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Abstract 
A new mathematical model is developed, describing size-dependent subcontinuum 
thermoelectric properties from an extended thermodynamic point of view. This model takes 
into account the non-local effects of heat transfer through phonons and electrons that are 
important at nanometric scales. These phenomena are extended to apply also for electric transfer 
as well as the Seebeck coefficient. This model includes at nanoscale size-dependent electron 
and phonon thermal conductivities, electric conductivity, Seebeck coefficient and carrier 
concentrations. We compared nanofilms to nanocomposites and assessed their thermoelectric 
performances in the form of a figure of merit using as an example Bismuth and 
BismuthTelluride materials. It appeared that the figure of merit increases considerably for 
nanofilms and nanocomposites with respect to bulk materials. This is caused by the scattering 
of phonons and electrons. Our model shows that this scattering effect is not only present at the 
boundary or particle-matrix interface of the nanosized material, but also within it. The effect of 
particle size and surface specularity has been investigated, showing that a decreasing value of 
the particle size and specularity increases the scattering effect and improves the thermoelectric 
properties. An extension towards thin films of nanocomposite has been presented.  
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1. Introduction 
 
Transport properties play a central role in materials sciences. One of the current interests lies in 
the optimal application of thermoelectricity to convert (waste) heat to usable electricity (the 
Seebeck effect) [1]. This requires materials with high Seebeck coefficient, high electrical 
conductivity and low thermal conductivity. This is not an easy task because usually a high 
electrical conductivity implies also a high thermal conductivity, the two being linked as seen 
later in this paper. Other effects include the Peltier effect, where it is an electricity current that 
heats the material, and the Thomson effect, which is a combination of the former two [2]. 
Recently, research on thermoelectric materials has known an extraordinary burst [3]. A 
combination of the Seebeck coefficient, the electrical and thermal conductivities are found to 
be directly related to the efficiency of thermoelectric energy conversion. The combination of 
the aforementioned parameters is often resumed into a so-called figure of merit 𝑍, or the 
dimensionless version 𝑍𝑇 = 𝑇𝑆 𝜎 /(𝑘 + 𝑘 ), with 𝑇 the temperature, 𝑆 the Seebeck 
coefficient, 𝜎  the electric conductivity, 𝑘  the electron thermal conductivity (the contribution 
of the electrons to the heat transfer) and 𝑘  the phonon thermal conductivity (the contribution 
of the phonons to the heat transfer) [4-6]. The figure of merit has increased by more than one 
order of magnitude since the end of the twentieth century. This was in particular achieved in 
superlattices in which one dimension is smaller than the mean free path of phonons but larger 
than that of electrons. Many aim at increasing further this figure of merit by the use of 
nanostructured materials [7]. Therefore, we investigate in this work particular properties of 
thermal and electric conduction at nanoscales and apply this to nanostructured materials. Such 



materials know a huge variety of applications, such as heat conduction enhancement in 
polyesters [8] or energy storage systems [9], to mention a few. As far as goes nanostructured 
materials for thermoelectric systems [10-13], a decrease in the thermal conductivity is often 
sought for in order to increase the figure of merit ZT [5,6,14]. The figure of merit is not only 
inversely dependent on the thermal conductivity, but also depends on the electric conductivity, 
which are both size-dependent [7]. The figure of merit also depends on other material related 
properties, such as the hole and electron mobility’s and carrier concentrations [11,12].  
Nanostructured materials can be used in different forms. We are interested here in nanofilms 
and nanocomposites. Nanofilms can be between two other bulk materials and nanocomposites 
are generally made out of a homogeneous matrix in which nanoparticles are dispersed. For 
nanofilms and particles with characteristic lengths of the same order of magnitude or smaller 
than the phonon and electron mean free paths, the Fourier theory, based on the classical 
approach of thermodynamics, is not able to predict the heat flux thermal interactions between 
the nanofilm or nanoparticle and the bulk material next to it. Therefore, we propose to 
investigate the problem of heat conduction in nanostructured thermoelectric materials by a more 
sophisticated thermodynamic formalism, namely Extended Irreversible Thermodynamics (EIT) 
[15,16]. In this approach, the heat flux is elevated to the status of independent variable at the 
same footing as the temperature. The total heat flux 𝒒 is assumed to be the sum of a phonon 
contribution 𝒒𝒑𝒉 and an electric one 𝒒𝒆 [7], which are due to the phonon and electron motion 
through the material: 
 
𝒒 = 𝒒𝒆 + 𝒒𝒑𝒉.          (1) 
 
In the presence of an electric field and without local heat supply, the partial energy balances for 
the phonons and the electrons are 
 

+ ∇ ∙ 𝒒𝒑𝒉 = 0,          (2a) 

+ ∇ ∙ 𝒒𝒆 = 𝑬 ∙ 𝑰,           (2b) 

 
with 𝑢 , 𝑢 , 𝑬 and 𝑰 are the phonon internal energy, electron internal energy, the electric field 
and the electric-current density. The total energy balance is then, in the absence of a magnetic 
field, given by 
 

+ ∇ ∙ 𝒒 = 𝑬 ∙ 𝑰,           (3) 

 
with  
 
𝑢 = 𝑢 + 𝑢 ,           (4) 
 
which also implies 𝐶 = 𝐶 + 𝐶 , used later on, 𝐶 being the specific (at constant volume) heat 
capacity. The continuity law for electric charge is 
 

+ +∇ ∙ 𝑰 = 0,           (5) 

 
with 𝜌  the density of electric charge. These equations give us now the evolution of 𝑢 , 𝑢 and 
𝜌 , with the corresponding fluxes 𝒒𝒑𝒉, 𝒒𝒆 and 𝑰. The basic principles of EIT allow postulating 



additional evolution equations for these fluxes (who are now considered as independent 
variables) as [15] 
 

𝜏
𝒒𝒑𝒉

+ 𝒒𝒑𝒉 = −𝑘 ∇𝑇 + Λ (∇ 𝒒𝒑𝒉 + 2∇∇ ∙ 𝒒𝒑𝒉),     (6a) 

 

𝜏
𝒒𝒆 + 𝒒𝒆 = −(𝑘 + SΠ𝜎 )∇𝑇 + Λ (∇ 𝒒𝒆 + 2∇∇ ∙ 𝒒𝒆) + Π𝜎 𝑬,    (6b) 

 

𝜏
𝑰

+ 𝑰 = 𝜎 (𝑬 − S∇𝑇) + Λ (∇ 𝑰 + 2∇∇ ∙ 𝑰),      (6c) 

 
where 𝜏, Λ and Π are the relaxation time, mean free path and the Peltier coefficient, respectively, 
the subscripts 𝑝ℎ and 𝑒 standing for phonon and electron, respectively. The last term in Eq. (6a) 
denotes the Guyer-Krumhansl contribution to denote the non-locality of the phonon heat flux, 
while the equivalents are also present in Eqs. (6b)-(6c) for the electron heat flux and electric-
current density, respectively. When the Guyer-Krumhansl contribution is neglected, we obtain 
the Cattaneo equation [17] and if furthermore, the time-dependency is neglected, the classical 
Fourier law is obtained. Eq. (6b) is obtained with the hypothesis that the electronic heat flux is 
governed by the same principles as the phonon one in Eq. (6a) with additional terms for the 
Peltier effect in Eq. (6b). Neglecting again the Guyer-Krumhansl and time dependency terms 
in Eq. (6b) gives the classical equation describing the Peltier effect [7]. Since the electric current 
also passes through the same material, we assume also that it follows the same thermodynamic 
principles as Eq. (6a) and (6b). Neglecting Guyer-Krumhansl and the time dependency term in 
Eq. (6c) gives 𝑰 = 𝜎 (𝑬 − S∇𝑇) and omitting also an electrical field gives 𝑰 = −S𝜎 ∇𝑇, which 
shows that an electric current can be obtained by a temperature gradient, which is called the 
Seebeck effect. In the absence of an imposed electric field (where we do not consider the Peltier 
effect), Eq. (6) reduces to 
 

𝜏
𝒒𝒑𝒉

+ 𝒒𝒑𝒉 = −𝑘 ∇𝑇 + Λ (∇ 𝒒𝒑𝒉 + 2∇∇ ∙ 𝒒𝒑𝒉),      (7a) 

 

𝜏
𝒒𝒆 + 𝒒𝒆 = −𝑘 ∇𝑇 + Λ (∇ 𝒒𝒆 + 2∇∇ ∙ 𝒒𝒆),      (7b) 

 

𝜏
𝑰

+ 𝑰 = −S𝜎 ∇𝑇 + Λ (∇ 𝑰 + 2∇∇ ∙ 𝑰).       (7c) 

