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Abstract

The performance of a linear tuned vibration absorber (LTVA) and a nonlinear energy sink (NES)
for the vibration mitigation of an uncertain linear primary system is investigated. An analytic tuning
rule for the LTVA when the primary system contains uncertainty is derived. The behavior of the
linear system coupled to the NES is analyzed theoretically. A tuning methodology for the NES in
the deterministic as well as for the uncertain case is presented.
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1 Introduction

Mitigation of resonant vibrations of a linear system is a widely encountered problem in engineering
[8]. In the early 1900, Frahm proposed the use of linear resonator to reduce the amplitude of the
oscillations around the resonance of a primary system [3]. This problem was later formalized by Den
Hartog [2] who developed a tuning procedure based on invariant points to find appropriate stiffness
and damping of the absorber.

A recent trend in the literature is to exploit and take advantage of nonlinear phenomena for
vibration mitigation and energy harvesting [7, 11, 12, 19]. Among them, the nonlinear energy sink
(NES), which consists of an absorber with essential nonlinearity, received particular attention. It
was shown that a NES can lead to targeted energy transfer, which is an irreversible channelling of
vibrational energy from the host structure to the absorber [5, 17]. Such an appealing feature makes
the NES a suitable candidate for vibration isolation. However, due to the nonlinearity, it can also
exhibit classic nonlinear behavior such as jumps or sensitivity to motion amplitude and therefore, it
must be carefully designed.

Passive control of resonance using a NES was analyzed both theoretically [16, 15] and experi-
mentally [6]. In addition to periodic response, systems with NES were shown to exhibit relaxation
oscillations. The performance comparison between a linear absorber and a NES for the vibration
mitigation of a linear system was addressed in [14]. However, in this study, both absorbers are con-
strained to have the same damping and the presence of detached resonance curve was not taken into
account. In [13], a linear flexible beam with an embedded NES/linear absorber was investigated, but
no proper design procedure was proposed, which makes difficult the comparison of both solutions.

The present work aims at giving an objective comparison between a NES and a linear absorber
for passively controlling the resonance of a linear primary system. Two case studies are considered:
first, the primary system is assumed to be deterministic; second, the stiffness of the primary system
is assumed to be a random variable. In other words, the first case corresponds to the nominal case
whereas in the second case, the stiffness of the primary system can vary to take into account model
uncertainties or ageing effects.
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Figure 1: Linear oscillator coupled to a nonlinear vibration absorber

The paper is organized as follows. In section 2, a general model encompassing both linear and
nonlinear absorber is presented. In section 3, a tuning procedure for the linear absorber in the
case of an uncertain primary system is presented. In section 4, the theoretical treatment of the
system coupled with the NES is presented. In section 5, a tuning procedure for the NES in both the
deterministic and uncertain case is discussed. In section 6, the performance of the linear absorber
and the NES for vibration mitigation are compared. Finally, conclusions are drawn.

2 Description of the model

A schematic of the studied system is depicted in Fig. 1. mj , kj , cj and xj (j = 1, 2) are the mass,
stiffness, damping and absolute displacement of the primary system and the absorber, respectively.
F denotes the forcing amplitude and knl2 the nonlinear stiffness of the absorber. The equations of
motion of the corresponding system are

m1ẍ1 + c1ẋ1 + k1x1 + c2(ẋ1 − ẋ2) + k2(x1 − x2) + knl2(x1 − x2)3 = F cos Ωt
m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) + knl2(x2 − x1)3 = 0

(1)

where the dots represent the differentiation with respect to the time t and Ω is the pulsation of
harmonic excitation. In order to take into account an uncertainty of the primary system, the linear
stiffness is expressed as k1 = k10 + k11, where k10 is the nominal stiffness and k11 (|k11| < k10) a
random variable.

