
Vol.:(0123456789)1 3

Künstl Intell (2018) 32:61–75
DOI 10.1007/s13218-017-0516-6

TECHNICAL CONTRIBUTION

Fuzzy-Logic Controlled Genetic Algorithm for the Rail-Freight
Crew-Scheduling Problem

E. Khmeleva1 · A. A. Hopgood2,3 · L. Tipi1 · M. Shahidan1

Received: 7 March 2017 / Accepted: 13 October 2017 / Published online: 27 October 2017
© The Author(s) 2017. This article is an open access publication

Keywords Fuzzy logic · Genetic algorithm · Hybrid ·
Crew scheduling · Rail freight

1 Introduction

While international trade continues to expand, businesses
are striving to increase reliability and reduce their environ-
mental impact. As a result, demand for rail freight increases
every year and rail-freight carriers attempt to maximize their
efficiency. The crew cost constitutes 20–25% of the total
rail-freight operating cost and is second only to the cost of
fuel. Therefore, even a small improvement in the scheduling
processes can save a company millions of dollars a year.

Daily crew planning starts after the train schedule has
been finalized. It consists of two phases: crew scheduling
and crew rostering. Crew scheduling involves grouping a
sequence of train trips into shifts. Crew rostering, on the
other hand, concerns assignment of drivers to each shift.

Within the industry, the driver’s schedule is called a dia-
gram. Each diagram contains instructions for the driver of
what he or she should do on a particular day. Each diagram
must start and end at the same station and obey all labour
laws and trade union agreements. These rules regulate the
maximum diagram duration, maximum continuous and
aggregate driving time in a diagram, and minimum break
time. As diagrams lasting more than 1 day are rare in the
UK, the assumption of this research is that the maximum
duration is 24 h. In addition, the terms trip and journey will
be used interchangeably.

All drivers are located in depots where they start and fin-
ish their work. Depots are distributed fairly evenly across the
UK. Sometimes in order to connect two trips that finish and
start at different locations, a driver has to travel on a passen-
ger train, taxi or a freight train driven by another driver. The

Abstract This article presents a fuzzy-logic controlled
genetic algorithm designed for the solution of the crew-
scheduling problem in the rail-freight industry. This problem
refers to the assignment of train drivers to a number of train
trips in accordance with complex industrial and governmen-
tal regulations. In practice, it is a challenging task due to the
massive quantity of train trips, large geographical span and
significant number of restrictions. While genetic algorithms
are capable of handling large data sets, they are prone to
stalled evolution and premature convergence on a local opti-
mum, thereby obstructing further search. In order to tackle
these problems, the proposed genetic algorithm contains an
embedded fuzzy-logic controller that adjusts the mutation
and crossover probabilities in accordance with the genetic
algorithm’s performance. The computational results dem-
onstrate a 10% reduction in the cost of the schedule gener-
ated by this hybrid technique when compared with a genetic
algorithm with fixed crossover and mutation rates.

 * A. A. Hopgood
 adrian.hopgood@port.ac.uk

 E. Khmeleva
 e.khmeleva@shu.ac.uk

 L. Tipi
 l.tipi@shu.ac.uk

 M. Shahidan
 m.shahidan@shu.ac.uk

1 Sheffield Business School, Sheffield Hallam University,
Howard Street, Sheffield S1 1WB, UK

2 Faculty of Technology, University of Portsmouth, Portland
Building, Portland Street, Portsmouth PO1 3AH, UK

3 HEC Liege - Management School, University of Liege,
4000 Liege, Belgium

http://orcid.org/0000-0002-7183-5799
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-017-0516-6&domain=pdf

62 Künstl Intell (2018) 32:61–75

1 3

situation of a driver travelling as a passenger while on duty
is called deadheading. The cost of deadheading varies and
depends on the means of transportation and business agree-
ments between operating companies. Despite the potential
cost, deadheading is sometimes inevitable and it can benefit
the overall schedule [1].

Due to the employment contract terms, the drivers are
paid the same hourly rate for any time spent on duty regard-
less of the number of hours they have actually been driving
the train. Moreover, in accordance with collectively bar-
gained contracts, each driver has a fixed number of working
hours per year, so the company is obliged to pay for all the
stated hours in full even if some of the hours are not utilized.
Paid additional overtime hours can be worked at the driver’s
discretion. Thus, it is in the best interests of the company
to use the agreed driving hours in the most efficient and
economical way.

Taking all of this into consideration, the operational
objectives for the diagrams are:

1. Minimize a number of unused and excess contract hours
at the end of the year. To achieve this objective, it is
preferable for each diagram to be of approximately the
same average length of time, which is the annual con-
tract hours divided by the number of the working days.

2. Maximize the throttle time, Tthrottle, i.e. the proportion
of the work shift that is actually spent driving a train.
It excludes time for deadheading and waiting between
trips.

2 Approaches to crew scheduling

The crew-scheduling problem (CSP) is usually solved in
two stages. At the first stage, all possible diagrams satisfy-
ing the industrial constraints are enumerated. At the sec-
ond stage, only the set of diagrams that covers the entire
schedule in the most cost-effective way is identified. Dia-
grams are usually modelled as binary vectors (Table 1)
where ‘1’ denotes that the trip i is included in the dia-
gram j, otherwise ‘0’ is inserted. Each diagram has its own
cost. The deadhead journeys are displayed by including
the same trip in more than one diagram. In the rest of

|Tdiagram − T| → min

Tdiagram = Tdriving + Tdeadheading + Tbreak + Tidle

T =
Tcontract

Ndays

Tthrottle =
Tdriving

Tdiagram

the article the terms diagram and column will be used
interchangeably.

Although the generation of the diagrams can be per-
formed in a simple and relatively straightforward manner
using various graph search and label-setting techniques
[2], finding an optimal set of diagrams may be highly time-
consuming. The problem boils down to the solution of
the 0–1 integer combinatorial optimization set covering
problem (SCP):

where aij is a decision variable indicating whether a trip i is
included in the diagram j; xj shows if the diagram is included
in the schedule; cj is the cost of the diagram.