 
This development suggests that in order to account for non-local effects, higher order fluxes 
should be taken into account. Also, it shows nicely the relation between on one side an imposed 
temperature gradient (for instance, the heat from sunrays) and on the other side a heat flux and 
electric current. The system (1)-(6) (of which (7) is a special case) can be applied to calculate 
the efficiency of thermoelectric systems [3]. This is, however, not the purpose of this work. 
Before calculating the efficiency of thermoelectric systems, it is important to investigate first 
the optimal conditions that allow such an efficiency to be improved. Such conditions are set by 
an optimization of the physical parameters that are present in the equations (1)-(6): the phonon 
and electron contributions of the thermal conductivity, the Seebeck coefficient and the electric 
conductivity. As will be of use later on, the system (1)-(6) shows also the analogy between these 
different physical parameters in that they all appear before the temperature gradient.  
The way the heat flux and the electric current pass through the thermoelectric material is crucial 
for its performance and depends directly on the phonon thermal conductivity, electron thermal 
conductivity and electric conductivity as is shown in system (7). The figure of merit has for 
bulk materials a typical non-dimensional value around 1 and is a complex interaction between 



the thermal conductivity, electric conductivity and the Seebeck coefficient, which depends on 
the carrier concentration. While it is already known that the figure of merit can be increased by 
using nanoscaled materials, it is the purpose of this paper to model quantitatively the 
phenomena of the several thermo-electric components of the figure of merit at nanoscale. In 
doing this, it is aimed to propose a concrete easy-to-use formulation that still captures the 
several nanoscale features that influence the figure of merit. Non-local effects of heat transfer 
by phonons and electrons become important at nanoscale and Fourier’s law is no longer 
applicable. Cattaneo’s adaptation of Fourier’s law shows improvement for high frequency 
systems, but still is not accurate at nanoscale. Via a new thermodynamic formulation, taking 
into account the aforementioned non-local effects, we show that size-effects at nanoscale 
become important.  
The theoretical principles of EIT are briefly discussed in section 2. The development for the 
thermoelectric properties is performed in section 3, with an application to nanofilms and 
nanocomposites. Section 4 presents a Gedankenexperiment extending the previous model to 
thin films of nanocomposites. In this work, we use Bismuth (Bi) and p-type BismuthTelluride 
(Bi2Te3) as an example, of which the material properties are presented in section 5. The results 
are discussed in section 6. Section 7 shows the results of the Gedankenexperiment, followed by 
the conclusion in section 8.  
 
2. Theory of Extended Irreversible Thermodynamics for nanoscale heat and electric 
transfer 
 
We will derive here the thermal conductivity valid at nanoscales. This is done using EIT, the 
use of which is elucidated in this subsection. We will perform this by deriving the phonon 
contribution of the thermal conductivity 𝑘 ,𝒩 at nanoscales, with the subscript 𝒩 designating 
the nanoscale. The electron contribution of the thermal conductivity 𝑘 ,𝒩 is exactly the same, 
by replacing the phonon specific heat 𝐶 , phonon lattice velocity 𝑣  and phonon mean free 
path Λ ,  by the electron specific heat 𝐶 , electron thermal velocity 𝑣  and electron mean free 
path Λ , , respectively. The analogy of the electron contribution with that of the phonon one is 
generally proposed throughout the paper. From a physical point of view, we can consider the 
phonons and the electrons as gas-like constituents that have both gas-like behavior, flowing 
through the material lattice. Since we consider that both the phonons and the electrons behave 
like a gas, we assume that they also follow the same thermodynamic principles. Therefore, the 
non-local effects that are introduced by EIT (in the framework of this paper) for the phonon 
contribution, apply also for the electron contribution of the thermal conductivity. As they also 
apply for the electron contribution, the electrical conductivity can be treated in the same way in 
the same framework. The Seebeck coefficient that relates a temperature gradient with an electric 
current can then also be treated that way, albeit not directly. Indeed, the systems (6) and (7) 
show nicely that the thermal and electric conductivities precede the temperature gradient, while 
the Seebeck coefficient only precedes the temperature gradient in the form of a product with 
the electric conductivity. In subsection 2.2, this model is applied to nanofilm thermoelectric 
systems, including the electric conductivity, Seebeck coefficient, power factor and figure of 
merit, all in the light of EIT.  
The phonon thermal conductivity at nanoscale is given by  
 
𝑘 ,𝒩 = 𝑘  𝑓(𝐾𝑛, 𝑠),          (8) 
 



wherein 𝑘  is the value of the phonon thermal conductivity for the bulk material at macro scale 
(𝑘  being the equivalent for the electron contribution of the thermal conductivity) and given by 
the classical Boltzmann phonon expression  
 

𝑘 = (𝐶 𝑣 Λ , )| ,         (9) 

  
the quantity 𝑓(𝐾𝑛, 𝑠) being a correction factor, taking into account the dimension of the 
nanoparticles, their shape and their specularity. 𝑇 is the  reference temperature, say the room 
temperature. Moreover, 𝐾𝑛 is the Knudsen number defined as the ratio of the mean free path 
of the phonons inside the nanomaterial Λ ,  (the subscript 𝑏 stands for the bulk material), and 
the “specular” characteristic length ℓ : 
 
𝐾𝑛 = Λ , /ℓ .             (10) 
 
The specular characteristic length ℓ  is defined by  
 
ℓ = ℓ(1 + 𝑠)/(1 − 𝑠),          (11a) 
ℓ ≡ 𝛿𝒩    (nanofilm),       (11b) 
ℓ ≡ 𝑟      (nanocomposite),      (11c) 
 
with 𝛿𝒩 the nanofilm thickness (used in this subsection) and 𝑟  the radius of a nanoparticle 
embedded in a nanocomposite (used in the next subsection). In expression (11a), the symbol 𝑠 
(0 ≤ 𝑠 ≤ 1) denotes the surface specularity on the nanoscale material, expressing the 
probability of specular scattering of phonons on the boundary (whether it be that of the nanofilm 
or the nanoparticle). For 𝑠 = 0, the surface is called diffuse, meaning that the direction of 
phonons after impact is independent of the direction of the impacting phonons, in which case 
ℓ  is simply ℓ. For 𝑠 → 1, we have a surface on which the impacting phonons influence the 
direction of the out coming phonons and the surface is said to be perfectly specular. Another 
interesting interpretation of 𝑠 → 1, which should be kept in mind, is that the dimension of the 
nanoscale material becomes macroscale, i.e. ℓ ≫ Λ ,  or 𝐾𝑛 → 0.  
It should also be noticed that the contribution of the phonon collisions is present in the 
correction factor 𝑓(𝐾𝑛) as well. The latter will now be determined by using EIT.  
In the problem of a rigid heat conductor, the only relevant conserved variable is the internal 
energy 𝑒 (or the temperature 𝑇) whereas the energy flux (here the heat flux vector 𝒒) is the non-
conserved flux variable so that the space of state variables is 𝑽 = (𝑒, 𝒒). In more complex 
materials like in nanomaterials, fluxes of higher order should be introduced as shown later on. 
The corner stone of EIT is to assume the existence of an entropy function 𝜂(𝑽) [15,18], 
depending on the whole set 𝑽 of variables: here 𝜂 = 𝜂(𝑒 , 𝒒), or in terms of time derivatives, 
 

𝑑 𝜂(𝑒, 𝒒) = 𝑑 𝑒 +
𝒒

. 𝑑 𝒒                                           (12)  

 
wherein 𝑒 and 𝜂 are measured per unit volume and a dot stands for the scalar product. The 
symbol 𝑑   designates the time derivative which is indifferently the material or the partial time 
derivative as the system is, respectively, in motion or at rest. It is assumed that 𝜂 is a concave 
function of the variables to guarantee stability of the equilibrium state and that it obeys a general 
time-evolution equation of the form 
 
𝑑 𝜂 = −∇ ∙ 𝑱 + 𝜎   (𝜎 ≥ 0),         (13)  



  
whose rate of production per unit volume 𝜎  (in short, the entropy production) is positive 
definite to satisfy the second principle of thermodynamics, the quantity 𝑱  is the entropy flux. 
Let us define the local non-equilibrium temperature by 𝑇 (𝑒) = 𝜕𝜂/𝜕𝑒 (fundamental 
thermodynamic relation at constant volume) and select the constitutive equation for 𝜕𝜂/𝜕𝒒 as 
given by 𝜕𝜂/𝜕𝒒 = −𝛼(𝑇)𝒒, where 𝛼(𝑇) is a material coefficient depending generally on 𝑇; it 
is positive definite in order to meet the property that s is maximum at equilibrium, the minus 
sign in front of 𝛼(𝑇)𝒒 has been introduced for convenience. Under these conditions, expression 
(12), referred to as the Gibbs equation, can be written as  
 
