms or brain
lesions are absent in its episodic form (3), migraine is
commonly considered a functional brain disorder. The
brain structures involved in the pathophysiology of
migraine include the cerebral cortex, the brainstem,
the hypothalamus, the thalamus and the trigeminovas-
cular system. The exact sequence of activation of these
structures before, during, and after a migraine attack is
still unknown (2.,4).

Electrophysiological methods are particularly suited
to study the functional brain changes associated with
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migraine (5). A reduced habituation of cortical-evoked
responses to repeated stimuli was the first reproducible
physiological brain abnormality found interictally in
migraine patients (6). It has been described for almost
every stimulation modality (visual, auditory, somatosen-
sory, olfactory, nociceptive) and for event-related poten-
tials such as contingent negative variation and P300. In
healthy individuals, repetitive stimuli are associated with
a progressive decrease in amplitude of cortical-evoked
responses, a phenomenon called “habituation” that is
defined as “‘a response decrement as a result of repeated
stimulation” (7). Migraine patients may have interictally
a reduced habituation or even an amplitude increase
(““potentiation’’). The majority of studies on habituation
in migraineurs were performed with visual stimuli using
pattern-reversal visual-evoked potentials (VEP-hab) (8).
VEP abnormalities, however, have been reported in
most but not in all studies (8,9), and differences between
results have been explained on the basis of methodo-
logical differences between the various studies, fluctu-
ations of cortical information processing over the
migraine cycle, and/or differences in patient populations
regarding attack frequency or genetic factors (8). One
important methodological difference is whether blinding
for diagnosis during VEP recordings and analyses was

used (9-11).
Another abnormality previously reported in
migraine patients—particularly in patients with

aura—is an increased prevalence (12,13) and a lower
threshold of phosphenes (PT) induced by transcranial
magnetic stimulation (TMS) of the occipital cortex,
which is generally thought to reflect hyperexcitability
of the visual cortex (12,14-22). Conversely, several
other studies found no differences in PT between
migraineurs and controls (23-26).

Both VEP-hab deficit and reduced PT are commonly
considered as an expression of increased excitability of
cortical areas (e.g. Haigh et al. (27); Mickleborough
et al. (28); Brennan (29); Lang et al. (30); and Lipton
and Pearlman (31)). However, though an increased
excitability may explain PT changes, this may not be
true for VEP-hab changes, because, if it were, one
would expect to find increased VEP amplitude for a
low number of stimuli, which is not the case (32).
Given these uncertainties, important additional infor-
mation would be to verify if there is an intra-individual
correlation between VEP-hab and PT in normal condi-
tions and in migraine patients. If there were a correl-
ation between VEP-hab and PT, one might conclude
that a similar neurophysiological —mechanism
explains the abnormalities found with the two tech-
niques (27-31). To this aim we explored PTs and
VEP-hab in the same recording session in a group of
episodic migraineurs without aura in the interictal
phase, searching for correlations between PT values

and VEP-hab measures, and comparing these results
with those obtained from a group of healthy controls
investigated in similar conditions.

Methods
Participants

Thirteen patients suffering from episodic migraine with-
out aura (MO, (ICHD-3 beta) 1.1) were recruited from
the outpatient Headache Clinic of the Neuromed
Institute (Pozzilli, Italy) and were compared to a group
of 15 healthy volunteers (HVs) with no familial history
of recurrent headaches. An “‘a posteriori” sample size
calculation, assuming type I error o (significance) =0.05
and type II error B (1-power)=0.20, showed that our
sample size had an 80% power to detect the correlation
between VEP-hab and PTs.

Demographic and clinical details of both groups are
summarized in Table 1. None of the participants had an
uncorrected visual deficit, was taking drugs on a regular
basis, or had taken any drug within three days before
the recordings. The recordings took place at least three
days after or before an attack; the occurrence of attacks
after the recording was verified by a telephone call.