The complete enumeration of all possible diagrams is
likely to be impractical due to the large geographical scope
of operations, the number of train services, and industry
regulations. Typically, the number of generated diagrams
reaches 300,000–400,000 for small problems and can be
up to 50–75 million for the large ones [3, 4].

Country-wide planning creates a large number of oppor-
tunities for drivers to change freight trains, while passen-
ger trains and taxi services connecting a large number of
stations exponentially expand the graph topology. Further-
more, checks such as maximum driving time, minimum
breaks and maximum diagram length need to be conducted
while traversing the graph. These checks ensure compli-
ance with industrial regulations, but substantially increase
the computation time at the diagram creation stage.

Minimize

m∑

j=1

cjxj

Subject to ∶

n∑

i=1

aijxj ≥ 1

xj ∈ {0, 1}

i = 1, 2… n trips

j = 1, 2…m diagrams

Table 1 Diagrams

Diagram 1 Diagram 2 Diagram 3 Diagram 4

Trip1 1 0 0 1
Trip2 0 1 1 0
Trip3 0 1 0 1
Trip4 0 1 0 1
Trip5 1 1 0 0

63Künstl Intell (2018) 32:61–75

1 3

2.1 Branch-and-price

Linear programming methods such as branch-and-price [5,
6] have been popular for the solution of medium-sized CSPs
in the passenger train and airline industries [7]. These meth-
ods usually rely on a column-generation approach, where the
main principle is to generate diagrams in the course of the
algorithm, rather than having them all constructed a priori.
Despite the ability of the algorithm to work with an incom-
plete set of columns, the column generation method alone
does not guarantee an integer solution of the SCP. It is usu-
ally used in conjunction with various branching techniques
that are able to find the nearest integer optimal solution.
However, this approach is less suitable for the CSP in rail
freight, where the possible number of diagrams tends to be
considerably higher.

2.2 Genetic algorithms

Linear programming (LP) has been used for CSPs since the
1960s [8], but genetic algorithms (GAs) were introduced
more recently [9]. GAs have been applied either for the pro-
duction of additional columns as a part of column generation
[8] or for the solution of an SCP from the set of columns
generated prior to the application of a GA [9–12], but there
are not yet any reports of them solving both stages of the
problem. Since the diagrams are generated outside the GA
in advance, the GA cannot change or add new columns. The
GA is therefore confined to finding only good combinations
from a pre-determined pool of columns.

For the solution of a CSP with a GA, chromosomes are
normally represented by integer or binary vectors. Integer
vector chromosomes contain only the numbers of the dia-
grams that constitute the schedule. This approach requires
knowledge of the minimum number of diagrams in the
schedule and this information is usually obtained from
the cost lower bounds. Lower bounds are usually acquired
through the solution of LP relaxation for an SCP [13]. Since
the number of diagrams in the optimal solution tends to be
higher than the lower bound, Costa et al. [14] have sug-
gested the following approach. In the first population, the
chromosomes have a length equal to the lower bound. Then,
if a solution has not been found within a certain number of
iterations, the length of the chromosome increases by one.
This process repeats until the termination criteria are met.

In the binary vector representation, each gene stands
for one diagram. The figure ‘1’ denotes that the diagram is
included in the schedule, otherwise it is ‘0’. Although the
detailed information about times and locations is stored sep-
arately and only applied when a chromosome is decoded into
the schedule, such chromosomes usually consist of several
hundred thousand genes. The number of diagrams can be

unknown and the algorithm is likely to need a large number
of iterations in order to solve the problem.

The application of genetic operators often violates the fea-
sibility of the chromosomes, resulting in certain trips being
highly over-covered (i.e. more than one driver assigned to
the train) or under-covered (i.e. no drivers assigned to the
train). One way of resolving this difficulty is to penalize
the chromosome through the fitness function in accordance
with the number of constraints that have been violated.
However, the development of the penalty parameters can be
problematic as in some cases it is impossible to verify them
analytically and they are usually designed experimentally
[15]. The penalty parameters are therefore data-dependent
and likely to be inapplicable to other industries and compa-
nies. Moreover, the feasibility of the entire population is not
guaranteed and might be achieved only after a large number
of iterations.

Another more straightforward approach to maintain-
ing the feasibility is to design heuristic “repair” operators.
These operators are based on the principles “REMOVE”
and “INSERT”. They scan the schedule and remove certain
drivers from the over-covered trips and assign those drivers
to under-covered journeys [13, 15]. This procedure might
have to be repeated several times, leading to high memory
consumption and increased computation time.

2.3 Adaptable genetic algorithm

Two of the common challenges associated with design
of GAs are stalled evolution and premature convergence.
Multiple genetic operators, random offspring generation,
and dynamic parameter adjustment are among the meth-
ods for tackling these problems [16, 17]. The challenges in
the design of an efficient GA with multiple operators are:
identification of the optimal quantity of genetic operators,
selection of those operators that would complement each
other’s strengths, and definition of utilization rules. Creation
of offspring at random, rather than through the crossover
operator, can be inefficient for a large-scale problem due to
the large number of potential gene permutations, lowering
the probability of producing more fit and diverse offspring.

Genetic parameters such as crossover rate and mutation
rate govern the exploration and exploitation phases. Poor
selection can lead to premature convergence due to reduced
diversity in the population over several iterations [18]. While
the mutation operator is usually responsible for the mainte-
nance of diversity, an extremely high level of mutation at
the beginning can impede convergence on the solution. On
the other hand, a very low level of mutation at the beginning
might lead to poor exploration of the search region and the
algorithm might not be able to arrive at the optimal solution.