𝑑 𝜂(𝑒, 𝒒) = 𝑇 𝑑 𝑒 − 𝛼 𝒒. 𝑑 𝒒,                        (14)  
 
wherein 𝛼  a phenomenological coefficient identified later on. However, expression (14) does 
not account for non-local effects. These non-local effects are elegantly introduced in the 
framework of EIT by appealing to a hierarchy of fluxes 𝑸( ), 𝑸( ), ..., 𝑸( ) with 𝑸( ) identical 
to the heat flux vector 𝒒, 𝑸( ) (a tensor of rank two) is the flux of 𝒒, 𝑸( )  the flux of 𝑸( ) and 
so on. From the kinetic theory point of view, the quantities 𝑸( )and 𝑸( ) represent the higher 
moments of the velocity distribution. Indeed, it follows from the kinetic theory that the 
relaxation times of the higher order fluxes are not shorter than the collision time. Therefore, 
using only the first-order fluxes as independent variables is not satisfactory to describe high-
frequency processes, because when the frequency becomes comparable to the inverse of the 
relaxation time of the first-order flux, all the higher-order fluxes will behave also like 
independent variables and must be incorporated in the formalism. Up to the nth-order flux, the 
Gibbs equation generalizing relation (12) becomes 
 
𝑑 𝜂 𝑒, 𝒒, 𝑸(𝟏), … , 𝑸( ) = 𝑇 𝑑 𝑒 − 𝛼 𝒒 ∙ 𝑑 𝒒 − 𝛼 𝑸(𝟐)⨂𝑑 𝑸(𝟐) − ⋯ − 𝛼 𝑸( )⨂𝑑 𝑸( ),         
(15) 
 
wherein the symbol ⨂ denotes the inner product of the corresponding tensors. The second step 
is the formulation of the entropy flux 𝑱𝒔. It is natural to expect that it is not simply given by the 
classical expression 𝑇  𝒒, but that it will depend on higher order fluxes, as 
 
𝑱 = 𝑇 𝒒 + 𝛽 𝑸(𝟐) ∙ 𝒒 + ⋯ + 𝛽 𝑸( )⨂𝑸( ),      (16) 
 
The next step is the derivation of the rate of entropy production per unit volume σs which is 
defined by  
 
     𝜎 = 𝑑 𝜂 + ∇ ∙ 𝑱 ≥ 𝟎,    (17) 
 
and is a positive definite quantity according to the second law of thermodynamics. After 
substituting in (17) the expressions of 𝑑 𝜂 and 𝑱𝒔 from (15) and (16), respectively, and 
eliminating 𝑑 𝑒 via the energy conservation law for rigid heat conductors (𝑑 𝑒 = −∇ ∙ 𝒒), one 
obtains   
 
𝜎 = − −∇𝑇 + 𝛼 𝑑 𝒒 − 𝛽 ∇ ∙ 𝑸(𝟐) ∙ 𝒒 − ⋯ − ∑ 𝑸( ) ⨂ 𝛼 𝑑 𝑸( ) − 𝛽 ∇ ∙ 𝑸(𝒏 𝟏) −

𝛽 ∇𝑸(𝒏 𝟏) ≥ 𝟎          (18)  
 
The expression for 𝜎  is a bilinear relationship in the flux 𝒒 and the subsequent higher order of 
fluxes 𝑸(𝒏). The quantity represented by the two terms between the parentheses is usually called 



the thermodynamic force 𝑿. The simplest way to guarantee the positiveness of the entropy 
production 𝜎  is to assume a linear flux-force relation of the form 𝑸(𝒏) = 𝐿𝑿 (𝑛 = 1,2,3, …), 
where 𝐿 is a phenomenological coefficient. As such, we obtain 
 
∇𝑇 − 𝛼 𝜕 𝑸( ) + 𝛽 ∇ ∙ 𝑸( ) = 𝜇 𝑸( ),                      (19a) 
 
𝛽 ∇𝑸( ) − 𝛼 𝜕 𝑸( ) + 𝛽 ∇ ∙ 𝑸( ) = 𝜇 𝑸( ), (𝑛 = 2,3, …),   (19b)
        
compatible with positive entropy production. In (19), 𝜕  stands for the time derivative, and 𝛼 , 
𝛽  and 𝜇  are phenomenological coefficients related to the relaxation times, correlation lengths 
and transport coefficients, respectively. Equation (19a) reduces to the well-known law of 
Cattaneo [17] when the term ∇ ∙ 𝑸( ) is omitted. We now consider an infinite number of flux 
variables (𝑛 → ∞) and apply the spatial Fourier transform  
 

𝒒(𝒌, 𝑡) = ∫ 𝒒(𝒓, 𝑡)𝑒 𝒌⋅𝒓 𝑑𝒓           (20) 
 
to Eqs. (19), with 𝒒 the Fourier transform of 𝒒, 𝒓 the spatial variable, 𝑡 the time and 𝒌 the 
wavenumber vector. This procedure results into obtaining the following time-evolution 
equation for the heat flux: 
 
𝜏̅(𝒌)𝜕 𝒒(𝒌, 𝑡) + 𝒒(𝒌, 𝑡) = −𝑖𝒌𝑘𝒩, (𝒌)𝑇(𝒌, 𝑡)   (21) 
 
where 𝜏̅(𝒌) = 𝛼 /𝜇  designates a renormalized relaxation time depending generally on 𝒌. 
𝑘𝒩, (𝒌) is given by the continued-fraction for the 𝒌–dependent effective thermal conductivity: 

𝑘𝒩, (𝒌) =
𝒌𝟐

𝒌𝟐

𝟏
𝒌𝟐

𝟏 ⋯

,     (22) 

with 𝑘  the classical bulk thermal conductivity, given by Eq. (9), independent of the dimension 
of the system, 𝑙  is the correlation length of order n defined by 𝑙 = 𝛽 /(𝜇 𝜇 ). Here, it is 
assumed that the relaxation times 𝜏  (𝑛 > 1) corresponding to higher order fluxes are negligible 
with respect to 𝜏 , which is a hypothesis generally admitted in kinetic theories. In the present 
problem, there is only one dimension (either the nanofilm thickness or the nanoparticle radius), 
so that it is natural to define 𝑘 ≡ 2𝜋/ℓ . The correlation lengths selected as 𝑙 = 𝑎 𝑙 , with 
𝑎 = 𝑛 /(4𝑛 − 1) and 𝑙 identified as the mean free path independently of the order of 
approximation. This is a rather natural choice for phonons as shown by Dreyer and Struchtrup 
[19]. With these results in mind, the continued fraction (22) reduces to an asymptotic limit (see 
for mathematical formulation Ref. [20]), leading finally to the following expression for 𝑘𝒩, : 
 

𝑘 ,𝒩 =  
( )

− 1 ,               (23) 

 
with 𝐾𝑛  given by Eq. (10).  
 
3. Calculation of the thermoelectric properties  
 
3.1 Model for nanofilm thermoelectric devices 



In this subsection, we continue with the model presented in section 2.1 in order to apply it to 
nanofilm thermoelectric systems. In analogy with Eq. (23), we obtain also the following 
expression for the electron contribution of the thermal conductivity at nanoscales 
 

𝑘 ,𝒩 =  
( )

− 1 ,               (24) 

 
where 𝐾𝑛 = Λ , /ℓ  in analogy with Eq. (10). The total thermal conductivity at nanoscales is 
then defined as  
 
𝑘 ,𝒩 = 𝑘 ,𝒩 + 𝑘 ,𝒩. 
 