The configuration of the primary system coupled either to the LTVA or the NES is obtained by
setting knl2 or k2 to zero in Eq. (1), respectively. Introducing non-dimensional time t̃ = ω1t, the
equations of motion are recast into

x′′1 + 2ξ1x
′
1 + (1 + δ)x1 + ελ(x′1 − x′2) + ερ2(x1 − x2) + εK(x1 − x2)3 = G cos Ω̃t̃

x′′2 + λ(x′1 − x′2) + ρ2(x1 − x2) +K(x1 − x2)3 = 0
(2)

here, primes denote differentiation with respect to the non-dimensional time t̃ and

ε =
m2

m1
, ω1i =

√
k1i
m1
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c1
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m2ω2
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3 Linear tuned vibration absorber

In this section the linear primary system coupled to a linear tuned vibration absorber (LTVA) is
analyzed. The equation of motion of the primary system coupled to a LTVA is simply obtained by
letting K = 0 in Eq. (2).

3.1 Deterministic primary system

First, we deal with the case of deterministic primary system, thus imposing δ = 0 in Eq. (2). Den
Hartog showed that the FRF of the primary mass has two invariant fixed points which are independent
of the absorber damping λ [2]. He proposed to adjust the stiffness of the absorber so that these two
invariant points have equal heights in the FRF. The damping of the absorber is then determined so
that the FRF presents an horizontal tangent through one of the fixed points. An approximate value
of the optimal damping is obtained by taking an average value that leads to the horizontal tangent
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Figure 2: FRF of the primary system coupled to the LTVA for different value of λ.

to both fixed points. This method is the so-called equal-peak method. Quite surprisingly, it is only
recently that an exact closed-form formula for this classical problem has been found by Asami and
Nishihara [1]

ρopt =
2

1 + ε

√
2
[
16 + 23ε+ 9ε2 + 2 (2 + ε)

√
4 + 3ε

]
3 (64 + 80ε+ 27ε2)

λopt =
ρopt

2

√
8 + 9ε− 4

√
4 + 3ε

1 + ε

(3)

3.2 Uncertain primary system

In this section, the tuning of the LTVA for the case of an uncertain primary system is addressed.
The problem is formulated as follows

[ρopt, λopt] = arg

[
min
ρ,λ

(
max
δ∈Iδ
|H|∞(ρ, λ, δ, ε, ξ1)

)]
(4)

By solving numerically problem (4), we observed that the solution is such that

|H|∞(ρopt, λopt, δmin) = |H|∞(ρopt, λopt, δmax) (5)

Therefore, in the uncertain case, the optimal tuning of the absorber is obtained when the FRF of the
system at the uncertainty bounds has equal peaks. Based on this observation, we express an analytic
tuning rule for the LTVA in the uncertain case. Neglecting the damping of the primary system to
simplify the calculation (i.e. ξ1 = 0), the normalized steady state amplitude of the primary mass is
given by

H2 =

∣∣∣∣X1

G

∣∣∣∣2 =
Ω2λ2 +

(
Ω2 − ρ2

)2
Ω2λ2 (Ω2 (1 + ε)− δ − 1)2 + (Ω4 − Ω2 (ρ2 (1 + ε) + δ + 1) + ρ2 (δ + 1))2

(6)

Using the optimal values for the tuning of the LTVA in the nominal case given in Eq. (3), Fig. 3.2
shows the FRF of the primary system for different values of λ. Black and gray lines correspond to
δ = ∓0.15, respectively. Solid lines correspond to λ = λopt from Eq. (3) and dash-dotted and dashed
lines correspond to λ = λopt ± 50%. Pj , Qj (j = 1, 2) indicates the invariant fixed points. Using the
classical equal-peaks methodology, the FRF of the primary system (6) is rewritten as follows

H2 =
Aλ2 +B

Cλ2 +D
(7)

where A,B,C,D are simply identified from Eq. (6). The above expression is independent of damping
if A/C = B/D. Substituting the expressions of A,B,C,D into this relation and solving for Ω gives
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Figure 3: Comparison of the FRF of the LTVA for the nominal tuning and robust tuning for ε = 0.05,
δ = ±0.15

ΩPj,Qj =

√√√√ρ2 (1 + ε) + δj + 1∓
√
ρ4 (1 + ε)2 − 2ρ2 (1 + δj) + (1 + δj)

2

ε+ 2
, j = 1, 2 (8)

where the subscript j = 1, 2 refer to the lower and upper bound of δ, respectively. Equation (8)
defines the abscissa of the invariant fixed points.