To achieve a balance, several adaptive techniques that
dynamically adjust the mutation and crossover rates have

64 Künstl Intell (2018) 32:61–75

1 3

been proposed. One approach modifies the values of GA
parameters proportionally to the distance between the best
and average fitness in the population [19]. Designing an
evolutionary algorithm for the crew scheduling problem,
Kwan et al. [20] suggest selecting the mutation probability
individually for each chromosome rather than for the entire
population. The longer the individual has been in the popu-
lation, the higher its probability of undergoing mutation.
Both approaches rely on pre-defined crisp rules. However,
the criteria for optimal selection of crossover and mutation
are ambiguous and hard to model. Crisp rules cannot always
adequately deal with the intricacies of the parameter adjust-
ment process. For this reason, fuzzy-logic controllers, which
are able to handle uncertainty and imprecision, have been
applied in this research.

Wang et al. [21] were amongst the first researchers to pro-
pose the incorporation of fuzzy logic controllers within GAs
in order to optimize the GA parameters. The configuration
of a standard fuzzy-logic controller (FLC) is illustrated in
Fig. 1. At each iteration of the GA, the information about its
current performance is passed onto the FLC. The FLC then
processes it and produces a recommendation for how the
GA parameters should be altered in order to achieve more
optimal execution. There are four critical components that
support the FLC: a rule-base, a fuzzification unit, an infer-
ence engine, and a defuzzification unit.

The rule-base contains expert knowledge, expressed in
the form of IF-THEN rules, which determine the relation-
ship between the input and output. When applied to GA
parameter management, the typical principle is to increase
the mutation rate and decrease the crossover rate when the
algorithm is converging [22–26].

Following the rules stored in the rule-base, the fuzzifi-
cation unit estimates the degree to which the parameters
belong to fuzzy sets. In the context of GA parameter control,
fuzzy sets represent the crossover and mutation rates. The
membership functions of the fuzzy sets are defined by lin-
guistic variables (i.e. Low, Medium, and High).

The role of the inference engine is to identify the required
level of changes to the GA parameters at a given itera-
tion. The decision is made on the basis of the information
received from the rule-base and fuzzification units. Finally,
the defuzzification element returns scalar values of crossover
and mutation rates.

While the architecture of the FLC remains the same
across different fields of research and applications, the
input parameters vary significantly. The input parameters
can be broken down to two types: phenotype-based and
genotype-based parameters. The first group deals with
changes in the fitness function, whereas the genotype-
based group concerns the structure of chromosomes.

As an example of phenotype measurements, Herrera
and Lozano [22] utilize the convergence measure (CM),
defined as the ratio between the best fitness on the cur-
rent iteration and the best fitness on the previous iteration.
In another experiment, they enhance this ratio with the
number of generations of unchanged best fitness and the
variance of the fitness, in order to amend both mutation
and crossover rates. Hongbo et al. [25] use the average fit-
ness value in relation to the best fitness in the population
and changes of the average and best fitness over several
iterations to solve the crew grouping problem in military
operations. This approach was adopted later for the detec-
tion of high-resolution satellite images [23] and for opti-
mal wind-turbine micrositing [26]. Homayouni and Tang
[27] propose the use of indicators such as the best value
of the fitness function, the frequency of the chromosomes
with the similar best value, and the percentage of the same
chromosomes in the population. In contrast, another FLC
[28] relies on the changes in the value of the best fitness
and population diversity.

Along with phenotype attributes, some authors con-
sider genotype properties [24, 29]. They assess the Ham-
ming distance between the chromosomes with the best
fitness and the worst fitness in relation to the length of
the chromosome. This approach promotes diversity, not
only in the fitness functions, but also in the structure of
the individuals.

3 GA-generated crew schedules

This section presents the use of a genetic algorithm to gener-
ate crew schedules in the context of UK freight-train logis-
tics. It starts with an explanation of the input data types
and chromosome encoding procedure. Then the designed
crossover and mutation operators are presented.

Fig. 1 Fuzzy-logic controller GA statistics:

• Best fitness function
• Fitness diversity in population
• Chromosome diversity
• Number of iterations with

unchanged fitness
• Crossover rate
• Mutation rate

Rule-base

Inference engine

Fuzzification Defuzzification

Adjusted GA
parameters:

• Crossover rate
• Mutation rate

65Künstl Intell (2018) 32:61–75

1 3

3.1 Initial data

The process starts with a user uploading the freight train and
driver data (Fig. 2). Each train has the following attributes:
place of origin, destination, departure time, arrival time,
type of train, and route code. The last two attributes indicate
the knowledge that a driver must have in order to operate a
particular train. The system also stores information about
the drivers, i.e. where each driver is located and his or her
traction and route knowledge. In the boxes marked ‘traction

knowledge’ and ‘route knowledge’, each row represents a
driver and each column denotes either a route or traction
code. The binary digits indicate whether a particular driver
is capable of driving a certain train or knows a certain route.
The program also captures all the passenger trains and dis-
tance between cities, which is needed to calculate any taxi
costs (Fig. 3).

After all the necessary data have been uploaded, the GA
is applied to construct an efficient schedule. The proposed
algorithm overcomes the aforementioned challenges through

Fig. 2 Freight trains and driv-
ers

Fig. 3 Passenger trains and
taxis

66 Künstl Intell (2018) 32:61–75

1 3

a novel alternative chromosome representation and special
decoding procedure. It allows the feasibility of chromosomes
to be preserved at each iteration without the application of
repair operators. As a result, the computational burden is
considerably reduced.

3.2 Chromosome representation

The chromosome is represented by a series of integers,
where each integer stands for the number of the trip (Fig. 4).
The population of chromosomes is generated at random and
then the trips are allocated in series to the diagrams using a
specific decoding procedure, which is discussed below and
summarized in Table 2.

Starting from the leftmost gene, the procedure finds a
driver with the necessary route and traction knowledge to
operate that trip and creates a new diagram for him or her.
Then the procedure checks if the same driver is able to drive
on the next journey (i.e. the second gene). If it is possible,
then that trip is added to his or her diagram. If the origin sta-
tion for the current trip differs from the destination station of
the previous trip, the algorithm first searches for passenger
trains and the freight company’s own trains that can deliver
a driver within the available time slot to the next job loca-
tion, e.g. Diagram 1, between trips 3 and 8 (Fig. 4). If no
such trains have been found, but there is a sufficient interval
between the trips, then the algorithm inserts a taxi journey.