The electric conductivity at nanoscale is defined in analogy to the electron contribution of the 
thermal conductivity as  
 

𝜎𝒩 = ,𝒩,           (25) 

 
or 
 

𝜎𝒩 =  
( )

− 1 ,        (26) 

 
with 𝑘 ≡ 𝜎 𝐿𝑇, where 𝐿 is the Lorentz number and 𝑇 the absolute temperature. The Lorentz 
number is determined by 
 

𝐿 = ,            (27) 

 
where 𝑘  is Boltzmann’s constant and 𝑒  the elementary charge. Furthermore, the electric 
conductivity of a bulk material is not only dependent on the electron contribution of the thermal 
conductivity, but also on the electron 𝑛  and hole 𝑛  carrier concentration as well as electron 
𝜇  and hole 𝜇  mobility [21]: 
 
𝜎 = 𝑛 𝑒 𝜇 + 𝑛 𝑒 𝜇 .          (28) 
 
Here, the subscripts 𝑛 and 𝑝 stand for the denomination of n-type and p-type carriers, typically 
used for electrons and holes, respectively. The thermoelectric performance is typically assessed 
by the figure of merit 𝑍𝒩, where the non-dimensional version 𝑍𝑇𝒩 is given by 
 

𝑍𝑇𝒩 = 𝑇 𝒩 𝒩

,𝒩 ,𝒩
= 𝒩/

,𝒩

,𝒩

.        (29) 

 
Here, 𝑆𝒩 is the Seebeck coefficient (the electric conductivity in a material is determined via the 
mobility of both electrons and holes) given by [22] 
 

𝑆𝒩 = .          (30) 

 
with 



 

𝑆 = (−1) 𝑚∗ 𝑇
/

,        (31) 

 
where ℎ is Planck’s constant, 𝑚∗  the effective mass of electrons or holes (expressed in free 
electron mass 𝑚 ) and the subscript 𝑥 denoting whether it concerns the Seebeck coefficient of 
electrons (𝑥 = 𝑛 and 𝑧 = 1) or that of holes (𝑥 = 𝑝 and 𝑧 = 2). If the material is only of the n-
type then 𝑆𝒩 = 𝑆  (< 0), while a p-type material would have 𝑆𝒩 = 𝑆  (> 0). With the Seebeck 
coefficient and the electric conductivity, a power factor can be defined as 
 
𝑃𝐹𝒩 = 𝑆𝒩𝜎𝒩.           (32) 
 
There is still a note to be made. The carrier concentration of the holes and electrons cannot be 
assumed to stay constant with respect to the film’s size. Nanoscaling causes the scattering of 
the carriers [23] (in the direction of the film thickness) at the film’s boundary (ballistic effect).  
Since the carrier concentrations appear in the definition of the electric conductivity in Eq. (28), 
we assume that the variation of the carrier concentrations (and its scattering behavior) also 
follows that of the electric conductivity (which follows that of the thermal conductivity, 
described by EIT) at nanoscale (see Eq. (26)). Also, we should notice that the mobility will 
increase for decreasing carrier concentration, governed by an inverse power law [24]. From 
Eqs. (26) and (28) we have 
 

𝑛 𝜇 ~𝜎𝒩 =  
( )

− 1 ,        (33) 

  

Knowing that 𝑆 ~𝑛
/  from Eq. (31) and that 𝜎~𝑛  and noting that from [12] the power factor 

𝑆 𝜎~𝜇  (neglecting any variations of the effective mass), it can be easily deduced that 

𝜇 ~𝑛
/  (also observed by [25]), which leads to: 

 

𝑛
/  

~𝜎𝒩,            (34) 
 
or 
 

𝑛 = 𝑛 ,
𝒩

/

= 𝑛 ,
,𝒩

/

,         (35) 

 
with 𝑛 ,  the carrier concentration of the bulk material (without taking into account the effect 
of electron scattering due to the nanoparticles). In this subsection, we have obtained a 
mathematical model for describing the thermal conductivity (with its phonon and electron 
contributions), the electric conductivity, the Seebeck coefficient (taking into account the 
scattering of the carriers and the change of the mobility) and the resulting figure of merit, all at 
nanoscale. This model is suitable for nanofilms and in section 4.1, we will apply this model as 
such. However, this model is also suitable for nanoparticles, with some modifications presented 
in section 2.2. Furthermore, since nanoparticles are embedded in a matrix (nanocomposites), 
the latter must also be taken into account. The next section will extend the present model for 
the use of nanocomposites. 
 
3.2 Extension to nanocomposite thermoelectric devices 
 



In this section, we use the models from section 2.1 and 2.2 in order to apply it for 
nanocomposites, making some modifications. Using the definition of the Knudsen number (10) 
and the corresponding equations (11), we can easily notice that (23) can, next to nanofilms, also 
be used for nanoparticles. The thermal conductivity (both phonon (𝑘 ,𝒩) and electron (𝑘 ,𝒩) 
contributions) and electric conductivity (𝜎𝒩) of the nanoparticles are then given keeping in 
mind that now ℓ ≡ 𝑟 . We will have to add the contribution of the bulk matrix (𝑘 , , 𝑘 ,  and 
𝜎 ), respectively, within which the nanoparticles are embedded. As in the previous section, we 
will extend our model for the phonon contribution. The electron contribution follows exactly 
the same procedure, replacing the phonon specific heat 𝐶 , , lattice velocity 𝑣 ,  and phonon 
mean free path Λ , ,  by the electron specific heat 𝐶 , , electron thermal velocity 𝑣 ,  and 
electron mean free path Λ , , , respectively, 𝑚 the subscript denoting that the property concerns 
the bulk matrix. The phonon thermal conductivity of the bulk matrix is given by the classical 
Boltzmann phonon expression: 
 

𝑘 , = 𝐶 , 𝑣 , Λ , | .        (36)

  
Within the matrix, the phonons experience phonon-phonon interactions and the mean free path 
is given by the Matthiessen rule: 
 

,
=

, ,
+

, ,
.            (37)  

 
with Λ , ,  designating the mean free path in the bulk matrix and Λ ,  the supplementary 
contribution due to the interactions at the particle-matrix interface given by [26] 
 

Λ , =
,
,            (38) 

 
with 𝜑 the volume fraction of the nanoparticles in the matrix. This is a heterogeneous medium, 
which means that we cannot just use (23). We have said earlier that equation (23) can also be 
used for nanoparticles. Still, equation (23) is only valid for materials that are nanoscaled and 
homogeneous, the latter of which is obviously not the case for nanocomposites. Therefore, in 
order to calculate the thermal conductivity for nanocomposites, we have to relate the one in the 
nanoparticle (given by (23)) to the one in the bulk matrix (given by (36)). For this purpose, we 
will make use of the effective-medium approach [26-28] which provides a process of 
homogenization of the heterogeneous medium formed by the matrix and the particles. The 
effective medium theory calculates effective properties for media with located symmetric 
inclusions. The approach leads to exact formulas for the effective thermal conductivity [26-28]. 
The basic formula for the effective phonon thermal conductivity coefficient 𝑘  is Maxwell’s 
relation [29,30], which has been revisited by [26,27] and adapted here for our purposes 
 

𝑘 = 𝑘 ,
, ,𝒩 ,𝒩 ,

, ,𝒩 ,𝒩 ,
.         (39) 

 
In this expression, 𝛼 is a dimensionless parameter describing the particle-matrix interaction: 
 
𝛼 = 𝑅 𝑘 , /𝑟 , .             (40) 
 
The quantity 𝑅 is the thermal boundary resistance coefficient (see Ref. [26]) given by  



   
𝑅 = 4/𝐶 , 𝑣 , + 4/𝐶 𝑣 ,          (41) 
 
Note that the result (41) was established in the case of diffusive surfaces [31]. The subscript 
“𝑝ℎ, 𝑚” stands for the phonon contribution in the bulk matrix, while the subscript “𝑝ℎ” denotes 
the phonon contribution in the nanoparticle (also equal to the one in the nanofilm in the previous 
section). It is important to note that equation (39) stands for the effective thermal conductivity 
that would be measured in a nanocomposite composed out of a bulk matrix and a volume 
fraction of nanoparticles; it is thus a combination of macroscopic and microscopic heat transfer 
phenomena. In thermoelectric devices, the combination of macroscopic and microscopic 
phenomena can lead to different results as the nanoparticle volume fraction changes. For low 
volume fractions, the macroscopic heat transfer will be more important, while for higher 
volume fractions, the microscopic one will take the lead. The electron contribution follows the 
same path, defining the electron thermal conductivity, electric conductivity and the electron 
contribution of the effective thermal conductivity 
 

𝑘 , = 𝐶 , 𝑣 , Λ , | ,        (42) 

𝜎 = , ,            (43) 

𝑘 = 𝑘 ,
, ( ) ,𝒩 ( ) ,𝒩 ,

, ( ) ,𝒩 ( ) ,𝒩 ,
,      (44) 

 
respectively. In Eq. (44), 𝑘 ,𝒩 is given by Eq. (24) and 𝛼  is obtained from 𝛼  from Eq. (40), 
by replacing 𝑘 ,  by 𝑘 ,  (42) and 𝑅  by 𝑅 = 4/𝐶 , 𝑣 , + 4/𝐶 𝑣 . The total effective 
thermal conductivity is given by  
 