The ordinates of points Pj and Qj can be found by letting λ→∞ in Eq. (7)

H(ΩPj,Qj) =
1

Ω2
Pj,Qj (1 + ε)− 1− δj

(9)

The optimum value of ρ is obtained by requiring H(ΩP1) = H(ΩQ2). Substituting Eq. (8) into Eq. (9)
and solving for ρ yields a complicated expression. This expression can be greatly simplified when
considering symmetric bound, i.e. |δ1| = |δ2|. In this case, the optimal value of ρ is expressed by

ρopt =

√
1− |δ1|

√
|δ1|2 (1 + ε)2 + ε (ε+ 2)

(1 + ε)
√

1 + |δ1|2
(10)

Following Den Hartog approach, we impose an horizontal tangent successively at points P1 and
Q2. Differentiating Eq. (7) with respect to Ω gives

dH2

dΩ
= α1λ

4 + α2λ
2 + α3 = 0 (11)

where

α1 = −2Ω4 (ε+ 1)
(
Ω2 (ε+ 1)− δ − 1

)
α2 = −4Ω2ρ4 (ε+ 1)

(
Ω2 (ε+ 1)− δ − 1

)
+ 2Ω4ρ2

(
2Ω2 (ε2 + 3ε+ 2

)
− (3ε+ 4) (1 + δ)

)
−Ω6 (Ω2 (ε2 + 2ε+ 4

)
− 4 (1 + δ)

)
α3 = −2

(
Ω2 − ρ2

) (
Ω4 + ρ4 (ε+ 1)− 2Ω2ρ2

) (
Ω4 − Ω2

(
ρ2 (ε+ 1) + δ + 1

)
+ ρ2 (1 + δ)

)
Substituting Ω = ΩP1 from Eq. (8) and (10) into (11) and solving for λ2 a first value λ1 is

obtained. Repeating the same operation for Ω = ΩQ2, the value λ2 is obtained. The optimum value
of damping parameter is taken as the average value (λ1 + λ2)/2. The comparison between the FRF
of the uncertain primary system in the case of deterministic tuning and uncertain tuning is depicted
in Fig. 3.2. Black and gray lines are referred to robust and nominal tuning, respectively. Continuous
lines correspond to δ = 0 whereas dash-dotted and dashed lines correspond to δ = ∓0.15. The
parameters of the linear absorber are λ = 0.25, ρ = 0.95 in the case of nominal tuning and λ = 0.31,
ρ = 0.92 in the case of robust tuning. Therefore, to increase the bandwidth of the LTVA, the stiffness
of the absorber is reduced and the damping is increased compared to the nominal case.



4 Theoretical analysis of the nonlinear energy sink

In this section, the behavior of the primary system coupled to the NES (i.e. ρ = 0 in Eq. (2))
is analyzed using the mixed multiple scale/harmonic balance method [10]. First a new coordinate
r = x1 − x2 representing the relative displacement of the NES is introduced in Eq. (2).

x′′1 + 2ξ1x
′
1 + (1 + δ)x1 + ελr′ + εKr3 = G cos Ω̃t̃

r′′ − x′′1 + λr′ +Kr3 = 0
(12)

Considering small mass ratio ε � 1, according to the multiple scale method, independent time
scales t0 = t̃, t1 = εt̃ are introduced and the variables are expanded in series

x1(t̃; ε) = x10(t0, t1) + εx11(t0, t1) + . . .
r(t̃; ε) = r0(t0, t1) + εr1(t0, t1) + . . .