The study was conducted after approval by our insti-
tution’s ethics committee, in accordance with the eth-
ical standards of the 1964 Declaration of Helsinki, with
the understanding and informed written consent of
each involved individual.

Experimental procedures

VEP recordings and PT measures were performed on
the same day (in a pseudo-randomized order at least 30
minutes apart) by E.I and A.N., who were both blinded
to diagnoses. Patients and healthy volunteers were
instructed not to mention their respective condition to
the investigators. All experiments were performed at a
comparable time of day.

VEPs. Participants were comfortably seated in a dark
room in front of a television monitor (16.5 inches,
mean luminance 260 cd/m?) placed 100cm from their
eyes and connected to a Medelec Synergy, PLINTH,
CareFusion (Middleton, WI, USA) device. Stimuli
were presented as a checkerboard pattern of black
and white squares (contrast 80%), subtending one
degree, eight minutes of arc, at a reversal rate of
3.1Hz. With one eye patched, individuals were
instructed to fix on a red dot placed in the middle of
the screen. Recordings were performed after at least
one minute of adaptation to darkness. Needle
electrodes were positioned at Oz (active electrode)
and at Fz (reference) according to the 10-20
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Table |. Demographic and clinical characteristics.

Mean headache Mean headache Mean headache Disease
frequency (SD) days (SD) duration (SD) duration (SD)
N Gender  Male %  Age (SD), years (monthly) (monthly) (hours) (years)
HVs I5 8F7M  46.7% 30.0 (7.9) / / / /
(range 21-44)
MO I3 7F6M  46.2% 32.8 (10.2) 3.2(1.5) 42(2.7) 10.4(5.6) 11.7(6.8)

(range 18-55)

HVs: healthy volunteers; MO: migraineurs without aura; F: female; M: male.

electroencephalogram (EEG) system. The ground elec-
trode was placed on the forearm. During repetitive
stimulation, six consecutive blocks of 100 responses
were recorded (sweep duration: 300 msec, bandpass:
1-100 Hz) and on-line averaged. The six blocks were
analyzed in terms of peak-to-peak amplitudes of the
N1-P1 components identified by visual inspection.
The N1/P1 amplitudes in successive blocks were mea-
sured and VEP habituation was expressed as the per-
centage change of N1/P1 amplitude between the sixth
and the first blocks (VEP-hab percentage: negative
sign = habituation, positive sign = potentiation) and as
habituation slopes (linear regression line amplitude/N
blocks) (VEP-hab slopes: negative sign = habituation,
positive sign = potentiation). Two investigators (E.I.
and A.N.) blinded to the diagnosis analyzed the VEPs.

Magnetophosphene thresholds. The participants, while sit-
ting comfortably in an armchair in a dark room, were
blindfolded and wore earplugs. After at least one
minute of adaptation to the dark, TMS was performed
with a MAGSTIM SuperRapid stimulator delivering
biphasic waveform pulses (The MAGSTIM Company
Ltd, Whitland, Dyfed, UK). The stimulator was con-
nected to a standard figure-of-eight coil (outer diam-
eter: 9cm) held in a vertical position (handle of the
coil pointing upward, coil placed tangentially to the
scalp). The induced current flowed in the coil with a
clockwise-counter clockwise direction. Paired stimuli
(19) (with an interstimulus interval of 50 ms) were
used. The individuals’ visual cortex was identified by
positioning the coil 34 cm above the inion and deliver-
ing paired stimuli at 70% of maximum stimulator
output (MSO), thereafter increasing strength by 5%
steps. If no phosphenes were obtained, the same pro-
cedure was repeated 1cm up, down, or to the right or
left, until phosphenes occurred. Once the hotspot was
identified, the PT was measured starting with a stimulus
intensity of 40% MSO with increasing/decreasing 5%
steps and fine-tuning of 1-2%. To determine PTs, 15.2
(standard deviation (SD) 5.6) pairs of stimuli were
necessary. In order to avoid possible effects on cortical
excitability due to repeated stimulation, paired

stimuli were delivered with variable intervals of at
least five seconds.