𝑘 = 𝑘 + 𝑘 ,          (45) 
 
while the effective electric conductivity is expressed as 
 

𝜎 = .            (46) 

 
As for the Seebeck coefficient, we cannot take a volumetric average since this means neglecting 
the effect of size. Also, we need to redefine the Seebeck coefficient for the nanocomposite:  
 

𝑆 =
, ,

∗
, ,

∗

, ,
,         (47a) 

𝑆𝒩 =
,𝒩 ,𝒩

∗
,𝒩 ,𝒩

∗

,𝒩 ,𝒩
,         (47b) 

 
with 𝑆  the Seebeck coefficient of the matrix (the bulk material) and 𝑆𝒩 the Seebeck coefficient 
of the nanoparticle. Furthermore, 
 

𝑆 ,
∗ = (−1) 𝑚∗ 𝑇

,

/

,        (48) 

 
where the subscript 𝑥 denotes whether it concerns the Seebeck coefficient of electrons (𝑥 = 𝑛 
and 𝑧 = 1) or that of holes (𝑥 = 𝑝 and 𝑧 = 2) and the subscript 𝑦 denotes whether it concerns 
the bulk material (𝑦 = 𝑚) or the nanoparticle (𝑦 = 𝒩). If the material is only of the n-type then 



𝑆𝒩 = 𝑆 ,𝒩
∗  (for the nanoparticle) and 𝑆 = 𝑆 ,

∗  (for the bulk matrix), while a p-type material 
would have 𝑆𝒩 = 𝑆 ,𝒩

∗  (for the nanoparticle) and 𝑆 = 𝑆 ,
∗  (for the bulk matrix). In this 

definition of the Seebeck coefficient, we need again to pay attention to the carrier concentration 
of the holes and electrons, but this time because of two reasons: the nanoparticle size is at 
nanoscale and they are embedded in another material. This causes not only the scattering [23] 
of the carriers within the nanoparticles but also at the nanoparticle-matrix boundary, which 
influences the carrier concentration within the matrix as well. We assume again, as in the 
previous subsection, that the variation of the carrier concentrations (and its scattering behavior) 
also follows that of the electric conductivity (which follows that of the thermal conductivity, 
described by EIT) for both the nanoparticles (see Eq. (26)) and the bulk matrix. From Eqs. (26), 
(28), (42) and (43), we have 
 

𝑛 ,𝒩𝜇 ~𝜎𝒩 =  
( )

− 1 ,       (49) 

𝑛 , 𝜇 ~𝜎 =  𝐶 , 𝑣 , Λ , | .        (50) 

  
As noticed earlier, we take the mobility to be dependent on the carrier concentration as 

𝜇 ~𝑛
/  , which leads to: 

 

𝑛 ,𝒩
/  

~𝜎𝒩,            (51a) 

𝑛 ,
/  

~𝜎 .            (51b) 
 
This leads finally to  
 

𝑛 ,𝒩 = 𝑛 ,
𝒩

/

= 𝑛 ,
,𝒩

/

,       (52a) 

𝑛 , = 𝑛 ,

/

= 𝑛 ,
,

,

/

= 𝑛 ,
,

, ,

/

,       (52b) 

 
with 𝜎  and 𝑘 ,  the electric conductivity and the electron thermal conductivity, respectively, 
of the matrix bulk material (without taking into account the effect of electron scattering due to 
the nanoparticles, i.e. Λ , ≡ Λ , ,  and 𝜑 = 0). 
The size dependency of the Seebeck coefficient for nanofilms has been taken into account via 
the carrier concentration. For nanocomposites, however, it is quite different, since the two 
materials are present, one of which is at nanoscales. This will lead to an effective Seebeck 
coefficient. However, the Seebeck coefficient is not to be taken size-dependent in the same way 
as the thermal conductivity, since Eqs. (6c) and (7c) suggests that 𝑆 and 𝜎 are to be evaluated 
together when it comes to the extended thermodynamic approach of nanocomposite 
thermoelectric devices in this work (assuming Λ ≡ Λ ). Therefore, with Eq. (25) (keeping in 
mind Eq. (26)), we have 
 
(𝑆𝜎)𝒩 = 𝒩 𝑘 ,𝒩.             (53) 

 
For the matrix, an analogous expression can be obtained: 
 
(𝑆𝜎) = 𝑘 , ,           (54) 

 
Then we have in analogy with Eq. (44) 



 

(𝑆𝜎) = (𝑆𝜎)
( ) ( )( )𝒩 [( )( )𝒩 ( ) ]

( ) ( )( )𝒩 [( )( )𝒩 ( ) ]
.     (55) 

 
The effective Seebeck coefficient 𝑆  and the effective power factor 𝑃𝐹  can then be easily 
obtained a posteriori, by defining  
 
𝑆 = (𝑆𝜎) /𝜎 ,           (56) 

𝑃𝐹 = 𝑆 𝜎 = (𝑆𝜎) /𝜎 .        (57) 
 
Finally, with the preceding equations, we can obtain the effective non-dimensional figure of 
merit for nanocomposites: 
 

𝑍𝑇 = 𝑇 = 𝑇
( ) /

= 𝐿𝑇
( )

.     (58) 

 
 
The model presented in section 2.3 will be applied for nanofilms of Bismuth (Bi) and p-type 
BismuthTelluride (Bi2Te3). This model is again extended in section 2.4 describing the 
thermoelectric properties of nanocomposites that have one dimension at nanoscale. 
 
4. Mathematical model for the extension to thin film nanocomposites  
In this section we extend the model from the previous subsection to thermoelectric systems in 
the form of nanofilms composed out of nanocomposites (of course, the film thickness should 
be larger than the particle diameters). The description of the conductivities and the components 
of the figure of merit for the nanoparticles will remain the same as the previous. The differences 
are the parts that describe the matrix which is now also at nanoscale in contrast to the previous 
subsection. The new nanoscale matrix phonon thermal conductivity, 𝑘 ,

𝒩 , will be given by 
Eq. (23), where 𝑘  should now be given by Eq. (36): 
 

𝑘 ,
𝒩 =  

,

𝒩

𝒩

( 𝒩 )
− 1 =

, , ,

𝒩

𝒩

( 𝒩 )
− 1 ,   (59) 

 
with 𝐾𝑛𝒩 = Λ , , /𝛿 ,

𝒩  the phonon Knudsen number of the nanoscale matrix, where 𝛿 ,
𝒩 =

𝛿𝒩(1 + 𝑠)/(1 − 𝑠), with 𝛿𝒩 the film thickness of the nanocomposite. The nanoscale effective 
phonon thermal conductivity, 𝑘𝒩, , is then, in analogy with Eq. (39), given by 
 

𝑘
𝒩,

= 𝑘 ,
𝒩 ,

𝒩 𝒩
,𝒩

𝒩
,𝒩 ,

𝒩

,
𝒩 𝒩

,𝒩
𝒩

,𝒩 ,
𝒩

,        (60) 

 
with 𝑘 ,𝒩 given by Eq. (23). In expression (60), 𝛼𝒩  is given by Eq. (40), but replacing 
𝑘 , by 𝑘 ,

𝒩 . In analogy with Eq. (60), the electron contribution of the thermal conductivity 
is given by 
 

𝑘
𝒩,

= 𝑘 ,
𝒩 ,

𝒩 𝒩
,𝒩

𝒩
,𝒩 ,

𝒩

,
𝒩 𝒩

,𝒩
𝒩

,𝒩 ,
𝒩 ,     (61) 

 



with 𝑘 ,𝒩 given by Eq. (24). In expression (61), 𝛼𝒩 is obtained from Eq. (40), by replacing 
𝑅  by 𝑅 = 4/𝐶 , 𝑣 , + 4/𝐶 𝑣  and 𝑘 ,  by 𝑘 ,

𝒩 , the latter being given, in analogy with 
Eq. (59) by 
 

𝑘 ,
𝒩 =  , , ,

𝒩

𝒩

( 𝒩)
− 1 ,        (62) 

 
with 𝐾𝑛𝒩 = Λ , , /𝛿 ,

𝒩  the electron Knudsen number of the nanoscale matrix, where 𝛿 ,
𝒩  is 

here again the speculate film thickness. The total nanoscale effective thermal conductivity is 
given by 
 
𝑘

𝒩,
= 𝑘

𝒩,
+ 𝑘

𝒩, ,         (63) 
 
while the nanoscale effective electric conductivity is expressed as (in analogy with Eq. (46)) 
 

𝜎𝒩, =
𝒩,

.           (64) 

 
As for the Seebeck coefficient, we have in analogy with Eq. (55) 
 