(13)

The variable are rescaled so that ξ1 = εξ1, G = εG. Substituting the previous scaling, Eq. (13)
into Eq. (12) and equating coefficients of like power of ε to zero yields to the following set of equations

O(ε0) : d20x10 + x10(1 + δ) = 0
d20r − d20x10 + λd0r0 +Kr30

(14)

O(ε1) : d20x11 + x11(1 + δ) = −2d0d1x10 − 2ξ1d0x10 − λd0r0 −Kr30 +G cos Ω̃t0 (15)

where dij = ∂i/∂tij . Note that only the first equation at O(ε1) is given since it is the only one to be
used.

4.1 Order ε0

The solution of the first equation of (14) is given by

x10 = A(t1)eiωt0 + [c.c], ω =
√

1 + δ (16)

where [c.c] denotes the complex conjugate of the preceding terms. The second equation of (14) is now
investigated. As mentioned in [10], this equation does admit solution neither in terms of standard
trigonometric function nor in term of Jacobi function. Therefore, we seek a solution using the method
of harmonic balance. Since 1 : 1 resonance between the primary system and the NES is expected, it
reads

r0 = B(t1)eiωt0 + [c.c] (17)

here, only a single harmonic expansion is used. The effect of higher harmonics has been discussed in
[9]. Substituting Eq. (16,17) into the second equation of (14) and balancing terms of the fundamental
harmonic gives

A = B

(
1− iλ

ω
− 3K|B|2

ω2

)
(18)

Equation (18) defines the slow invariant manifold (SIM) of the problem [4]. Substituting polar form
A = aeiα, B = beiβ , a real valued expression is obtained as

a2 =
b2

ω2

[
λ2 +

(
3Kb2 − ω2

)2
ω2

]
(19)

It can be shown that the slow invariant manifold can admit extrema. Vanishing the derivative of the
right hand side of Eq. (19) with respect to b and solving for b gives

Zj =
ω

9K

(
2ω ∓

√
ω2 − 3λ2

)
, j = 1, 2, Zj = b2j (20)

The corresponding amplitude of the primary system is obtained when substituting Eq. (20) into
Eq. (19) and is given by

a2i =
2

81Kω

[
ω
(
9λ2 + ω2)± (ω2 − 3λ2) 3

2

]
(21)

Therefore, if λ < λc = ω/
√

3, the SIM admit extrema and is composed of two stable and one unstable
branches. It is well known that systems with NES can perform relaxation cycles. In the framework
of NES, such a response is often denoted strongly modulated response (SMR). When the system
exhibits SMR, the maximum amplitude of the relaxation cycle, when ε→ 0 is given by Eq. (21).



4.2 Order ε1

In order to analyze SMR regimes, Eq. (15) is considered. The proximity of the forcing frequency and
the natural frequency of the primary system is emphasized by defining Ω̃ = ω + εσ. Substituting
Eq. (16,17) into Eq. (15) and eliminating secular terms yields

2id1Aω + 2iξ1Aω + iλBω − 3KB|B|2 +
G

2
eiσt1 = 0 (22)

We are interested in the behavior of the system on the stable branches of the SIM. Substituting
Eq. (18) into (22) gives

−2id1

(
ωB − iλB − 3K

ω
B|B|2

)
− (2iξ1ω − iλ (1− ω))B +

(
1− 2iξ1

ω

)
3KB|B|2 = 0 (23)

Expressing B in polar form and splitting into real and imaginary parts yields

d1b =
f1(b, ψ)

g(b)
, d1ψ =

f2(b, ψ)

g(b)
(24)

where ψ = t1σ − β and

f1(b, ψ) = 36K2ξ1b
5 − 24Kω2ξ1b

3 + 3GKωb sinψ + 2ω2 (2λ2ξ1 + λω2 + 2ω2ξ1
)
b

−Gω2 (ω sinψ + λ cosψ)

f2(b, ψ) =
1

b

[
−54K2 (ω + 2σ) b5 + 6Kω (4λξ1 + ω + 8σ) b3 + 9GKωb2 cosψ

−2ω2 (λ2ω + 2λ2σ + 2ω2σ
)
b+Gω2 (λ sinψ − ω cosψ)

]
g(b) = −4

(
27K2b4 − 12Kb2ω2 + λ2ω2 + ω4

)
(25)

According to [16], Eq. (24) admits two types of fixed points. The first type is referred as ordinary
fixed points and is computed by solving for f1 = f2 = 0 and g 6= 0. The types of fixed points are
referred as folded singularities and are found for f1 = f2 = g = 0.

