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Željko L. Jelić
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Preface

Superconductivity is an electronic state of matter arising from the existence of a
common wave function with a coherent phase extending on a truly macroscopic
scale. One major manifestation of this striking quantum phenomenon is the dissi-
pationless transport of electrical current, an asset deserving particular attention in
the present times where the efficient energy distribution has become of utmost im-
portance. Unfortunately, the motion of quantum units of magnetic flux (so-called
vortices or fluxons), which is an unavoidable side-effect found in superconductors
in the presence of transport currents and magnetic fields, severely limits the con-
ditions to preserve dissipationless transport. This poses a challenge for achieving
the functionalization of superconducting materials and threatens their spectrum of
applications.

It is widely known that any inhomogeneities (either material imperfections,
or ones made artificially), which locally suppress superconductivity on the scale
comparable to the core of the vortex, can pin the vortex and delay the onset of the
vortex motion to higher applied currents. In recent years a substantial effort has
been made to minimize the effects of current-induced vortex motion by tailoring
arrays of artificial pinning centers. Besides improving the critical parameters of
the superconducting state, a pinning matrix can be used for the manipulation of
vortex matter, thus directly affecting the vortex dynamics, such as rectification of
vortex motion under an ac drive (vortex diode) by introducing asymmetric pin-
ning landscapes. In the literature one can find that the realization of the anchoring
of the vortices can be based on nanostructured arrays of perforations, chemically
grown defects, permanent nanomagnets, or even pinning sites produced by heavy
ion bombardment. All of those realizations are based on a permanent imprint on
the superconductor, without any possibility for subsequent modifications in the
distribution and strength of the pinning.

The principal objective of this thesis is to investigate the dynamical behavior of
vortex matter under an entirely new kind of pinning landscape consisting of spatial
and temporal modulation of the superconducting condensate. A particular case of
spatial modulation is considered in a constricted structure where current lensing
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Preface

can cause extremely high vortex velocities. Subsequently, a time-dependent ther-
mal potential introduced to the superconducting condensate will cause stroboscopic
resonances during the vortex motion - a phenomenon that cannot be observed in
the systems with static pinning imprints. Finally, a study of electronic gating is
presented, where the local properties of superconductor, such as mean free path,
or electronic band structure in general, can be influenced electronically. This is a
completely unexplored interdisciplinary research topic, which will eventually al-
low one to manipulate individual vortices in superconducting materials by means
of spatially confined and temporally controlled thermal and electromagnetic exci-
tations. Furthermore, such techniques can provide one fundamental insight in dif-
ferent states of the vortex matter with respect to variation of the transport current,
highly relevant for understanding the resistive state of superconducting materials
and their applications.

The thesis is organized as follows:

Chapter 1 presents a brief overview of the key historic events related to super-
conductivity, known classes of superconducting materials, and their applications
in electronics. Further, different theoretical frameworks are presented, starting
from phenomenological models of brothers London and Ginzburg and Landau,
up to more sophisticated microscopic approaches, namely the Usadel theory and
Bardeen-Cooper-Schrieffer model.

In Chapter 2 the generalized time-dependent Ginzburg-Landau (gTDGL) the-
ory, used throughout this thesis is described in detail. The central equations for
order parameter and supercurrent are derived, where characteristic quantities, such
as coherence length, penetration depth, critical current and inelastic scattering pa-
rameter are explained. An extension of this model with the equation of thermal bal-
ance is introduced. The second part of this Chapter discusses the extended gTDGL
model in the presence of time-dependent thermal potentials and when parameters
of the model are spatially inhomogeneous.

In Chapter 3 the known behavior of the vortex matter in the presence of ex-
ternal magnetic field and electric current is reviewed through several direct exam-
ples, calculated using gTDGL formalism. In addition, different experimental se-
tups used to manipulate the vortex behavior through external means are presented,
where particular attention is given to design of a pinning landscape and individual
vortex manipulation by a nearby magnetic or tunneling tip, or a laser beam.

In Chapter 4 the dynamics of vortex matter under current lensing due to ge-
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ometrical constriction is discussed. Vortex velocities of several tens of km/s are
obtained, exceeding the pair-breaking speed limit of the Cooper-pair condensate.
Coexistence of different vortex phases at high velocities are thoroughly addressed,
and possible control of those phases by pinning landscapes is discussed.

In Chapter 5 the influence of time-dependent pinning landscapes on the vor-
tex dynamics is studied. Temporal commensurability in the form of stroboscopic
resonances is found whenever the frequency of the characteristic dynamics of the
condensate is matched by the frequency of the dynamic pinning landscape. These
resonances persist in a broad parameter range (magnetic field, current, tempera-
ture, material parameters, etc.) and leave a clear signature in the measured voltage,
which can be used for practical applications, including measurements of the vortex
velocity.

Chapter 6 presents the study of vortex matter in mesoscopic superconductors
under the influence of electronic gating. An extremely thin (quasi two dimensional)
Pb island, exposed to an external magnetic field, was measured at INSP Paris with
scanning tunneling microscope (STM) in spectroscopy regime, followed by a the-
oretical analysis of the experiment presented here. It was found that via the STM-
induced electronic gating, the electronic band structure of an extremely thin island
can be locally affected and thus its superconducting properties can be dramatically
improved or suppressed as the STM tip is moved over the sample. The observed
and calculated changes in the vortex matter provide a ‘smoking gun’ evidence for
this gating effect.

Chapter 7 summarizes the work presented in this thesis, and offers an outlook
to further possible studies.

Finally, the Appendix provides a brief overview of numerical methods used
for simulations throughout this thesis.

3



4



Préface

La supraconductivité est un état électronique de la matière découlant de l‘existence
d’une fonction d’onde commune dotée d’une phase cohérente s’étendant à l’échelle
macroscopique. Une manifestation majeure de ce phénomène quantique saisissant
est le transport sans dissipation du courant électrique, un atout méritant une at-
tention toute particulière à une époque où la distribution efficace de l’énergie est
une préoccupation majeure. Malheureusement, le mouvement des quanta de flux
magnétique (appelés vortex ou fluxons), un effet secondaire indésirable présent
dans les supraconducteurs traversés par des courants et soumis à des champs mag-
nétiques, met sérieusement en péril le transport sans dissipation. Ceci menace le
spectre d’applications des matériaux supraconducteurs et constitue un challenge à
relever pour quiconque désire les fonctionnaliser.

Il est bien connu que n’importe quelle inhomogénéité (des imperfections du
matériau aussi bien naturelles qu’artificielles) supprimant localement la supracon-
ductivité sur une échelle comparable à celle de la taille d’un cœur de vortex, est ca-
pable d’ancrer ledit vortex et retarder sa mise en mouvement jusqu’à des courants
plus élevés. Récemment, un effort substantiel a été réalisé pour minimiser les ef-
fets du mouvement des vortex induit par un courant en confectionnant des réseaux
de centres d’ancrage artificiels. En plus d’améliorer les paramètres critiques de
l’état supraconducteur, une matrice d’ancrage peut être utilisée pour manipuler des
vortex et donc affecter directement leur dynamique, pour induire des effets tels que
la rectification de leur mouvement sous courant alternatif (diode vortex), grâce à
un réseau d’ancrage asymétrique. Dans la littérature, on peut trouver des exem-
ples d’ancrage de vortex basés sur des réseaux de perforations nanostructurées, des
défauts développés chimiquement, des nano-aimants permanents ou encore créés
par bombardement avec des ions lourds. Toutes ces techniques laissent une em-
preinte permanente sur le matériau supraconducteur, sans aucune possibilité de
modifier ultérieurement la distribution ou la force de l’ancrage.

L’objectif principal de cette thèse est d’investiguer le comportement dynamique
des vortex soumis à un type d’ancrage entièrement novateur consistant à moduler
à la fois temporellement et spatialement le condensat supraconducteur. Un cas
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particulier de la modulation spatiale est considéré dans une structure dont les di-
mensions se réduisent brutalement au centre et où la concentration du courant est
telle qu’elle peut entraner les vortex à des vitesses extrêmement élevées. Par la
suite, un potentiel thermique dépendant du temps appliqué au condensat supracon-
ducteur cause une résonance stroboscopique pendant le déplacement des vortex un
phénomène qui ne peut pas être observé dans les systèmes dotés d’une empreinte
d’ancrage statique. Finalement, une étude d’un modèle de porte électronique est
présentée, où les propriétés locales du supraconducteur, telles que le libre par-
cours moyen ou la structure de bande électronique en général, peuvent être influ-
encées électroniquement. Il s’agit d’un domaine de recherche interdisciplinaire
complètement inexploré à l‘heure actuelle, qui nous permettra in fine de manip-
uler des vortex de maniàre individuelle dans des matériaux supraconducteurs, au
moyen d’excitations thermiques et électromagnétiques confinées spatialement et
contrôlées temporellement. De plus, de telles techniques peuvent nous fournir des
éclairages fondamentaux sur différents aspects des vortex en rapport avec la vari-
ation du courant de transport, tout à fait pertinents pour mieux comprendre l’état
résistif des matériaux supraconducteurs et leurs applications.

La thèse est structurée comme suit:
Le Chapitre 1 présente un bref aperçu des éléments historiques clés liés à

la supraconductivité, les types de supraconducteurs connus et leurs applications
en électronique. De plus, différents cadres théoriques sont présentés, allant des
modéles phénoménologiques des fréres London et de Ginzburg et Landau, jusqu’à
des approches microscopiques plus sophistiquées, à savoir la théorie de Usadel et
le modéle de Bardeen-Cooper-Schrieffer.

Dans le Chapitre 2, la théorie généralisée dépendante du temps de Ginzburg-
Landau (gTDGL) est décrite. Les équations centrales pour le paramètre d‘ordre
et le courant supraconducteur sont dérivées et les quantités caractéristiques, telles
que la longueur de cohérence, la longueur de pénétration, le courant critique et le
paramètre de diffusion inélastique sont expliquées. Une extension de ce modèle
incluant l’équation d’équilibre thermique est discutée.

Dans le Chapitre 3, le comportement (connu) des vortex en présence de champs
externes et de courants électriques est présenté à travers plusieurs exemples directs,
et calculé à l’aide du formalisme gTDGL. De plus, sont présentés différents dis-
positifs expérimentaux qui peuvent être utilisés pour manipuler le comportement
des vortex de manière externe. Une attention particulière y est prêtée à la forme
du potentiel d’ancrage et à la manipulation individuelle de vortex via une pointe
magnétique, une pointe à effet tunnel ou un faisceau laser.

Dans le Chapitre 4, la dynamique des vortex est discutée lorsque des lignes
de courant s‘agglomèrent dû à un rétrécissement géométrique. Des vitesses de
vortex de plusieurs dizaines de km/s sont obtenues, dépassant la limite de vitesse
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de brisure des paires de Cooper dans le condensat. La coexistence de vortex dans
différentes phases à haute vitesse est minutieusement investiguée et un possible
contrôle de ces différentes phases via un potentiel d’ancrage est envisagé.

Le Chapitre 5 est consacré à l‘étude de l’influence du potentiel d’ancrage
dépendant du temps sur la dynamique des vortex. La commensurabilité temporelle
sous la forme de résonance stroboscopique est mise en évidence, à chaque fois que
la fréquence de la dynamique caractéristique du condensat est égale à la fréquence
du potentiel d’ancrage dynamique. Ces résonances persistent dans une large gamme
de paramètres (champ magnétique, courant, température, paramètres propres au
matériau, etc.) et laissent une signature claire dans la différence de potentiel
mesurée, qui peut dès lors être utilisée pour des applications pratiques, incluant
des mesures de la vitesse des vortex.

Le Chapitre 6 présente l’étude des vortex dans des supraconducteurs méso-
scopiques sous l’influence de portes électroniques. Un ı̂lot de Pb extrêmement
mince (quasi-2D), exposé à un champ magnétique externe, a été analysé à l’INSP
de Paris à l’aide d’un microscope à balayage à effet tunnel (STM) en régime spec-
troscopique. Les résultats exprimentaux sont suivis d‘une analyse théorique de
l’expérience. Il a été montré que la structure électronique d‘un ı̂lot extrêmement
mince peut être affectée localement si on l’observe au STM basé sur le principe de
porte électronique. Ses propriétés supraconductrices peuvent donc être drastique-
ment améliorées ou détériorées au fur et à mesure des déplacements de la pointe
STM au-dessus de l‘échantillon. Les changements observés et calculés sur les vor-
tex fournissent une preuve indiscutable de cet ‘effet de porte’.

Le Chapitre 7 résume les résultats présentés dans cette thése et offre un aperçu
des futures études possibles.

Finalement, l‘Appendice fourni un bref aperçu des méthodes numériques utilisées
dans les simulations.
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Voorwoord

Supergeleiding is een electronische toestand van materie die ontstaat door het
bestaan van een gemeenschappelijke golfunctie met een coherente fase die zich
uitspreid op een macroscopische schaal. Een belangrijke manifestatie van dit frap-
pante kwantumfenomeen is het dissipatieloze transport van elektrische stroom, een
pluspunt dat speciale aandacht verdient in huidige tijden waar efficiënte energiedis-
tributie enorm belangrijk is geworden. De beweging van kwantumeenheden van
magnetische flux (de zogenoemde vortices of fluxonen), wat een onvermijdelijk
neveneffect is in supergeleiders in de aanwezigheid van transportstromen en mag-
netische velden, limiteert helaas de voorwaarden om dissipatieloos transport de
onderhouden enorm. Dit zorgt voor een uitdaging voor het bereiken van de func-
tionalisatie van supergeleidende materialen en bedreigt hun spectrum aan appli-
caties.

Het is algemeen bekend dat elke inhomogeniteit (hetzij imperfecties in het ma-
teriaal of artificiele imperfecties), die lokaal de supergeleiding onderdrukken op
de schaal vergelijkbaar met de kern van de vortex, de vortex vast kan pinnen en
het begin van de vortexbeweging kan vertragen tot hoger aangelegde stromen. De
laatste jaren is er veel moeite gedaan om de effecten van stroom geı̈nduceerde
vortex beweging te minimaliseren door op het op maat maken van roosters van
artificiële pinning centers. Naast het verbeteren van de kritische parameters van
de supergeleidende toestand, kan een pinning landschap gebruikt worden voor de
manipulatie van de vortex dynamica, zoals bijvoorbeeld bij de rectificatie van vor-
tex beweging onder invloed van een ac drive (vortex diode) door het introduceren
van asymmetrische pinning centers. In de literatuur kan men vinden dat de ver-
ankering van vortices gebaseerd kan worden op nano-gestructureerde roosters van
perforaties, chemisch gegroeide defecten, permanente nanomagneten, en zelfs pin-
ning sites geproduceerd door zwaar ionen bombardement. Al deze realisaties zijn
gebaseerd op een permanente verandering van de supergeleider, zonder enige mo-
gelijkheid om achteraf modificaties in de distributie en sterkte van de pinning aan
te brengen.

Het hoofddoel van deze thesis is om het dynamische gedrag van de vortex ma-
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terie onder een volledig nieuw soort pinning landschap, dat bestaat uit ruimtelijke
en tijdelijke modulatie van het supergeleidend condensaat, te onderzoeken. Een
speciaal geval van ruimtelijke modulatie wordt overwogen in een vernauwde struc-
tuur waar stroomlensing extreem hoge vortex snelheden kan veroorzaken. Hierop
volgend wordt een tijdsafhankelijke thermische potentiaal geı̈ntroduceerd in het
supergeleidende condensaat dat stoboscopische resonanties tijdens de vortexbe-
weging zal veroorzaken een fenomeen dat niet geobserveerd kan worden in de
systemen met statische pinning landschappen. Tot slot wordt er een studie van
elektronisch gating gepresenteerd, waar blijkt dat de lokale eigenschappen van de
supergeleider, zoals de vrije weglengte of de elektronische bandstructuur in het al-
gemeen, elektronisch beı̈nvloed kunnen worden. Dit is een volledig onontgonnen
interdisciplinair onderzoeksonderwerp, dat men uiteindelijk zal toelaten om su-
pergeleidende toestand en individuele vortices in supergeleidende materialen te
manipuleren door middel van ruimtelijk ingesloten en tijdelijk gecontroleerd ther-
mische en elektromagnetische excitaties. Voorts kunnen zulke technieken ons fun-
damenteel inzicht bieden in de verschillende vormen en gedrag van vortex materie
in aanwezigheid van aangelegde stroom, wat zeer relevant is voor het begrijpen van
de resistieve toestand van supergeleidende materialen en hun toepassingen.

De thesis is georganiseerd als volgt:
Hoofstuk 1 presenteert een kort overzicht van de belangrijkste historische

gebeurtenissen gerelateerd aan supergeleiding, gekende klassen van supergelei-
dende materialen, en hun toepassingen. Voorts worden verschillende theoretis-
che modellen gepresenteerd, beginnend bij de fenomenologische modellen van de
broers London en Ginzburg en Landau, tot de meer gesofisticeerde microscopische
benaderingen, namelijk de Usadel theorie en de Bardeen-Cooper-Schrieffer theo-
rie.

In Hoofstuk 2 wordt de gegeneraliseerde tijdsafhankelijke Ginzburg-Landau
(gTDGL) theorie beschreven. De centrale vergelijkingen voor de orde parame-
ter en superstroom worden afgeleid, waar de karakteristieke grootheden, zoals de
coherentie lengte, penetratie diepte, kritische stroom en inelastische verstrooiings-
parameter uitgelegd worden. Een uitbreiding van dit model met de thermische
evenwichtsvergelijking wordt beschreven. Het tweede deel van dit hoofdstuk be-
spreekt het uitgebreide gTDGL model in de aanwezigheid van een tijdsafhankelijk
thermisch potentiaal en als parameters van het model ruimtelijk inhomogeen zijn.

In Hoofstuk 3 wordt het gekende gedrag van de vortex materie in de aan-
wezigheid van een extern magneetveld en elektrische stroom besproken aan de
hand van verschillende directe voorbeelden, berekend gebruik makend van het gT-
DGL formalisme. Verder worden verschillende experimentele opstellingen, die
gebruikt kunnen worden om het gedrag van de vortex te manipuleren, besproken,
speciale aandacht wordt daarbij gegeven aan het ontwerp van een pinning land-
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schap of individuele vortex manipulatie door een nabij magneetveld of tunneling
tip of een laserstraal.

In Hoofstuk 4 wordt de dynamica van vortex materie onder stroom lensing
door geometrische vernauwing besproken. Vortex snelheden van tientallen km/s
zijn gevonden, wat de paar-breking snelheid van het Cooper-paar condensaat over-
schrijdt. Co-existentie van verschillende vortex fasen bij hoge snelheden worden
uitgebreid aangehaald en mogelijke manieren om deze fases te controleren door
middel van pinning landschappen worden besproken.

In Hoofstuk 5 wordt de invloed van tijdsafhankelijke pinning landschappen op
de vortex dynamica bestudeerd. Tijdelijke commensurabiliteit in het gedaante van
stroboscopische resonanties werd gevonden wanneer de frequentie van de karak-
teristieke dynamica van het condensaat overeenkomt met de frequentie van het
dynamische pinning landschap. Deze resonanties blijven bestaan in een breed pa-
rameter bereik (van magnetisch veld, stroom, temperatuur, materiaal parameters,
ezv.) en laten een duidelijke signaal achter in de gemeten spanning, wat gebruikt
kan worden voor praktische toepassingen, inclusief metingen van de vortex snel-
heid.

Hoofstuk 6 presenteert de studie van vortex materie in mesoscopische su-
pergeleiders onder invloed van de elektronische gating. Supergeleiding in een
extreem dun (quasi twee dimensionaal) Pb eiland, onder een extern magnetisch
veld, werd experimenteel onderzocht in INSP Parijs met een scanning tunneling
microscoop (STM) in het spectroscopie regime, gevolgd door de hier gepresen-
teerde theoretische analyse. Er werd gevonden dat de elektronische structuur van
een extreem dun eiland lokaal beı̈nvloed kan worden door de elektronische gating
via de nabijgelegde STM naald, en dus de supergeleidende eigenschappen drama-
tisch verbeterd of onderdrukt kunnen worden wanneer de STM naald bewogen
wordt over het staal. De geobserveerde en berekende veranderingen in de vortex
materie zorgen voor het “smoking gun” bewijs voor dit gating effect.

Hoofstuk 7 vat het werk gepresenteerd in deze thesis samen en geeft een
toekomstperspectief voor mogelijke verdere studies.

Tot slot wordt in de Appendix een korte samenvatting gegeven van de nu-
merieke methodes die gebruikt werden voor de simulaties doorheen deze thesis.
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Chapter 1

Introduction

1.1 History of superconductivity

Superconductivity was discovered in 1911 by Gilles Holst and Gerrit Jan Flim at
Leiden Physics Laboratory in Netherlands [1]. The duo was working under the
supervision of Heike Kamerlingh Onnes (see Fig. 1.1), who had three years ear-
lier discovered a way to liquify helium [1, 2] (in fact, for his investigations on the
properties of matter at low temperatures which led, inter alia, to the production of
liquid helium, Onnes was awarded the Nobel prize in physics in 1913). Holst and
Flim were investigating electrical properties of mercury with high degree of pu-
rity at the temperature of liquid helium (4.2 K). Mercury was selected since it was

Figure 1.1: From left to right: Gilles Holst, Gerrit Jan Flim and Heike Kamerlingh
Onnes.

expected to exhibit relatively high electrical resistance close to 4 K, as opposed to
some other metals, like gold, whose resistance already at 13 K was below detection

13



Chapter 1

Figure 1.2: The resistance of mercury as a function of absolute temperature, repro-
duced from the original data obtained by Holst and Flim [3].

threshold. To the their surprise, as soon as the temperature reached slightly below
4.2 K, the measured resistance abruptly dropped to zero. At first they believed
a short circuit developed somewhere, but soon they learned that this short circuit
would repair itself whenever the bath temperature rose above 4.2 K. Proceeding
cautiously, Holst improved the resistivity measurement technique by several or-
ders of magnitude, finding that, at 3 K, the lowest temperature he could reach, the
resistivity was less than 10−7 of its value at room temperature. It was evident that
below some temperature, denoted as critical temperature, material achieves a state
where no electrical resistance occurs, which in turn allows dissipationless transport
of electrical current (see Fig. 1.2). The result was first presented by Kamerlingh
Onnes at the first Solvay Conference in Brussels [3] in 1911. As it was custom at
the time, Onnes reported the work of his laboratory solely under his name, without
explicitly mentioning the contribution of Holst and Flim. In the following years
several other materials were found to be capable to achieve the superconducting
state, namely lead and tin, while, on the other hand, some very good conductors,
such as platinum and gold, have never exhibited the superconducting phase [4].

It was until 1933 that it was believed that the only landmark of superconduc-
tivity was the dissipationless transport of electrical current. At the time there were
already several laboratories across the world, besides Leiden, with capability of
producing liquid helium. One of them was in Berlin, under leadership of Walther
Meissner, who discovered several new classes of superconducting elements, alloys
and chemical compounds before he became interested in determining the nature of
the flow of electrical current in superconductors [5]. In particular, he was eager
to learn if the transport current flows on the surface of the superconductor, or in
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Figure 1.3: Meissner-Ochsenfeld effect in a superconducting cylinder cooled be-
low the critical temperature in a constant external magnetic field. In the supercon-
ducting state (T < Tc), lines of the magnetic field are effectively expelled from the
cylinder.

its bulk. Together with Robert Ochsenfeld, Meissner devised an experiment which
made use of a very small coil to measure the magnetic field between two solid,
current-carrying, single-crystal cylinders, made of tin. The result was unexpected:
even when the tin cylinders were not carrying any current, the magnetic field be-
tween them increased when they were cooled into superconducting state, as if there
was something forcing the magnetic field to be expelled out of the superconducting
cylinders (see Fig. 1.3). It was clear that this effect of expulsion of applied flux is
not some dynamical consequence of perfect conductivity, meaning that supercon-
ductors also exhibit perfect diamagnetism as a fundamental property [6]. In fact,
now it is well known that this Meissner-Ochsenfeld effect arises because of the flow
of internal currents (the so-called Meissner-Ochsenfeld currents) which generate a
magnetic field inside a superconductor, equal in magnitude to the applied field, but
with opposite direction so that total field is canceled out. Superconductors can re-
main in the state of perfect diamagnetism only up to a certain applied field, above
which magnetic flux penetrates the material, and suppresses superconductivity.