(𝑆𝜎)𝒩, = (𝑆𝜎)𝒩 ( )𝒩 𝒩 ( )𝒩
𝒩 ( )𝒩 ( )𝒩

( )𝒩 𝒩 ( )𝒩
𝒩 ( )𝒩 ( )𝒩 ,     (65) 

 
with (𝑆𝜎)𝒩 given by Eq. (53), 𝛼𝒩 defined under Eq. (61) and (𝑆𝜎)𝒩 derived from (𝑆𝜎)  (see 
Eq. (54)) by replacing 𝑘 ,  by 𝑘 ,

𝒩  (see Eq. (62)) and 𝑆 by 𝑆𝒩. Note that (𝑆𝜎)𝒩 ≡ 𝑆𝒩𝜎𝒩, 
with 𝜎𝒩 and 𝑆𝒩 the nanoscale electric conductivity and Seebeck coefficient of the matrix, 
given by, respectively,  
 

𝜎𝒩 = ,
𝒩

.             (66) 

𝑆𝒩 =
, ,

∗,𝒩
, ,

∗,𝒩

, ,
,         (67) 

 
where  
 

𝑆 ,
∗,𝒩 = (−1) 𝑚∗ 𝑇

,
𝒩

/

,         (68) 

 
with 𝑛 ,

𝒩  defined (in analogy with Eqs. (52)). In the case of the nanoparticles 𝑛 ,
𝒩 = 𝑛 ,𝒩 (Eq. 

(52a)). In the case of the nanoscale matrix 𝑛 ,
𝒩 = 𝑛 ,

𝒩  (keeping in mind the definitions of 𝑥, 𝑦 
and 𝑧 and the explanation of using Eq. (67), all to be consulted in the text under Eq. (48)) given 
by 
 

𝑛 ,
𝒩 = 𝑛 ,

𝒩 /

= 𝑛 ,
,

𝒩

,

/

.         (69) 

 
The effective nanoscale Seebeck coefficient 𝑆𝒩,  and the effective nanoscale power factor 
𝑃𝐹𝒩,  can then be easily obtained a posteriori, by defining  
 



𝑆𝒩, = (𝑆𝜎)𝒩, /𝜎𝒩, ,          (70) 

𝑃𝐹𝒩, = 𝑆𝒩, 𝜎𝒩, = (𝑆𝜎)𝒩, /𝜎𝒩, .       (71) 
 
Finally the nanoscale effective non-dimensional figure of merit for nanofilms composed out of 
nanocomposites is given by 
 

𝑍𝑇𝒩, = 𝑇
𝒩, 𝒩,

𝒩, 𝒩, = 𝑇
( )𝒩, / 𝒩,

𝒩, 𝒩, = 𝐿𝑇
( )𝒩,

𝒩, 𝒩, 𝒩, .   (72) 

 
  
5. Material properties for Bi and Bi2Te3 
Historically, Bismuth was the first material showing substantial thermoelectric coefficients [32] 
and BismuthTelluride is one of the best performing thermoelectric materials at room 
temperature [33]. As such, the choice of these materials is actually well justified. Bismuth is a 
semi-metal where the electric conductivity passes via both hole and electron mobility. We can 
obtain the electric conductivity via Eq. (22). The hole (𝜇 ) and electron (𝜇 ) mobilities are 1 
and 0.4 m2/Vs, respectively [34]. The carrier concentrations of the holes and electrons are each 
3.5*1024 m-3 [34]. This gives an electric conductivity 𝜎  of 7.85*105 -1m-1. The Lorentz 
number can be obtained by Eq. (21) to be 2.44*10-8 W The electron thermal conductivity 
is then given by 𝑘 ≡ 𝜎 𝐿𝑇, obtaining 5.75 W/Km. The electron thermal velocity is given by 

3𝑘 𝑇/𝑚∗ [35]. With 𝑚∗ = 0.16𝑚  [36] for the electrons (the same holds for the holes), we 
find an electron thermal velocity of 2.92*105 m/s. The electron mean free path is 0.67 nm 
[37,38]. This gives with the electron version of Eq. (2) an electron specific heat capacity of 
0.088 MJ/m3K. Assuming that the total specific heat capacity (1.21 MJ/m3K [39]) is the sum of 
the electron and phonon ones, we can find the phonon specific heat capacity of 1.12 MJ/m3K. 
The phonon mean free path is 3.0 nm [40]. Via Eq. (2), we can find a phonon group velocity of 
1980 m/s. This value corresponds nicely with the value of 1790 m/s, proposed by [37]. This 
gives finally all the electron and phonon material properties needed for the calculation of the 
effective thermal conductivities for Bismuth. In order to calculate the figure of merit, we still 
need to calculate the Seebeck coefficient. Using Eqs. (25) and (26), we can find a bulk Seebeck 
coefficient of 139 µV/K for Bismuth. A resume of these properties are given in Table 1. 
 
As for p-type (the electric conductivity passes only via the mobility of holes) BismuthTelluride 
the electron (𝐶 , 𝑣  and Λ , ) and phonon (𝐶 , 𝑣  and Λ , ) material properties are given by 
[41]. As for the Seebeck coefficient we use Eq. (25) with 𝑥 = 𝑝 and 𝑚∗ = 1.25𝑚  (using the 
six-valley model) [42] for the holes (p-type) and obtain finally a bulk value of 188 µV/K for 
Bi2Te3. The mobility is 420*10-4 m2/Vs [43] and the electric conductivity can be found by 𝜎 =

𝑘 /𝐿𝑇, with 𝑘 = 𝐶 𝑣 Λ , , so that the electric conductivity is found to be 3.28*105 -1m-1. 

With this we can find the hole carrier concentration from Eq. (22) to be 4.87*1025 m-3. A resume 
of these properties are given in Table 1. Table 2 shows the values of the used physical constants. 
 
Table 1: Electron and phonon material properties of Bi and Bi2Te3 at T = 300K. 
Material Electron Phonon Carrier  

𝐶  
[MJ/ m3K] 

𝑣  
[km/s] 

Λ ,  
[nm] 

𝐶  
[MJ/ m3K] 

𝑣  
[km/s] 

Λ ,  
[nm] 

𝑛 ,  𝑛 ,  𝑆  
[µV/K] [1024 m-3] 

Bi 0.088 292 0.67 1.12 1.98 3.0 3.5 3.5 59 
Bi2Te3 1.01 7.83 0.91 0.19 8.43 3.0 48.7 – 188 

 



 
 
Table 2: Physical constants at T = 300K. 
Physical constant 𝑘  [J/K] ℎ [Js] 𝑒  [C] 𝐿 [W] 𝑚  [kg] 
Value 1.38*10-23 6.626*10-34 1.602*10-19 2.44*10-8 9.11*10-31 

 
 
6. Results and discussion 
6.1 Thermoelectric properties of nanofilms of Bi and Bi2Te3 
Fig. 1 presents the phonon, electron and total thermal conductivities (also for several 
specularities), electric conductivity and the dimensionless figure of merit for Bi and Bi2Te3.  
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Fig. 1: Dependence on the film thickness 𝛿𝒩 of Bi (left, indicated by I) and Bi2Te3 (right, 
indicated by II) of (a) the phonon, electric and total thermal conductivity (𝑘 ,𝒩, 𝑘 ,𝒩 and 
𝑘 ,𝒩) for 𝑠 = 0 and, (b) the total thermal conductivity 𝑘 ,𝒩, (c) the Seebeck coefficient 𝑆𝒩, 
(d) the electric conductivity 𝜎𝒩, (e) the power factor 𝑃𝐹𝒩 and (f) the dimensionless figure of 
merit 𝑍𝑇𝒩, for 𝑠 = 0, 0.2, 0.5 and 1. 
 