The ordinary fixed points are obtained by solving f1 = f2 = 0 for cosψ, sinψ and using trigono-
metric identity. A third order polynomial in Z = b2 is then obtained. The folded singularities are
generated by setting f1 = g = 0 or equivalently f2 = g = 0, giving

ψij = − arctan

(
3Kb2i − ω2

λω

)
± arccos

[
2bi
(
2Kξ1b

2
i

(
9Kb2i − 6ω2

)
+ 2λ2ω2ξ1 + λω4 + 2ω4ξ1

)
Gω
√

3Kb2i (3Kb
2
i − 2ω2) + λ2ω2 + ω4

]
(26)

From Eq. (26), a condition on the forcing amplitude is obtained as follows

Gifs ≥
2bi
(
2Kξ1b

2
i

(
9Kb2i − 6ω2

)
+ 2λ2ω2ξ1 + λω4 + 2ω4ξ1

)
ω
√

3Kb2i (3Kb
2
i − 2ω2) + λ2ω2 + ω4

(27)

here, the subscript fs stands for folded singularities.

4.3 Detached resonance curve

An important feature that can affect the performance of the NES is the possible presence of detached
resonance curves (DRC). This can be analyzed by locating the boundary of the saddle-node bifur-
cation in Eq. (24). Introducing perturbations around the fixed points and linearizing with respect
to the perturbation, the so-called variational equation is obtained. By imposing the roots of the
characteristic polynomial to be zero, an equation for Z is obtained as

27K2 (ω2 + 4ωσ + 4σ2 + 4ξ21
)
Z2 − 24Kω2 (ωσ + 2σ2 + 2ξ21

)
Z

+ω2 (λ2ω2 + 4λ2ωσ + 4λ2σ2 + 4λ2ξ21 + 4λω2ξ1 + 4ω2σ2 + 4ω2ξ21
)

= 0 (28)

Solving for Z and substituting into the fixed points equation, an expression for Gsn is obtained. An
exemple of boundary of saddle node bifurcation in the space of parameters (σ,G) is displayed in
Fig. 4.3. Continuous lines correspond to the boundary of the saddle-node bifurcations. The creation
or merging of detached resonance curves is computed for ∂Gsn/∂σ = 0 and it is represented by the
dotted lines. The lower one corresponds to the appearance of a DRC, while the upper one corresponds
to the merging of the DRC with the principal resonance curve.
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Figure 5: Sizing zones for the primary system coupled to the NES.

5 Tuning of the NES

In this section, the theoretical developments are used to define a tuning rule for the NES. Both the
deterministic and the uncertain case are addressed.

5.1 Deterministic primary system

First, the case δ = 0 is analyzed. The theoretical analysis allows us to determine critical forcing
amplitudes G that will determine different response characteristics. Since in our case, the forcing
amplitude is considered fixed, the tuning procedure consists in finding appropriate value of (λ,K)
for the NES. Critical forcing amplitude can be converted into critical nonlinear stiffness by using the
forcing-nonlinearity equivalence principle [18] which states that if the ratio G2/K = cst, the behavior
of the system, compared to the supplied energy, remains unchanged. By doing so, the sizing chart
depicted in Fig. 5.1 is obtained.

Continuous and dash-doted lines represent the boundary of folded-singularities and DRC, respec-
tively. Vertical dashed line represents the maximum value of damping for which the SIM admits
extrema (i.e. the maximum value of the damping for which the system may perform relaxation cy-
cles). In order to highlight the influence of the different boundaries on the response of the primary
system, the frequency response curve corresponding to each zones is presented in Fig. 5.1.