The information regarding driving times and the current
duration of the diagrams is stored. Before adding a new trip,
the algorithm inserts breaks if necessary. If the time expires
and there are no trains to the home depot that a driver can
drive, the deadheading activity completes the diagram, as in
Diagram 2 (Fig. 4). If a trip cannot be placed in any of the
existing diagrams, the procedure takes another driver from a
database and creates a new diagram for him or her.

On rare occasions, a few diagrams might be left with
only a few trips and a duration that is less than the minimum
(as shown in lines 38–52 in the pseudocode). This is due
to the fact that other drivers are either busy at this time or
located at different stations. In order to tackle this problem,
a mechanism has been added for finding and assigning a

driver from a remote depot with the lowest workload. This
approach not only solved the problem of the short diagrams,
but also helped in distributing the workload more equally
across the depots. After the implementation of this pro-
cedure, the algorithm has been tested on various data sets
including real and randomly generated data. None of the
chromosomes has been reported to violate the constraint.

The given representation has a visual resemblance to
the flight-graph representation suggested by Ozdemir and
Mohan [30], but the decoding procedures are different. The
flight-graph representation generates trips based on a depth-
first graph search, whereas in the proposed GA they are
produced at random. Random generation is beneficial since
it does not exclude situations where a driver can travel to
another part of the country to start working in order to have
even workload distribution across the depots, while depth-
first search usually places only geographically adjusted trips
together.

The advantage of the proposed chromosome representa-
tion is that it creates both the crew schedule and the crew
roster for a single day within the same algorithm, thereby
giving the GA greater control over the solution. It also does
not require the generation of a large number of diagrams at
the beginning. In addition, this representation does not leave
under-covered trips and ensures that no unnecessary over-
covering happens. This is because chromosome scanning
and trip allocation continue until all the trips are placed into
diagrams, even if a new diagram is created for a single trip.
Over-covering only occurs when a deadhead is required and
does not occur otherwise. It is possible that at the beginning
of the algorithm this chromosome representation might pro-
duce schedules with a high number of deadheads. However,
due to the specific fitness function and genetic operators, the
number of chromosomes containing deadheads decreases
rapidly with evolution.

3.3 Cost function

The objective function, i.e. the function to be opti-
mized, is represented as the cost of the schedule. The
cost (to be minimized) is the opposite of the fitness (to

Fig. 4 Chromosome represen-
tation and decoding procedure

67Künstl Intell (2018) 32:61–75

1 3

Table 2 Pseudocode: decoding
procedure

68 Künstl Intell (2018) 32:61–75

1 3

be maximized). The direct cost consists of the drivers’
working hours and expenses for additional transportation.
In order to penalize those solutions with unequal workload
distribution or where the diagram length deviates from the
target value, the second part of the cost function repre-
sents potential losses associated with these two additional
criteria:

Cost =

N∑

i=1

(
Tdiagrami

× CHourlyRate +Cdeadheadingi

+|Tdiagrami
− T̄diagram | × CHourlyRate

)

+

√
1

m

(
Tdepotm − T̄depot

)
× CHourlyRate

Table 2 (continued)

69Künstl Intell (2018) 32:61–75

1 3

where i is the number of trips, m is the number of depots,
and the average diagram duration is assumed to be 8.5 h

3.4 Selection

Preference was given to binary tournament selection due to
the smaller bias towards fittest individuals, lower selection
pressure, non-reliance on population sorting and ranking
procedures, and execution time and memory efficiency [31].
It is also a popular selection strategy that is used in numer-
ous GAs for CSP [9, 30]. Binary tournament selection can be
described as follows. Two individuals are selected at random
from the population and the fittest among them constitutes
the first parent. The same process repeats for the selection
of the second parent.

3.5 Crossover and mutation

Since one- or two-point crossover might produce invalid off-
spring by removing some trips or copying the same journey
several times, a crossover mechanism has been designed to
utilize domain-specific information without interfering with
the number of the trips. The process is illustrated in Fig. 5.
Firstly, the process detects genes responsible for diagrams
with a high throttle time in the first parent. As the throttle
time shows the proportion of productive work time in the
diagram, the higher the throttle time, the fewer deadhead
trips and unnecessary breaks between the trips are included
in the diagram. The trips constituting diagrams with a higher
throttle time are shown in darker shades in Fig. 5. Typically,
these diagrams consist of a large number of trips. However,
in some cases, they can comprise just a few trips of long
duration. In both scenarios, the throttle time would be high.

Once diagrams with high throttle times have been iden-
tified, these genes are copied to the first child and the rest
of the genes are added from the second parent. The same
procedure is then used to form the second child. By pre-
serving the good parts of the chromosome accumulated
through evolution, the implemented crossover was able to
provide a schedule with a high throttle time much faster than

traditional crossover that randomly mixes the parents’ genes
to form their offspring.

In order to maintain diversity in the population, randomly
selected genes are mutated with 40% probability. The muta-
tion is performed by swapping two randomly identified
genes. The mutation probability was determined through
numerous tests and empirical observations.

4 Fuzzy-logic controller

Unlike the algorithm devised by Ozdemir and Mohan [30],
the proposed algorithm manipulates both the crossover and
mutation rates. Both adjustments are required for the attain-
ment of an optimal balance between the exploration and
exploitation phases. The aim was to maintain a substantial
level of diversity, while at the same time attempting to avoid
random walking [24]. The technique is a modification of the
algorithms proposed by [25, 32] and is presented in more
detail below.