The discovery of the Meissner-Ochsenfeld effect was a crucial turning point
in understanding the superconductivity. Up to then, attempts to make theoretical
framework that would explain superconductivity, particularly by applying quan-
tum theory, made little progress. After the discovery of perfect diamagnetism in
superconductors, even though it still yielded no ground to quantum mechanics, at
least the thermodynamics of the phenomenon could be worked out. It was Paul
Ehrenfest, Hendrik Casimir and Cornelius Gorter who proved that superconduc-
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tivity can be treated as a thermodynamic phase transition [1, 7]. Very soon after a
phenomenological theory was devised by brothers Fritz and Heinz London (1935)
[8]. This theory regarded the local electromagnetic behaviour in superconductors,
and it was not only successful in explaining the Meissner-Ochsenfeld effect, but
it also provided other predictions. The London brothers claimed that if a hollow
superconducting cylinder traps some magnetic flux, then the amount of the trapped
flux must be exactly equal to integer multiple of one flux quantum h

e (where h
and e are Planck’s constant and unit charge, respectively). It was only in 1961
that Bascom Deaver and William Fairbank experimentally confirmed the predic-
tion that flux in superconductors is indeed quantized [9], but with a correction: it
was Φ0 = h

2e that was the actual flux quantum, already suggesting that charge
carriers involved in the superconductivity double the charge of a free electron.

Towards the end of nineteen-thirties, and throughout nineteen-forties the Sec-
ond World War interrupted the research in superconductivity. It was only in 1950
that the progress in understanding this phenomenon could be resumed. Soviet
physicists, Vitaly Ginzburg and Lev Landau developed a phenomenological the-
ory [10] (originally, their work carried the name Ψ theory, but later on, as it
gained world fame, it became known simply as Ginzburg-Landau (GL) theory)
which combined Landau’s earlier analysis of second-order phase transition [11]
with the important elements of Londons’ ideas of superconducting electrodynam-
ics. The final result was to represent the superconducting state very close to crit-
ical temperature, Tc, with a complex order parameter, Ψ, obtained as a solution
of Schrödinger-like differential equation. The origin of the equation postulated by
Ginzburg and Landau was, however, not in quantum mechanics, but in thermody-
namics, i.e. the free energy functional. This magnificent tool was able to treat
both thermodynamic behavior of superconductivity as it passed through its phase
transition, and its spatial distribution near the superconductor-normal metal (SN)
interface. The true physical meaning of wave function-like order parameter would
not be explained until the microscopic theory came along towards the end of the
same decade. However, even after the microscopic treatment of superconductivity
was made available, the much simpler and user friendly Ginzburg-Landau model
remains the most commonly used tool to analyze complex phenomena in super-
conductivity.

A very important contribution to the Ginzburg-Landau theory was given by
Alexei Abrikosov, former student of Landau, who proposed a new class of su-
perconducting materials, now called type II superconductors [12], that can have
negative energy associated to a normal metal/superconductor boundary (so-called
surface energy) in the presence of magnetic field (as opposed to the type I supercon-
ductors with positive surface energy, which were the only known superconducting
materials at that time). Such state would, in principle, be unstable, and it would
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require for the normal state somehow to penetrate inside the superconductor. It
was again in 1955 when Abrikosov, inspired by the work of Richard Feynman on
vortices in superfluids [13], realized that normal state penetrates type II supercon-
ductors in a manner of quantized flux lines [14] (i.e. vortices). For their work,
Ginzburg and Abrikosov shared a Nobel prize in 2003, together with Anthony
Leggett, for his contribution to the theory of superfluidity.

The first steps towards the formulation of a microscopic theory of superconduc-
tivity were taken already in 1950, when Herbert Frölich predicted the isotope effect
[15]. Frölich first realized that the observation that good conductors (e.g. copper,
gold) do not become superconducting might mean that superconductivity is pro-
duced by enhanced interaction between the conducting electrons and the lattice
vibrations (phonons) in materials that were not good normal conductors. Later on,
this assumption was experimentally confirmed by showing that the critical temper-
ature for superconducting-normal transition is inversely proportional to the square
root of the mass of the ion lattice.

It was in 1957 that the microscopic theory of superconductivity was presented
by John Bardeen, Leon Cooper and Robert J. Schrieffer (nowadays known as the
BCS theory) [16]. The trio started their work in 1955, and was competing with
Richard Feynman, who was at the time also trying a way to find the quantum-
mechanical explanation of superconductivity and superfluidity. Bardeen, Cooper
and Schrieffer were particularly interested in studying the Fermi gas of nearly free
electrons, coupled with a weak attraction to lattice phonons. In 1956, Leon Cooper
succeeded in showing that the Fermi-gas ground state was unstable in the presence
of even a very weak attractive interaction [17], marking the discovery of so-called
Cooper pairs of electrons. Eventually, Bardeen, Cooper and Schrieffer succeeded
in creating an elegant formulation in which the electrons form a coherent ground-
state, acting together to occupy single-particle states in pairs (thus as bosons), so as
to optimize the reduction in energy of the system afforded by the weak attractive
interactions due to the phonons. The result was a gap in the energy spectrum
between the ground state and the lowest-lying excited states. The trio was rewarded
for their theory with a Nobel prize in 1972.

It was another student of Landau, Lev Gor’kov, who in 1959 stirred up su-
perconducting community by revitalizing the Ginzburg-Landau theory. Gor’kov
managed to prove that very close to critical temperature at which superconducting
materials become normal, the microscopic theory of superconductivity, developed
by Bardeen, Cooper and Schrieffer, reduces to the model devised by Ginzburg and
Landau [18]. This gave complete microscopic backbone to the theory previously
regarded merely as phenomenological.

The next very important discovery in superconductivity was the Cooper-pair
tunneling. Brian Josephson, a graduate student at Cambridge University supervised
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Figure 1.4: Timeline of the increase of Tc in superconductors from 1900 to 2015,
according to Ref. [20].

by Sir Alfred Brian Pippard, predicted in 1961 and 1962 that the superconducting
quantum liquid should be able to leak through a barrier between two superconduct-
ing samples [19]. This was verified experimentally in the following years, and in
1973 Josephson was awarded with a Nobel prize, together with Ivar Giaever and
Leo Esaki, for their study of tunneling phenomena in materials. Very soon after
its discovery, the tunneling phenomenon in superconductivity was labeled as the
Josephson effect, and to date this effect has important applications (since among
other things it allows for the conversion of frequency into the voltage).

Nearly two decades passed before next big step was made in the field of super-
conductivity. At the time, the BCS model predicted a theoretical limit between 30
K and 40 K for the critical temperature at which pair-breaking occurs. This was
quite an inconvenience, since it locked the maximal working temperature for super-
conductors far below the room temperature. Then in 1986, Karl Alex Müller and
Johannes Georg Bednorz reported a lanthanum-based perovskite ceramic super-
conductor (LaBaCuO or LBCO) with critical temperature of 35 K, which became
known as first high Tc superconductor (HTS) [21]. Shortly after that, a couple
of compounds were synthesized, one where lanthanum was replaced with yttrium
[22] (so-called YBCO), and another, BiSrCaCuO [23] (BSCCO or “bisco”), with
dramatic increase in critical temperature (YBCO showed Tc of 92 K, and BSCCO
exhibited Tc of 107 K). Discovery of these materials sparked hope in finding the
room-temperature superconductors which is often referred as the Holy Grail of
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condensed matter physics (see Fig. 1.4 for evolution of Tc over recent years). An-
other important implication of HTS materials is that once Tc exceeds 77 K, liquid
nitrogen can be used as a cooling agent. Müller and Bednorz were awarded a Nobel
prize in 1987 for their ground-breaking discovery. BCS theory struggled to explain
the existence of this new HTS family, which was indication that electron-phonon
mechanism was not behind Cooper pairing at high temperatures. This was the rea-
son why some new mechanisms were proposed to explain electron pairing in HTS,
but to date there still exists no definite answer what yields the very high Tc values
in those materials.

Following years correspond to a very turbulent period, as numerous discover-
ies of the superconductivity-related phenomena were reported. Mostly new mate-
rials with interesting superconducting properties were synthesized (such as MgB2,
iron-based superconductors, and carbon-based superconductors). Characteristics
of some of these materials are summarized in the following Section. Moreover,
ultrathin superconducting films were successfully synthesized, where it was shown
that superconductivity can indeed exist in the extreme two-dimensional limit.

1.2 Overview of superconducting materials

To date, thousands of superconducting elements and compounds have been discov-
ered. Superconductivity was first found in elemental materials, some of which have
already been mentioned in the preceding Section. Most of the elemental supercon-
ductors can achieve superconductivity under atmospheric pressure, but others may
require some special conditions [4]. Moreover, superconducting properties of bulk
may be different from those found in the thin films made of same material. By
looking at the periodic table of elements in Fig. 1.5, one can see that very often
metals can be superconducting. Interestingly, some metals, known to be very good
conductors, namely gold, platinum, copper and silver, do not exhibit the supercon-
ducting phase. One can also notice from Fig. 1.5 that all the elemental supercon-
ductors are in the low Tc regime. As bulk, most of the elemental materials are type
I superconductors, while in film form they may show type II behaviour. Typically,
the origin of superconductivity in elemental materials can be explained with BCS
theory (electron pairing via lattice phonons), so these materials can be classified as
conventional. Based on BCS theory, Cooper pairs in conventional superconductors
are characterized by zero net spin and zero angular momentum (s-wave pairing)
[4].
Clearly, the largest part of the superconducting materials are alloys and compounds,
and it is virtually impossible to list them all in this thesis. Still, here are shortly
presented some classes of superconducting compounds which are of highest im-
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Figure 1.5: Periodic table of superconducting elements.

portance for the fundamental physics and for their technical applications.
The β-tungstens, also known as A3B structures (where A is a transition metal

and B can be any element) are the superconducting materials that have transition
temperatures above 20 K at atmospheric preassure, and are capable of sustaining
magnetic fields up to 20 T [24, 25, 26]. β-tungstens are mostly made as thin films,
due to which they exhibit extreme type II behavior. A representative from this
group, Nb3Ge, with Tc =23.2 K, was for over a decade regarded as the material
with highest critical temperature. Another member of this class of alloys is Nb3Sn,
often used for manufacturing superconducting magnets.

Magnesium diboride (MgB2) is a material with critical temperature just below
40 K, synthesised in 2001 by Jun Akimitsu and coworkers in Japan [27, 28]. MgB2

is a conventional superconductor, in a way that the origin of its superconductivity
can be explained by the electron-phonon interaction, described by BCS theory.
However, superconductivity in this material is a consequence of nontrivial mixing
of multiple energy bands. As a result, two separate superconducting energy gaps
open in MgB2 (one close to 2 meV and other gap near 7.5 meV) on different
parts of the Fermi surface. Magnesium diboride is regarded as a type II material
(although it may exhibit some intermediate behavior between type I and type II
superconductors [29]), where the maximal field that MgB2 can sustain before going
to the normal state can exceeds 30 T in oriented films with carbon doping [30].

Metal-hydrogen systems are the class of compounds with Tc around 10 K [31,
32]. They were intensively studied in the 1970s, prior to the discovery of HTS.
One representative of this group is palladium-hydrogen, discovered in 1972. For
this material, it was of particular interest which Pd-H ratio could provide highest
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Tc. As this ratio approaches 1, the critical temperature is found to be around 9 K.
However, by replacing hydrogen with heavier deuterium, though one would expect
that Tc will be lowered due to the isotope effect, the critical temperature was found
to be over 11 K at Pd-D ratio of 1. Additionally, by implementing hydrogen to the
Pd-noble metal alloys, critical temperatures up to 17 K were measured [33].

Fullerene-based superconductors are derivates of a carbon molecules, denoted
as C60, found in 1985. The fulleren molecules can form crystals, which, then, can
be doped with different elements. In such a way one can obtain fullerides which in
some cases can be superconducting up to very high temperatures [34]. First such
fulleride was K3C60, with Tc of 20 K. Another example is Rb3C60 fulleride, with Tc
of almost 30 K, while the fulleride exhibiting record Tc of 40 K is Cs3C60 (although
such high critical temperature was obtained under the pressure of 1.4 GPa). The
mentioned fullerides behave as type II superconductors that can sustain fields up
to 50 T. There is overwhelming evidence that the superconductivity observed in
these materials is conventional, i.e. it is based on the electron-phonon mechanism
of pairing described by the BCS theory.

Chevrel phases have the composition MMo6X8, where M stands for metal (for
example, Pb or Sn) or rare-earth atom (e.g. Gd or Tb), and where X denotes sulfur
or selenium [35]. Though the Chevrel phases are conventional superconductors,
they do posses several properties which make them highly interesting. For ex-
ample, PbMo6S8 has a critical temperature of 15 K, while sustaining a maximal
field of 60 T. This makes PbMo6S8 very interesting for construction of magnets,
but since the material is very brittle, the fabrication of wires is very difficult. An-
other Chevrel phase, namely TbMo6S8, where rare-earth metal is implanted, ex-
hibits antiferromagnetic ordering in addition to superconductivity, which is then
not fully destroyed, but merely weakened. It is very rare to see such a phenomenon
in conventional superconductors, since any magnetic impurities tend to destroy
superconductivity. Critical temperature of TbMo6S8 is 1.65 K, but the magnetic
ordering occurs at 0.9 K. At the onset of magnetic order, maximal field super-
conductor can sustain will be reduced. Similar coexistence of antiferromagnetic
ordering and superconducting state can be found in the family of borocarbides,
such as HoNi2B2C. Moreover, a ferromagnetic ordering was found at temperatures
below 0.6 K in HoMo6S8, which is superconducting up to 2 K. At the onset of
ferromagnetic order, superconductivity is destroyed in HoMo6S8.

Heavy-fermion superconductors are the class of superconducting materials,
where the effective mass of the electrons is several hundred times larger than the
free-electron mass [36, 37, 38]. Such values of mass are due to extremely high
electronic density of states at the Fermi energy, which results from the interaction
between the mobile electrons and the magnetic moments localized at the lattice
sites. The heavy-fermion superconductors, such as UPt3, UGe2 or UBe13, have
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the unconventional electron pairing mechanism. Similar to the borocarbides and
Chevrel phases, they also exhibit magnetic ordering in the presence of supercon-
ductivity.

Cuprates are the group of the oxide superconductors, renown for their ex-
tremely high transition temperatures (in fact, they are synonymous with the high
Tc superconductors). In the above text few representatives of the cuprates were
already mentioned: LBCO, YBCO and BSCCO [21, 22, 23]. The cuprates are
typically extreme type II superconductors. Due to their layered structure, cuprates
exhibit strong anisotropy in magnetic field. The thermal fluctuations are another
important factor that influences the HTS and causes particular properties unknown
to the conventional superconductors. Finally, mechanism responsible for electron
pairing in cuprates is still not understood. What is known is that spin state of
Cooper-pairs in cuprates is singlet, with angular momentum of 2~, corresponding
to the unconventional d-wave superconductivity.

Iron-based superconductors (IBSC) are iron-containing chemical compounds
whose superconducting properties were discovered in 2006 [39]. This type of su-
perconductors is based instead on conducting layers of iron and a pnictide (chem-
ical elements in group 15 of the periodic table, here typically As and P) and
seems to be the next generation of high temperature superconductors. In fact,
compounds such as LaOFFeAs, SmFeAsOF, and PrFeAsOF can achieve critical
temperatures in range between 26 and 52 K. Similarly to superconducting cuprates,
the properties of iron based superconductors change dramatically with doping. Par-
ent compounds of FeSC are usually metals (unlike the cuprates) but, similarly to
cuprates, are ordered antiferromagnetically. The superconductivity in these materi-
als emerges upon either hole or electron doping. Iron-based superconductors have
several unique properties such as robustness to impurity, high upper critical field
and excellent grain boundary nature. These properties are advantageous for wire
application. Recent progress in the performance of superconducting wires of IBSC
is wide eyed, i.e. the maximal critical current has reached the level of commercial
metal-based superconducting wires and exceeded under high magnetic field [40].

Organic superconductor [41, 42, 43] was first synthesized in 1979 by Klaus
Bechgaard and coworkers, namely the (TMTSF)2PF6, which exhibited Tc of 0.9
K at the pressure of 1.2 GPa. Following this, several other TMTSF-based super-
conductors were found, with critical temperatures not exceeding 2 K. This family
of organic superconductors belongs to the type II category with anisotropic prop-
erties. The class of so-called two dimensional BEDT-TTF organic superconduc-
tors has recently been investigated, where the critical temperatures exceeding 10 K
were reported. The mechanism behind the pairing in these superconductors is not
entirely clear. Some of the organics show similarity with cuprates to the fact that
their Cooper pairs also exhibit angular momentum of 2~.
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Metallic hydrogen is a phase of hydrogen that behaves as an electrical conduc-
tor. Its existence was first predicted theoretically in 1935 [44], where it was ex-
pected that when squeezed with enough pressure inside an anvil, hydrogen should
be able to conduct electricity, the hallmark of a metallic state. Unfortunately, pres-
sure needed to achieve metallic hydrogen phase is measured in hundreds of GPa
(about million times the atmospheric pressure) - a magnitude which up to now
is only found in the core of the Earth. As an interesting consequence of this re-
quirement, it is often considered that the gas-rich jovian planets, such as Jupiter, or
Saturn, might have metallic hydrogen in their cores. Metallic hydrogen is hypoth-
esized to have some peculiar properties, one being the high-temperature supercon-
ductivity. In fact, it is expected that the critical temperature for the superconducting
transition of metallic hydrogen exceeds 300 K [45, 46]. Moreover, superconduct-
ing metallic hydrogen is predicted to be metastable so that it may exist at room
temperature when the pressure is released [47]. Throughout the last 80 years, there
have been several attempts to synthesize the metallic hydrogen, and only recently
the group from Harvard University reported to be successful in exposing hydrogen
to the pressure of nearly 500 GPa [48]. In general, the scientific community exerted
certain amount of skepticism towards this claim, since this experiment needs to be
reproduced and verified.

1.3 Superconducting electronics

Superconducting electronics (also known as supertronics) often utilizes the prop-
erties of the dynamic behavior of a vortex collective (so-called fluxonics) in a
nanofabricated superconducting films, with strong emphasis on the confinement,
manipulation, and motion of the vortex matter [49]. Anchoring the vortices (pin-
ning), guided motion and rectification-based effects are among the features ex-
ploited in fluxonic devices which are based on the dynamical, the directional and
the orientational control over flux quanta.

Major advantages of the supertronics when compared to semiconductor tech-
nology are found in much faster devices with decreased power demand and losses,
and with the unprecedented quantum accuracy and sensitivity. Digital supercon-
ductive electronic devices featuring Josephson junctions as a principle circuit el-
ement can achieve clock frequencies of hundreds of GHz. Currently, mainstream
superconducting digital technology is based on the Rapid Single-Flux Quantum
(RSFQ) logic [50]. There are three main application groups for superconducting
digital technology. The speed factor in combination with quantum accuracy of the
digital information is essential for telecommunications. The low power dissipa-
tion of the superconducting circuit comes into play for large systems like super-

23



Chapter 1

Figure 1.6: Sketch of a SQUID in magnetic field and with some applied current,
where two Josephson junctions based on superconductor (orange color)-insulator
(purple color)-superconductor joints are indicated.

computers and back-bone routers where integration density and parallelism of the
semiconductor circuits suffer from the thermal losses. The fact that RSFQ circuits
are the only complex digital circuits capable of operating below 4 K makes them
a unique solution for interfacing with cryo-sensors and superconducting quantum
bits (qubits).

Apart from its uses for digital logic, superconductive electronics provides also
the most sensitive detector of magnetic fields - the Superconducting QUantum In-
terference Device (shortly SQUID, see Fig. 1.6). SQUID utilizes the principle of
quantum interference developed in the two superconducting electrodes separated
by a very thin dielectric barrier where current tunnels (Josephson junctions). In
principle, every physical quantity which can be converted into magnetic flux can
be measured with SQUIDs, e.g. magnetic induction or electrical current. SQUIDs
are fabricated using sophisticated thin-film deposition and patterning techniques
and have to be cooled to operational temperatures of about 4 K (low Tc SQUIDs)
or about 77 K (high Tc SQUIDs). SQUIDs have a number of applications, such as
sensors used in medical research for detecting the delicate magnetic signals from
heart and brain [51]; as sensor for geological surveying [52], and as amplifiers of
electric signals.

Another important field of application is the detection of weak signals by
bolometers, superconducting nanowire single-photon detectors (SNSPD), and su-
perconductive tunnel junctions [50]. These devices can be used for detection of
photons in a wide range of wavelengths (from far infrared up to gamma-ray range).
When sensing occurs, temperature of the superconducting detector changes, lead-
ing to the change in electrical properties of the system. It is crucial that response
time of the device is longer than the rate at which photons arrive at the detec-
tor, meaning that system is used to measure energy flux of the radiation. On the
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other hand, if the detection time is shorter than the radiation rate, one speaks of a
calorimeter, which can be used to measure the energy of a single particle. Since
some extremely sensitive measurements must be performed at very low temper-
atures (<1 K), it is preferred to work with superconducting bolometers made of
materials such as Al, W, or Ta, which have the critical temperature in the same
range as the working temperature of the experiment. For SNSPD preferred are Nb
and NbN as materials whose critical temperature does not exceed 10 K.

As stated earlier, superconducting devices have to be cooled to rather low tem-
peratures. Whereas this was a bottleneck in the past, a huge progress with cooling
techniques has been made in recent years. Very compact systems with high relia-
bility and a wide range of cooling power are available commercially, from micro-
coolers of match-box size with mW cooling power to high-reliability coolers of
many watts of cooling power for applications in space. Therefore, the future for
superconducting electronic devices in low-temperature applications which require
very high speed, low-power consumption, extreme sensitivity or extremely high
precision, looks more than promising.

1.4 Overview of the theories of superconductivity

1.4.1 Phenomenological theories

In this Section a review of the important phenomenological theories that were suc-
cessful in explaining some features of superconductivity will be presented. The
first of such theories was devised by brothers Fritz and Heinz London in 1935.
They provided a local superconductive analogue to the Ohm’s law, in order to de-
scribe the property of dissipationless transport of electrical current in supercon-
ductors. The issue with the standard Ohm’s law and superconductors reflects in the
fact that supercurrent flows without resistance, so one needs to establish a relation
between supercurrent density J and voltage U in a manner different from the case
of normal metals. One more thing that London brothers had to take into account
was the Meissner-Ochsenfeld effect, i.e. the property of perfect diamagnetism in
superconductors.

Russian physicists Vitaly Ginzburg and Lev Landau presented in the 1950 an-
other phenomenological theory of superconductivity based on non-local mean-field
approach, which was originally called Ψ theory. Their framework later gained
fame simply as the Ginzburg-Landau (GL) model. In the GL model, it is argued
that thermodynamic free energy of a superconductor can be expressed in terms of
a complex function Ψ, which plays the role of an order parameter in the electronic
phase transition of the second kind. Moreover, nearly a decade from its first pre-
sentation GL theory gained a strong boost when it was shown that it can be derived
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from the BCS microscopic theory in the limit of close proximity to the transition
temperature Tc, in case of gapless superconductors.

1.4.1.1 The London model

London brothers proposed a model consisting of equations for the magnetic field
B and the electric field E, which aimed to describe dissipationless transport of
electrical current

(
∂B
∂t = 0

)
and expulsion of magnetic field in superconductors

(B = 0) governed by the Meissner-Ochsenfeld effect [8]. Their equations read

E =
∂

∂t

(
m∗

nse∗
2 Js
)
, (1.1)

B = −∇×
(

m∗

nse∗
2 Js
)
, (1.2)

where m∗, e∗ and ns are effective superconducting electron mass, effective charge
and density, respectively. Eq. 1.1 is used to describe the property of perfect con-
ductivity, because any electric field accelerates the superconducting electrons, as
opposed to Ohm’s law which suggests that the electron velocity in a normal con-
ductor is maintained constant. Perfect conductivity described by the first London
equation can be achieved in the presence of any stationary fields (which can be
easily verified from Faraday’s law ∇ × E = −∂B

∂t ), but in order to describe the
Meissner-Ochsenfeld effect, additional restriction on the magnetic field is required,
namely inside the superconductor B = 0 must be fulfilled. For this reason the sec-
ond London equation was devised. When Eq. 1.2 is combined with Ampere’s law
(∇ × B = µ0J) and with flux conservation (∇B = 0), one obtains a differential
equation

∇2B =
B
λ2
, (1.3)

which describes the penetration pattern of magnetic field inside the superconductor.
The initiated reader will notice that the magnetic field inside the superconducting
material decays exponentially, starting from the interface of the superconductor
and its surroundings, over the length scale

λ =

√
m∗

µ0nse∗
2 , (1.4)

which is called (London) penetration depth. Therefore, within the Eq. 1.3 lies the
essence of the Meissner-Ochsenfeld effect.
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One should note here that a bit more compact way to represent Eq. 1.1 and 1.2
was later given by Fritz London, emphasizing the use of magnetic vector potential
A, as

Js = −nse
∗2

m∗
A. (1.5)

The Eq. 1.5 by itself is not gauge invariant, and it must be accompanied with
the, so-called, London gauge, ∇A = 0. Though it does not explain the nature of
superconductivity with the rigor of microscopic theory, the framework given by
the London brothers describes very well the behavior found in superconductors
with short electronic mean free path l (so-called dirty superconductors). Their
theory also predicted the quantization of magnetic flux inside the superconductor,
where the most profound consequence of that prediction are the point-like objects
carrying quantized magnetic flux (i.e. vortices) which are characteristic of type II
superconductors.