In zone I, the couple (λ,K) is below the boundary of folded singularities and DRC. In this case,
the system behaves quasi-linearly, so that this zone is not interesting from a vibration mitigation
point of view. In zone II, the system can exhibit SMR without detached resonance curve. The
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Figure 6: FRF of the primary system coupled to the NES for the different sizing zones.
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Figure 7: Maximum amplitude of the linear oscillator inside zone II.

amplitude of the oscillations is halved compared to the case in zone I and SMR takes place on the
unstable part of the frequency response curve denoted by dotted lines. In zone III, high amplitude
DRC is present, so that this zone must be avoided. In zone IV, the parameters of the NES are above
the boundary of folded singularities but under the boundary of DRC so that fixed points on the right
stable branch of the SIM exist. This can be seen on Fig. 5.1 where stable fixed points exist on the
upper part of the frequency response curve. The zone V is located inside the boundary of DRC and
above the boundary of folded singularities. Therefore the frequency response curve presents both a
DRC and fixed points on the right stable branch of the SIM. Finally, in zone VI, the parameters of
the NES are higher than the second boundary of DRC, yielding to the merging of the DRC with the
main branch of the frequency response curve.

From the above observation, the parameters of the NES have to be chosen in zone II or IV. This
choice can be further restricted to zone II by making the following observations. In zone IV, we do not
have any a priori information about the amplitude of the fixed points lying on the right stable branch
of the SIM. In addition, in zone II, in the absence DRC and fixed points on the right stable branch
of the SIM, the maximum amplitude of the oscillation (when ε→ 0) is determined by the maximum
of the SIM in Eq. (21). As a conclusion, although potentially conservative, zone II is regarded as the
optimal tuning region.

Optimal values of the parameters of the NES have now to be chosen inside zone II. As mentioned
in the previous paragraph, the maximum amplitude of the primary system is determined by looking
at the maximum of the SIM. The superposition of the amplitude of the extremums on zone II is
depicted in Fig. 5.1. It is observed that the optimal value of the parameters of the NES is located at
the intersection of the upper boundary of folded singularities and the boundary of creation of DRC.

5.2 Uncertain primary system

The case where the stiffness of the primary system is uncertain is now analyzed. This uncertainty
is represented by parameter δ in Eq. (2). The sizing curves in the space of parameters (λ,K) for
δ ∈ [−0.15,+0.15] are depicted in Fig. 5.2. Continuous lines correspond to the nominal case (δ = 0),
dash-dotted and dashed lines correspond to δ = −0.15 and δ = +0.15, respectively.

We note that the upper part of zone II for δ = −0.15 is included in the zone II for δ = 0.15.
Therefore, passive control through SMR exists for the whole range of detuning. So that the system
can perform SMR as long as the zone II for δ = δmin is contained in the zone II corresponding to
δ = δmax, which occurs for |δ| ≈ 0.3. The tuning rule may be summarized as follows. The optimum
parameters of the NES (λopt,Kopt) are found at the intersection of the folded singularities and DRC.
If the natural frequency of the primary system is uncertain, the tuning of the NES is determined by
the lower bound of the uncertainty, i.e. δ = δmin.

6 Performance comparison of the NES and LTVA

In this section, the performance of the NES and LTVA from a vibration mitigation point of view
are compared. The deterministic case is first addressed, then the case of uncertain primary system
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Figure 9: Comparison of the frequency response curve of the LTVA and the NES for a deterministic
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is considered. For both cases, a damping factor ξ1 = 0.5% is considered. Also, a single forcing
amplitude G = 10−4 is considered whereas the frequency detuning parameter is assumed to vary in
the range δ = ∓0.15.

