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Introduction Application to Cold Shock Protein

Tridimensional structures of proteins are precious sources of information. They allow to
understand fundamental biological mechanisms, protein Interaction with other macromolecules.
3D structures are currently determines using NMR and

X-Ray Crystallography that faced to some limitations. In order to overcome time consuming
limitation of both NMR and Crystallography, modeling approaches driven by minimalist NMR
data have been developed. Indeed, it have been shown that NMR backbone chemical shifts are
secondary structure dependent.

Calculated 3D structures driven by
NMR backbone chemical are close to
NMR experimental structure

It is also true for homology modeling
structures.

Therefore, different modeling
approches driven by only NMR
backbone chemical shifts such
as CS-Rosetta, RASREC CS-
Rosetta, CS-HM-Rosetta CS23D
and Cheshire have been
developed. To assess whether if
these automated methods can
indeed produce structures that
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While homology modeling approaches
didn’'t use experimental data, 3D
structures determined by calculation
approaches under the guidance of
NMR data can be used to validate
homology structure.
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Despite the fact that both homology
and calculates approches provides
3D structures close to experimental
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E]LH”!H same experimental data, these Blue: experimental NMR structure It is because modeling approaches
6 4 2 60 -2 -4 5 0 -2 approaches were used to Red: RASREC CS-Rosetta structure aren’t powerful enough or it is due to
Ca FPFPM cg PPM determine 3D structure of a Green: CS-Rosetta structure dynamic?

benchmark of proteins.

Backbone chemical shifts is structure dependent Magenta: Calculated structures
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NMR Backbone Chemical shifts assignment Conclusions
Starting from '5N-HSQC s Structure calculation driven by NMR backbone chemical is an efficient alternative for 3D
: HNCACB N-HSQC HN(CO)CACB structure determination while complete set of expérimental data cannot be obtain for

heteronuclear correlation H-1°N

IS used to identifie Ca and Cg t—cir—m) (m—ci—rm)
atoms of amino acid in position i
and Ca and Cg atoms of amino
acid in position i-1. Resulting |
chemical shifts can be therefore ™
ordered to sequentially assigned

experimental approaches
These approaches are rapidly, provided good results in term of fitness to experimental structure

Perspective

Some regions are ill-defined
Is it due to modeling programs?

backbone atomes. Is it because thes.e regions are
Ala 36 lle 37 Gin 38 dynamic?
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