1.4.1.2 The Ginzburg-Landau model

Vitaly Ginzburg and Lev Landau devised a complex-valued quasi-classical wave
function Ψ to describe the transition from the normal state (Ψ = 0) to higher-
ordered superconducting state (Ψ 6= 0) [10]. In the absence of magnetic fields,
this phase transition is of second order, where Ψ contains the information about an
order parameter. By employing the Landau-Lifshitz theory of second-order phase
transition, they were able to construct a free energy functional needed to describe
the transition in superconductors. The free energy was expressed in terms of the
order parameter, but only in the limiting case when the temperature of the system
is close to the critical temperature Tc, at which transition occurs. From there and
with the assumption of zero-field cooled system, Ginzburg and Landau expressed
free energy density functional in terms of |Ψ|2 (which corresponds to the density
of superconducting electrons):

fS0 = fN + a|Ψ|2 +
b

2
|Ψ|4 + o(|Ψ|6). (1.6)

fS0 and fN are the free energy density of the superconductor when no external
fields are present and free energy density in the normal state, respectively. The
actual free energy is then obtained by integrating Eq. 1.6, F =

∫
fS0dV over

some respective volume V . The parameters a and b are phenomenological expan-
sion coefficients, which are material-dependent. Several constraints are imposed
upon the terms in the free energy given by Eq. 1.6, mostly arising from the fact
that fS0 must have a minimum (if fS0 has no minimum, then there is nothing pre-
venting it from assuming arbitrarily large values). In that case, b = ∂2fS0

∂(|Ψ|2)2 must
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be positive, which follows from the second derivative criterion for minima. From
there, one deduces that the value of |Ψ|2 for which the free energy is minimal is
−a
b . It is important to notice here that the difference fS0 − fN at the minimum of

superconducting free energy must correspond to the condensation energy of a su-
perconductor, −µ0H2

c
2 , where Hc is the thermodynamic critical field. Since below

Tc the order parameter |Ψ|2 = −a
b must be finite (non-negative, too), and vanish

at Tc, it is clear that a = 0 at Tc, and a < 0 when T < Tc. In the original work
of Ginzburg and Landau, a was obtained close to Tc as a Taylor’s series expansion
up to a linear term, a(T ) ≈ −a0

(
1− T

Tc

)
, while in the same limit b(T ) ≈ b0

(where a0 and b0 are some positive coefficients). In general, both a and b should
be temperature dependent [53], and in the broad range of temperatures below Tc
they can be estimated as:

a(T ) = −a0
T 2
c − T 2

T 2
c + T 2

, (1.7)

and

b(T ) = b0
T 4
c

(T 2
c + T 2)2

. (1.8)

In the extreme case of T → Tc one can see that Eqs. 1.7 and 1.8 can be reduced so
that a(T ) ≈ −a0(1− T

Tc
) and b(T ) ∝ b0.

In the presence of inhomogeneities Eq. 1.6 may contain additional terms. Par-
ticularly, in the presence of magnetic field the kinetic term, 1

2m∗ |ΠΨ|2, is included
in the free energy (where Π is the gauge invariant canonical momentum), together
with the energy change brought by the magnetic field, 1

2µ0
(∇ × A)2. By means

of variational method one can derive the famous Ginzburg-Landau equations from
the presented free energy functional, which is the central topic of Sections 2.1.1
through 2.1.4 of this thesis.

The Ginzburg-Landau theory is very general and has applications in many dif-
ferent areas of physics and engineering. It can be modified to describe differ-
ent physical systems, including magnetism, liquid crystal phases, and even the
symmetry-breaking phase transitions, which took place in the early universe as
matter cooled following the Big Bang. In the field of superconductivity it brought
further insights in the study of type I and type II materials, with possibility to treat
vortices as realistic objects with finite size.
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1.4.2 Microscopic formalism

1.4.2.1 BCS theory

BCS theory was the first succesful microscopic theory of conventional supercon-
ductivity, developed by John Bardeen, Leon Cooper and Robert Schrieffer in 1957
[16, 54]. The major success of this theoretical formalism reflects in the fact that
it successfully treats the general many-particle problem and provides the corre-
sponding ground state for a many-body system in which the coupling mechanism
of the electronic Cooper pairs exists [17, 54]. From the BCS theory it follows also
that the superconductors must have an energy gap between the ground state and
the normal state. For their work Bardeen, Cooper and Schrieffer were awarded the
Nobel prize in physics in 1972.

The main task in BCS theory was to show that in the presence of some attractive
potential (no matter how weak) the normal free electrons above Fermi sea will pair
up. The (Cooper) pairs (being bosons) then occupy the lower energy state, namely
the ground state, rendering the normal state energetically unfavorable. The elec-
tronic pairing is, of course, not unconditional. Firstly, the electron pair must have
the energy above the Fermi energy, EF . The momenta of the pair-to-be should, in
general, be of equal magnitude, but opposite in direction. Finally, spins of the two
electrons must be opposite. Only when these conditions are fulfilled, the electrons
in the presence of an attractive potential will effectively correlate and go to the
ground state as a pair.

The next task in the BCS theory was to describe the nature of the attractive
potential. In a normal electron gas the predominant interaction is the repulsive
Coulomb force, and in order for some attractive interaction to exist, electrons must
couple with other particles or excitations, such as phonons, electrons from the other
bands, spin waves in magnetic media, etc. From the earlier work of Frölich (1950),
it was already known that the interaction between electrons and the atomic lat-
tice via phonons is strongly rooted in superconductivity, so this mechanism was
selected to describe the effective attraction between electron pairs. The electron-
phonon interaction was incorporated into the global picture of superconductivity
as follows: when two electrons are found above EF , with the momentum and spin
properties described above in the text, they move much faster than the vibrations in
the crystal lattice (phonons). As the electron passes through the lattice, it will cause
the polarization (accumulation of the positive ionic charge) of the lattice, similar to
the wake of water behind the speed-boat. This polarization will relax over a long
time period, which is more than enough for another passing electron to be caught
in the “wake” of the first electron, thus effectively producing a Cooper-pair. The
pair is spatially confined to a volume of radius ξ0, which is called the microscopic

29



Chapter 1

coherence length.
After explaining the conditions for appearance of a single Cooper pair, Bardeen,

Cooper and Schrieffer considered the generalized case (within a mean-field approx-
imation) where all electrons undergo the same treatment, so the entire structure
behaves as a condensate of Cooper pairs. The obtained condensate state is bosonic
in nature, with total spin equal to zero. Since the condensate is in the ground state,
with its energy lower than the normal state, the energy gap opens up. The gap is
responsible for stabilization of Cooper pairs.

BCS theory was successful in explaining many of the phenomena found in
conventional superconductors. For example, it showed that dissipationless current
transport is due to the fact that in the presence of superconducting gap there will
be no scattering of the electrons by the lattice atoms. Due to the condensation of
the Cooper pairs into the bosonic state, the Meissner-Ochsenfeld effect naturally
arises from BCS theory. The framework of Bardeen, Cooper and Schrieffer also
provided the microscopic backbone to the phenomenological theory of Ginzburg
and Landau. In the work of Lev Gor’kov in 1959 it was shown that close to the
transition temperature, Tc, BCS wave function is equivalent to the order parameter
from GL theory.

Though BCS theory was successful in explaining many phenomena regarding
the conventional superconductivity, it is only applicable to the homogeneous sys-
tems without disorder. If one wants to study the systems where boundaries are im-
posed, or possibility of tunnel junctions, then different theoretical models must be
employed. One such model is developed by Nikolay Bogolyubov and Pierre-Gilles
de Gennes (BdG model) [55], where electron-like and hole-like fermionic quasi-
particles are considered, with energies above the superconducting energy gap. The
electron-like and hole-like quasi-particles are each linear combinations of the elec-
tron and hole wave functions in the normal state. However, because of the spatial
dependence introduced by the boundaries, the linear combinations are in general
not as simple as in the homogeneous case. BdG framework allows one to study the
systems with boundaries or structures with interface between the superconducting
and normal materials (SN interface). It is also used to treat clean superconductors.

1.4.2.2 The equation of motion by Gor’kov, Eilenberger and Usadel

Since the early days of the phenomenon, the out-of-equilibrium superconductivity
has been attracting the attention of both experimental and theoretical solid state
community. One of the reasons why this part of physics of superconductors is so
renown is the extremely high degree of complexity behind it, where both the phase
and the magnitude of the macroscopic wave function vary spatially and temporally.
In particular, such dynamical behavior has been observed in superconducting weak
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links (Josephson junctions), and phase slip centers in long superconducting fila-
ments, both carrying transport current in excess of their respective critical currents.

One of the challenges met within theoretical descriptions of such spatially in-
homogeneous and time-varying systems is the fact that one has to resort to Green’s
function techniques, which are a powerful but a very cumbersome toolbox. In gen-
eral, Green’s function is the response to the Dirac’s δ distribution of a characteris-
tic inhomogeneous differential equation, defined on a given domain, with specified
initial and/or boundary conditions. Once the characteristic equation is solved for
the Green’s function, this solution can be related to the realistic physical enviro-
ment. Within such a framework, Lev Gor’kov invented a powerful technique by
constructing a set of equations of motion for the Green’s functions [56, 57]. These
equations couple the so-called normal and anomalous Green’s functions, which
are relevant for description of electron pairing into Cooper pairs. Anomalous and
normal Green’s functions can be used then to form a closed set of equations, the
solutions of which bear all the results of the BCS theory, and moreover, can be
readily extended to incorporate dirty systems with impurities (commonly, type II
superconductors), as well as deal with nonlinear and dynamic phenomena. In other
words, after solving such a set of equations, one essentially obtains all the relevant
information about physical properties of superconductors.

Unfortunately, the model devised by Gor’kov is difficult to solve and is nu-
merically very demanding. This was the reason why Gert Eilenberger (also Yurii
Ovchinnikov and Anatoly Larkin) developed transport-like equations for a new set
of Green’s functions which were related to Gor’kov’s formalism, where the rela-
tion between old and new Green’s functions was an integration over the energy
[58]. Eilenberger’s set of equations was reduced, having two instead of four equa-
tions presented by Gor’kov.

The next step in this cumulative work was done by Klaus Usadel. What he
learned is that for type II superconductors in the dirty limit the microscopic Green’s
functions introduced by Eilenberger are nearly isotropic in space [59]. From there,
Usadel simplified Eilenberger’s formalism to a case where diffusive motion of the
Cooper pairs and normal electrons can be described. Moreover, the diffusion equa-
tion given by Usadel is much more tractable and amenable to numerical implemen-
tations, enabling realistic experimental geometries and situations to be analyzed.
In particular, issues of quasi-particle injection at the normal metal-superconductor
interface, non-equilibrium quasi-particle distribution, and so on, are readily com-
puted. What is especially important for this thesis is the fact that generalized time-
dependent Ginzburg-Landau equation (discussed in Section 2.1) can be obtained
from the theory of Usadel, where all the phenomenological parameters now have
microscopic justification.
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The generalized time-dependent
Ginzburg-Landau (gTDGL)
framework

In this Chapter the generalized time-dependent Ginzburg-Landau (gTDGL) model,
used for description of the relaxation processes and dynamic behavior of dirty su-
perconducting films, is presented. The approach in derivation of relevant equations
featured throughout the thesis is phenomenological in nature, where eventually the
microscopic justification for each physical quantity is given. By extending the gT-
DGL model with the equation of thermal balance, the thermal fluctuations that play
an important role in dynamic regime are also taken into account.

2.1 gTDGL equations and their validity

Though the Ginzburg-Landau (GL) theory can be used to describe many phenom-
ena in superconductivity, in its core form it cannot describe transitional processes
nor dynamic response to the external excitations, which accompany any phase tran-
sition process. Because of this, an extension to the original work of Ginzburg and
Landau, describing periodic and relaxation processes, was needed. In the pio-
neering work of Isaak Markovich Khalatnikov and Lev Landau [60, 61] general
solution was proposed for this class of problems (the LK theory, where the super-
conductivity is just one particular case) in the form of relaxation time of an order
parameter.

Albert Schmid [62, 63] proposed the gauge invariant version of the LK frame-
work that provided a fundamentally important extension to the theory of super-
conductivity - a time-dependent GL (TDGL) model. Schmid also presented the
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microscopic background to the phenomenological approach used in LK theory. On
the other hand, the microscopic justification of both GL [64] and TDGL models
narrowed down their applications to only gapless superconductors [65] (materials
containing paramagnetic impurities which smear out a well defined energy gap).

Further modification of TDGL model that was given by Lorenz Kramer and
Richard Watts-Tobin in 1978 [the generalized TDGL theory (gTDGL)] introduced
for the very first time a microscopic parameter that accounts for the presence of an
energy gap [66, 67]. To date, gTDGL remains one of the most versatile theoretical
tools for treatment of dynamic processes in superconductivity, and it will be the
main tool used to obtain results in this thesis.

2.1.1 Free energy functional and relaxation time of the order param-
eter

Thermodynamically, one considers superconducting state as a consequence of a
phase transition. A phase transition of a system is a transformation from one state
of matter to another, which in this particular case is a transition from normal state
of electronic matter to a superconducting state, occurring when temperature drops
below a given critical point. It is customary to say that the normal state is of higher
symmetry (state occurring at higher temperatures), while the superconductivity be-
longs to the lower-symmetry state (occurring at lower temperatures).

To describe the properties of the system in the low symmetry state, the Helmholtz
free energy F or the entropy S can serve as convenient figures of merit [68]. Since
it is more natural for one to work with energies, one should then consider the free
energy. Furthermore, close to the transition temperature, the free energy can be
constructed as a sum of terms determined from a measure of the symmetry of the
system - the complex order parameter ∆, whose magnitude is zero in higher state,
and nonzero in low state of symmetry. Some properties of the order parameter can
be concluded from the order of the phase transition, corresponding to the order of
the derivative in the free energy with respect to some physical quantity (e.g. tem-
perature, magnetic field, etc.) where discontinuity appears. In the absence of any
external fields, superconductivity belongs to the family of the second-order phase
transitions, where the order parameter must be a continuous function around Tc
and must abruptly drop to zero at critical temperature. From here it follows that
the physical quantity proportional to the second derivative of F with respect to
the temperature must have a discontinuity at Tc, and this is, in fact, the case for
the heat capacity C (indeed, the heat capacity is defined from thermodynamics as
C ∝ ∂2F

∂T 2 ). Because of this one can obtain the free energy as a Taylor expansion
in terms of |∆|. Additionally, the free energy is constructed in such a way that it
must have a minimum, in order to prevent it from having arbitrarily large values.
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Though one can expect that the expansion of the free energy in general as-
sumes the form F = c0 + c1|∆| + c2|∆|2 + c3|∆|3 + c4|∆|4 + o(|∆|5), where
c0 = F0 is the free energy of the higher-symmetry state, and parameters ci (with
i = {1, 2, 3, ...}) are some material-dependent parameters, within the Landau-
Lifshitz theory of phase transitions of the second kind higher-order terms are omit-
ted from the final expression. In fact, for the second-order phase transitions, the
physics is mostly well described by expansion up to the term containing |Ψ|4. Re-
garding the restrictions on remaining coefficients, c1 must be zero since it is im-
possible to have a non-zero order parameter invariant to all symmetries that would
vanish during the phase transition, while c3 = 0 because otherwise it would imply
the first-order phase transition. Remaining coefficients c2 and c4 (it is customary
to denote c2 as α and c4 as β

2 , which is done in the rest of the thesis) were al-
ready mentioned when Eq. 1.6 was described, where c2 ∝ a and c4 ∝ b from
Eqs. 1.7 and 1.8, respectively. Also, the function Ψ from Eq. 1.6 used as an order
parameter in original GL theory carries the physical meaning of the superconduct-
ing wave-function, while ∆ carries the information about the energy gap of the
superconducting condensate. The relation between the two will be described later
in the text, when microscopic explanation of the the phenomenological quantities
is presented.

Within the GL framework in the presence of an external magnetic field Be,
instead of F , the Gibbs free energy G is constructed to describe superconducting
state in thermodynamic equilibrium, near critical temperature Tc, as

G
(eq)
S = GN +

∫
V

[
α|∆|2 +

β

2
|∆|4

]
dV +

∫
V
γ| (−i~∇− e∗A) ∆|2dV

+

∫
V

(∇× A− Be)2

2µ0
dV.

(2.1)

In Eq. 2.1 integration is performed over the volume V bounded by the oriented
surface S. One distinguishes the following terms in G(eq)

S : the free energy of the
normal state,GN , the condensation energy term which accounts for the spatial vari-
ation of the order parameter,

∫
V

[
α|∆|2 + β

2 |∆|
4
]
dV , the gauge-invariant kinetic

energy term,
∫
V

[
γ| (−i~∇− e∗A) ∆|2

]
dV (γ > 0 is the third phenomenological

parameter that carries no thermal dependence), and the energy needed to screen the
external magnetic field,

∫
V

[
(∇×A−Be)2

2µ0

]
dV .

With the free energy in equilibrium alone, one can construct stationary GL
equations by varying the energy functional with respect to complex conjugate order
parameter, ∆∗ (it is also possible to vary the equilibrium free energy with respect to
the order parameter instead, ending up with the complex conjugate of the first GL
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equation), and vector potential A, respectively. Since the time-dependent phenom-
ena are of the interest here , it is necessary to accompany G(eq)

S with an additional
term that can describe relaxation processes in the superconductor. Following the
lines given in the approach of the Landau-Khalatnikov theory of superfluid helium
[60], and with the Schmid’s condition for gauge invariance due to temporal fluctu-
ations [62], one can postulate a more general expression for the total free energy,
GS :

GS = G
(eq)
S +G

(relax)
S , (2.2)

where G(relax)
S is the relaxation term. In order to expand the scope to the temporal

domain, the relaxation term is naturally introduced to the GL equations, rather than
to the free energy. As such, the actual form of G(relax)

S can be rather complex and
tedious to obtain. Moreover, the only things that carry the physical significance are
the variation products of the relaxation term with respect to ∆∗,

∂G
(relax)
S |∆∗ =

∫
V

[
τ

(
∂∆

∂t
+ i

e∗

~
ϕ∆

)]
δ∆∗dV, (2.3)

and A,

∂G
(relax)
S |A =

∫
V

[
σn

(
∂A
∂t

+∇ϕ
)
δA
]
dV. (2.4)

Here τ contains the information about the relaxation time unique for all time-
dependent variables, ϕ is the electrostatic potential necessary for preservation of
the gauge invariance due to temporal variation [62], and σn is the normal state
conductance. The expression under the integral in Eq. 2.4, without the variation
parameter δA, represents the normal current density, Jn, due to the externally in-
duced electrical field, E.

2.1.2 Generalized time-dependent Ginzburg-Landau equation and the
general boundary condition

A generalized version of the TDGL equation was derived from the microscopic
theory [67] to extend the validity of the formalism to dirty superconductors with a
finite gap. Because of this, G(relax)

S must be modified accordingly, where the real
relaxation time τ from Eq. 2.3 is exchanged with a complex quantity

τ̃ =
uτGLN(0)√
1 +

(
2τi
~ |∆|

)2
1 +

(
2τi√

2~

)2
∂|∆|2
∂t ∆

∂∆
∂t + i e

∗

~ ϕ∆

 . (2.5)
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In τ̃ several microscopic quantities appear explicitly, including density of states,
N(0), Ginzburg-Landau order parameter relaxation time, τGL, inelastic electron-
phonon scattering time, τi, and parameter u = 5.79, which, based on microscopic
theory, represents the dimensionless ratio of the relaxation times for the magnitude
and the phase of the order parameter. The inelastic electron-phonon scattering
time effectively influences the viscosity of the Cooper-pair condensate, and it can
strongly affect the condensate dynamics. The term 2τi

~ |∆| accounts for the presence
of a superconducting gap.

In order to obtain gTDGL equation one starts by varying the modified version
of Eq. 2.2 with respect to ∆∗,

∂GS |∆∗ =

∫
V


τGLN(0)

[
∂∆
∂t + i e

∗

~ ϕ∆ +
(

2τi√
2~

)2
∂|∆|2
∂t ∆

]
u√

1 +
(

2τi
~ |∆|

)2
 δ∆∗dV

+∂G
(eq)
S |∆∗ = 0.

(2.6)
Variation of the equilibrium part of the Gibbs free energy yields

∂G
(eq)
S |∆∗ =

∫
V

{
α∆δ∆∗ + β|∆|2∆δ∆∗

}
dV

+

∫
V
{γ [(−i~∇− e∗A) ∆] [(i~∇− e∗A) δ∆∗]} dV.

(2.7)

Since order parameter outside the volume of the superconductor (V ) is zero, the
integration is restricted to that volume only. By applying few simple algebraic
transformations, Eq. 2.7 becomes

∂G
(eq)
S |∆∗ =

∫
V

[(
α+ β|∆|2

)
∆− γ (~∇− ie∗A)2 ∆

]
δ∆∗dV

+

∫
V
{i~γ∇ [δ∆∗ (−i~∇∆− e∗A∆)]} dV.

(2.8)

The last term in Eq. 2.8 can be further transformed by applying the Gauss theorem∫
V ∇MdV =

∮
S nM dS, where S is the area encapsulating the volume V , and n is

the unit vector perpendicularly to the enclosed area (S = nS). Finally, one obtains

∂G
(eq)
S |∆∗ =

∫
V

[(
α+ β|∆|2

)
∆− γ (~∇− ie∗A)2 ∆

]
δ∆∗dV

+

∮
S

n (−i~∇∆− e∗A∆) δ∆∗ dS.

(2.9)
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Figure 2.1: Schematic depiction of the order parameter behavior at interfaces of
different types. In (a) ∆ profile is shown near a superconductor-insulator (SI)
boundary, in (b) near a asuperconductor-normal metal (SN) boundary, (c) at the
superconductor-ferromagnet (SF) interface, and (d) is the junction of two super-
conductors (S’S).

The last term in Eq. 2.9 corresponds to the supercurrent component perpendicular
to the boundary of the volume V , and it must be zero, since no supercurrent can
leak outside the superconductor. This is also the boundary condition for the gT-
DGL equation at the interface of a superconductor with an insulator (SI interface).

Finally, by inserting what is left from Eq. 2.9 back into Eq. 2.6, and equating
everything to zero, for arbitrary δ∆∗, one obtains the generalized TDGL equation

τGLN(0)
u√

1 +
(

2τi
~ |∆|

)2
[
∂∆

∂t
+ i

e∗

~
ϕ∆ +

(
2τi√
2~

)2 ∂|∆|2

∂t
∆

]
=

−
(
α+ β|∆|2

)
∆ + γ (~∇− ie∗A)2 ∆.

(2.10)

One last remark here is about the generalization of the boundary condition. The
boundary condition proposed by de Gennes [55]:

n (−i~∇− e∗A) ∆|boundary =
i

b
∆|boundary, (2.11)

introduces the extrapolation length b, which contains information about how far
from the superconducting boundary the order parameter would drop to zero if it
maintained the slope of decay it had at the surface of the superconductor. Usu-
ally, for insulators (or vacuum) one takes b → ∞, meaning that order parameter
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instantly drops to zero at the SI boundary. In the normal metals (SN interface) b is
positive and large, but finite. The reason for this is that in the area of normal metal
close to the SN interface some amount of Cooper pairs leaks, therefore, leading
to non-zero ∆. This is called the proximity effect [70]. On the other hand, due
to the leakage of superconducting electrons, in the superconductor close to the SN
interface ∆ weakens, and this is called inverse proximity effect [70]. In case of a
superconductor-ferromagnet interface (SF), the singled Cooper-pairing and its or-
der parameter vanish close to the border, so one adapts the boundary condition with
b → 0. If two superconductors with different material parameters are in contact
(S’S interface), one can expect that at the boundary, finite, but negative b can be
taken in the material with lower critical temperature. The schematic representation
of the expected behavior of the order parameter at four discussed types of interfaces
is given in Fig. 2.1.

2.1.3 Supercurrent, total current and conservation law

Next, the variation of the total free energy with respect to the vector potential is
considered, in order to obtain the second TDGL equation. One starts from

∂GS |A = ∂G
(eq)
S |A + ∂G

(relax)
S |A = 0, (2.12)

where ∂G(relax)
S |A was already explained in Eq. 2.4. What remains now is to

resolve the expression for ∂G(eq)
S |A. This term reads

∂G
(eq)
S |A =

1

µ0

∫
V

[(∇× A− Be)∇× δA] dV+∫
V

[γ (e∗δA∆∗) (i~∇+ e∗A) ∆] dV −
∫
V
γ [(e∗δA∆) (i~∇− e∗A) ∆∗] dV.

(2.13)
Employing vector identity ∇ (M× N) = N∇ ×M −M∇ × N, where M = δA
and N = ∇× A− Be, and after several algebraic transformations, yields

∂G
(eq)
S |A =

1

µ0

∫
V
{δA∇×∇× A +∇ [δA× (∇× A− Be)]} dV+∫

V
[γ (e∗δA∆∗) (i~∇+ e∗A) ∆] dV −

∫
V

[γ (e∗δA∆) + (i~∇− e∗A) ∆∗] dV.