The population statistics are computed after each iteration
using the following formulas:

where CF is the increase in the objective function from
the previous iteration, VF is the variance of the fitness in
the population, and UF is the number of iterations without
improvement in the fitness function. These parameters are
sent to the FLC for processing. Three linguistic variables
{Low, Medium, High} are employed. The corresponding
membership functions for fuzzification of CF, VF and UF
are illustrated in Fig. 6a–c. The output is the level of adjust-
ment of the mutation and crossover rates (∆pm and ∆pc,
respectively). Figure 6d shows some possible alterations in
mutation and crossover rates. While the expert knowledge
and fuzzy rules were derived from published work [31], the
membership parameters were obtained experimentally. The
general principle for these rules is to increase the muta-
tion rate when the fitness function remains unchanged in
order to facilitate exploration. Conversely, the crossover
rate is increased as necessary to facilitate exploitation, i.e.
to encourage algorithm to converge faster. The fuzzy rules
that have been applied are presented in Table 3 and can be
expressed textually as follows:

CF =

(
Costbest(t−1)

Costbest
− 1

)
× 100%

VF =
Cost(t) − Costbest(t)

Costbest(t)

Parent 1
1 3 6 4 7 2 5
Parent 2
7 2 4 3 5 1 6
Child 1
6 4 7 2 3 5 1
Child 2
2 4 5 1 3 6 7

Fig. 5 Crossover. Trips enabling higher throttle time are shown in
darker shades

70 Künstl Intell (2018) 32:61–75

1 3

If CF is high and UF is low, then pm becomes low and pc
becomes high
If CF is medium and UF is low, then pm becomes low and
pc becomes high
If CF is low and UF is high, then pm becomes high and
pc becomes low
If CF is low and UF is medium, then pm and pc become
medium
If CF is low and UF is low, then pm becomes low and pc
becomes high
If UF is low and VF is low, then pm becomes high and pc
becomes medium
If UF is low and VF is medium, then pm and pc become
medium

After processing these parameters and performing cen-
troid defuzzification, the FLC updates the mutation and
crossover rates that are applied in the next generation.

5 Experimental results

A standard genetic algorithm (SGA) has been tested on a full
daily data set obtained from one of the largest rail-freight
operators in the UK. These real-world data comprised
2000 freight-train legs, 500 cities, 39 depots, 1240 driv-
ers, 500,000 passenger-train links, and taxi trips connecting
any of the stations at any time. Figures 7 and 8 illustrate a
3-h run of the algorithm. The SGA reduced the cost of the
schedule while achieving the two operational objectives of
maximized throttle time and minimized deviation from the
average shift duration. Increasing the throttle time indicates
a reduction in deadheads and unnecessary waiting, thereby
reducing the number of drivers required to operate the given
trains. The decrease in deviation of the diagram duration
from the average can be translated into equal utilization of
the contract hours during the year.

In our previous work [33], the efficiency of the stand-
ard genetic algorithm (SGA) customized for the CSP
(known as GACSP) was compared against two established
approaches. The first was branch-and-price (B&P), i.e. the

Fig. 6 a Membership functions for CF. b Membership functions for
VF. c Membership functions for UF. d Membership functions for
∆pm and ∆pc

Table 3 FLC rules

Input variables to fuzzy rules Controlled parameters

CF UF VF p
m

p
c

High Low High Low High
High Low Medium Low High
High Low Low Low High
Medium Low High Low High
Medium Low Medium Low High
Medium Low Low Low High
Low High High High Low
Low High Medium High Low
Low High Low High Low
Low Medium High Medium Medium
Low Medium Medium Medium Medium
Low Medium Low Medium Medium
Low Low High Low High
Low Low Medium Low High
Low Low Low Low High
High Low Low High Medium
Medium Low Low High Medium
Low Low Low High Medium
High Low Medium Medium Medium
Medium Low Medium Medium Medium
Low Low Medium Medium Medium

71Künstl Intell (2018) 32:61–75

1 3

combination of column generation and branch and bound
methods [6]. The second comparator was Genetic Algo-
rithm Process Optimization (GAPO), a genetic algorithm
for CSP enhanced with repair and perturbation operators
[9]. A reduced data set of six cities, 180 train legs, and 500
passenger-train links was used, as the B&P method failed to
converge with the full data set. For the GAs, the population
size was 20, crossover rate 90%, and mutation probability
40%. The tests showed that the SGA produces an accept-
able solution within a shorter timeframe than either of the
alternatives (Table 4).

In order to evaluate the contribution of the fuzzy-logic
controller, we experimentally compared a fuzzy genetic
algorithm (FGA) against the SGA. They were both imple-
mented in C++ Builder and run on a computer with 4 GB
RAM and a 3.4 GHz Dual Core processor. For both SGA and
FGA, the population consisted of 100 individuals. Through-
out the SGA execution, the crossover and mutation rates
were fixed at 90% and 40% respectively. These same rates
were used as initial values for the first iteration of the FGA.

Figure 9a illustrates the reduction of the cost defined
in Sect. 3.3 as each algorithm progresses through each of
2000 iterations. Figure 9b shows the changes in mutation
and crossover probabilities in the FGA.

Although the FGA started from a worse solution than that
of the SGA, the cost descended faster and it successfully

outperformed the SGA. The crossover rate initially increased
while the mutation rate decreased, allowing better exploita-
tion of the beneficial aspects of the existing solutions. From
that point onwards, the crossover rate fell while the mutation
rate grew, thereby balancing population diversity and explo-
ration of the search space with exploitation of the optimal
region.

In order to validate the comparison, additional experi-
ments were carried out on ten test instances. The artificially
generated data imitated the real data sets. Each instance was
tested 20 times. In order to provide fair comparison and to
give an equal chance to all data sets to complete both stages
of exploitation and exploration, the number of iterations was
allocated in accordance with their sizes. The structure of
the ten randomly created data sets and the summary of the
results for each data set are displayed in Table 5. Figure 10
demonstrates the difference between the average results
obtained through a standard GA and the GA enhanced by
the fuzzy-logic parameter controller.

The FGA yields better results than the SGA in terms of
the average and minimum cost. While the FGA outperforms
the SGA in all instances regardless of the size of the prob-
lem, the best results were achieved on instance 7, where
the FGA outperformed the SGA by more than 10%. From
a financial perspective, this improvement can be translated
into a substantial cost saving of £105,801.