We start the discussion first for 𝑠 = 0. From Fig. 1(Ia,Ib,IIa,IIb), we can see clearly that the 
thermal conductivities for both considered nanofilms (Bi and Bi2Te3) decrease considerably for 
thicknesses below 50 nm. This is due to the scattering effect of the phonons and electrons. As 
the film thickness decreases, the ballistic effects (phonons colliding with boundaries of which 
the dimensions approach that of the mean free paths). The scattering effect has clear influences 
on the scattering of the carriers translated into a sharp increase of the Seebeck coefficient (see 
Eq. (24)) in Fig. 1(Ic,IIc). The electric conductivity follows the behavior of the electron thermal 
conductivity (see Fig. Id,IId) for the same reasons, i.e. the scattering of the electrons. Fig. 
1(Ie,IIe) shows the power factor, which increases as the nanofilm thickness decreases. Finally 
Fig. 1(If,IIf) shows the figure of merit, which shows us that the decreasing thermal conductivity 
and the increasing Seebeck coefficient result into an increased figure of merit. Note the 
relatively high value for the figure of merit in Fig. 1(IIf). It should be mentioned that a value of 
𝑍𝑇𝒩 = 8 (for 𝑠 = 0 and 0.2) is quite on the high side. It is still shown here as an extrapolation 
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for purposes of mathematical interest, showing to what extent nanofilms can increase the figure 
of merit. We can also see that the electron thermal conductivity decreases less than the phonon 
one, which also contributes to increased figure of merit. As far as concerns the difference 
between Bi and Bi2Te3, it can be said that they show the same behaviour. The results only differ 
quantitatively. Bi2Te3 presents a higher Seebeck coefficient and power factor than Bi, resulting 
into higher figure of merits. It is interesting to note that the values at 𝑠 → 1 are constant. This 
can be interpreted in two ways. Firstly, for 𝑠 → 1, the electron and phonon scattering occurs on 
a so-called smooth surface so that the incoming phonons and electrons leave the boundary of 
the nanofilm at the same angle. In other words, the boundaries are specular. This results into 
zero scattering and the heat transfer occurs fully, so that the thermal conductivities, electric 
conductivity and carriers do not undergo the effect of scattering and preserve their bulk values. 
As a consequence, also the Seebeck coefficient and power factor remain the same, resulting 
altogether in a constant figure of merit. Another interpretation is to say that for 𝑠 → 1, Eqs. 
(11a) and (11b) shows that ℓ → ∞. This means that the nanofilm behaves as if it were a 
macrofilm with bulk properties. As far as goes the results for 0 < 𝑠 < 1, they show intermediate 
tendencies between those of 𝑠 = 0 and 𝑠 → 1, as expected. Now we have seen the influence of 
the film dimension on the thermoelectric properties, we assess the influence of adding 
nanoparticles in the next subsection. 
 
6.2 Thermoelectric properties of nanocomposites of Bi nanoparticles in Bi2Te3 and of Bi2Te3 
nanoparticles in Bi 
Fig. 2 presents the phonon, electron and total thermal conductivities (also for several 
specularities), electric conductivity and the dimensionless figure of merit as a function of the 
volume fraction of nanoparticles for two systems: left, Bi nanoparticles embedded in Bi2Te3, 
and, right, Bi2Te3 nanoparticles embedded in Bi. The size of the nanoparticles is 1 nm. 
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Fig. 2: Dependence on the volume fraction 𝜑 of, respectively, 1 nm Bi nanoparticles in a matrix 
of Bi2Te3 (left, indicated by I) and 1 nm Bi2Te3 nanoparticles in a matrix of Bi (right, indicated 
by II) of: (a) the phonon, electric and total effective thermal conductivity (𝑘 , 𝑘  and 𝑘 , 

respectively) for 𝑠 = 0, and (b) the total effective thermal conductivity 𝑘 , (c) the effective 
Seebeck coefficient 𝑆 , (d) the effective electric conductivity 𝜎 , (e) the effective power 
factor 𝑃𝐹  and (f) the dimensionless effective figure of merit 𝑍𝑇 , for 𝑠 = 0, 0.2, 0.5 and 
1. 
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Again, we start with discussing the results for 𝑠 = 0. From Fig. 2(Ia,Ib,IIa,IIb), we can see that 
the effective thermal conductivities decrease as the volume fraction of the nanoparticles 
increase. The reason of this decrease is twofold. Firstly, due to an increase of the nanoparticles, 
the mean free path of phonons and electrons in the host matrix decreases (see Eqs. (38) and 
(42)) and so does the overall mean free path of phonons and electrons (Eq. (37)). This causes 
the effective thermal conductivity of the matrix to decrease (Eq. (36) for the phonon 
contribution and Eq. (42) for the electron one). Secondly, due to the small size (1 nm) of the 
nanoparticles, the phonon and electron scattering cause a considerable decrease of the 
nanoparticle effective phonon thermal conductivity (Eq. (23) and for the electron contribution, 
see Eq. (24)). The effective electric conductivity follows, for the same reasons, the behavior of 
the thermal one (see Fig. 2(Id,IId)). As for the effective Seebeck coefficient in Fig. 2(Ic,IIc), it 
increases as the volume fraction increases. However, this increase is not as strong as the 
decrease of the thermal and electric conductivities. This can be explained by considering that 
the scattering effect on the effective Seebeck coefficient has two sources. The first can be 
understood via the principles of EIT (see Eq. (7c)), which is explicitly expressed in Eq. (55) for 
the effective Seebeck coefficient. Following Eq. (55), the effective Seebeck coefficient should 
decrease due to the scattering effect, in analogy with the effective thermal conductivity (Eqs. 
(39) and (44)). The second, however, shows via Eq. (48) that the effective Seebeck coefficient 
is inversely proportional to the carrier concentration by a factor 2/3. The scattering behavior of 
the carriers is proportional to the decrease of the electric conductivity by a factor 3/2 (see Eqs. 
(51a) and (51b)). Therefore, the proportionality of the decreasing and increasing effects of the 
scattering process on the effective Seebeck coefficient compete with each other, so that the 
scattering effect is of more importance to the effective thermal conductivities. It appears, by the 
way, that the scattering process of the carriers is stronger than that expressed by Eq. (55), which 
explains the eventual increase of the effective Seebeck coefficient. Fig. 2(Ie,IIe) shows that the 
power factor decreases. This is due to the stronger decrease of the effective electric conductivity 
with respect to the increase of the effective Seebeck coefficient. This decreasing power factor 
results into a less strong increase of the figure of merit (see Fig. 2(If,IIf)) than was the case for 
the nanofilm in section 4.2, but increase nonetheless. 
Now, comparing the two nanocomposites, we observe that the tendencies of all the parameters 
behave in the same way as a function of the volume fraction of nanoparticles. However, the 
dependency on the 𝑠 parameter is not the same at all. As far as goes the Bi nanoparticles in 
Bi2Te3, we obtain expected results. A higher 𝑠-value results into a smoother surface, causing 
less scattering. It also can be interpreted by a higher particle radius (see Eqs. (11a) and (11c)), 
which at a given volume fraction decreases the particle-matrix interface, creating less obstacles 
for the phonons and electrons to transfer heat, increasing the thermal conductivity. However, in 
the case we have Bi2Te3 nanoparticles in a Bi matrix, we obtain surprising results. Of course, 
the lesser scattering effect of the nanoparticles and the particle-matrix interface play an 
important role, but there seems to be another effect that counteracts it. Fig. 2(IIb) shows that, 
even though for 𝑠 → 1 the effective thermal conductivity increases, this increase is less 
pronounced than in Fig. 2(Ib). The same goes for the effective thermal conductivity in Fig. 2(Id) 
and Fig. 2(IId), respectively. Moreover, being the most pronounced difference, the effective 
Seebeck coefficient at 𝑠 → 1 decreases in Fig. 2(Ic) and increases in Fig. 2 (IIc). Table 1 shows 
that bulk p-type Bi2Te3 has a much higher Seebeck coefficient than Bi. We have already said 
earlier that at 𝑠 → 1 bulk material values become important. Therefore, as the volume fraction 
increases at 𝑠 → 1, the effective Seebeck coefficient increases as well. In the fictive limit of 
𝜑 → 1, which is not possible here, since we assume that the nanoparticles are undeformable 
spheres that do not merge with other ones (at maximum packing 𝜑 = 𝜋/√18), we obtain 
the bulk value for Bi2Te3, while at 𝜑 = 0, we obtain that of Bi. The sum of all these effects 



gives eventually the result that the figure of merit in Fig. 2(IIf) is hardly influence by the 𝑠-
value. 
We have seen that the 𝑠-parameter influences greatly the thermoelectric properties and we said 
that one of the interpretations is higher nanoparticle radii for higher 𝑠-values. The nanoparticle 
radius used for the results in Fig. 2 is 1 nm. We are therefore interested to assess the influence 
of the nanoparticle radius on the figure of merit. For this purpose, Fig. 3 presents the 
dimensionless effective figure of merit as a function of the inverse phonon Knudsen number 
𝐾𝑛 ~𝑟  at 𝑠 = 0 and for volume fractions 𝜑 = 0, 0.2, 0.4 and 0.7. Note that doing the same 
as a function of the inverse electron Knudsen number mounts to the same tendency since 𝐾𝑛 =
𝐾𝑛 Λ /Λ . It should be mentioned that, regarding the values of the mean free paths in Table 
2, the phonon Knudsen number cannot realistically be of order 10 or larger (the nanoparticle 
radii should be significantly larger than the atom sizes). So, in real-life situations, for the 
materials in this work, 𝐾𝑛 ≪ 10, or 𝐾𝑛 ≫ 0.1. Nonetheless, we would like to perform a 
dimensionless analysis and investigate the behavior of the figure of merit with respect to 
nanoparticle size. Therefore, we used a much larger range of 𝐾𝑛 , so that we capture all the 
phenomena for mathematical interest. This point is related to the results of both Fig. 1(IIf) 
(𝑍𝑇𝒩 = 8) and Fig. 3(a) (𝑍𝑇 = 15 for 𝜑 = 0.7). As such, the results will indeed be 
qualitatively valid for other materials which have much higher mean free paths. 
 