(2.14)
With the help of Gauss theorem the term

∫
V {∇ [δA× (∇× A− Be)]} dV can

be transformed into
∮
S [δA× (∇× A− Be)] dS. This term is relevant only on

the oriented surface S encapsulating the superconductor. However, since this is the
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boundary where∇×A ≡ Be, it can be concluded that this term is zero for arbitrary
δA.

Finally, it is possible to combine the stationary part with the relaxation part of
the varied free energy, as

∂GS |A =
1

µ0

∫
V

(∇×∇× A) δAdV +

∫
V

(
σn∇ϕ+ σn

∂A
∂t

)
δAdV−∫

V

[
2e∗~γ

(
∆∗∇∆−∆∇∆∗

i2
− e∗

~
|∆|2A

)]
δAdV = 0.

(2.15)

For arbitrary δA, this can be zero only if the sum of integrands is zero. If that is
the case, one writes the second TDGL equation as

1

µ0
(∇×∇× A) = −σn

(
∇ϕ+

∂A
∂t

)
+ 2e∗~γ

(
={∆∗∇∆} − e∗

~
|∆|2A

)
.

(2.16)
According to the Maxwell’s equation (the Ampere’s law) term on the left-hand side
(LHS) corresponds to the total current density J

J =
1

µ0
(∇×∇× A) , (2.17)

while the first term on right-hand side (RHS) is the normal current density, Jn

Jn = −σn
(
∇ϕ+

∂A
∂t

)
. (2.18)

What remains on the RHS is the supercurrent density, Js. With the help of relation
∆ = |∆|eiθ, one can rewrite Js as

Js = 2e∗~γ|∆|2
(
∇θ − e∗

~
A
)
. (2.19)

Up to this point first and second TDGL equations have been constructed, but an
observant reader will notice that, in fact, there are three independent variables:
the order parameter ∆, the vector potential A, and the electrostatic potential ϕ.
This means that an addition is needed to the existing set of equations. In order to
accommodate this, the current-conservation law is called upon:

∇J = ∇ (Js + Jn) =
∂ρ

∂t
. (2.20)

Temporal variations of the accumulated charge ρ ∝
(
e∗

~ ϕ−
∂θ
∂t

)
can be neglected

if the system is close to Tc
(
∂ρ
∂t → 0

)
[66, 67]. Now Eq. 2.20 in combination with

Eqs. 2.18 and 2.19 can be reformulated in order to obtain

−∇Jn = ∇Js. (2.21)
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In principle, Eqs. 2.10, 2.16, and 2.21 form a complete set of equations of gTDGL
formalism which can be used to treat time-dependent phenomena in a wide range
of systems exposed to the external magnetic and electric fields. Moreover, triplet
{∆,A, ϕ} is gauge invariant under transformation

{
∆eiΩ,A + ~

e∗∇Ω, ϕ− ~
e∗
∂Ω
∂t

}
,

where Ω(r, t) is an arbitrary function that varies slowly in time compared to τGL.

2.1.4 GL equations in steady state

Here, the case when gTDGL equations reduce to stationary GL formalism is con-
sidered. One can imagine a process initiated via some dc external excitation ap-
plied to the superconductor in equilibrium (e.g. introducing a magnetic field and/or
transport current to the system). Unless the magnitude of the excitation is strong
and drives the system to the normal state or provokes the permanent oscillations
in the system (for example, when large enough transport current induces the per-
sistent and repetitive vortex motion stationary solution can not be achieved), it is
reasonable to expect that after finite amount of time the system will reach a new
equilibrium state. In the steady state, all temporal derivatives together with elec-
trostatic potential can be omitted, so the GL equations governing the behavior of
the system read

γ (~∇− ie∗A)2 ∆ = α∆ + β|∆|2∆, (2.22)

1

µ0
(∇×∇× A) = 2e∗~γ|∆|2

(
∇θ − e∗

~
A
)
, (2.23)

with generalized boundary condition given in Eq. 2.11, which is still valid. Over
the years, Eqs. 2.22 and 2.23 proved to be quite handy from the computational
side. By omitting the information about the transitional processes, GL equations
can be solved faster than the gTDGL and TDGL models, which enables one to
assess time-independent phenomena in large-scale systems.

2.1.5 Characteristic quantities and their microscopic origin

With the appearance of gTDGL framework, microscopic explanation for all of the
phenomenological parameters appearing in the Eqs. 2.10, 2.16, and 2.21 was given.
In fact, Kramer and Watts-Tobin [66] obtained the gTDGL equations for dirty su-
perconductors in the following form

N(0)π~
8kBTu

u√
1 +

(
2τi|∆|

~

)2

[
∂∆

∂t
+ i

e∗

~
ϕ∆ +

(
2τi√
2~

)2 ∂|∆|2

∂t
∆

]
=

N(0)π~D
8kBT

(
∇− ie

∗

~
A
)2

∆ +

(
N(0)f(T )− g(T )

N(0)π2

16uk2
BT

2
|∆|2

)
∆,

(2.24)
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1

µ0
∇×∇× A = σn

[
π

2kBTe∗
|∆|2

(
∇θ − e∗

~
A
)
− ∂A
∂t
−∇ϕ

]
, (2.25)

−∇Jn = ∇
[
σn

(
∂A
∂t

+∇ϕ
)]

= ∇Js =

∇
[

σnπ

2kBTe∗
|∆|2

(
∇θ − e∗

~
A
)]

,

(2.26)

where D is the diffusion parameter, f(T ) and g(T ) are kernel functions contain-
ing generic temperature dependence, and kB is the Boltzmann constant. In this
representation, the normal state conductance σn has a microscopic definition

σn =
e∗

2
DN(0)

2
. (2.27)

In their work, Kramer and Watts-Tobin regarded magnitude of the order param-
eter |∆| as the superconducting gap. Close to the critical temperature, T can
be exchanged with Tc in all the terms of Eqs. 2.24, 2.25 and 2.26 where the
temperature explicitly appears, except for the f(T ) and g(T ), which preserve
the generic thermal dependence. Originally, Kramer and Watts-Tobin obtained
f(T ) = log(Tc/T ), which close to Tc reduces to 1−T/Tc, while in the same limit
g(T → Tc) ≈ 1 [66, 71]. Similar to what has been given in Eqs. 1.7 and 1.8 one
can extend the precision of gTDGL model over a wider range of temperatures by
modifying the expression for f(T ) with T 2

c −T 2

T 2
c +T 2 , and for g(T ) with T 4

c

(T 2
c +T 2)2 [53].

By comparison with Eq. 2.10 one can finally identify the microscopic expres-
sions for the phenomenological parameters in GL equations:

α = −N(0)f(T ) = −α(0)f(T ), (2.28)

β = g(T )
N(0)π2

16uk2
BT

2
c

= β(0)g(T ), (2.29)

γ =
N(0)πD

8kBTc~
, (2.30)

τGL =
π~

8kBTcu
= τGL(0). (2.31)

One can now use microscopic expressions for α, β and γ to further obtain physical
quantities such as the coherence length, ξ, and magnetic field penetration depth,
λ. The coherence length is the natural length scale for spatial variations of the

order parameter, and it is obtained as ξ =
√
−γ~2

α . Since α carries a thermal
dependence, ξ will also be a function of the temperature. Actual representation of
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Figure 2.2: Schematic diagram of variation of B and ∆ at an SN interface for type
I (κ� 1/

√
2) and type II (κ� 1/

√
2) materials [71].

ξ as a function of microscopic parameters depends on the purity of the material,
which is hidden in the diffusion parameter D, found in parameter γ. In the case
when superconductor contains a lot of impurities (dirty limit), D = vF l (where vF
is the Fermi velocity and l is the elastic mean free path). It is important to note
here that in the dirty limit Cooper pairs interact with the impurities over the length
of the mean free path, which is smaller than the correlation length of the Cooper
pairs, ξ0 > l (ξ0 being the BCS coherence length). However, in the clean case
where mean free path greatly exceeds ξ0, D =

π~v2
F

12ukBTc
[72]. Based on this, it can

be written

ξ(T ) =


√

~πvF l
8kBTcf(T ) = 0.855

√
ξ0l
f(T ) , dirty√

~2π2v2
F

96uk2
BT

2
c f(T )

= 0.74 ξ0√
f(T )

, clean
=

ξ(0)√
f(T )

. (2.32)

Penetration depth of the magnetic field, λ, which was already introduced in the
description of the London theory, is a characteristic length describing the variation
of the magnetic field inside the superconductor. According to the GL theory λ =√
− β

2µ0e∗2αγ
, where, due to the thermal dependence of α (and β), λ = λ(T ).

Depending on the material purity, one obtains

λ(T ) =


√

π~g(T )
4ukBTcµ0e∗2N(0)vF lf(T )

= λ(0)√
2

√
ξ0g(T )

1.33lf(T ) , dirty√
3g(T )

µ0e∗2N(0)v2
F f(T )

= λ(0)√
2

√
g(T )
f(T ) , clean

. (2.33)

Another added value of the gTDGL model is the microscopic parametrization
of the dimensionless parameter κ (so-called GL parameter), defined as a ratio of
λ and ξ. The importance of this parameter is reflected in the fact that it clearly
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separates the magnetic behavior of superconductors into type I (κ < 1/
√

2) and
type II (κ > 1/

√
2). The surface energy at the boundary between normal ma-

terial and superconductor is proportional to the difference of coherence length
and penetration depth, and, therefore, depends on κ. This energy changes sign
at κ = 1/

√
2: in type I materials (κ < 1/

√
2) surface energy is positive, while in

type II (κ > 1/
√

2) this energy is negative, which favors the formation of more
superconducting-normal boundaries. As a consequence, in the presence of mag-
netic field the magnetic flux penetrates the superconductor in smallest units - vor-
tices - each carrying a quantum of flux, Φ0. This behavior of type I and type II
materials at an SN interface is illustrated in Fig. 2.2.

Finally, the {Ψ,∆} dichotomy is briefly addressed. In the original work of
Ginzburg and Landau Ψ was selected as an order parameter, and as such it was
regarded purely phenomenologically until Gor’kov revealed the microscopic nature
of Ψ [18]. Close to Tc a relationship between BCS theory and GL framework
is established, where the many-body wave-function describing the distribution of
Cooper pairs reduces to Ψ. According to Kopnin [72], ∆ and Ψ are related as

Ψ = ∆
√

2m∗γ. (2.34)

Because of this, one can reconstruct gTDGL model with respect to Ψ as:

τGLN(0)
u√

1 + (Γ|Ψ|)2

[
∂Ψ

∂t
+ i

e∗

~
ϕΨ +

(
Γ√
2

)2 ∂|Ψ|2

∂t
Ψ

]
=

−
(
a+ b|Ψ|2

)
Ψ +

~2

2m∗
(∇− ie∗A)2 Ψ,

(2.35)

1

µ0
∇×∇× A =

e∗~
m∗
|Ψ|2

(
∇θ − e∗

~
A
)
− σn

(
∂A
∂t

+∇ϕ
)
, (2.36)

∇
[
σn

(
∂A
∂t

+∇ϕ
)]

= ∇
[
e∗~
m∗
|Ψ|2

(
∇θ − e∗

~
A
)]

, (2.37)

where Γ = 2τi
~
√

2m∗γ
, a = α

2m∗γ , and b = β
4m∗2γ2 .

2.1.6 High κ regime and validity of the gTDGL equation

In extreme type II bulk superconductors λ � ξ and consequently κ � 1. In
thin superconducting films, where thickness d < λ, ξ, current density is essentially
uniform along d, so one obtaines the effective GL parameter, κ∗ = κλ/d as a de-
scriptor of the magnetic behavior of such a superconducting film [73]. Because of
κ∗ ∝ 1/d, thin superconducting films mostly behave as extreme type II materials,
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since κ∗ � 1. Major implication of high κ regime reflects in the fact that the mag-
netic response of the superconductor is negligible, and the external magnetic field
penetrates the superconductor uniformly. As a consequence, one is allowed to omit
Eq. 2.25 from the set of Eqs. 2.24-2.26.

The validity of the gTDGL model is addressed next. The equations of Kramer
and Watts-Tobin were derived for the dirty limit under the local equilibrium ap-
proximation (LEA), reflecting in the fact that all the relevant quantities (namely ∆,
A, and ϕ) must vary slowly in time over τi, while their spatial variations must oc-
cur on scales larger than the inelastic diffusion length Li =

√
Dτi. Since relevant

temporal scale in gTDGL is proportional to τGL, and relevant spatial scale is ξ, one
rephrases LEA as τGL � τi and ξ � Li. Both of these conditions can be further
reduced to a single inequality

Tc − T �
π~

8kBτi
. (2.38)

In the literature [67] τi can be found for bulk Pb (20 ps), In (0.1 ns), Sn (0.3 ns)
and Al (50 ns). One should keep in mind that for extremely small values of τi
the energy gap can be smeared out from the gTDGL equations (gapless limit as
τi → 0), which then convert into ordinary TDGL equations [62].

However, from the various successful applications of gTDGL model one can,
in fact, deduce that the criterion of Eq. 2.38 is not that rigid, and that the applica-
ble range of gTDGL theory is much broader than initially regarded. This extended
range where gTDGL is successfully used, is especially observed in dirty meso-
scopic superconductors.

2.2 Extending the gTDGL model: Description of thermal
balance in superconductors

gTDGL theory as introduced in the text above does not take into account the ther-
mal balance of the system. Thermal fluctuations can be a paramount factor for the
behavior of current-carrying superconductors, since they affect the critical current
at which the superconductor transits to the normal state. On top of that, the Joule
heating from current-induced vortex motion can also raise the temperature above
Tc. Superconducting systems with natural sources of heating or thermal fluctua-
tions are capable of the most diverse behavior (e.g. can manifest nonmonotonic
and stepped current-voltage characteristics, periodic or stochastic dissipative fea-
tures, various unusual dynamic effects such as stochastic transitions between stable
states, etc.). In order to account for this behavior, the thermal balance equation has
to be included into the gTDGL model.
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2.2.1 Equation of thermal balance

The equation of thermal balance was first introduced by Gurevich and Mints [74],
in the form

C
∂T

∂t
= k∇2T − h

d
(T − T0) + V (r, t). (2.39)

Eq. 2.39 allows for the spatial and temporal monitoring of the local temperature
T (r, t) of the system that has been cooled down to the bath temperature T0, where
C is the heat capacity, k is the heat conductivity, h is the heat transfer coefficient,
and d is the thickness of the specimen. Thermal potential V (r, t) in the simplest
case corresponds only to the Joule heating, J2

n/σn. However, V (r, t) can contain
additional terms, which are used to describe the heating of the superconductor from
external sources, such as laser light or nano-heaters. Note, however, that Eq. 2.39
does not appear naturally in gTDGL formalism. In fact, this equation was con-
structed separately, and its sole input are the Joule losses. Fortunately, gTDGL
formalism can be linked to the Joule heating in the system through calculated nor-
mal current density Jn, which serves as a coupling term. After taking all of this into
account, Eq. 2.39 together with Eqs. 2.24, 2.25, and 2.26 constitutes the extended
gTDGL model, which can be used to describe realistic superconducting systems in
the presence of applied current and magnetic field.

As a consequence of Eq. 2.39 not being native part of gTDGL model, one
does not have information about C, k, and h from microscopic theory. Due to this,
heat capacity, heat conductivity and heat transfer coefficient have to be obtained
by different means. In general, these parameters are also functions of temperature
[C(T ), k(T ), h(T )], being a material-dependent property. For example, from the
condensation energy density of a superconductor one can estimate the heat capacity
[75] as

C = −T ∂2

∂T 2

[
α(T )|∆|2 +

β(T )

2
|∆|4

]
. (2.40)

Close to Tc, where α ∝ 1 − T
Tc

and β ≈ 1, C = Cn + T α(0)2

β(0)Tc
(Cn = γST

is the normal state heat capacity, where γS is the Sommerfeld constant). More-
over, if one considers gTDGL model in a wider range of temperatures, where

α ∝
[
1− (T/Tc)

2
] [

1 + (T/Tc)
2
]−1

, and β ∝
[
1 + (T/Tc)

2
]−2

, heat capacity

is then given as C = Cn + 2α(0)2

β(0)T 4
c
T (3T 2 − T 2

c ).
As a rough estimate, one can use Wiedemann-Franz law to estimate heat con-

ductivity close to Tc [76], as

k = σnTc
4π2k2

B

3e∗2
. (2.41)
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In general, heat conductivity should be described by a more complex expression
than the one given in Eq. 2.41, but that exceeds the needs and the scope of this
thesis.

Finally, the characteristic quantities arising from the thermal balance equation

are discussed. The so-called thermal healing length Λh =
√

kd
h is the character-

istic scale over which temperature varies in the sample. Diffusion of the heat is
described with the ratio k

C , while removal of the heat from the system happens on
the time scale Cd

h . If the influence of the surroundings needs to be taken into ac-
count, one may consider effective heat capacity, Ceff = C+dsCs/d and effective
heat conductivity keff = k + dsks/d, where Cs and ks are heat capacity and heat
conductivity of the substrate, respectively, and ds is the substrate thickness.

2.2.2 Dimensionless extended gTDGL model

The number of physical quantities considered in this thesis, such as current den-
sities, or characteristic time and length scales, can easily vary in a wide range of
magnitudes

(
10−15 ÷ 1020

)
, which can cause significant rounding errors in the

numerical calculations. This is why it is a common practice to work with a dimen-
sionless form of the extended gTDGL model. Rewritten in the dimensionless form,
the extended gTDGL equations read

u√
1 + Γ̃2|χ|2

[
∂χ

∂t̃
+ iV χ+

Γ̃2

2

∂|χ|2

∂t̃
χ

]
=

(
∇̃ − iQ

)2
χ+ (f − g|χ|2)χ,

(2.42)

κ∇̃ × ∇̃ ×Q = |χ|2
(
∇̃θ −Q

)
− ∂Q

∂t̃
− ∇̃V, (2.43)

∇̃
(
∂Q
∂t̃
− ∇̃V

)
= ∇̃

[
|χ|2

(
∇̃θ −Q

)]
, (2.44)

c̃
∂T̃

∂t̃
= k̃∇̃2T̃ − h̃

(
T̃ − T̃0

)
+

(
∂Q
∂t̃
− ∇̃V

)2

. (2.45)

Here, the distances are given in units of the coherence length at zero tempera-

ture, ξ(0) =
√

π~D
8kBTc

[̃r = r/ξ(0), and the spatial derivatives ∇̃ = ξ(0)∇], the

time in units of the Ginzburg-Landau relaxation time at 0K, τGL(0) = π~
8kBTcu

[t̃ = t/τGL(0), and the temporal derivative ∂
∂t̃

= ∂
∂t/τGL(0) ], and temperature

in units of Tc (T̃ = T/Tc). Dimensionless order parameter, χ, carries the unit
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of bulk GL energy gap at zero temperature, ∆GL(0) = 4
√
ukBTc
π , while the di-

mensionless electrostatic potential, V , is given in units of ϕGL(0) = ~
e∗τGL(0) .

Magnetic field is expressed in units of the second critical field at zero temperature,
Bc2(0) = Φ0

2πξ(0)2 [B̃ = B/Bc2(0)], and the dimensionless magnetic vector po-

tential is from there obtained as Q = A/Bc2(0)ξ(0). Parameter Γ̃ is a product of
the inelastic phonon-electron scattering time and the bulk GL energy gap at 0K,
Γ̃2τi∆GL(0)

~ . In these units, the current density scales as J̃ = J/JGL(0), where
JGL(0) = σnϕ(0)

ξ(0) is the Ginzburg-Landau current density at 0K. Dimensionless
heat capacity is given as c̃ = CTcσn/JGL(0)2τGL(0), dimensionless heat conduc-
tivity as k̃ = kTcσn/JGL(0)2ξ(0)2, and dimensionless heat transfer coefficient as
h̃ = hTcσn/JGL(0)2d. Parameters u, f , g and κ are by definition dimensionless,
as is the phase of the order parameter, θ.

In principle, extended gTDGL model can be used to describe realistic sys-
tems where both the magnetic field and the transport current are applied. Trans-
port current induces an electric field in the superconductor, which is a function of
both the magnetic vector potential and the electrostatic scalar potential. Unfortu-
nately, one does not work with the electric field explicitly, and, therefore, there
is no way to know exactly how the applied current affects vector potential and
electrostatic potential individually. In order to circumvent this inconvenience, ad-
ditional gauges are introduced to relevant system of equations. There are several
candidates that one can use as a gauge in the calculations [77], namely, the zero-
electrostatic potential gauge ϕ = 0, the Coulomb gauge where ∇A = 0, and
finally, the linear combination-based gauge, where ϕ + ∇A = 0. If one selects
the zero-electrostatic potential gauge, Eq. 2.44 disappears. On the other hand, for
the superconductors in high κ regime, where the magnetic field is uniformly dis-
tributed in the sample, it is natural to use Coulomb gauge. In this particular case,
when the field is applied perpendicularly to the sample, one can define vector po-
tential either in the so-called Landau gauge, A = (−yBz, 0, 0), or the symmetric
gauge, A = (−yBz/2, xBz/2, 0), both of which satisfy the condition ∇A = 0,
and thus exclude Eq. 2.43 from calculations. The third gauge candidate, linear
combination-based, is not used in this thesis.

2.2.3 Discretization of the equations and numerical approach

In order to employ the set of differential equations 2.42 - 2.45 in numerical calcula-
tions, the system is discretized on a uniform Cartesian spatial grid and transformed
into a set of algebraic equations. Finite-differences method [78] is rather conve-
nient approach here, where the maximal size of the unit cell (see Fig. 2.3) does not
exceed 0.3ξ(0) (∆x ≤ 0.3ξ(0) and ∆y ≤ 0.3ξ(0)). This condition is empirically
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Figure 2.3: Schematic diagram of the Cartesian grid used in the numerical calcu-
lations.

instated since the relevant physical phenomena might not be captured properly on
a coarser spatial grid. In this thesis mainly the thin superconducting films are con-
sidered, with thickness smaller than the characteristic lengths ξ(0) and λ(0), so
the current density and the vector potential may be considered constant over the
thickness of the sample [71]. Consequently, Eqs. 2.42 - 2.45 have no z component
thus they can be reduced from 3D to 2D space, whilst the boundary condition 2.11
is automatically fulfilled at top and bottom surface of the superconductor.

Equations 2.42 - 2.45 with an appropriate gauge are solved in a self-consistent
iterative procedure, in the presence of applied magnetic field and transport cur-
rent. In order to ensure stable and fast convergence of the solution for the vector
potential, the complex link variable vector is introduced

U(r0, r) =
∑
µ=x,y

eµe
−i

∫ µ
µ0
Qµdµ, (2.46)

where eµ=x,y correspond to the unit vectors in x and y direction, respectively, and
r0 =

∑
µ=x,y eµµ0 is some reference point. The link variables are introduced

in an ad hoc fashion to restore gauge invariance, which is normally lost if the
partial differential equations of the TDGL model are discretized by means of finite
differences [79, 80, 81, 82, 83]. For the components of the link variable vector the
following rules apply:

∂Uµ
∂µ

= −iQµUµ, (2.47)

∂2Uµ
∂µ2

= −i∂Qµ
∂µ

Uµ −Q2
µUµ. (2.48)
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Note that Js = |χ|2
(
∇̃θ −Q

)
can also be expressed as =

{
χ∗
(
∇̃ − iQ

)
χ
}

, so
that the first and the second derivative found in Eqs. 2.42 - 2.44 can be rewritten as(

∇̃ − iQ
)
χ =

∑
µ=x,y

eµ
1

Uµ

∂

∂µ
(Uµχ) , (2.49)

(
∇̃ − iQ

)2
χ =

∑
µ=x,y

1

Uµ

∂2

∂µ2
(Uµχ) , (2.50)

respectively. One additional transformation of Eq. 2.42 should be mentioned here,
as the term Γ̃2

2
∂|χ|2
∂t̃

χ is not convenient for numerical calculations in this form.
Instead it is possible to transform it into more user-friendly term

Γ̃2

2

∂|χ|2

∂t̃
χ =

Γ̃2

1 + Γ̃2|χ|2
<{χ∗Φ}χ, (2.51)

where Φ =

√
1 + Γ̃2|χ|2u−1

[(
∇̃ − iQ

)2
χ+

(
f − g|χ|2

)
χ

]
.