Fig. 7 Maximizing average
throttle time

Fig. 8 Minimizing deviation
from the average shift length
of 8.5 h

72 Künstl Intell (2018) 32:61–75

1 3

In terms of the standard deviation of the results, the
FGA was found to be less stable than the SGA. This can be
explained by the fact that the fuzzy-logic controller forced
the algorithm to explore a broader search space, and the
FGA did not converge to the same degree as the SGA within
the same number of iterations. It also can be noticed that
the level of standard deviation increases with the size of the

problem, which can be related to a larger number of pos-
sible permutations of the trips and hence higher population
diversity.

Finally, Table 6 displays a user-friendly example of the
solution, i.e. one of the diagrams produced. It shows the
sequence of trips and breaks that a driver needs to take on
a particular day.

As such complex and large-scale scheduling operations
are currently performed manually, automation of these oper-
ations can result in substantial operational benefits. These
include enhancement of the schedule quality, reduction in
the cost of generating the schedule, and faster schedule
creation. Schedule cost savings can be invested in business
development. Saved time can be spent on dealing with last-
minute customer requests, and the staff can be allocated to
less routine and more value-added business activities.

6 Potential implementation and integration issues

The most common implementation problems with software
for scheduling transit systems concern robustness [34], i.e.
the ability of the schedule to remain valid despite distur-
bances such as delays and cancellations. An example of
such disturbances might be the delay of the previous train,
resulting in the driver being unable to catch the planned

Table 4 Comparison of experimental results using a reduced data set

Computation time
(mins)

B&P GAPO GACSP

60 120 228 60 120 228 60 120 228

Number of diagrams − − 22 32 28 26 25 23 23
Throttle time (%) − − 63 50 56 59 60 62 62
Average Number of

deadheads per shift
− − 1.36 2.21 1.85 1.60 1.66 1.47 1.47

Deviation from the
average (mins)

− − 46 51 48 47 62 57 57

(a)

(b)

225000

230000

235000

240000

245000

250000

255000

0 250 500 750 1000 1250 1500 1750

C
os

t o
f t

he
 sc

he
du

le

Iteration

FGA and SGA performance

FGA SGA

0
10
20
30
40
50
60
70
80
90

100

0 250 500 750 1000 1250 1500 1750

Pr
ob

ab
ili

ty
, %

Iteration

Crossover and Mutation probabilities

Muta�on Crossover

Fig. 9 a The performance of SGA and FGA. b Adaptation of pm and
pc

99
,1

02

2,
25

,3
00

3,
49

,0
69

4,
78

,0
59

6,
35

,1
92 9,

11
,6

75

10
,2

8,
72

7

11
,0

2,
81

7

11
,7

0,
04

2

13
,2

7,
04

4

94
15

2

21
41

17

31
45

36

45
04

71

58
87

85 85
77

98

92
30

26

10
08

93
8

10
83

67
2

12
39

14
44.99% 4.96%

9.89%

5.77%

7.31%
5.91%

10.27%
8.51%

7.38%
6.62%

0%

2%

4%

6%

8%

10%

12%

0

2,00,000

4,00,000

6,00,000

8,00,000

10,00,000

12,00,000

14,00,000

1 2 3 4 5 6 7 8 9 10

D
iff

er
en

ce
 b

et
w

ee
n

SG
A

 a
nd

 F
G

A

C
os

t o
f t

he
 sc

he
du

le

Average SGA and FGA results

SGA FGA Difference, %

Fig. 10 The difference in SGA and FGA average results

73Künstl Intell (2018) 32:61–75

1 3

train. In our system, the transfer time regulates how much
time is allocated for a driver to leave the previous train
and start working on the next one. The larger the interval
between trips, the lower the risk that the next freight train
will be delayed by the late arrival of the previous one. On
the other hand, a large transfer time decreases the throttle
time and requires more drivers to cover the trips. The best
way to tackle this situation is to have an effective re-sched-
uling mechanism that makes changes in as few diagrams as
possible.

In addition, the crew scheduling process is extremely
complex. It is not always possible to model all the rules,
nuances and exceptions of the schedule. For this reason, the
system-generated diagrams have to be revised and amended
by an experienced human planner until all the knowledge
has been fully acquired.

Finally, although GAs are able to find an acceptable
solution relatively quickly, their susceptibility to premature
convergence around a sub-optimal solution has inspired the
current investigation into a fuzzy controller for parameter
adjustment. Convergence can be controlled either by embed-
ding variations in the selection procedure or by changing the
mutation and crossover rates.

7 Conclusions

In this paper, the complexities of the CSP in the rail-freight
industry in the UK have been described. Due to a high mon-
etary cost of train crews, the profitability and success of a
freight company might rely heavily on the quality of the
constructed crew schedule. Given the wide geographical
spread, numerous regulations, and severely constrained plan-
ning time, an effective automated crew scheduling system
can increase staff productivity and equip a company with
valuable decision-making support.

In order to solve the CSP problem, we have proposed a
novel FGA. The permutation chromosome representation
and genetic operators are able to preserve the validity of
the chromosomes. This design enables the user to retrieve a
feasible schedule at any iteration. It also eliminates the need
for additional repair operators or penalty functions, thereby
saving memory resources.

Unlike other GAs for CSP, the FGA has the ability to
amend its mutation and crossover probabilities so as to
reduce the risk of being trapped in a local optimum. While
the parameters for the fuzzy membership functions would
ideally be adjusted for a specific data set, the suggested

Table 5 Comparative results of SGA and FGA

A cost function is used, so the lower the result the better the performance of the algorithm

Depots Trips Iterations Standard GA Fuzzy GA

Min Avr Std Dev Min Avr Std Dev

1 2 50 5281 99,063 99,102 38 94,104 94,152 47
2 3 123 8791 225,019 225,300 269 213,818 214,117 291
3 5 196 11,401 348,159 349,069 883 313,572 314,536 927
4 7 269 16,033 477,144 478,059 875 449,388 450,471 1033
5 9 342 18,215 633,389 635,192 1756 586,888 588,785 1798
6 13 488 25,056 909,782 911,675 1848 855,522 857,798 2150
7 11 415 22,794 1,025,868 1,028,727 2773 920,068 923,026 2839
8 15 561 30,949 1,099,869 1,102,817 2835 1,005,723 1,008,938 3136
9 17 634 45,500 1,166,330 1,170,042 3570 1,079,760 1,083,672 3813
10 19 707 55,735 1,322,024 1,327,044 4743 1,234,070 1,239,144 4832