Statistical analyses

Results were expressed as means and SD for quantitative
variables. Between-group differences in demographics,
VEP-hab percentages, VEP-hab slopes, and PTs were
tested by the Mann-Whitney U test. Intra-individual
correlations between PT and VEP-hab percentages,
VEP-hab slopes, and first block VEP amplitude were
determined in both HV and MO groups by Spearman’s
rho non-parametric correlation test. Significance level
was set at p <0.05. Statistical calculations were carried
out using IBM Corp. released 2010 (IBM SPSS Statistics
for Windows, version 19.0. Armonk, NY, USA, and R
version 3.0.2. for Windows).

Results
Group comparisons

Age and gender distributions were not significantly dif-
ferent between HV and MO groups. Mean VEP-hab
percentage was clearly abnormal in MO, who had
potentiation (4+23.6% SD 20.5) compared to HVs
who had habituation (—19.2% SD 15.5) (p=0.001).
VEP-hab slopes were significantly steeper in the HV
group (—0.340 uV/N SD 0.250) than in the MO
(+0.276 uV/N SD 0.246) (p=0.001). First block VEP
amplitude was lower in MO (8.51 pV SD 3.26) than in
HVs (10.64 uV SD 2.99), but this did not reach the level
of significance (p =0.134). All participants experienced
phosphenes during TMS over the visual cortex and
hence a 100% prevalence was found both in MO and
HVs. Similarly, PT were not significantly different
between MO (65.46% SD 14.01) and HV groups
(58.6% pV SD 6.39) (p=0.249).

Intraindividual correlations

No correlation was found in the HV group between PT
and VEP-hab percentages (Spearman’s rho=0.090),
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VEP-hab percentage vs PT in HV

VEP-hab percentage vs PT in MO
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Figure 1. Scatterplots of correlations between phosphene thresholds and VEP-hab percentages (higher part of the picture), VEP-hab
slopes (medium part of the picture) and first block VEP amplitude (lower part of the picture) both for healthy volunteers (HV: circles)
and migraineurs without aura (MO: triangles). The black lines express the related linear regression lines. VEP-hab: interictal deficit of

habituation of visual-evoked potentials.

between PT and VEP-hab slopes (Spearman’s
rho =0.140) or between PT and first block VEP amp-
litudes (Spearman’s rho=-0.091). MO patients also
disclosed no correlation between PT and VEP-hab

percentages (Spearman’s rho=0.253), PT and VEP-
hab slopes (Spearman’s rho=0.033) or PT and first
block VEP amplitudes (Spearman’s rho=—0.154)
(Figure 1).
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Discussion

In this study, we investigated whether in migraine
patients and healthy subjects magnetophosphene
thresholds (PTs) and VEP habituation/first block amp-
litudes correlate. Studying the same patients with both
techniques and in the same experimental session, a cor-
relation between PTs and VEP habituation would sug-
gest that PTs and VEP-hab would share the same
pathophysiological mechanisms.

In our study, where recordings and analyses were
performed blindly, we found an interictal deficit of
VEP habituation in patients suffering from episodic
migraine, in line with the majority of VEP studies in
migraine, most of which were unblinded (8). This find-
ing further confirms that blinding may be useful but
not necessary when exploring evoked potentials
habituation in migraine. In agreement with other stu-
dies (32), there was a trend for lower amplitude of the
first VEP block in migraine. Finally, PTs in migraine
patients were not different from those of normal par-
ticipants. This finding was similar to that reported by
several authors (23-26) but at variance with several
others (15,17,19-22), we found no significant decrease
of PT in migraineurs.