Finally, by combining Euler method [84] to discretize the temporal derivative,
together with Gauss-Seidel method [85] on a rectangular box of the size Lx × Ly,
one obtains for the Eq. 2.42

χt̃+∆t̃
m,n = ∆t̃

[
1

∆t̃
− iVm,n −

Γ̃2

1 + Γ̃2|χt̃m,n|2
<
{
χ∗t̃m,nΦt̃

m,n

}]
χt̃m,n+

∆t̃Φt̃
m,n,

(2.52)

where n = 1..Nx and m = 1..Ny are indices in x and y direction, respectively
(Nx = Lx+∆x

∆x
and Ny =

Ly+∆y

∆y
are total number of gridpoints in x and y direc-

tion, respectively), and

Φt̃
m,n =

√
1 + Γ̃2|χt̃m,n|2

u

Ũ t̃xm+1,n
χt̃m+1,n − 2χt̃m,n + Ũ t̃xm−1,n

χt̃m−1,n

∆x2
+√

1 + Γ̃2|χt̃m,n|2

u

Ũ t̃ym,n+1
χt̃m,n+1 − 2χt̃m,n + Ũ t̃ym,n−1

χt̃m,n−1

∆y2
+√

1 + Γ̃2|χt̃m,n|2

u

(
fm,n − gm,n|χt̃m,n|2

)
χt̃m,n.

(2.53)

In Eq. 2.53 somewhat different link variable is introduced. In fact, forward x and
y components of the modified link variable are given as

Ũ t̃xm+1,n
=
U t̃xm+1,n

U t̃xm,n
=
e
−i

∫ x=(m+1)∆x
x0

Qxdx

e
−i

∫ x=m∆x
x0

Qxdx
≈ e−iQxm+1,n∆x, (2.54)
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Ũ t̃ym,n+1
=
U t̃ym,n+1

U t̃ym,n
=
e
−i

∫ y=(n+1)∆y
y0

Qydy

e
−i

∫ y=n∆y
y0

Qydy
≈ e−iQym,n+1∆y, (2.55)

while the backward components are

Ũ t̃xm−1,n
=
U t̃xm−1,n

U t̃xm,n
=
e
−i

∫ x=(m−1)∆x
x0

Qxdx

e
−i

∫ x=m∆x
x0

Qxdx
≈ eiQxm,n∆x, (2.56)

Ũ t̃ym,n−1
=
U t̃ym,n−1

U t̃ym,n
=
e
−i

∫ y=(n−1)∆y
y0

Qydy

e
−i

∫ y=n∆y
y0

Qydy
≈ eiQym,n∆y. (2.57)

In case of the SI boundary, the conditions U t̃xm±1,n
χt̃m±1,n = χt̃m,n|m=mboundary

and U t̃ym,n±1
χt̃m,n±1 = χt̃m,n|n=nboundary must be fulfilled (mboundary = 1, Nx and

nboundary = 1, Ny). At the SN boundary, no order parameter is present, hence
χt̃m,n|m=mboundary = 0, and χt̃m,n|n=nboundary = 0.

In the zero-electrostatic potential gauge (V = 0), the Eq. 2.44 is omitted and
vector Eq. 2.43 is split into two scalar equations [86]

Ũ t̃+∆t̃
µm,n =

(
1

∆t̃
− i∆t̃=

{
F t̃µm,n

})
Ũ t̃µm,n , (2.58)

where

F t̃xm,n = κ2
Ũ∗t̃xm,n+1

Ũ∗t̃ym,nŨ
t̃
xm,nŨ

t̃
ym+1,n

− Ũ∗t̃xm,nŨ
∗t̃
ym,n−1

Ũ t̃xm,n−1
Ũ t̃ym+1,n−1

∆y2
+

Ũ t̃xm,nχ
∗t̃
m,nχ

t̃
m+1,n,

(2.59)
and

F t̃ym,n = κ2
Ũ∗t̃xm−1,n+1

Ũ∗t̃ym−1,n
Ũ t̃xm−1,n

Ũ t̃ym,n − Ũ
∗t̃
xm,n+1

Ũ∗t̃ym,nŨ
t̃
xm,nŨ

t̃
ym+1,n

∆x2
+

Ũ t̃xm,nχ
∗t̃
m,nχ

t̃
m,n+1.

(2.60)
In order to solve the diffusion Eq. 2.58, the Crank-Nicolson implicit (CN) method
[87] is used, which speeds up the convergence of the solution, while preserv-
ing the great degree of stability. Regarding the boundary conditions, at the edge
of the simulated area (where m = mboundary or n = nboundary) the connec-
tion between the external magnetic field, B̃ext, and the link variables is given as

B̃ext =
1−Ũ∗t̃

xm,n+1
Ũ∗t̃
ym,n

Ũ t̃xm,n Ũ
t̃
ym+1,n

i∆x∆y .
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In case when one employs the Coulomb gauge (∇̃Q = 0), in the high κ
regime where field in the specimen is spatially homogeneous and temporally invari-
able (with the corresponding stationary vector potential in the symmetric gauge,
Q = [−1

2 ỹB̃ext,
1
2 x̃B̃ext, 0]), then the Eq. 2.43 disappears, and the Eq. 2.44 is

discretized as

Vm+1,n − 2Vm,n + Vm−1,n

∆x2
+
Vm,n+1 − 2Vm,n + Vm,n−1

∆y2
=

JSxm+1,n
− JSxm−1,n

2∆x
+
JSym,n+1

− JSym,n−1

2∆y
,

(2.61)

where supercurrent components are given as

JSxm,n = =

{
χ∗t̃m,n

χt̃m+1,nŨ
t̃
xm+1,n

− χt̃m,n
∆x

}
, (2.62)

JSym,n = =

{
χ∗t̃m,n

χt̃m,n+1Ũ
t̃
xm,n+1

− χt̃m,n
∆y

}
. (2.63)

In order to solve numerically Eq 2.61, one can use either Fast Fourier Transform
(FFT) algorithm [88], if the geometry of the specimen is uniformly rectangular,
or Successive Over-Relaxation method (SOR) [89] for arbitrary geometries. At
the SI interface there is no flow of the component of normal current perpendic-
ular to that boundary (in other words, nSI∇̃V = 0, where nSI is the unit vec-
tor perpendicular to the SI interface, which translates into the discrete space as
Vm±1,n = Vm,n|m=mboundary and Vm,n±1 = Vm,n|n=nboundary ). At the metal-
lic contacts (SN interface), the transport current is applied, for which it is as-
sumed to be completely transformed into normal current component perpendic-
ular to the SN boundary (nSN∇̃V = Ja, or given in the discrete space Vm±1,n =

Vm,n ± J̃a∆x|m=mboundary and Vm,n±1 = Vm,n ± J̃a∆y|n=nboundary ). This unfor-
tunate selection of all-Neumann boundary conditions leads to the scenario where
it is not possible to find the unique solution of the Poisson-like Eq. 2.61. One
can then either impose an additional condition so the solution is artificially made
unique (for example, one can always select such value of electrostatic potential so
that 〈V 〉 = 0, which will not affect the physical quantities of interest, since they
depend only on the potential difference - the voltage U ), or instead of transport cur-
rent one can apply external potential difference, so the boundary conditions change
to Vm,n = Vext|m=mboundary and Vm,n = Vext|n=nboundary .
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The general form of discretized equation of thermal balance is obtained as

T̃ t̃+∆t̃
m,n = T̃ t̃m,n −∆t̃

(
T̃ t̃m,n − T̃0

) h̃
c̃

+
∆t̃

c̃
J̃
t̃2

nm,n+

∆t̃

(
T̃ t̃m+1,n − 2T̃ t̃m,n + T̃ t̃m−1,n

∆x2
+
T̃ t̃m,n+1 − 2T̃ t̃m,n + T̃ t̃m,n−1

∆y2

)
k̃

c̃
.

(2.64)

This parabolic differential equation is solved with alternating direction implicit
(ADI) method [90]. The boundary conditions used to solve this equation are a
mixture of Neumann and Dirichlet conditions, where at the SI interface the Neu-
mann boundaries are imposed (∇T̃ = 0, corresponding to the open flow of the heat
through the system) and at the SN interface the Dirichlet boundaries allow that the
temperature at the metallic contacts is set above the critical temperature (T̃ ≥ 1).
Further details about numerical calculations, including the model for the arbitrary
geometries, are discussed in Appendix A.

2.3 Applications of the extended gTDGL model

It was already stated in this thesis that the main advantage of time-dependent
formalism lies in the fact that it can describe dynamic processes that underpin a
plethora of novel physical phenomena. As such, extended gTDGL model can be
used not only to describe the non-equilibrium processes in the superconducting
condensate due to the presence of external electric and magnetic fields, but also to
describe the systems where external local probing of the condensate is performed,
such as scanning tunneling microscopy, magnetic force microscopy, SQUID mi-
croscopy, etc. Since extended gTDGL theory provides an insight into the thermal
balance of the system, then the effects of thermally-invasive microscopy techniques
can be studied, as well (e.g. low temperature scanning laser microscopy). In the
following Section some of the possible additions to the presented theoretical model,
which one can use in order to simulate the realistic experimental setups, are dis-
cussed.

2.3.1 Time-dependent thermal potential

Externally induced local changes in the temperature of the system, which are not
a simple consequence of the interplay of the applied currents in the presence of
geometrical lensing, often strongly contribute to the overall behavior of the super-
conducting condensates and can even be the cause of the studied phenomena. This
can be useful systems where dynamical properties of the superconducting conden-
sate are studied, e.g. for realization of dynamic pinning mechanisms, or individual
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manipulation of magnetic flux quanta. Examples of such a setup can be found
in the low-temperature scanning electron microscopy, laser microscopy, or setups
with nano-heaters. Monitoring the local heat distribution has a crucial role in the
superconducting single-photon detectors (SSPD), where the incident light creates
hot spots which trigger transition to the normal state so that an impact of a photon
can be detected. In all of the mentioned cases, one is faced with external potential
ν(ext)(r, t) that repetitively suppresses and recovers superconductivity in a specific
region of the specimen via controlled thermal modulation. The parameters char-
acterizing this potential are: the frequency of the oscillations ω(s) (if periodic),
the intensity of the suppression ν0, and size and shape of the hot-spot. Since one
is constrained to the gTDGL framework, the parameters in question must be ex-
plained with respect to the important physical quantities defined already for the
extended gTDGL model.

The frequency of oscillations can be translated to period τ (s) = 2π
ω(s) , which,

in principle, must always respect the restriction τ (s) > τGL(0), so that validity
of gTDGL theory is preserved. In other words, the period of oscillations has a
lower limit, which for materials such as Al, Pb, or NbN ranges from several ps to
hundreds of ns (translating into highest frequencies close to 1 THz). Besides the
scenario where the local temperature in the hot-spot is raised and superconductivity
is suppressed (or even fully depleted, if T (r, t) ≥ Tc), cooling of the condensate
is also possible, so the superconducting properties are enhanced under the spot. In
general, intensity modulation achieved at the external source defines the temporal
profile of the magnitude of the thermal potential. Radius of the spot, R, should
follow the condition R > ξ(0), for the result of gTDGL theory to remain mean-
ingful. In the realistic systems, the shape of the hot spot is usually obtained from
the diffraction pattern, which allows one to create stripes, circular spots, rings, or
even periodic lattices of hot spots.

2.3.2 Spatially inhomogeneous parameters of extended gTDGL the-
ory

The gTDGL equations are used in their dimensionless form where the characteris-
tics of the material, as well as the universal constants, are included in the dimen-
sionless variables, making the formalism more convenient for analysis and compu-
tations. In realistic cases material inhomogeneities are always present, and in order
for one to perform a reliable theoretical analysis and reproduce the essential physi-
cal phenomena in the studied system, these inhomogeneities must be described and
included in the theoretical model. In this Section it is explained how the inhomo-
geneities in the superconductors can be taken into account, provided that the scale
of the inhomogeneities is comparable to the coherence length. This model can also
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be used to treat the specimen composed of an assembly of different materials, as in
the case of superconducting junctions.

If one recalls Eqs. 2.24, 2.25, 2.26, and 2.39

N(0)π~
8kBTcu

u√
1 +

(
2τi|∆|

~

)2

[
∂∆

∂t
+ i

e∗

~
ϕ∆ +

(
2τi√
2~

)2 ∂|∆|2

∂t
∆

]
=

N(0)π~D
8kBTc

(
∇− ie

∗

~
A
)2

∆ +

(
N(0)f(T )− g(T )

N(0)π2

16uk2
BT

2
c

|∆|2
)

∆,

1

µ0
∇×∇× A = σn

[
π

2kBTce∗
|∆|2

(
∇θ − e∗

~
A
)
− ∂A
∂t
−∇ϕ

]
,

−∇Jn = ∇
[
σn

(
∂A
∂t

+∇ϕ
)]

= ∇Js =

∇
[

σnπ

2kBTce∗
|∆|2

(
∇θ − e∗

~
A
)]

,

c
∂T

∂t
= k∇2T − h

d
(T − T0) + V (r, t),

respectively, one should note that the values of the parameters Tc, N(0), τi, D, σn,
c, k, and h are characteristics of the material. Therefore, in the case of an inho-
mogeneous sample, these quantities are no longer simple coefficients, but instead
have spatial distribution. Material parameters can also depend on some external
quantity, such as temperature, which can vary with time. Thus, in this situation one
can postulate

Tc(r, t) = T (0)
c pTc(r, t),

N(0)(r, t) = N(0)(0)pN(0)(r, t),

τi(r, t) = τ
(0)
i pτi(r, t),

D(r, t) = D(0)pD(r, t),

σn(r, t) = σ(0)
n pσn(r, t),

c[T (r, t)] = c(0)pc(r, t),

k[T (r, t)] = k(0)pk(r, t),

h[T (r, t)] = h(0)ph(r, t),
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where T (0)
c , N(0)(0), τ (0)

i , D(0), σ(0)
n , c(0), k(0), and h(0) are some reference val-

ues, while pTc(r, t), pN(0)(r, t), pτi(r, t), pD(r, t), pσn(r, t), pc(r, t), pk(r, t), and
ph(r, t) are dimensionless kernels containing generic spatial and temporal depen-
dence.

As stated before, the dimensionless parameter u is originally obtained to have
value of 5.79 (u = π4/14ζ(3), where ζ(3) is Riemann zeta function), but estimates
from microscopic theories state that u can go as high as 12 [91, 92].

Finally, even in thin films (2D structures), variations in the thickness of the
sample [d(r) = d(0)pd(r)] can play an important role in emergent physics. In or-
der to account for the influence of the nonuniform thickness, Eq. 2.24 should be
modified by including the additional term N(0)π~D

8kBTc

(
∇− i e∗~ A

)
∆∇pdpd . Further-

more, current densities Js and Jn in Eqs. 2.25, 2.26 should be exchanged with
Jspd and Jnpd, respectively. Finally, the set of dimensionless extended gTDGL
equations accounting for the inhomogeneous material parameters, with thickness
variation included, reads

u√
1 +

(
Γ̃pτi |χ|

)2

∂χ
∂t̃

+ iV χ+

(
Γ̃pτi

)2

2

∂|χ|2

∂t̃
χ

 =

pD

(
∇̃ − iQ

)2
χ+

(
pTcf −

g|χ|2

pTc

)
χ+ pD

(
∇̃ − iQ

)
χ
∇pd
pd

,

(2.65)

κ2

pd
∇̃ × ∇̃ ×Q = pσn

[
|χ|2

pTc

(
∇̃θ −Q

)
− ∂Q

∂t̃
− ∇̃V

]
, (2.66)

∇̃
(
pσn

∂Q
∂t̃
− pσn∇̃V

)
= ∇̃

[
pσn
pTc
|χ|2

(
∇̃θ −Q

)]
, (2.67)

c̃pc
∂T̃

∂t̃
= k̃pk∇̃2T̃ − h̃ph

pd

(
T̃ − T̃0

)
+

p2
d

pσn

(
∂Q
∂t̃
− ∇̃V

)2

. (2.68)
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Basics of vortex dynamics and
manipulation

Bulk type II superconductors exhibit the so-called Shubnikov (or mixed) phase for
a certain range of magnetic fields, where superconducting and normal state can
spatially coexist. When the magnetic field is sufficiently high for a superconductor
to reach the Shubnikov state, the field overcomes the Meissner-Ochsenfeld barrier
and penetrates in the system. The penetrating flux is quantized, where each flux
quantum Φ0 is enclosed with a whirling current. Such physical construct is called a
vortex. A region of radius ξ around the vortex core is nearly free of superconduct-
ing carriers, and exhibits a singularity at the vortex center ∆(r → 0) → 0. Fur-
thermore, vortex carries a 2π winding in phase of the order parameter, θ. Different
properties of the vortex (e.g. magnetic field, current profile, |∆|2 and θ distribu-
tion) are shown in Fig. 3.1(a)-(d). In large superconducting systems one typically
finds a bundle of vortices, which, due to vortex-vortex interaction and interaction
of vortices with the geometric boundaries, is arranged into a lattice. Abrikosov,
who was first to theorize the existence of vortices, calculated that the vortex matter
should be arranged in a square lattice in bulk superconductors [see Fig. 3.1(e)],

where the distance between nearest neighbours is given as a� =
√

Φ0
B . However,

it soon turned out from the experimental observation [93] and subsequent calcula-
tions that the triangular arrangement of the vortex lattice is slightly more favorable

[shown in Fig. 3.1(f)], with lattice constant given as a∆ = 1.075
√

Φ0
B .

In most of their applications, type II superconductors are used to carry electri-
cal current. It is not seldom that superconducting current carriers are exposed to
the external magnetic field, due to which dissipative effects emerge. This is mostly
because transport current together with magnetic field gives rise to a Lorentz-like
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Figure 3.1: Properties of a superconducting vortex: (a) The magnetic field of a
single vortex. (b) The current enclosing the vortex (note that supercurrent drops to
zero in vortex core). In (c) and (d) profiles of the Cooper-pair density and phase
of a vortex are given, respectively. (e) shows square vortex lattice with lattice
constant a�, where the unit cell is marked with the transparent white square. In (f)
the triangular vortex lattice with lattice constant a∆ is given, where hexagonal unit
cell is indicated by transparent white area.

driving force (J × B), which acts on vortices in the direction perpendicular to the
flow of current. In homogeneous superconductors, without any defects to anchor
the vortices, the sole opposition to the driving force is the viscous drag. How-
ever, if the applied current is high enough, the driving force will overpower the
viscous force, and vortices will be set in motion. Since each moving vortex car-
ries magnetic flux, the dynamic behavior of the condensate leads to redistribution
of the overall magnetic flux of the system as a function of time. These temporal
variations of the magnetic flux will cause a finite voltage U in the system (thus the
non-zero resistance), which can be translated directly to the Joule losses (P = IU ).
Moreover, with further increase of the applied current, transitions to higher resis-
tive states are bound to happen due to rearrangement of the vortex lattice [94].
Such transitions lead to an increase in the slope of the voltage, which can readily
be seen in the current density-voltage characteristic, the example of which is given
in Fig. 3.2. This characteristic was obtained by solving Eqs. 2.42 and 2.44 (with
Coulomb gauge) for the thin film in extreme type II regime, where the specimen
size was 150ξ(0) × 75ξ(0), the bath temperature T0 = 0.9Tc, and the applied
magnetic field was 0.5Bc2(0). The changes of the voltage slope correspond to the
changes in the dynamic resistivity of the specimen, which can be very subtle. For
this reason the zoomed-in inset of the current-voltage characteristic is also given in
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Figure 3.2: The current density-voltage characteristic of a superconducting stripe,
exposed to perpendicular magnetic field. The inset depicts the zoomed-in part of
the characteristic, where the slope is changed due to the rearrangements in the
vortex lattice (points 1-8). As a guide to the eye, solid lines of different colors are
introduced in the inset to point out the changes in the slope of the voltage. Dashed
line in the main panel indicates the slope of the voltage exhibited as the system
reaches the normal state, at high currents. Snapshots of the Cooper-pair density
1-8 show the evolution of the vortex matter in the superconductor when the current
is increased, corresponding to each slope change.

Fig. 3.2, where the subtle variations in dynamic resistivity are easier to spot. Each
change in the slope is complemented with the snapshot of the Cooper-pair den-
sity (CPD) profile, from which it can be verified that rearrangement of the vortex
lattices takes place each time a change in voltage slope is seen.

In this chapter common behavior of the superconducting condensate exposed to
external magnetic field and applied electric current is overviewed within gTDGL
framework. Moreover, several experimental techniques for manipulation of the
vortex behavior through external means were described.

3.1 Effect of the interplay of currents on the vortex matter

In this Section gTDGL theory is used to explain how the interplay of transport cur-
rents and the magnetic field-induced screening currents may lead to the dynamical
behavior of the superconducting condensate. This interplay is first discussed for
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the case of the steady state, after which the condition for the critical state for the
onset of vortex motion is described. Finally, an overview of the dynamic behavior
of the superconducting condensate is given.

3.1.1 Interplay of currents in the steady state

As stated earlier in the text, whenever a superconductor is exposed to an external
magnetic field, due to the Meissner-Ochsenfeld effect, a screening supercurrent
will arise which in turn induce a magnetic field opposing the applied one. In this
way a barrier is created for applied magnetic field that prevents its penetration
inside the superconductor. The response of the superconductor to increasing ap-
plied magnetic fields leads to induction of stronger Meissner-Ochsenfeld currents,
JM . This is shown in Fig. 3.3(a), where an evolution of line profiles of Meissner-
Ochsenfeld current density across the sample is seen for different magnetic fields.
These curves were obtained, once again, by solving Eqs. 2.42 and 2.44 in Coulomb
gauge, for a thin film in extreme type II regime, for a sample size 45ξ(0)×22.5ξ(0),
and working temperature T0 = 0.9Tc. From Fig. 3.3(a) one can see that the high-
est Meissner-Ochsenfeld currents are at the sample edges. The supercurrent that
grows with the increasing magnetic field is limited by the depairing current, JDP ,
at which the Cooper pairs are destroyed. The depairing current is given by

JDP =
2

3
√

3

e∗∆2
GLN(0)πD

4kBTcξ
=

2

3
√

3
JGL. (3.1)

When the Meissner-Ochsenfeld currents at the edges of the sample reach JDP , a
vortex will nucleate at the border of the sample.

On the other hand, if some current density Ja is applied, the situation is some-
what different. In the absence of magnetic field the evolution of the line profiles of
the transport current density is shown in Fig. 3.3(b), where one sees a nearly flat
profile of current density across the sample. However, if there is some finite mag-
netic field present as well, the total current density will be the superposition of the
Meissner-Ochsenfeld and the transport current densities. In such a case, transport
current density enhances the Meissner-Ochsenfeld current density at one edge of
the sample (J = Ja +JM ), while suppressing it on the other edge (J = Ja−JM ).
For illustration, Fig. 3.3(c) shows this evolution of the total current density in the
case when different transport currents are applied to the system exposed to the
external magnetic field.
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Figure 3.3: (a) Evolution of the Meissner-Ochsenfeld currents in a superconduct-
ing stripe (of size 45ξ(0) × 22.5ξ(0)) with respect to the applied perpendicular
magnetic field, in the absence of applied current. (b) Profiles of supercurrent re-
sponse to several values of applied current, in the absence of magnetic field. (c)
Total supercurrent which is obtained from superposition of Meissner-Ochsenfeld
current for a single value of magnetic field and several different applied currents.

3.1.2 A critical state for the onset of vortex motion

In the previous Section the situation is discussed where the superconductor is ex-
posed to some external field and transport current. However, in the superconduct-
ing state, one cannot increase the applied current to arbitrarily large values. In
fact, the maximal value that limits the total supercurrent density, J , is the depair-
ing current. If J locally reaches JDP , nucleation of a vortex will occur. When
vortex appears in the specimen, currents associated to it compensate the Meissner-
Ochsenfeld currents. In principle, vortex will remain trapped in the sample if the
barrier for vortex exit is too high. In this case more applied current is needed to
lower the exit barrier and push the vortex outside, so that the critical state for the
onset of permanent vortex motion is reached. Based on the same representative
sample as in previous Section, in Fig. 3.4(a) is shown the profile of the total su-
percurrent across the sample, corresponding to the critical condition just before
vortices start to move. This is complemented with a Cooper-pair density (CPD)
snapshot showing the vortices on the verge of exiting the specimen, as the current
density at the exit boundary is nearly zero. In general, a good way to obtain infor-
mation about dynamical phenomena in a superconductor is to track the associated
voltage in real time. In Fig. 3.4(b) this voltage is shown in two cases, namely just
below the critical current (blue line) and at the onset of the resistive state (red line).
One can notice that when vortices start to move, real-time voltage profile exhibits
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Figure 3.4: (a) Supercurrent profile in the critical state for the onset of the resistive
state. Snapshot of Cooper-pair density (CPD) depicts vortices pushed towards the
edge of the sample. The line across the CPD inset indicates where the current
density profile was taken. (b) Time-dependent profile of the calculated voltage
before (blue line) and just after the critical state (red line), when dynamic regime
is instated.

multiple peaks with time, which are signatures of vortices entering and exiting the
specimen.

The critical applied current, Ic, at which the transition from stationary to a
dynamical state occurs, represents a very important parameter for any supercon-
ducting system. In particular, the control of Ic is crucial when designing the sys-
tems where losses are crucial (e.g. superconducting cables), or where the onset
of resistance serves as a quantum switch (such as Josephson junctions). The crit-
ical current depends on most properties of the system, including geometry of the
specimen, disorder (its nature and distribution), artificial pinning sites for vortices,
magnetic field, temperature, etc.