Table 6 A typical diagram, i.e.
driver schedule

Driver Start time End time Activity Origin Destination

113 12:18 12:28 Book on Westbury Westbury
113 12:28 13:35 Driving Westbury Swindon
113 13:47 15:07 Driving Swindon Wootton Wawen
113 15:07 15:49 Break Wootton Wawen Wootton Wawen
113 15:59 17:29 Driving Wootton Wawen Swindon
113 17:37 21:00 Passenger Train Swindon Westbury
113 21:00 21:10 Book off Westbury Westbury
Diagram length: 8:52 Throttle time: 46%

74 Künstl Intell (2018) 32:61–75

1 3

parameters proved their applicability to a wide range of data
sets from 50 to 707 trips.

In future work, it would be interesting to study the suita-
bility of the FGA with the proposed parameters on other data
instances and other permutation problems. As the crossover
and mutation operators have a strong impact on the chromo-
some formation and the algorithm’s behavior, it would be
informative to investigate whether their dynamic change in
the course of the algorithm might improve the algorithm’s
performance.

Acknowledgements This research has been supported by Sheffield
Business School at Sheffield Hallam University. The authors would like
to thank DB-Schenker Rail (UK) for the provision of data and informa-
tion about real-world crew-scheduling operations.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

References

 1. Barnhart C, Hatay L, Johnson EL (1995) Deadhead selection
for the long-haul crew pairing problem. Oper Res. doi:10.1287/
opre.43.3.491

 2. Drexl M, Prescott-Gagnon E (2010) Labelling algorithms
for the elementary shortest path problem with resource con-
straints considering EU drivers’ rules. Log Res. doi:10.1007/
s12159-010-0022-9

 3. Kwan RSK (2004) Bus and train driver scheduling. Handbook of
scheduling: algorithms, models, and performance analysis. Chap-
man and Hall/CRC, Boca Raton

 4. Klabjan D, Johnson EL, Nemhauser GL, Gelman E, Ramaswamy
S (2001) Solving large airline crew scheduling problems: random
pairing generation and strong branching. Comput Optim Appl. doi
:10.1023/A:1011223523191

 5. Duck V, Wesselmann F, Suhl L (2011) Implementing a branch
and price and cut method for the airline crew pairing optimization
problem. Pub Transp. doi:10.1007/s12469-011-0038-9

 6. Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP,
Vance PH (1998) Branch-and-price: Column generation for solv-
ing huge integer programs. Oper Res. doi:10.1287/opre.46.3.316

 7. Derigs U, Malcherek D, Schafer S (2010) Supporting strategic
crew management at passenger railway—model, method and sys-
tem. Pub Trans. doi:10.1007/s12469-010-0034-5

 8. dos Santos AG, Mateus GR (2009) General hybrid column genera-
tion algorithm for crew scheduling problems using genetic algo-
rithm. Evol Comp. doi:10.1109/CEC.2009.4983159

 9. Zeren B, Özkol I (2012) An improved genetic algorithm for
crew pairing optimization. J Intell Learn Syst Appl 4:70–80.
doi:10.4236/jilsa.2012.41007

 10. Souai N, Teghem J (2009) Genetic algorithm based approach for
the integrated airline crew-pairing and rostering problem. Eur J
Oper Res. doi:10.1016/j.ejor.2007.10.065

 11. Park T, Ryu K (2006) Crew pairing optimization by a genetic
algorithm with unexpressed genes. J Intell Manuf. doi:10.1007/
s10845-005-0011-z

 12. Kornilakis H, Stamatopoulos P (2002) Crew pairing optimi-
zation with genetic algorithms. Methods Appl Artif Intell.
doi:10.1007/3-540-46014-4_11

 13. Kwan RSK, Wren A, Kwan ASK (2000) Hybrid genetic algo-
rithms for scheduling bus and train drivers. Evol Comput.
doi:10.1109/CEC.2000.870308

 14. Costa L, Santo IE, Oliveira P (2014) An adaptive constraint han-
dling technique for evolutionary algorithms. Optimization. doi:1
0.1080/02331934.2011.590486

 15. Chu PC, Beasley JE (1998) Constraint handling in genetic algo-
rithms: The set partitioning problem. J Heuristics. doi:10.1080/0
2331934.2011.590486

 16. Rocha M, Neves J (1999) Preventing premature convergence to
local optima in genetic algorithms via random offspring genera-
tion. In: Imam I, Kodratoff Y, El-Dessouki A, Ali M (eds) Mul-
tiple approaches to intelligent systems, IEA/AIE 1999. Lecture
notes in computer science, vol 1611. Springer, Berlin, Heidelberg.
doi:10.1007/978-3-540-48765-4_16

 17. Herrera F, Lozano M (1996) Adaptation of genetic algorithm
parameters based on fuzzy logic controllers. Genetic Algorithms
and Soft Computing. Physica-Verlag, Heidelberg, Germany, pp.
95–125

 18. Varnamkhasti MJ, Lee LS, Bakar MRA, Leong WJ (2012) A
genetic algorithm with fuzzy crossover operator and probability.
Adv Oper Res. doi:10.1155/2012/956498

 19. Srinivas M, Patnaik LM (1994) Adaptive probabilities of
crossover and mutation in genetic algorithms. Syst Man Cyber.
doi:10.1109/21.286385

 20. Kwan RSK, Kwan ASK, Wren A (2001) Evolution-
ary driver scheduling with relief chains. Evolut Comput.
doi:10.1162/10636560152642869

 21. Wang PY, Wang GS, Song YH (1996) Fuzzy logic controlled
genetic algorithms. In: Proceedings of the fifth IEEE international
conference on fuzzy systems. doi:10.1109/FUZZY.1996.552310