6.1 Deterministic primary system

As shown in Fig. 5.1, given a forcing amplitude, the optimum stiffness and damping of the NES are
found at the intersection between the boundary of creation of DRC and the folded singularities. For
ε = 5%, this gives λ ≈ 0.51, K ≈ 3.03 × 105. For the LTVA, the optimum parameters are given in
Eq. (3). Note that these equations are valid in the case of an undamped primary system. However,
for lightly damped primary system, the performance of the LTVA is not really affected since almost
equal peaks is observed, as depicted in Fig. 6.1. Both the displacements of the primary system and
the absorber are illustrated. Gray correspond to the system coupled to the LTVA. Black solid and
dotted lines correspond to stable and unstable periodic solution of the system coupled to the NES.
Black dots correspond to the results of time step integration of the equation of motion (2).
It is clear from Fig. 6.1 that in the case of deterministic, linear primary system, the LTVA is far more
efficient than the NES for vibration mitigation.
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Figure 10: Comparison of the frequency response curve of the robust NES vs robust LTVA.

Deterministic Uncertain
ε NES LTVA NES LTVA

5% 1.06× 10−3 0.61× 10−3 1.32× 10−3 0.94× 10−3

1% 3.37× 10−3 1.23× 10−3 4.42× 10−3 2.72× 10−3

Table 1: |H|∞ of the primary system coupled to the LTVA/NES for ε = 5% and ε = 1% in the deter-
ministic and uncertain case.

6.2 Uncertain primary system

The frequency response curves of the uncertain primary system coupled to the optimal NES or LTVA
are depicted in Fig. 6.2. Black and gray lines refer to the primary system coupled to the NES and
LTVA, respectively. Even if SMR is expected over the range of detuning δ = ∓15%, the LTVA
performs better than the NES since the maximum is reduced of about 20% compared to the NES.

The results for ε = 5% and ε = 1% are summarized in Table 6.2. It is observed that for a smaller
mass ratio (i.e. ε = 1%) the difference between the LTVA and the NES is even larger.

7 Conclusion

The paper proposed an objective comparison between a NES with cubic stiffness nonlinearity and a
linear absorber for vibration mitigation of a linear host system. A design procedure for the NES, which
minimizes the maximum amplitude of the linear oscillator while preventing the presence of detached
resonance curves has been presented. Surprisingly, the proposed design procedure yields highly
damped NES which is contrary to conventional wisdom. A novel tuning procedure for the LTVA,
when the natural frequency of the primary system contains uncertainty has also been presented.

For both deterministic and uncertain primary system, the LTVA outperforms the NES. The only
way to achieve a better performance of the NES is to allow the presence of DRC, however, this is a
risky solution since the system may be attracted to high amplitude solution under some perturbations.
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[12] J Náprstek and C Fischer. Auto-parametric semi-trivial and post-critical response of a spherical
pendulum damper. Computers & Structures, 87(19):1204–1215, 2009.

[13] M Parseh, M Dardel, and MH Ghasemi. Performance comparison of nonlinear energy sink and
linear tuned mass damper in steady-state dynamics of a linear beam. Nonlinear Dynamics, pages
1–22, 2015.

[14] Y Starosvetsky and OV Gendelman. Attractors of harmonically forced linear oscillator with
attached nonlinear energy sink. ii: Optimization of a nonlinear vibration absorber. Nonlinear
Dynamics, 51(1-2):47–57, 2008.

[15] Y Starosvetsky and OV Gendelman. Dynamics of a strongly nonlinear vibration absorber cou-
pled to a harmonically excited two-degree-of-freedom system. Journal of Sound and Vibration,
312(1):234–256, 2008.

[16] Y Starosvetsky and OV Gendelman. Strongly modulated response in forced 2dof oscilla-
tory system with essential mass and potential asymmetry. Physica D: Nonlinear Phenomena,
237(13):1719–1733, 2008.

[17] AF Vakakis and O Gendelman. Energy pumping in nonlinear mechanical oscillators: part iires-
onance capture. Journal of Applied Mechanics, 68(1):42–48, 2001.

[18] B Vaurigaud, AT Savadkoohi, and C-H Lamarque. Targeted energy transfer with parallel nonlin-
ear energy sinks. part i: Design theory and numerical results. Nonlinear dynamics, 66(4):763–780,
2011.

[19] J Warminski and K Kecik. Instabilities in the main parametric resonance area of a mechanical
system with a pendulum. Journal of Sound and Vibration, 322(3):612–628, 2009.