3.1.3 Dynamic equilibrium

Once the motion of vortices commences, with all the properties of the system fixed
(applied current, magnetic field, temperature, etc.), the initial response of the sys-
tem may be seemingly chaotic, but over the course of time, the system relaxes into
a periodically oscillating state. This oscillatory behavior in which vortex motion
becomes fully periodic is called dynamic equilibrium. Relaxation times needed
for the system to reach dynamic equilibrium are usually not longer than several
nanoseconds, while most of the relevant experimental measurements are performed
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on much longer time scales (minutes, or even hours). However, for numerical sim-
ulations, where longest considered times hardly exceed one microsecond, the task
of reaching periodic oscillations in the system can prove to be quite challenging on
occasion, especially in larger samples, or when dynamics of flux quanta is com-
plex, since extensive computational time and resources are required.

The voltage evolution in real time can be used to represent the condensate dy-
namics, but only if its characteristic features can be recognized and understood.
Figure 3.5 shows a characteristic sequence of the system once it has relaxed into
the fully periodic oscillatory state. There, the temporal dependence of the voltage,
spanning over three periods of characteristic dynamics, where the magnetic field,
applied current, and bath temperature remain unchanged, is shown. During one
period ∆t eight instances are selected to point out interesting features, manifesting
themselves through voltage maxima and minima. The cycle begins with the en-
trance of a vortex into the system already containing four vortices (CPD snapshot
1 in Fig. 3.5). As this vortex progresses deeper in the specimen (snapshot 2), two
vortices closest to the sample edge are pushed outside simultaneously (snapshot 3).
The condensate then remains with only four vortices present (snapshot 4) until two
more flux quanta penetrate the sample (snapshot 5). As these new vortices take
their place in the triangular lattice (snapshot 6), single vortex closest to the edge
exits the sample (snapshot 7). The system then remains in this state (snapshot 8)
until the cycle ends and a new one starts.

Variation in some of the properties of the system can lead to more complex
dynamics (e.g. in Fig. 3.2, inset 4 shows a rather complex condensate behavior
at high currents). For example, at higher currents more features within character-
istic cycles should be expected, since vortex motion can be affected by additional
phenomena such as Larkin-Ovchinnikov instabilities, or where due to fast motion,
vortices slipstream each other inside the channels of permanently suppressed su-
perconductivity [94].

3.2 Vortex pinning in permanent pinning landscapes

A long-standing challenge on the path to superconducting applications of type II
materials is the unwanted motion of vortices [95]. A vortex can be pinned in a
superconductor by collocating its energetically costly core within a preexisting de-
fect where superconductivity is already suppressed. The strength of the pinning
dictates the maximal current at a given magnetic field which can be applied with-
out vortex motion and, consequently, dissipation (in other words, the magnitude of
pinning force is roughly determined by the product IcB). Superconductors usu-
ally posses intrinsic random pinning due to material impurities, disorder, or low
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Figure 3.5: Exhibited voltage oscillations of the system in dynamic equilibrium.
Period of oscillations is denoted with ∆t. Snapshots of the CPD at instances 1-8
illustrate the characteristic behavior of the condensate during one period. Black
arrows and hollow rings in snapshots 1, 3, 5, and 7 indicate vortices entering and
exiting the system.

crystallographic quality of the material. This type of pinning does not yield high
critical currents, as the onset of vortex motion can be easily activated. To improve
the functionality of superconductors so they can sustain strong transport currents
while maintaining low dissipation, many artificial pinning mechanisms were en-
gineered over the last several decades. For example, through the introduction of
nano-particles by means of irradiation of superconducting films can produce ran-
domly distributed pinning sites [96, 97], which can have different pinning energies.
Other fabrication techniques, such as chemically grown defects [98], nanostruc-
tured perforations [99], or patterning with permanent nanomagnets [100], allow
precise design of pinning centers in mesoscopic samples, with precise control of
their shape, size, and arrangement. This allows one to impose periodic arrangement
of the pinning sites, which gives rise to commensurability phenomena between the
vortex lattice and the pinning potential. In particular, whenever the pinning land-
scape matches the otherwise stable vortex configuration, a strong enhancement in
the critical current at a given field can be observed, as shown in Fig. 3.6, for an
Al bridge, patterned with periodic array of triangular holes. Note that in absence
of pinning, critical current exhibits monotonic decrease when magnetic field is in-
creased. These enhanced values of the critical current occur at the integer multiples
of the first matching field, B = nBm (see Fig. 3.6), which is defined as the field
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Figure 3.6: The critical current versus magnetic field characteristic of a 50 nm thick
Al film patterned with triangular pinning array of triangular holes with lattice pa-
rameter and size of pinning sites shown in inset on the left (from Ref. [101]). Inset
on the right is the image of the system, obtained by scanning electron microscopy.

at which the density of vortices equals the density of pinning sites. Interestingly, it
has been observed that at the rational multiples of Bm noticeable enhancement of
the critical current can occur, due to formation of fractional sublattices at interstitial
sites of the pinning lattice.

The maximal number of vortices that can occupy one pinning site, ns, can
roughly be estimated as a ratio of the size of the pinning site and the radius of the
vortex core (i.e. ξ). If the field is high enough to induce more vortices per pin-
ning site than ns, then some vortices will be located at the interstitial positions, in
between the holes. High mobility of interstitial vortices can then cause a decrease
in the critical current. Furthermore, the shape of the pinning can impose a pref-
erential direction for vortices to move (so-called rectification effect, where an ac
current drive in such a case leads to a net dc voltage). This is frequently seen in
asymmetric pinning potentials, such as the one with triangular holes shown on the
inset in Fig. 3.6, and can also be used for enhancement of critical current for a
particular direction of the driving force.
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3.3 Individual manipulation of vortices

In the previous Section the pinning mechanism that affects the behavior of vortex
lattice, with the task of preventing the unwanted motion of the flux quanta was
discussed. Continued reduction in uncontrolled vortex motion is beneficial for
applications, both for reduced noise in superconducting circuits for sensing and
communication, and for dissipationless utilization of large currents in high-field
magnets and power distribution.

On the other hand, many superconducting devices operate based on a single-
vortex manipulation [102]. Controlled vortex motion can serve as a rectifier [103],
clocked logic [104], or to control spins in an adjacent diluted magnetic semicon-
ductor [105], while vortices neighbouring an electron gas in a quantum-Hall state
may support creation of exotic quantum states [106]. Vortex matter is of theoretical
interest for its own sake [107, 108], as crucial evidence for underlying mechanisms
of superconductivity [109, 110], as analogues for interacting bosons [111], or as
model systems for soft condensed matter [108]. In the following text some state of
the art experimental techniques for detection and manipulation of single vortices
will be briefly summarized.

3.3.1 Scanning tunneling microscopy

Tunneling spectroscopy has developed into a field of intense research since its first
application to superconductors by Giaever [112, 113] in 1961. Subsequently, it
was extended to surface studies, mainly through inelastic tunneling spectroscopy
[114]. Seminal advance to this field was made by Gert Binning and Heinrich Roher
who developed the scanning tunneling microscope (STM) in 1981, and who were
awarded the Nobel prize in physics in 1986 for this endeavour [115, 116] (note:
The designation “STM” is subsequently used interchangeably to denote “scanning
tunneling microscope” and “scanning tunneling microscopy”). Image acquisition
with STM technique introduces resolutions up to 0.1 nm in lateral direction and up
to 10 pm of hight resolution [117], which makes scanning tunneling microscope
an excellent tool for visualizing surfaces at the atomic level, where also individual
atoms at the surface of the material can be manipulated. Further advantages of
STM include the fact that it can be used in a wide temperature range (from nearly
0 K up to over 1000 K) and it works in different ambients, such as ultra-high
vacuum, air, water, various liquids and gasses.

Scanning tunneling microscope consists of a sharp conducting tip, whose apex
can be a single atom, mounted on a piezoelectric tube. The tip is in charge of
image acquisition pixel by pixel, where piezoelectric stylus, biased from external
voltage source, is responsible for shifting the tip from one pixel to another in ex-
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Figure 3.7: Scanning tunneling microscope (STM). (a) Schematic description of
the STM. A tip with an apex of a single atom width is mounted on a piezoelec-
tric stylus which scans the sample. Tunneling current is controlled with external
voltage, and the output signal is shown on the display. (b) Image of the vortices
in a superconducting film obtained by STM (figure taken from Ref. [118]). (c)
Manipulation of the vortices with an STM tip, where vortex clustering is caused by
local heating due to tunneling current (figure taken from Ref. [119]).

tremely subtle and accurate manner [shown in Fig. 3.7(a)]. The piezo-tube also
controls the distance between the tip and the surface of the material, and it can
be used for scanning in so-called constant height mode, appropriate for atomically
flat surfaces. The underlying physical basis of the STM is electron tunneling occur-
ring between the apex of the conducting tip of the microscope (first electrode) and
the conducting surface of the material (second electrode), separated by sufficiently
thin insulating layer, or in physical terms, potential barrier. Fundamental to the
operation of the STM is the extreme sensitivity to tip-surface distance of the tun-
neling current. The tunneling current decreases by roughly an order of magnitude
for every increase in height of 0.1 nm, in which case the effective diameter of the
filament through which the current tunnels decreases to atomic scales [120]. In this
way individual atoms of the material surface can be resolved and displayed, so that
the material landscape is recorded and reconstructed in an image of an atomistic
precision. Moreover, STM can scan the sample in constant current mode, where,
while scanning the surface, the height of the tip is adjusted in such a way that the
tunneling current is maintained constant. As the current is proportional to the local
density of states, the tip follows a contour of a constant density of states during

67



Chapter 3

scanning. A kind of a topographic image of the surface is generated by recording
the vertical position of the tip. However, STM images do not only display the ge-
ometric structure of the surface, but also depend on the electronic density of states
in the specimen, as well as on characteristic interactions between the tip and the
sample which are not completely explained to date.

In superconductivity, STM can provide high-resolution imaging of vortex mat-
ter, where the output signal displays the contrast between normal electrons and
Cooper pairs, as is shown in Fig. 3.7(b) (figure taken from Ref [118]). In this man-
ner, the position of vortex cores can be easily seen. Additionally, scanning tunnel-
ing spectroscopy can be utilized to influence the individual vortices. By sweeping
the external voltage, tunneling current can be used to locally suppress or recover
superconductivity, and thus pin/depin the vortex, as shown in Fig. 3.7(c) (figure
taken from Ref. [119]). In this way, one can create a dynamic pinning landscape,
which can be utilized to manipulate the motion of individual vortices.

3.3.2 Magnetic force microscopy

The study of magnetic forces at the nanometer scale has long been of interest
to investigators of magnetic recording materials, superconductors, and magnetic
nanoparticles, among others. The magnetic force microscope (MFM) is a device
where a sharp magnetized tip picks-up the magnetic signal of a specimen. Dur-
ing this procedure the tip-sample magnetic interactions are detected and used to
reconstruct the magnetic structure of the sample surface. This imaging technique
can achieve spatial resolution of the order of few tenths of nanometers. Image ac-
quisition with MFM usually requires sample-tip separation larger than several nm,
otherwise atomic forces become an important factor during the scanning procedure.

Scanning the sample is performed with piezoelectric tubes, that move either the
sample below the tip or the tip above the sample, in all three spatial dimensions.
External voltage is used to control the movement, and usually 1 V of potential
difference is enough to create displacement under 10 nm. Full image is obtained
by slowly scanning the surface of the specimen in a raster fashion. The tip itself
is located on one end of the cantilever, which is usually made of single-crystalline
silicon, silicon dioxide, or silicon nitride. The tip is coated with a thin film (of
thickness less than 50 nm) of magnetic material, as a form of shielding, so that
the magnetic state of the tip does not change during the imaging. As the sample
below the tip moves, its local magnetic landscape causes the cantilever to deflect in
lateral and vertical direction. An overview of this system is shown in Fig. 3.8(a).
The deflection of the cantilever is then measured and can be displayed for further
analysis and characterization.

Since the stray magnetic field from the sample can affect the magnetic state
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Figure 3.8: Magnetic force microscope (MFM). (a) Magnetic tip attached on one
end of the cantilever scans the magnetic landscape of the specimen. Motion of the
tip causes elastic deformation of the cantilever. Laser light is used to illuminate the
tip-carrying end of the cantilever. Deformation of the cantilever causes the light
to refract under a different direction, which is then detected on a photodetector.
After being detected, signal is processed and recorded on an external device. (b)
Image of vortex manipulation via MFM, where magnetic tip of the MFM is used
to arrange vortices into letters S and U (image taken from Ref. [102]).

of the tip, and vice versa, interpretation of the MFM measurement is not always
straightforward. For this reason it is quintessential to know all properties of the tip
with its exact geometry. An image taken with a magnetic tip contains information
about both the topography and the magnetic properties of a surface of the sample.
Which effect dominates depends on the distance of the tip from the surface, be-
cause the interatomic magnetic force persists for greater tip-to-sample separations
than the van der Waals force. If the tip is close to the surface, in the region where
atomic forces are dominant, the image will be predominantly topographic (AFM
mode). As the separation between the tip and the sample increases, magnetic ef-
fects become apparent (MFM mode). Collecting a series of images at different tip
heights is one way to separate magnetic from topographic effects.

The MFM can be used to image various magnetic structures including domain
walls, closure domains, recorded magnetic bits, etc. Furthermore, the motion of
domain walls can also be studied in an external magnetic field. The popularity of
MFM originates from several reasons. For one, the sample does not need to be
electrically conductive. Measurement can be performed at ambient temperature, in
ultra-high vacuum (UHV), in liquid environment, at different temperatures, and in
the presence of variable external magnetic fields. Measurement is not invasive to
the crystal lattice or structure. Long-range magnetic interactions are not sensitive
to surface contamination. No special surface preparation or coating is required.
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Deposition of thin non-magnetic layers on the sample does not alter the results.
Since vortices in type II superconductors carry magnetic field in their cores,

MFM can be used to image them, but also to influence their behavior due to the
magnetic interaction with the tip. In combination with imaging of the magnetic
landscape created by the vortices in superconductor, one can use magnetic tip of
the MFM to depin and drive individual vortices through the material, as shown in
Fig. 3.8(b) [102, 121]. Imaging the vortices before, during, and after the depinning
has great prospects for correlating pinning with topography, for determining the
pinning landscape directly, and for studying single-vortex dynamics.

3.3.3 Scanning SQUID microscopy

In the previous Section the magnetic force microscope which is capable of produc-
ing images of magnetic field on a microscopic scale was discussed. Magnetic im-
ages can reveal, for example, the location of electric currents flowing in a sample or
spatial variations in magnetic susceptibility. To be of general use, the microscope
must be capable of sensing very weak magnetic fields: most materials exhibit only
a weak magnetic susceptibility and many technologically interesting samples, such
as microelectronic circuits, carry relatively small currents [122]. The most sensi-
tive systems in the field of magnetometry make use of a low noise superconducting
quantum interference device (SQUID) [123, 124, 125]. Since SQUIDs are by far
the most sensitive detectors of magnetic flux and thus provide the best product of
spatial resolution and field sensitivity, they are a natural choice as a sensor for a
magnetic microscope. Though SQUID microscopy dates back to 1980, the first
scanning SQUID microscope was developed only in 1992 by Randall C. Black et
al. at the University of Maryland [122].

As the SQUID material must be superconducting, measurements must be per-
formed at low temperatures (typically 4.2 K, corresponding to liquid helium).
However, advances in fabrication of thin film high-temperature superconductors
have allowed relatively inexpensive liquid nitrogen cooling to be used instead. It
is even possible to measure room-temperature samples by cooling only high-Tc
SQUID and maintaining thermal separation with the sample [126]. The SQUID
itself is mounted onto a cantilever and operated just above the sample surface. The
position of the SQUID is usually controlled by some form of electric step-motor.
Operation of a scanning SQUID microscope consists of simply cooling down the
probe (and sample), and rastering the tip across the area where measurements are
desired. Detected field strength is then recorded by a system that also keeps track
of the position of the probe.

After its development, numerous applications for scanning SQUID microscopy
have appeared. In particular, scanning SQUID microscope can be used in the field
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Figure 3.9: Scanning SQUID microscope. (a) Experimental configuration of the
scanning SQUID microscope, taken from Ref. [127]. (b) Inset depicting vortices
arranged into capital letters B, I, and U. Vortices are attracted by the stress applied
with the tip of the SQUID by pushing the cantilever into the sample using scanning
SQUID microscope (data taken from Ref. [127]).

of superconductivity for both imaging of the magnetic landscapes of the vortex
matter and the mechanical control of individual flux quanta [127]. In the latter
case, by applying local vertical stress with the tip of the sensor, vortices can be
attached to the contact point, relocated, and stabilized at new position. In this
way, mechanical manipulation of vortices provides a local view of the interaction
between strain and nanomagnetic objects as well as controllable, effective, and
reproducible manipulation technique.

3.3.4 Low temperature scanning laser microscopy

Techniques that provide insight in spatial distribution of superconducting proper-
ties in thin superconducting films are pivotal for both fundamental and applied
science. Probing on such level provides the means for studying the resistive state
of superconducting films, and as well the control of the operation of superconduc-
tive circuits and devices. With discovery of high Tc superconductors significance
of these techniques has rapidly grown, since the properties of such materials often
show inhomogeneous nature. One such technique is the low-temperature scanning
laser microscopy (LTSLM) [128, 129]. LTSLM can be readily used at high mag-
netic fields.

The technique is based on a simple principle of scanning a sample with a laser
beam (probe) focused on a sample surface, with a simultaneous recording of the
response of the specimen (shown in Fig. 3.10(a)). A change in any characteristic
of the sample or the probe, arising as a result of their local interaction, may serve
as a response signal. In the case of a current-carrying superconducting film it is
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Figure 3.10: Low temperature scanning laser microscopy (LTLSM). (a) The con-
cept of vortex attraction in a thermal gradient induced by a laser spot is illustrated,
based on Ref. [130]. Magneto-optical imaging of individual vortices is based on
the Faraday rotation of light polarization (PBS - polarizing beam-splitter, CCD -
charge-coupled device). Local heating of the film is performed with a tightly fo-
cused continuous wave laser. Vortex imaging is performed by moving the laser
beam with galvanometric mirrors (GM) placed in a telecentric system (TS). Exam-
ple of vortex manipulation by LTLSM: (b) Distribution of vortices prior to LTSLM.
(c) Final vortex distribution, after the manipulation by LTSLM. Dark blue square
area is the part of the sample where the vortices were removed from by the laser.
Bright yellow spot represents vortices that vacated the square area.

convenient to choose as a response signal the change in the voltage drop across the
sample that arises due to the change in the resistance at the irradiated spot. The
voltage response dependence on the probe coordinates at the sample surface can be
visually represented as a two-dimensional image of resistive domains.

The change in voltage due to the illumination of a current-loaded supercon-
ductor is caused by a considerable number of mechanisms which can be divided
into two classes: equilibrium (bolometric) and nonequilibrium (nonbolometric)
mechanisms. The effects of the first class are displayed in the resistance change
due to the lattice heating, mainly caused by low-energy phonons. Non-equilibrium
mechanisms are related to the pair-breaking process by photons. This process is ac-
companied by high energy quasi-particle formation and involves non-equilibrium
effects produced by electrons, phonons and Josephson effects at grain boundaries
in the film.

LTSLM provides the opportunity to carry out the spatial resolved measure-
ments of the superconducting films and phase transitions in high magnetic fields,
or to investigate a local pinning and photo-induced creep of magnetic flux (deter-
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mining the current-carrying capacity of superconductors) which is very important
for the power applications. LTSLM in nonbolometric regime can be used also for
dynamical manipulation of individual vortices [130]. In this mode a tightly focused
laser beam induces a strong thermal gradient that can be used to manipulate single
flux quanta [see Fig. 3.10(b) and (c)]. The laser locally heats the superconductor
and creates a hot-spot of the size comparable to the vortex core, with a tempera-
ture rise in the Kelvin range, while keeping the temperature below Tc. The large
thermal gradient can easily be tuned with laser power, so that the generated ther-
mal force overcomes the pinning potential and induces a vortex motion towards
the laser focus. Therefore, the laser beam acts as an optical tweezers that cap-
ture and can move single flux quanta to any new desired position in a disordered
superconductor.

3.4 Vortex velocimetry

An important development of recent years has been the investigation of the dy-
namic behavior of magnetic flux structures and the discovery of the intimate con-
nection between vortex motion and the transport properties of superconductors
[131]. Usually, the experimentally studied device consists of a superconducting
film with a magnetic field applied perpendicular to broad surfaces. Motion of the
flux quanta can be induced by the driving force of an electric current. The dy-
namics of flux quanta becomes important in various technological applications of
superconductivity. Pertinent to the dynamics of type II superconductors is the ve-
locity at which flux quanta move, since it often must be parametrized in fluxonic
devices, and is directly related to power dissipation. There are several available
methods used to estimate vortex velocity, and in the following text some of them
are briefly summarized.

3.4.1 Transport measurements

The transport measurements in superconductivity consist of a set of techniques
used for quantification of superconducting properties in the presence of electri-
cal current. Such techniques include measuring the normal state resistance as a
function of the temperature, measurement of superconducting-normal state phase
boundary, the magneto-resistance characteristic and the current-voltage character-
istic. In the presence of magnetic field, transport measurements can be useful for
characterization of vortex velocities. From measurement of the average voltage
(the current-voltage characteristic), for example, one can extract the information
about the average vortex velocity, as v = U/BL (L being the distance between
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the contacts where the voltage U is measured) [132]. In order for this voltage-
velocity conversion to be justified, several conditions must be considered, all of
which guarantee uniform distribution of local vortex velocity [133]. First of all,
only the rectangular and square geometries should be taken into account for the
velocity measurements, since any constriction that can cause current-crowding in
the sample will lead to a velocity gradient, which can significantly deviate from the
average value. Furthermore, specimen must exhibit weak intrinsic pinning, where
the pinning density gradient can be neglected. Finally, linear voltage-velocity re-
lation is only applicable in the regime of flux flow, found in a certain range of low
currents, and which breaks down at the onset of higher dissipative states. From
this type of velocity measurements, it can be concluded that during the flux flow
Abrikosov vortices move with average velocities of the order of few hundreds of
m/s [134].

3.4.2 Corbino setup

The Corbino configuration is a type of transport measurement where a supercon-
ducting disk is exposed to electric current injected at the center of the disk and
removed at the perimeter [135]. If magnetic field is applied perpendicularly to the
sample surface, due to the azimuthal direction of the driving force, vortices will
move in concentric circles of radii r, with common axis located in the center of
the disk. A schematic of this setup is shown in Fig. 3.11. Due to the geometry
of the setup, radial current density, J , decays as 1/r. In the absence of in-plane
vortex-vortex correlations each vortex moves independently with a radial veloc-
ity proportional to the radial current density, v ∝ J ∝ 1/r. However, if over
some length scale the in-plane vortex motion is correlated, one expects to detect a
deviation from the 1/r velocity distribution. To spatially resolve the radial depen-
dence of the vortex velocity and the length scale of the vortex-vortex correlation,
multiple voltage contacts are typically introduced into the sample, at equidistant in-
tervals along the disk radius. Note that these voltage contacts are used to obtain the
information about local vortex velocity in the same fashion as done in the transport
measurements for vortices collectively in the flux-flow regime (see Section 3.3.1).
In this way, the control of the driving force gradient and the measurement of the
spatial dependence of the velocity response provide a uniquely powerful combina-
tion for measuring fundamental properties as the shear modulus of the solid, the
shear viscosity of the liquid, and the nature of plastic motion. Moreover, due to the
gradient of the current density, one should expect the appearance of different vor-
tex phases (including structures with a characteristic core elongation of vortices,
usually observed at higher dissipative states, where such phenomena as Larkin-
Ovchinninkov instabilities dominate [136]). Therefore, the Corbino setup allows
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Figure 3.11: Corbino setup. Disk-shaped superconductor of radius r is exposed
to magnetic field, B, perpendicular to the sample surface, and to transport current
density, J , injected at the center of the disk and removed at the perimeter. Current
density weakens radially from the center, which is indicated by arrows of decreas-
ing size and with red color gradient. Such configuration forces the vortices present
in the sample to move in circular orbits (indicated with green dashed lines), but
with a gradient of velocities (v1, v2, and v3). Voltage measurement contacts are in-
troduced in the sample, so the distribution of vortex velocities could be measured.

one to measure relative vortex velocities, thus giving deeper insights into vortex
zoology, without direct imaging of the vortex matter.
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Vortex matter under current
lensing

The exact dynamics of current-driven vortex matter is of major importance both for
the comprehension of the fundamental collective behavior of strongly interacting
vortices and for attaining high non-dissipative currents in superconductors for ap-
plications. Materials advances in e.g. incorporating artificial pinning centers that
immobilize vortices, particularly oxide nanoprecipitates in cuprates, have enhanced
the critical current densities Jc between 10 and 20 percent of the depairing current
density JDP at which the superconducting state breaks down [96, 137, 138]. At
such high current densities J , once a vortex gets depinned from a defect, it can
move with high velocity v and dissipate heat. Understanding the details of this
process is critical for many applications, such as high-field magnets [139], su-
perconducting digital memory, and qubits [140], THz radiation sources [141], or
resonator cavities for particle accelerators [142]. Yet, little is known about what
happens to a vortex driven by very strong currents at the depairing limit J ∝ JDP
and what is the maximal terminal velocity a vortex can reach. Moreover, the funda-
mental question as to whether the notion of a moving vortex as a stable topological
defect [72, 107] remains applicable at ultrahigh velocities has not been explored.