The habituation deficit could simply be due to cor-
tical hyperexcitability. This is not, however, supported
by the previous finding that amplitude of the first
VEP block is rather low in comparison to normal
individuals (32). Based on the so-called ‘ceiling
theory” of cortical activation (33), it has been pro-
posed that the habituation deficit and the reduced
VEP amplitude of the first block could be a conse-
quence of reduced pre-activation levels of sensory cor-
tices. The very first responses to peripheral stimuli in
low pre-activated sensory cortices would be small
sized, but, as cortical activation rises to its maximum
(““ceiling”) during repetitive stimulation, their ampli-
tudes would progressively increase, which is what
actually happens in evoked potentials elicited in
migraine patients. The finding that excitatory high-
frequency TMS is able to enhance VEP habitu-
ation in migraineurs (34) further supports the
hypothesis that the cortical pre-activation level in

migraineurs is reduced. Following this inter-
pretation, the cerebral cortex would thus be
“hyperresponsive” in migraine between attacks

rather than “hyperexcitable” (35,36).

Studies with TMS of the occipital cortex have
reported increased phosphene prevalence and/or
thresholds particularly in migraine with aura (12,14—
22), suggesting therefore an increased excitability of
cerebral cortex. By contrast, several authors reported
opposite results (23-26): lower phosphene prevalence

in MA but no difference between controls and MO
patients, and similar mean PT in individuals reporting
phosphenes, which was confirmed in the present inves-
tigation. In a study measuring PT over a 10-week
period, Antal et al. (23) found no significant difference
between migraineurs and HVs; however, they noticed a
high variability of PT over time in migraine patients,
favoring instability of cortical excitability instead of
hyperexcitability.

If changes in PT and VEP habituation would simply
reflect cortical hyperexcitability, one would expect to
find an inverse relationship between PT and VEP
habituation or first block amplitudes, both being dir-
ectly correlated (32). Our finding that neither in HVs
nor in migraine patients PT and VEP habituation/first
block amplitudes are correlated suggests that they
index different functional properties of the visual
cortex. VEP habituation most likely represents a
dynamic response pattern of sensory cortices to
repeated stimuli, providing a temporal profile of
cortical reactions to incoming inputs, whereas PT
indicates purely a measure of cortical activation
when the information reaches the cortex.
Magnetophosphenes likely reflect the activation of
visual cortical cells, but whether striate or extrastriate
cortices and/or geniculostriate fibers are involved in
their generation is still unclear (37). Studies combining
EEG and TMS techniques suggest that the perceptual
awareness of phosphenes elicited by TMS is not an
immediate consequence of visual cortices activation
and that many other cortical areas, such as parietal
and temporal cortices, are involved in phosphene per-
ception (38,39). One combined VEP and functional
magnetic resonance imaging (fMRI) study, however,
suggested that N1-P1 components of pattern-reversal
VEPs are most likely generated in the striate cortex V1
(40), although other studies with magnetoencephalo-
graphic (MEQG) analyses (41) and combined MEG-
fMRI investigations suggested an activation of both
striate (V1) and extrastriate cortices (V2) (42).
Different neuroanatomical substrates may thus explain
the lack of correlation we found between VEP-hab
and PTs.

In conclusion, the absence of correlation between
VEP-hab and PT both in healthy subjects and in
migraine patients provides evidence that they do not
index the same cortical mechanisms. Moreover, our
study is yet another confirmation that VEPs are
better suited than PT to detect an abnormal function
of the visual cortex in migraineurs and that this abnor-
mality is not simple hyperexcitability, but it represents
more likely a dynamic increase of cortical responsivity
to repeated visual stimulation.
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Article highlights

In this blinded study of visual-evoked potentials (VEPs), we confirm that migraine without aura patients
have an interictal deficit of habituation to repetitive visual stimuli.

Magnetophosphene thresholds (PTs) did not differ between migraineurs and healthy volunteers.

There was no intraindividual correlation between VEP habituation values and PTs in either migraine
patients or in healthy controls, suggesting that the two tests do not reflect the same cortical property.

e Our findings favor the concept that in migraine between attacks the visual cortex is not hyperexcitable, but
hyperresponsive.
Funding Comparison between blinded and non-blinded analyses.
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