 22. Herrera F, Lozano M (2003) Fuzzy adaptive genetic algo-
rithms: design, taxonomy, and future directions. Soft Comput.
doi:10.1007/s00500-002-0238-y

 23. Sumer E, Turker M (2013) An adaptive fuzzy-genetic algo-
rithm approach for building detection using high-resolution
satellite images. Comput Environ Urban Syst. doi:10.1016/j.
compenvurbsys.2013.01.004

 24. McClintock S, Lunney T, Hashim A (1997) A fuzzy logic con-
trolled genetic algorithm environment. In: IEEE international
conference on systems, man, and cybernetics. Computational
cybernetics and simulation. doi:10.1109/ICSMC.1997.635189

 25. Hongbo L, Zhanguo X, Abraham A (2005) Hybrid fuzzy-genetic
algorithm approach for crew grouping. In: Proceedings of the 5th
international conference on intelligent systems design and applica-
tions, ISDA ’05. doi:10.1109/ISDA.2005.51

 26. Yang J, Zhang R, Sun Q, Zhang H (2015) Optimal wind turbines
micrositing in onshore wind farms using fuzzy genetic algorithm.
Math Probl Eng. doi:10.1155/2015/324203

 27. Homayouni S, And Tang S (2015) A fuzzy genetic algorithm for
scheduling of handling/storage equipment in automated container
terminals. Int J Eng Technol. doi:10.7763/IJET.2015.V7.844

 28. Lau HCW, Nakandala D, Zhao L (2015) Development of a
hybrid fuzzy genetic algorithm model for solving transportation
scheduling problem. J Inf Syst Technol Manag. doi:10.4301/
S1807-17752015000300001

 29. Zhu KQ, Liu Z (2004) Population diversity in permutation-based
genetic algorithm. In: Boulicaut JF, Esposito F, Giannotti F,
Pedreschi D (eds) Machine learning: ECML 2004. Lecture notes
in computer science, vol 3201. Springer, Berlin, Heidelberg.
doi:10.1007/978-3-540-30115-8_49

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1287/opre.43.3.491
https://doi.org/10.1287/opre.43.3.491
https://doi.org/10.1007/s12159-010-0022-9
https://doi.org/10.1007/s12159-010-0022-9
https://doi.org/10.1023/A:1011223523191
https://doi.org/10.1007/s12469-011-0038-9
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1007/s12469-010-0034-5
https://doi.org/10.1109/CEC.2009.4983159
https://doi.org/10.4236/jilsa.2012.41007
https://doi.org/10.1016/j.ejor.2007.10.065
https://doi.org/10.1007/s10845-005-0011-z
https://doi.org/10.1007/s10845-005-0011-z
https://doi.org/10.1007/3-540-46014-4_11
https://doi.org/10.1109/CEC.2000.870308
https://doi.org/10.1080/02331934.2011.590486
https://doi.org/10.1080/02331934.2011.590486
https://doi.org/10.1080/02331934.2011.590486
https://doi.org/10.1080/02331934.2011.590486
https://doi.org/10.1007/978-3-540-48765-4_16
https://doi.org/10.1155/2012/956498
https://doi.org/10.1109/21.286385
https://doi.org/10.1162/10636560152642869
https://doi.org/10.1109/FUZZY.1996.552310
https://doi.org/10.1007/s00500-002-0238-y
https://doi.org/10.1016/j.compenvurbsys.2013.01.004
https://doi.org/10.1016/j.compenvurbsys.2013.01.004
https://doi.org/10.1109/ICSMC.1997.635189
https://doi.org/10.1109/ISDA.2005.51
https://doi.org/10.1155/2015/324203
https://doi.org/10.7763/IJET.2015.V7.844
https://doi.org/10.4301/S1807-17752015000300001
https://doi.org/10.4301/S1807-17752015000300001
https://doi.org/10.1007/978-3-540-30115-8_49

75Künstl Intell (2018) 32:61–75

1 3

 30. Ozdemir HT, Mohan CK (2001) Flight graph based genetic
algorithm for crew scheduling in airlines. Inf Sci. doi:10.1016/
S0020-0255(01)00083-4

 31. Razali NM, Geraghty J (2011) Genetic Algorithm Perfor-
mance with Different Selection Strategies in Solving TSP,
World Congress on Engineering, vol II WCE 2011, ISBN:
978-988-19251-4-5

 32. Yuhui S, Eberhart R, Yaobin C (1997) Implementation
of evolutionary fuzzy systems. IEEE Trans Fuzzy Syst.
doi:10.1109/91.755393

 33. Khmeleva E, Hopgood AA, Tipi L, Shahidan M (2014) Rail-
freight crew scheduling with a genetic algorithm. In: Bramer M,
Petridis M (eds) Research and development in intelligent systems
XXXI. Springer, Cham. doi:10.1007/978-3-319-12069-0_16

 34. Gopalakrishnan B, Johnson EL (2005) Airline crew scheduling:
state-of-the-art. Ann Oper Res. doi:10.1007/s10479-005-3975-3

https://doi.org/10.1016/S0020-0255(01)00083-4
https://doi.org/10.1016/S0020-0255(01)00083-4
https://doi.org/10.1109/91.755393
https://doi.org/10.1007/978-3-319-12069-0_16
https://doi.org/10.1007/s10479-005-3975-3

	Fuzzy-Logic Controlled Genetic Algorithm for the Rail-Freight Crew-Scheduling Problem
	Abstract
	1 Introduction
	2 Approaches to crew scheduling
	2.1 Branch-and-price
	2.2 Genetic algorithms
	2.3 Adaptable genetic algorithm

	3 GA-generated crew schedules
	3.1 Initial data
	3.2 Chromosome representation
	3.3 Cost function
	3.4 Selection
	3.5 Crossover and mutation

	4 Fuzzy-logic controller
	5 Experimental results
	6 Potential implementation and integration issues
	7 Conclusions
	Acknowledgements
	References