At high current densities with J � Jc the effect of the disorder-induced pin-
ning force diminishes and the resulting velocity of a vortex v is mainly determined
by the balance of the driving force per vortex unit length (∝ Φ0J) and the viscous
drag force, Fd = η(v)v [72, 107, 144]. At small v the viscous Bardeen-Stephen
drag coefficient, η0 ∝ Φ2

0σn/2πξ
2, results from dissipation in a circular, non-

superconducting vortex core of radius r ≈ ξ. Since the current density is limited
by the depairing value given in Eq. 3.1, at which the speed of the superconducting
condensate reaches the pair-breaking velocity vDP = ~/πm∗ξ [72], the maximal
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vortex velocity can be extrapolated to vc = Φ0JDP /η0 = ξ/2µ0λ
2σn [142]. For a

Pb film with λ = 96 nm and ξ = 46 nm at T = 4.2 K, and σn ≈ 50 MS/m [143],
one obtains vDP = 0.4 km/s and vc ≈ 40 km/s, which suggests that the vortex
could move at a velocity that is two orders of magnitude higher than the maximal
drift velocity of the Cooper-pair condensate. A vortex moving much faster than the
perpendicular current superflow which drives it raises many fundamental issues.
What is the maximal terminal velocity that a single vortex can actually reach and
what are the mechanisms that set this limit? Does a vortex remain a well defined
topological defect even under the extreme conditions of the strongest possible cur-
rent drive? Does the superfast vortex matter form dynamic patterns qualitatively
different from the conventional flux flow at low velocities? Some of these issues
have been studied theoretically, in a limiting case for temperatures very close to
Tc [94, 132, 144, 145, 146, 147]. Since suitable theoretical frameworks for ex-
ploring the extreme dynamics of superfast vortices at low temperature have not
yet been developed, the role of the experiment becomes paramount. However, ad-
dressing the physics of fast vortices experimentally is extremely challenging. For
instance, inferring the terminal velocity vc from the conventional measurements of
dc voltage-current characteristics [132, 147, 148, 149] is rather indirect because it
assumes that all vortices move with the same constant velocity, which is not the
case, as will be shown later in this Chapter. Therefore, a local probe capable of
tracing vortices moving at supersonic velocities is required. A number of methods,
including STM [150, 151, 152], MFM [121, 153], magneto-optical imaging [154],
SQUID microscopy [127], and scanning Hall magnetometry [155, 156, 157] have
been employed to image slowly moving vortex structures, but none of them could
resolve the properties of high-speed vortices.

In this Chapter the gTDGL framework was employed to treat the superfast vor-
tex matter under current lensing in the specimen with a geometrical constriction
[158]. In order to achieve thorough understanding, this theoretical treatment was
supplemented by a novel experimental approach based on SQUID on tip (SOT)
technique, where a nano-scale SQUID resides on the apex of a sharp tip [159],
thus providing with high spatial resolution magnetic imaging [160, 161], reach-
ing single-spin sensitivity [159] and enabling detection of sub-nanometer vortex
displacements [143]. In this work the theoretical gTDGL framework succeeds in
interpreting the first direct microscopic imaging of superfast vortices under current
densities approaching the depairing limit. Results of the numerical simulations
not only successfully reproduce the experimentally revealed vortex velocities up to
tens of km/s, cascades of striking branching instabilities, and dynamic transitions
in the moving vortex matter, but also surpass the limit of the current experiment
and predict some more subtle states of the vortex matter. Comprehension of the
fundamental vortex properties under these extreme, previously unexplored condi-

78



Vortex matter under current lensing

tions may have implication beyond academic curiosity as a source of low-power
high-frequency electromagnetic waves.

4.1 Geometric constriction

The geometry of the specimen plays a crucial role in the overall interplay of present
currents and the dynamics of the superconducting condensate. In Chapter 3 the be-
havior of the supercurrent density J resulting from the combination of screening
and bias currents was discussed (Fig. 3.3). Since the superconducting bridge con-
sidered there was uniform and rectangular, anywhere along the specimen (but far
away from the contacts where the current is injected) the transport current density
profile taken across the sample remains the same and homogeneous. Homogeneity
of the current density profile somewhat changes in the presence of magnetic field,
which induces the circular Meissner-Ochsenfeld currents that break the symmetry
in the profile of J measured across the bridge.

However, if the geometry of a specimen is no longer uniform, and a constriction
is introduced so that a current flow experiences a bottleneck, subsequent change in
the distribution of the current density dramatically modifies the behavior of the con-
densate. Since the continuity of the current flow cannot be violated, one concludes
that as the current approaches closer to the bottleneck, its density must increase,
with the peak in the narrowest point of the isthmus. This causes the current stream-
lines to crowd (therefore the name of the effect as current crowding [162]), as illus-
trated in Fig. 4.1. Current crowding is not exclusively related to superconductors,
since it arises in every current-carrying system with inhomogenous distribution of
current density. It is usually regarded as detrimental effect, due to the limits it
imposes in the efficiency of an electrical device, causing unwanted heating in the
system and thus faster deterioration of the material [163].

One should bear in mind, however, that current crowding is not necessarily a
problem. Especially in superconductors, current crowding translates into an inho-
mogeneous current density distribution, bound to lead to a plethora of novel effects.
In particular, one can consider how the current lensing due to geometrical features
affects the motion of the vortices. For this purpose, a sample of length 5.7 µm
and width 5 µm, with a central constriction of width 2.8 µm [see Fig. 4.2(a)] is
simulated. The course of the simulations goes hand-in-hand with the experiment
performed on the Pb film with thickness d = 75 nm and Tc = 7.2 K, patterned into
a 10 µm-wide microbridge with a central constriction of width w = 5.7 µm [see
Fig. 4.2 (b)]. Although the simulated specimen was taken twice smaller than the
experimental one, it still represents a formidable numerical effort on a∝ 103×103

two-dimensional spatial mesh. Full form of the model used for this theoretical
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Figure 4.1: Current crowding. In (a) a rectangular superconducting bridge is
shown, where the current I is applied from left to right side of the specimen.
Since no constriction is imposed upon such geometry, current density Ja is ho-
mogeneous, with straight current streamlines, denoted with dashed yellow lines.
However, if a constriction is made, as shown in (b), Ja attains inhomogeneous
distribution, indicated by color gradient. Furthermore, current streamlines (yellow
dashed lines) crowd inside the constriction, with highest density of crowding at the
isthmus of the bridge.

treatment consists of Eqs. 2.42, 2.44, and 2.45 (with corresponding boundary con-
ditions at SI and SN interfaces described in Section 2.2.3). The simulated system
was treated in the high-κ regime. Because of this, the gauge ∇Q = 0 is selected
for Eqs. 2.42 and 2.44. The parameter Γ̃ is set to 100 as an order of magnitude
estimate for Pb, which was the material used in the experiment. The simulations
were implemented using a finite-difference method, on a Cartesian map with a
dense grid spacing of 0.1 ξ(0), where the geometry of the experimental specimen
is reproduced based on the SEM image. The gTDGL simulations are taken in the
limit of a model of superfast vortices driven by strong current densities J � Jc, for
which the disorder is neglected. In what follows, the experimental data is presented
first, in order to set the direction for the simulations.

In the selected geometry and perpendicular magnetic field, vortices only pen-
etrate in the narrowest part of the bridge, which greatly reduces heating. Imag-
ing of the local magnetic field B above the film surface at 4.2 K was done using
a 228 nm diameter SOT incorporated into a scanning probe microscope. Figure
4.3(a)-(d) [where panel (a) corresponds to a zoom-in of the vortex region in a
three-dimensional representation shown in the panel (b)] shows the distribution
of vortices in the strip after field-cooling in Ba = 2.7, 5.4, and 9.0 mT, which
display a disordered vortex structure pinned by material defects. The observed vor-
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Figure 4.2: Overview of the system. (a) Simulated specimen of the size 5.7 × 5
µm2 with a 2.8 µm wide constriction. (b) 3D representation of a 10 × 5 µm2

AFM scan of the 75 nm-thick Pb film patterned into a 10 µm-wide strip with a 5.7
µm wide constriction. Indicated are the directions of the applied magnetic field
Ba, current I , the driving Lorentz force acting on vortices FL, and the screening
current density JM that is maximal along the edges. (c) SEM image of the same
sample with corresponding distribution of the Meissner current JM (x) across the
construction, in absence of vortices and applied current. Scale bar is 2 µm.

tex density is not uniform, as one may expect under field-cooling conditions, but
has a dome-shaped profile with a maximum in the center surrounded by vortex-
free bands along the edges. This is the result of the geometrical barrier [164],
which is strikingly demonstrated here with single-vortex resolution. Unlike a bulk
superconductor in which the screening currents flow in a narrow layer of thick-
ness λ at the surface, in a thin film strip of width 0 < x < w and thickness
d � w in perpendicular field Ba, the shielding current density in the Meissner
state JM (x) = Ba(w − 2x)/(dµ0

√
x(w − x)) varies over much larger scales and

decreases slowly as JM (x) ∝ x−1/2 and JM (x) ∝ −(w − x)−1/2 away from the
left and right edges, respectively [Fig. 4.2(c)]. These currents push vortices into
the central part of the strip, where they form a magnetic flux dome surrounded by
vortex-free regions [164, 165, 166]. The vortex-free region shrinks withBa as seen
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Figure 4.3: Magnetic imaging of stationary and fast moving vortices in Pb film at
4.2 K. (a)-(d) B(x, y) SQUID-on-tip images of vortex configurations at I = 0 for
different values of applied field Ba = 2.7 (a),(b); 5.4 (c); and 9.0 mT (d). (e)-(h)
Images acquired at the verge of vortex motion at I . Ic, at Ba = 2.7 mT and
I = 16mA (e),(f); Ba = 5.4 mT, I = 12.2 mA (g); and Ba = 9.0 mT, I = 6.0
mA (h). (i)(l) Images of onset of vortex flow at I & Ic at Ba = 2.7 mT, I = 18.9
mA (i),(j); Ba = 5.4 mT, I = 12.4 mA (k); and Ba = 9.0 mT, I = 9.1 mA
(l). (m)(p) Vortex flow patterns at the highest sustainable current with Ba = 2.7
mT, I = 20.9 mA (m),(n); Ba = 5.4 mT, I = 16.2 mA (o); and Ba = 9.0 mT,
I = 11.8 mA (p). The color scale represents the out-of-plane field B(x, y) with
span of 1.8 (b), 2.5 (c), 3.0 (d), 2.9 (f), 3.2 (g), 3.4 (h), 3.1 (j), 3.4 (k), 3.4 (l), 3.1
(n), 3.6 (o), and 2.8 mT (p). All 2D images are 12×12 µm2, with pixel size of 40
nm, and acquisition time is 240 s/image. The scale bar is 3 µm. The top row shows
zoomed-in 3D representation ofB(x, y) in the corresponding dashed areas marked
in the second row.
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in Fig. 4.3.

4.2 Vortex dynamics

The vortex-free regions observed in Fig. 4.3(a)-(d) have important effect on vor-
tex dynamics in the presence of transport current. As the applied current I is in-
creased, the sum of transport and shielding current densities J(x) increases at the
left edge (x = 0) and decreases at the right edge (x = w). As a result, the vor-
tex dome shifts towards the right edge and the vortex-free region at the left edge
expands [164, 167], as shown in Fig. 4.3(e)-(h) [where panel (e) is, once again, a
3D zoom-in of the vortex region shown in the panel (f)] for I ≤ Ic. At the critical
current I = Ic, the current density at the left edge approaches the depairing limit
J(x = 0) = JDP , and the flux dome reaches the right edge where J(x) vanishes,
so that the conditions for the onset of vortex motion are met. Here, the critical state,
revealed with a single-vortex resolution, is dominated by the geometrical and ex-
tended surface barriers [164, 165, 166, 167, 168], and has two essential differences
as compared to the continuum, pinning-dominated Bean critical state [169, 170].
First, unlike the Bean state in which the vortex density is highest at the penetration
edge of the sample, Fig. 4.3(e)-(h) shows zero vortex density at the penetration
side (left). Second and most importantly, in the Bean model at I = Ic the current
density equals Jc across the entire sample, whereas this thin film bridge is sepa-
rated into two distinct regions clearly seen in Fig. 4.3(f). In the left vortex free
region, J significantly exceeds the critical current density, Jc < J < JDP , and
no stationary vortices can be present [164, 165, 166, 167]. In the right half where
0 < J ≤ Jc vortices are pinned. It is this unique inhomogeneous current state
which allows one to investigate dynamics of superfast vortices driven by high lo-
cal current densities, that cannot be done by global transport measurement in bulk
samples. Here, the penetrating vortices can be subjected locally to extremely high
current densities J � Jc at the edges while the net current is only slightly above
the critical, I ≥ Ic and heating is weak.

The stationary pattern of vortex channels shown in Fig. 4.3 seems counterin-
tuitive since vortices repel each other and should therefore disperse over the film.
Moreover, each stem grows into a tree through a series of subsequent bifurcations
but the branches of different trees do not merge. In order to keep vortices within
each channel a mechanism for dynamic alignment of fast moving vortices must be
present. One such mechanism is that a rapidly moving vortex leaves behind a wake
of reduced order parameter which attracts the following vortex. As a result, a con-
fined chain of vortices in a self-induced channel of reduced superfluid density can
be formed, as it was observed previously in numerical TDGL simulations [94, 132]
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at high currents, J ∼ JDP , and T ≈ Tc. As discussed below, this mechanism ap-
parently becomes dominant at velocities substantially higher than those accessible
in our experiment.

At this point the experimental results are complemented with the gTDGL simu-
lations in the very limit of a model to address superfast vortices emerging at current
densities above Jc. The simulated Cooper-pair density |χ(x, y)|2 shown in Fig.
4.4(a) reproduces the main features of the SOT images at I ≤ Ic, namely vortices
displaced to the right edge and a pronounced vortex-free region along the left edge.
Notice that in the absence of disorder, the stationary vortices in Fig. 4.4(a) form an
ordered structure within a smooth confining potential of the geometrical barrier, in
contrast to Fig. 4.3(f) which shows a disordered vortex configuration determined
by pinning in the right-hand side of the sample where J < Jc. At I = Ic the
calculated current density J(x) shown in Fig. 4.4(b) reaches the depairing limit
JDP at the left edge of the constriction and vanishes at the opposite edge.

At I > Ic vortices start penetrating through the left edge and move along a net-
work of preferable paths forming a branching tree with an overall shape determined
by the bridge geometry. The vortex chains are curved on larger scales [Fig. 4.4(e)]
due to the lensing effect of the current distribution in the constriction, which tends
to orient the vortex chains perpendicular to the local current J(x, y). The calcu-
lated vortex flow pattern is similar to the SOT image in Fig. 4.3(j) and also exhibits
the coexistence of moving and stationary vortices as observed in Fig. 4.3, where
bulk pinning further hampers the motion of remote vortices. The Copper-pair den-
sity averaged over the simulated period of time shows a non-uniform distribution
along the vortex channels [Fig. 4.4(c) and (e)], with distinct bright spots of reduced
Cooper-pair density indicating that the vortex velocity varies non-monotonically
along the channels. The bright spots describe the regions where the vortices slow
down or even stop momentarily, giving rise to vortex crowding. Similar features
of the magnetic field along the channels are observed in Fig. 4.3(i)-(p). Such vor-
tex “traffic jams” can be understood as follows. A vortex penetrating from the left
edge slows down as it moves along the channel since the driving current J(x, y)
decreases across the strip. The subsequent penetrating vortices move along the
same trajectory, causing jamming in the regions where vortices slow down. The
resulting mutual repulsion of vortices either pushes them further along the chan-
nel, where vortices speed up due to attraction to the right edge of the strip, or causes
bifurcation of the channel into branches.

The fact that there is a single entry point for a vortex and several exit points
implies that the penetration frequency per stem is higher than the exit frequency
per channel. Figure 4.4(d),(f) shows snapshots of vortex motion at different ap-
plied currents, with arrows proportional to the instantaneous velocities of vortices
right after penetration of a new vortex. One finds that the periodically-entering vor-
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Figure 4.4: TDGL simulations of stationary and fast moving vortices at the ex-
perimentally accessible velocities. (a) Calculated Cooper-pair density |χ(x, y)|2
of a stationary vortex configuration at applied current density and magnetic field
corresponding to the experimental conditions in Fig. 4.3(f). (b) Corresponding
distribution of the supercurrent density |J(x, y)/JDP | in the sample showing edge
currents in the constriction reaching JDP at the verge of vortex penetration. The
black arrows point to the local direction of the current. (c) Time-average of the
Cooper-pair density over 5 × 104τGL at I = 1.05Ic, revealing branching vortex
trajectories coexisting with adjacent stationary vortices. (d) Snapshot of moving
vortices in (c) with arrows denoting the relative displacement of each vortex fol-
lowing an entry of a new vortex into the sample. (e),(f) Same as (c),(d) but at
highest applied current before an additional stem is formed. The scale bar in a is 1
µm.
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tices take alternating routes at the bifurcation points due to interactions with other
vortices, which slow down further after the bifurcation.

4.3 Extreme vortex velocity

The precise information about the velocity of individual vortices seen in Fig. 4.4(d),
(f) can be obtained from the simulations, from the calculated evolution of the
Cooper-pair density in time. For this purpose one must devise a particle-tracking
algorithm, where the position of the vortex core center in an arbitrary geometry can
be detected as a function of time (see Appendix A for additional explanation of the
algorithm). Recording of the velocity was performed over a long time exposition
[5 × 104τGL(0)], which guaranteed that multiple vortices pass through the same
stem (Nvortices ≈ 100), and thus provide enough statistical data. These results are
presented in Fig. 4.5(a).

In the experiment, the velocity was obtained from simultaneous measurement
of the voltage-current characteristics and state of the art SOT imaging. At a given
magnetic field, the onset of finite voltage coincides with the appearance of the first
vortex channel as the current exceeds a critical value Ic that decreases with the
magnetic field. Figure 4.5(b) shows the measured voltage drop on the bridge (left
axis) along with the number of vortex stems n observed by SOT imaging (right
axis) vs. current at 2.7 mT. The appearance of each subsequent stem in Fig. 4.5(b)
matches a step in the voltage and a change in the differential resistance dU/dI .
Linear fits to the data (dashed) show a roughly twofold increase in dU/dI , from
13.9 mΩ for one stem to 25.1 mΩ for two stems. For a given number of stems
n, the vortex penetration frequency f in each stem is given by the Faraday law,
f = U/nΦ0. Figure 4.5(c) shows that the penetration frequency jumps from zero
to 3.7 GHz at the formation of the first stem. As the applied current increases, f
rises to 15.3 GHz and then drops abruptly to 9.1 GHz upon the formation of the
second stem.

Vortex conservation requires that f = U/nΦ0 remains constant along the
stem up to the bifurcation point, so that the vortex velocity along the stem is
given by v(x) = fa(x), where a(x) is the local average intervortex distance.
The average field along a chain of vortices separated by a(x) is given by Bav =∫∞
−∞Bv(u)du/a(x), where Bv(u) is the magnetic field profile of an individual

vortex. By measuring Bav(x) along the stem and Bv(x) across an isolated sta-
tionary vortex, one thus obtains a(x) along a single stem, which is presented in
Fig. 4.5(d). Taking the penetration rate f from Fig. 4.5(c), one obtains the cor-
responding vortex velocity v(x) as shown in Fig. 4.5(e). The remarkable findings
seen here, both in the theoretical and experimental data, are the extreme values of
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vortex velocities of 10-20 km/s, much larger than the depairing superfluid velocity
vDP = 0.4 km/s estimated above.

These very high velocities measured in the experiment are attained at 0.5 <
x < 1.5 µm where the estimated current density is between 0.2JDP and 0.6JDP .
In the region x < 0.5 µm at the film edge, where even higher currents and vortex
velocities are possible, the utilized SOT technique cannot resolve the actual v(x)
as the vortex field Bv(x) close to the edge becomes partly extinguished by the
image vortex imposed by the boundary conditions [171]. In the simulations the
region where the velocity is measured is 0.25 < x < 1.5 µm, due to the fact that
already at x = 0.25 µm vortex core becomes unambiguously distinguishable. The
average vortex velocity in the stem can be estimated independently of the above
analysis by assuming the distance between the moving vortices to be of the order
of their mean stationary distance a = 1 µm from Fig. 4.3b (which is close to
a = (2Φ0/

√
3Ba)

1/2 = 0.94 µm) and taking the highest frequency of 15 GHz
from Fig. 4.5(c). This yields v = fa ≈ 15 km/s which is consistent with the
measured vortex velocities in both Fig. 4.5(a) and (d).

The mesoscopic chains of single vortices moving along stationary channels un-
der a dc drive are fundamentally different from transient dendritic flux avalanches
observed by magneto-optical imaging in increasing magnetic fields [172, 173, 174,
175, 176]. Those macroscopic filaments of magnetic flux focused in regions over-
heated above Tc can propagate with velocities as high as 150 km/s in YBa2Cu3O7

films at 10 K [174] or 360 km/s in YNi2B2C at 4.6 K [175]. Such thermomagnetic
avalanches are driven not by the motion of single vortices but by strong inductive
overheating caused by the fast-propagating stray electromagnetic fields outside the
film [176], unlike the correlated flow of quantized vortices reveled by here pre-
sented SOT imaging under nearly isothermal conditions. The mechanisms of chan-
neling and branching of fast vortices in our viscosity-dominated regime at J � Jc
are also different from the disorder-driven formation of networks of slower vortices
near the depinning transition observed in numerical simulations [177, 178].

Using the current density J(x) obtained from the simulations and v(x) ex-
tracted from the experimental data, one can obtain the vortex viscous drag co-
efficient η = 2.6 × 10−8 kgm−1s−1. This value of η is of the order of η0 =
Φ2

0σn/2πξ
2 = 10−8 kgm−1s−1 of the Bardeen-Stephen model, which indicates

no excessive changes in the structure of the Abrikosov vortex core even at ve-
locities of the order of 10 km/s. This conclusion is corroborated by the gTDGL
simulations in Fig. 4.5, which reproduce the channel bifurcations due to vortex
repulsion and the variation of the magnetic field along the channels due to vari-
ations in vortex velocity induced by disorder and vortex-vortex interactions. The
totality of the presented SOT and gTDGL results indicate that vortices maintain
their integrity as stable topological defects even at the observed extreme veloci-
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Figure 4.5: Ultrafast vortex velocity. (a) Vortex velocity from the simulations,
corresponding to Fig. 4.4(d) (green line) and (f) (blue line). Vortex velocity is
measured from the point x = 0.25 µm. Insets of the time-averaged Cooper-pair
density are provided with marked x axis to indicate along which line the vortex
velocity is measured. (b) Voltage across the bridge (blue) and the number of vortex
stems n (green) as a function of current at 2.7 mT. The red dashed lines are linear
fits with dU/dI = 13.9 mΩ in the single stem and 25.1 mΩ in double stem regions.
The insets show zoomed-in SOT images of single stem and double stem vortex
flow. (c) Vortex penetration rate f per stem vs. current I . (d) Spacing between
successive vortices a(x) along the stem from x = 0.5 µm up to the bifurcation
point at 2.7 mT at various indicated currents. Inset: SEM image of the sample
with marked x axis. (e) Corresponding vortex velocities v(x) along the stem, from
x = 0.5 µm up to the bifurcation point. 88
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ties, i.e. the magnetic field of a moving vortex does not deviate substantially from
that of a stationary Abrikosov vortex. In particular, one observes no evidence of
the transition of Abrikosov vortices into Josephson-like phase slip lines [179, 180]
extending across the bridge.

4.4 Dynamic vortex phases

Within the framework of gTDGL theory one can analyze even faster vortices,
beyond the experimentally accessible range of parameters, for which a signifi-
cant change in the internal vortex structure is expected. For instance, nonequi-
librium effects can give rise to a velocity dependence of η(v) and to the Larkin-
Ovchinnikov (LO) instability caused by diffusion of quasi-particles between the
vortex cores [136]. The LO instability results in jumps in the vortex velocity above
J > JLO ≈ η0v0/2Φ0 for which the force balance Φ0J = η(v)v at v > v0 is
not satisfied because η(v) = η0/(1 + v2/v2

0) decreases with v [136]. The LO or
overheating instabilities [74, 181], have been observed on various superconductors
with v0 ranging from 1 to 10 km/s [147, 148, 149].