Fig. 3: Dependence on the inverse phonon Knudsen number 𝐾𝑛 , for several volume fractions, 
of the effective dimensionless figure of merit 𝑍𝑇 , for (a) Bi nanoparticles in a matrix of 
Bi2Te3 and (b) Bi2Te3 nanoparticles in a matrix of Bi.  
 
Fig. 3 shows that the nanoparticle size influences greatly the figure of merit (and thus the 
thermoelectric properties). The value at 𝜑 = 0 is obviously the figure of merit value at 𝛿𝒩 →
∞ or 𝑠 → 1 in Figs. 1(If) and 1(IIf). We can see that for increasing nanoparticle radius 
(decreasing 𝐾𝑛 ), the figure of merit decreases and for decreasing nanoparticle radius 
(increasing 𝐾𝑛 ), the figure of merit increases. This shows clearly the positive effect of 
nanocomposites on the figure of merit with respect to nanofilms for very large Knudsen 
numbers. It should be noted that the value of the figure of merit is higher in case of Fig. 3(a) 
than in case of Fig. 3(b). This is easily understood by noticing that Fig. 2(f) shows that Bi 
nanoparticles in a matrix of Bi2Te3 show already a higher figure of merit than Bi2Te3 
nanoparticles in a matrix of Bi. For an even smaller nanoparticle (𝐾𝑛  decreases), this 
difference is more accentuated. Finally, it appears that with nanofilms, one may obtain even 
higher figure of merits as can be seen in the previous subsection. However, from a practical 
point of view, it can give problems in the robustness or production of the nanofilms if the 
thickness is too small. Therefore, we have extended our model in section 2.4 in order to 
investigate whether the combination of nanofilms and nanocomposites can increase the 
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thermoelectric performances of nanocomposites without decreasing too much the thickness of 
the nanocomposite material.  
 
7. Discussion of extension towards thin films of Bi-Bi2Te3 nanocomposites: a 
Gedankenexperiment 
Fig. 4 shows the effect of the film thickness of the nanocomposites considered in the previous 
section. Here the nanoparticles have a radius of 1 nm, 𝑠 = 0 and the results are presented for 
volume fractions 𝜑 = 0, 0.2, 0.4 and 0.7. 
 

Fig. 4: Dependence on the nanocomposite film thickness 𝛿𝒩 of, respectively, (a) 1 nm Bi 
nanoparticles in a matrix of Bi2Te3 and (b) 1 nm Bi2Te3 nanoparticles in a matrix of Bi (b) the 
dimensionless effective figure of merit 𝑍𝑇𝒩, , for volume fractions 𝜑 = 0, 0.2, 0.4 and 0.7. 
 
From the results of Fig. 4, we can see indeed that decreasing the film thickness of the 
nanocomposites, we can improve further more the figure of merit. The improvement is not large 
but still significant. This weak improvement can be understood due to the minimum film 
thickness considered, i.e. 𝛿 ,

𝒩 = 5 nm, which is larger than both the phonon and electron 
mean free paths (though still in the same order of magnitude). Therefore the Knudsen number 
is smaller than one. As shown in Fig. 3, this leads to poorer thermoelectric properties. We did 
not consider smaller thicknesses, since the nanoparticle size is 2 nm (radius of 1 nm). We 
consider that the thin film should be at least twice the particle size (four times the radius), so 
that the thin film is still considered as a composite. Let us imagine a smaller particle. We 
consider here only the case of a Bi nanoparticle embedded in a Bi2Te3 host matrix, as an 
example. A Bi atom has a van der Waals radius of approximately 0.2 nm. Let us consider, for 
the purposes of this Gedankenexperiment a Bi nanoparticle of radius 0.5 nm (smaller than both 
the phonon and electron mean free paths) within a host matrix Bi2Te3 of minimum thickness 
𝛿 ,

𝒩 = 2 nm (smaller than the phonon mean free paths). We perform with these new settings 
the same calculations as in Fig. 4(a) and present the results in Fig. 5.  
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Fig. 5: The dimensionless figure of merit 𝑍𝑇𝒩,  of thin films of 0.5 nm Bi nanoparticles 
embedded in a Bi2Te3 host matrix as a function of the nanocomposite film thickness 𝛿𝒩, for 
volume fractions 𝜑 = 0, 0.2, 0.4 and 0.7. 
 
First of all, we can see high values of the figure of merit as high as 𝑍𝑇𝒩, = 10. As was 
mentioned in relation to Figs. 1(IIf) and 3(a), this value is rather high. However, for 
mathematical purposes it is interesting to make such an extrapolation, which allows 
appreciating the possibility of the configuration proposed in this section. Indeed, Fig. 5 shows 
that a much higher figure of merit can be obtained when combining the principle nanofilms and 
nanocomposites.  
 
8. Conclusions 
We present a mathematical model describing size-dependent subcontinuum thermoelectric 
properties based on extended irreversible thermodynamics, a new thermodynamic description 
suitable at nanoscale. It has been shown that a relatively simple closed-form formulation can 
capture complex size-dependent phenomena related to thermoelectric properties of nanofilms 
and nanocomposites. An extension has been presented towards nanofilms composed out of 
nanocomposites. The model includes size-dependent electron and phonon thermal 
conductivities, electric conductivity, Seebeck coefficient and carrier concentrations, all 
resulting into a size-dependent figure of merit. We compared nanofilms to nanocomposites and 
assessed their thermoelectric performances in the form of a figure of merit using as an example 
Bismuth (Bi) and p-type BismuthTelluride (Bi2Te3) materials. It appeared that nanofilms 
present higher figure of merits than the nanocomposites. However, sufficiently thin nanofilms 
may be more difficult to manufacture correctly than nanocomposites. Reducing the film 
thickness of nanocomposite materials appeared also to increase even further the figure of merit. 
As far as concerns the choice of nanoparticle’s versus the host matrix’ material, it appeared, 
quantitatively speaking, not straightforward.  For, instance Bi nanoparticles embedded in 
Bi2Te3 showed in absolute values much higher figure of merits than Bi2Te3 nanoparticles 
embedded in Bi. Relatively, however, inclusion of Bi2Te3 nanoparticles into Bi showed more 
impact on the figure of merit than the inclusion of Bi nanoparticles into Bi2Te3.  
The influence of particle radius and specularity on the thermoelectric properties has been 
investigated. A decrease in particle radius showed a better thermoelectric performance, due to 
more scattering of phonons and electrons. The latter effect causes a stronger decrease of the 
thermal conductivity than the electric one and the Seebeck coefficient (which may even 
increase). An increase of the specularity of the nanoparticles caused poorer thermoelectric 
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performances.  The main reason put forward by the present model is that the smoothness of the 
nanoparticle surface causes less scattering (which is observed here to go against a good 
thermoelectric performance). Another interpretation is that higher specularities are equivalent 
to larger nanoparticle radii.  
Generally, this work has presented that in many ways (nanofilms, nanocomposites or a 
combination thereof) thermoelectric properties tend to improve considerably. Via a new 
thermodynamic formulation, taking into account non-local effects of heat transfer by phonons 
and electrons (extending to electric transfer), particular phenomena have been demonstrated 
and explained at nanoscale.  

In future work, the present model will be extended in order to calculate the efficiency of 
thermoelectric systems from the viewpoint of EIT. Besides the figure of merit, other phenomena 
can be of importance for the aforementioned efficiency, such as the mutual interaction between 
phonon and electron temperatures, for which it is necessary to consider a two-temperature 
model instead of a single one [44]. For instance, it turned out that the larger the ratio of the 
electron and the phonon temperature was, the higher the efficiency of a thermoelectric device 
was. Another possible extension is to use a nonlinear regime, since high gradients may be 
generated over a short length from even small differences in temperature or electric potential 
[45]. Finally, we can say that for future studies the present paper has investigated for the best 
physical conditions for the improvement of the efficiency of thermoelectric devices.  
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