Presented gTDGL calculations at twice higher current and field as compared
to those shown in Fig. 4.5 reveal three different types of vortices described in
Fig. 4.6. Far from the constriction region, J is lower and the moving vortices
[red dot in Fig. 4.6(a)] have a regular, nearly isotropic shape with no wake of
reduced order parameter behind them. Closer to the constriction, a chain of vortices
[marked by a black dot in Fig. 4.6(a)] is confined in a channel of reduced order
parameter. These faster-moving vortices are slipstreaming one another because

their velocity v exceeds a/τχ, where τχ = π~
√

1 + Γ̃2|χ|2/8kB(Tc − T ) is a
recovery time of the superconducting order parameter in the wake of the moving
vortex. The gTDGL simulations show that these vortices, moving in channels,
have elongated cores along the direction of motion, and their drag coefficient can
be approximated by the LO dependence ηLO(v) = η0/(1 + v2/v2

0) + ηi with
ηi ≈ 0.25η0 and v0 ≈ ξ/τχ ≈ 20 km/s for the given sample parameters, even
though the slipstreaming is not based on the quasi-particle tunneling at the base of
the LO effect. These anisotropic slip-streamed vortices can undergo a kinematic
transition to conventional vortices upon stem bifurcation which leads to additional
vortex slowdown, as marked by a blue dot in Fig. 4.6(a).

The most radical change in the structure of moving vortices occurs in the nar-
rowest part of the constriction, where J is maximal. Here, a channel with a signif-
icant reduction of the mean superfluid density appears, in which ultrafast vortices
[green dot in Fig. 4.6(a)] are moving with velocities that are 35 times higher than
the speed of slipstreamed vortices, as shown in Fig. 4.6(c). The ultrafast vortices in
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Figure 4.6: Different morphologies of ultra-fast vortices at velocities significantly
higher than observed in the experiment. (a),(b) A snapshot (a) and time-averaged
Cooper-pair density |χ(x, y)|2 (b) as in Fig. 4.4, but for twice higher applied
field and twice the current. Three vortex phases are found with distinctly dif-
ferent core structure, level of quasi-particle tailgating, velocities and resulting
kinematic trajectories, namely the extremely fast Abrikosov-Josephson vortices
(marked by green dot), the ultrafast slipstreamed vortices (black dot), and conven-
tional Abrikosov moving vortices (red dot). (c) Spatial profiles of vortex velocities
v(x) for the three main vortex phases, and for one detected branch of vortices go-
ing through an in-motion transition [dynamic transition from slipstreamed vortices
to conventional Abrikosov vortices, identified by a blue dot in (a)]. The scale bar
in (a) is 1 µm.

the central channel can be regarded as mixed Abrikosov-Josephson vortices similar
to vortices at grain boundaries [182, 183], in high-critical-current planar junctions
[184], or S/S’/S weak links [185]. The gTDGL results shown in Fig. 4.6(c) suggest
that Josephson-like vortices in these channels can move with velocities as high as
∼ 100 km/s, because the viscous drag coefficient η(v) in the channel is reduced
to just a few percent of η0 due to strongly elongated and overlapping vortex cores.
Spatial modulation of the order parameter between these vortices is rather weak
and effectively the channel behaves as a self-induced Josephson junction, which
appears without material’s weak link. Similar flux channels in thin films were
previously interpreted in terms of phase-slip lines [179, 180]. In the case of strong
suppression of the order parameter and weak repulsion of Josephson vortices which
extend over lengths exceeding 2λ2/d, the channel does not bifurcate as shown in
Fig. 4.6(a) and the magnetic field along the channel is nearly uniform. This fea-
ture of Josephson-like vortices appears inconsistent with the SOT observations of
vortex channels which always bifurcate and show noticeable variations of the mag-
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netic field along the channels. The SOT results thus indicate an essential effect
of intervortex repulsions and weak suppression of the order parameter along the
channel, consistent with the dynamics of Abrikosov vortices shown in Fig. 4.5.

Another interesting SOT observation shown in Fig. 4.3(n)–(p) is the nucleation
of additional stems of vortices as current increases. This effect can be understood
as follows. The first stem appears at I = Ic as the local current density J at the
edge of the constriction reaches JDP . As I increases above Ic, vortices start pen-
etrating at the narrowest part of the constriction in such a way that a counterflow
of circulating currents produced by a chain of vortices moving in the central chan-
nel maintains the current density J(y) < JDP everywhere along the curved edge
of the film except for the vortex entry point. This condition defines the spacing
a(I) between the vortices in the chain. However, above a certain current I > I1,
a single chain of vortices can no longer maintain J(y) < JDP along the rest of
the constriction edge, leading to nucleation of an additional stem as seen in Fig.
4.3(n). In addition, the edge roughness can affect the location and the dynamics
of stem evolution, favoring stem nucleation at points of local edge protuberances.
Actual details of the edge shape of experimental sample derived from the SEM
image have been incorporated into the gTDGL simulations, resulting in the ob-
served asymmetry between the vortex channels in the upper and lower parts of Fig.
4.6(a),(b).

As the magnetic field increases, the width of the vortex-free region near the
edges and vortex velocities decrease. Figure 4.3 shows how dissipative vortex
structures evolve from a few mesoscopic chains and branches sustaining extremely
high vortex velocities at low field [Fig. 4.3(j), (n)] to a multi-chain structure with
much lower vortex velocities at higher fields [Fig. 4.3(l), (p)]. Remarkably, the
vortex channeling is preserved even at high fields that would usually be associated
with the conventional flux flow of the Abrikosov lattice. The dynamic structure
revealed in Fig. 4.3(p), in which vortices move in parallel channels, appears con-
sistent with the predictions of the moving Bragg glass theory [186], thus providing
microscopic evidence with a single vortex resolution for the existence of this dy-
namic phase.

In conclusion, this work uncovers the rich physics of ultrafast vortices in super-
conducting films and offers a broad outlook for further experimental and theoreti-
cal investigations. By proper sample design and improved heat removal it should
be possible to reach even higher velocities for investigation of non-equilibrium
instabilities [74, 136, 147, 148, 181, 187]. Our detection of vortices moving at ve-
locities of up to 20 km/s, significantly faster than previously reported, strengthens
the recently renewed appeal of vortex-based cryogenic electronics [188]. The ob-
served frequencies of penetration of vortices in excess of 10 GHz may be pushed
to the much technologically desired THz gap in the case of dynamic Abrikosov-
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Josephson vortex phases. This work shows that the SOT technique can address
some outstanding problems of nonequilibrium superconductivity and ultrafast vor-
tices in type II superconductors as well as dynamics of the intermediate state in
type I superconductors on the nanoscale. These issues can also be essential for
further development of superconducting electronics, opening new challenges for
theories and experiments in the yet unexplored range of very high electromagnetic
fields and currents.

The results of this Chapter were published in Ref. [158].
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Vortex matter under a dynamic
pinning potential

As stated in previous Chapters, a type-II superconductor can allow penetration
of external magnetic field in terms of quantized filaments of magnetic flux inside
which superconductivity is locally depleted, namely vortices. The whirl of super-
conducting current around this topological defect interacts with an applied electric
current causing the motion of vortices in a manner analogous to the Lorentz force
[189]. Unfortunately, this dissipative motion results in progressive Joule heating
and quenching of superconductivity.

Over the past decades, the main strategy to prevent (or at least decrease) the de-
scribed energy dissipation was to artificially anchor the vortices, using specifically
designed arrays of pinning centers. In that respect, many alternatives were em-
ployed - e.g. pinning centers produced by irradiation with heavy ions [96], chem-
ically grown defects [98], nanostructured perforations [99], or permanent nano-
magnets [100]. Regardless of the exact nature of pinning, the common idea has
always been to create a spatial inhomogeneity in the superconducting condensate,
i.e. locally suppress superconductivity on a scale comparable to the size of the
vortex core. If then a periodic arrangement of the pinning centers is made, the
superconductor can sustain a particularly high critical current at so-called match-
ing fields, where the ideally homogeneous lattice of vortices is interlocked with
the periodic lattice of the pinning centers [190, 191]. Properties of such periodical
pinning landscapes have been extensively investigated in the literature, with partic-
ular attention on the appearance of resonant features in the presence of the ac force
[192, 193, 194, 195, 196].

Previously, all used pinning strategies involved an energy landscape imposed
on permanent basis - i.e. neither its intensity nor its spatial distribution could be
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further modified. The question arises - how would a dynamic pinning landscape
affect the superconducting properties? Clearly, the added degrees of freedom in
terms of frequency and strength of the pinning, as well as its possible mobility and
speed, next to its spatial geometry, could trigger new phenomena unattainable with
static pinning. Such a study is not only interesting but also timely, since dynamic
and highly controllable pinning potential can now be achieved, for instance, by
inhomogeneous light distribution (created by arrays of lasers [197] or plasmonic
nanostructures [198, 199, 200]) or by intensity modulation of the laser light.

Since several different phases of a resistive state of superconducting thin films
in an external magnetic field and applied transport current can arise due to dissipa-
tive motion of vortices [201, 202], one finds that it is paramount to study more care-
fully the dynamic phenomena in type II superconductors. While the Abrikosov vor-
tices retain their cylindrical core [see, for example, Fig. 4.4(d),(f)], it has been the-
oretically shown that vortices traveling at high velocities exhibit core deformation
and tailgating of quasi-particles (for recent studies of the behavior of vortex core
quasi-particles under applied current see Refs. [203, 204]), due to which moving
vortices tend to align and connect to the wake of the preceding vortex [94]. As seen
in Fig. 4.6, several types of elongated vortices may exist, where most notorious are
the vortices with extreme core elongation (where the full channel-like suppression
of the order parameter arises), often referred to as Abrikosov-Josephson, resem-
bling the ones found at step-edges and grain boundaries [180, 184, 205, 206, 207].
Their further acceleration in increasing current leads to the formation of a phase-
slip [179], a line of fully suppressed superconductivity across which the phase of
the superconducting order parameter changes by 2π, and along which phase singu-
larities move with extremely high velocity. Those coreless yet moving singularities
are often referred to as Josephson vortices (in analogy to those in S-N-S junctions
[208, 209, 210]).

Real-time observations of the vortex motion are notoriously difficult to achieve,
because vortex velocity in the condensate largely exceeds the sweeping rate in
most of the scanning probe techniques and the time between two consecutive
frames in snapshot techniques [174, 211]. Estimates of the average vortex veloc-
ity reported in literature have been mainly obtained from transport measurements
[132, 212, 213]. Relative vortex velocity, and vortex-vortex interaction within the
dynamic regime have also been studied in the past, using the Corbino setup [135].
Even the dispersion of the vortex velocities has been measured [214]. All of the
obtained results concurred that the speed of the Abrikosov vortices can be as high
as several km/s, while the velocity of Josephson vortices can rise to 100 km/s [215].
In Chapter 4 it was shown that Abrikosov vortices in Pb can achieve the velocity of
10-20 km/s, even though they could not be directly seen in experiment (but rather
their averaged trajectory).
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Figure 5.1: Possible experimental setup corresponding for dynamic pinning, by
using a laser light at the far field passing through a metallic mask to create time-
dependent and spatially modulated depletion of the superconducting condensate.

The interaction of light with superconductivity has been of interest for decades,
and it is now very well established that in most cases it leads to local heating and de-
pletion of the superconducting condensate (a feature employed in superconducting
single-photon detectors [216, 217, 218, 219, 220]), as illustrated in Fig. 5.1, though
at frequencies close to the superconducting gap light can interfere with the recom-
bination of Cooper-pairs and even enhance superconductivity [221]. Interaction of
laser light with vortices has also been studied, to form the base of the modern imag-
ing technique of low-temperature laser scanning microscopy (LTLSM) [128]. For
example, mode-locked solid-state lasers can emit pulse repetition rates between 50
MHz and a few gigahertz [222] (in extreme cases above 100 GHz), and can mod-
ulate the superconducting condensate by localized heating. Note that in order to
confine light to few tens of nm (which is comparable to the radius of the vortex
core in many type II superconductors), one can envisage to use nanoscale metal-
lic waveguides which transform the long wavelength incoming light into surface
plasmon polaritons able to be focused down to the required scales [223]. However,

95



Chapter 5

light as a source of a time-dependent pinning potential in superconductors has not
been explored to date, although it has been utilized for dynamic optical scanning
in Bose-Einstein condensates (BECs) [224], and for flashing ratchets in colloidal
systems [225, 226, 227, 228, 229, 230, 231]. On the other hand, there are other
ways to achieve the time-periodic potential. Moreover, a submicron nano-heating
source has also been recently demonstrated [232], using a single Ag nanowire as
resistive nano-heater, where possible bandwidth can be tuned by the pulsed cur-
rent. Alternatively, one can envisage the use of low-temperature scanning electron
microscopy [233], operating down to 4 K, where electron beam sizes of few tens
of nm are equipped with fast electrostatic beam blankers with rising time of sub-ns
and repetition rate of 300 MHz.

In this Chapter, detailed study of the interaction between the temporally peri-
odic thermal potential and superconducting condensate is presented. The Chapter
consists of two parts, where in the first part fundamental effects of the oscillating
thermal potential on the behavior of the resistive state of the type II superconduc-
tors are studied, while in the second part the novel velocimetry technique based on
the latter effects is presented and discussed.

5.1 Stroboscopic resonances

In this Section, the fundamental consequences of a temporally periodic pinning
landscape imprinted on a superconducting condensate are investigated. Here, as a
simple but exemplary case, a superconducting stripe, of the sizeL×W = 300×100
nm2, with the parameters of NbN is considered [ξ(0) = 4.2 nm, Tc = 12.7 K, with
bath temperature T0 = 0.9Tc, and the normal state conductivity σn = 4241 S/cm
[234]], with longitudinally applied current, in magnetic field perpendicular to its
plane, and with an oscillating depletion line. The oscillating depletion line has
width of 2ξ = 26.5 nm [where ξ = ξ(0)/

√
1− T0/Tc is the coherence length at

bath temperature] and it is postioned along the middle of the sample, perpendicular
to direction of the motion of the vortices, as shown in Fig. 5.2. The sample is
periodic in L, so the appropriate boundary conditions for order parameter [χ(x =
0) = χ(x = L)] and vector potential [Q(x = 0) = Q(x = L)] must be instated in
the corresponding direction. The transport current was introduced via the boundary
condition for the vector potential in the y direction: ∇̃×Q|z(y = 0,W ) = B̃±B̃I ,
where B̃I = I · const is the magnetic field induced by the current I . The focus is
placed on the range of currents and fields where vortex motion induces a resistive
state [235, 236, 237], and exhibits the rich emergent phenomena as a function of
the frequency of the pinning landscape. Theoretical model used for this analysis
consists of Eqs. 2.42 and 2.43, with the zero electrostatic potential gauge. The
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Figure 5.2: Layout of the studied system. A superconducting stripe of width W
with a central, time-dependent, pinning line of width comparable to the vortex size
(ξ is the superconducting coherence length at a given temperature), and a 4-point
probe-bridge to apply dc current (with density J), and measure voltage (U , at con-
tacts separated by distance L). A depletion region is simulated as sinusoidally
oscillating local heating up to the critical temperature Tc and back to working tem-
perature, with period τ .

system described in this part of the Chapter corresponds to the situation where heat
removal is very efficient due to the negligible heat diffusion within the sample, so
the Eq. 2.45 is omitted from calculations. Furthermore, the overheating due to the
temporally periodic thermal potential is included directly into Eq. 2.42 through
function f , which is defined as

f(t, r) =


1− T0

Tc
, out of depletion region,

1
2

(
1− T0

Tc

) (
1− cos 2πt

τ

)
, in depletion region,

(5.1)

while the other thermal kernel is taken as g = 1 due to the fact that bath temperature
is close to Tc. Quantity τ in Eq. 5.1 represents the period of the oscillations.

What phenomenology should one expect from the frequency dependence of
the pinning landscape? Clearly, if the change between ON and OFF state of
the pinning potential (further denoted as period τ ) is faster than the characteris-
tic relaxation time of the superconducting order parameter (i.e. τ 6 τGL, where
τGL = τGL(0)/(1− T0/Tc) is the Ginzburg-Landau relaxation time at T0), then a
recovery of the superconducting condensate is not possible - leading to permanent
depletion and effectively static pinning. When the frequency of pinning oscillations
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is below this ultrafast limit, but still faster than the vortex velocity (or in terms of
the characteristic time scales, τGL � τ < τcross, where τcross is the average time
needed for a vortex to cross the pinning-free sample at certain magnetic field and
applied current), there will be a noticeable change. Even though superconductivity
has sufficient time to fully recover over one pinning cycle, the duration of the ON
state is still not long enough to fully trap the moving vortex, hence the interaction
between the flux quanta and the dynamic pinning can be considered weak (this
regime is reffed to as ‘vortex tapping’). At further decreased pinning frequencies,
where τ becomes comparable with τcross, one reaches the ‘vortex pinning’ regime
where the motion of the flux quanta is greatly influenced by the variations in the
pinning landscape. This is the richest part of the frequency phase diagram, and the
main focus of this study. Finally, in the limit where τ → ∞, the system becomes
a simple alternation of two long-lasting states: the one where the pinning is OFF
and the structure behaves as the pinning-free sample, and the second one with the
pinning ON behaving as the static case extensively studied in literature.

In what follows, the regimes where pinning landscape and moving vortices
interact most are discussed in detail. In Fig. 5.3, the diagram of the calculated
voltage on the sample as a function of the period of the pinning oscillations τ , var-
ied between 103 and 104τGL(0) is presented. The voltage can be obtained from the
vector potential by using the relation U = ∂

∂t̃

∫
Qdl, where the voltage represents

a measure of dissipation for the given current, hence is intimately related to the
vortex motion. Fig. 5.3(a) reveals clear indications of resonant behavior, namely,
all U(τ) characteristics show well-defined occurrence of extendedly stable states
perfectly and continuously linking the curves for different applied currents. This
resonant behavior at different currents is highlighted by black lines in Fig. 5.3(a),
and follows 1/τ dependence as evidenced in Fig. 5.3(b). To see the origin of this
behavior, we chose one point on the curve [for τ = 3 × 103τGL(0) and applied
current density J = 2.1× 10−3JGL(0)] and monitored the vortex motion y(t̃) and
voltage as a function of time [shown in Fig. 5.4(a),(b)]. For the chosen length of
the simulation region L and the considered magnetic field, we actually hadNv = 6
parallel vortices simultaneously moving in a single row, as shown in the contour-
plots of the Cooper-pair density in the right panel of Fig. 5.4. There, points 1-5
are used to denote one period of the vortex dynamics, marking the characteristic
instances: the entry of a new vortex row (beginning of the cycle - 1), the exit of a
single row of the previously present vortices (2), the trapping of the vortex row in
the depletion region, together with remaining preexisting vortices (3), the depin-
ning of the second row of the previously present vortices from the depletion region
(4), and finally, the exit of the last preexisting vortices (5). As one can observe in
Fig. 5.4, at the chosen resonance the frequency of pinning is exactly synchronized
with the vortex motion - the period of the pinning matches exactly the period of the
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Figure 5.3: Stroboscopic voltage resonances. (a) Voltage is plotted versus the pe-
riod τ of the oscillating pinning landscape shown in Fig. 5.2, for a given sample
size and magnetic field, and for five different values of the applied current. Arrows
indicate the voltage in absence of pinning for the corresponding current, while dots
indicate the transition between two dynamic regimes: vortex tapping at low τ and
vortex pinning at high τ . The black lines highlight the resonances where U ∝ 1

τ as
further shown in (b) where voltage is plotted against pinning frequency ω = 2π/τ ,
and clearly shows a linear dependence when resonance conditions are met.

measured voltage [see Fig. 5.4(b)], and during one period effectively one vortex
row crosses the sample from one edge to another, while one vortex row remains
pinned all the time [see Fig. 5.4(a)], or in words of Faraday’s law - the voltage cor-
responds to the change of magnetic flux over period τ of exactly one flux quantum,
multiplied by Nv.

Therefore, a temporal matching effect is revealed here, which is in essence
stroboscopic, i.e. caused by synchronization between pinning and vortex dynam-
ics. Multiple resonances are possible, depending on the number of vortices that
participate in the characteristic dynamics during one period of the pinning oscilla-
tions (further denoted by n). Every integer number n leaves the resonant fingerprint
on the U(τ) characteristics, but also fractional resonances are possible - for exam-
ple for n = 3/2, where 3 magnetic flux quanta (Φ0) cross the sample over a period
of 2τ (per vortex row). At all resonances, the voltage exhibits U ∝ 1/τ behav-
ior (specifically Un = nNvΦ0/τ , i.e. Un = 2πnNv/τ = nU0 in dimensionless
units), hence it has linear dependence on pinning frequency, as shown directly in
Fig. 5.3(b). Please note that in realistic experimental conditions, and significantly
longer samples than the one in our simulation, the number Nv of simultaneously
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Figure 5.4: Vortex trajectory and temporal voltage response at the first resonance.
The location of the vortex core traveling across the sample as a function of time
(a), and the corresponding change in the voltage (b), for one example of the system
at the first resonance (in particular, for 2.1 × 10−3JGL(0) and τ = 3000τGL(0),
see Fig. 5.3). Dotted lines show the profile of the time-dependent pinning poten-
tial, where minima of the dotted lines represent the ON state of the pinning, and
the maxima represent the OFF state. Points 1-5 denote one cycle of the vortex
dynamics, marking the instances when the new vortex row enters (cycle begins)
(1), some of the the previously existing vortices exit (2), the vortex row is trapped
in the depletion region (3), the remaining preexisting vortices are depinned from
the depletion region (4), and the remaining previously existing vortices exit the
sample (5). Corresponding snapshots of the Cooper-pair density for states 1-5 are
given in the right panel, showing rows containing six vortices in parallel and si-
multaneous motion. The resulting periodicity of the voltage during vortex motion
exactly matches the period of the pinning, and entering/exiting vortices provide a
flux change of exactly one flux-quantum per vortex row during that period.
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moving vortex rows at the resonance will be larger, hence the measured voltage at
resonance will be proportionally larger than shown in these results - which facili-
tates the observation of the reported phenomenon.

The initiated reader will immediately notice the resemblance of this temporal
matching events to the spatial commensurability phenomena employed in the past
to enhance the critical parameters of superconductors. In the particular case pre-
sented in this Section, the system is always in a dynamic regime, but matching
effects in resonances do decrease the voltage, hence also decrease the overall dis-
sipation. Looking at the n = 1 resonance in Fig. 5.3, we note the possible tuning
of resistance in a very broad range by simultaneous adjustment of τ and applied
current - both externally controllable parameters.

5.2 Vortex dynamics at resonances

Another careful look at the resonances shown in Fig. 5.3 reveals more important
details. Particularly, we observe that voltage curves obtained for different currents
can overlap at certain pinning periods. In other words, for specific τ the system can
exhibit identical voltage at two different bias currents. One of such cases is exam-
ined in Fig. 5.5, where we constructed the current-voltage U(J) characteristics for
τ = 3600τGL(0). For J = 2 × 10−3 − 2.1 × 10−3JGL(0) the system remains in
the same n = 1 resonance, as seen in Fig. 5.3, and consequently U(J) character-
istics show a Shapiro step at these currents. At larger currents more Shapiro steps
are found, corresponding to higher resonances and exhibiting exactly quantized
voltages - equal to nU0, thus tunable by τ .

It is a well-known fact that when a superconductor in the presence of a periodic
potential is driven with the superimposed dc and ac force, Shapiro steps can be
experimentally found in the U(I) characteristics [238, 239, 240, 241]. In this case
Shapiro steps appear due to the fact that dc Lorentz force is applied via magnetic
field and current, and on the other side the time-dependent pinning potential is
contributing with the ac component. The presence of the pinning potential reflects
in the variation of the superconducting order parameter, which then translates in
the ac variation of the supercurrent. In addition, due to the stripe-like profile of the
depletion region, our structure is a time-dependent Josephson junction (S−N(t)−
S junction), hence the relevance of Shapiro physics is clear.

Interestingly, in the reported investigation we observe Shapiro steps not only
in current-voltage characteristics, but also with varying practically any parameter
instead of current. An analogy can be drawn here with the case of static periodic
pinning and an ac excitation (both for superconducting vortices and colloids), for
which resonant features have been reported [192, 194, 196, 225]. In our case, the
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Figure 5.5: Shapiro steps. (a) The Shapiro steps in U(J) characteristics for the
pinning period of 3600τGL(0). U0 indicates the Shapiro step at first resonance.
(b) The resonant behavior in U(τ) for different values of magnetic field indicates
possible Shapiro steps in magnetoresistivity. (c) The resonant behavior in U(τ) is
also found for varied disorder, i.e. varied inelastic phonon-electron scattering time,
with effective influence on the viscosity of the superconducting condensate.

reason is that the origin of the stroboscopic phenomenon is the synchronization of
vortex motion and time-dependent pinning, and vortex motion can be influenced in
more ways than just by current. In Fig. 5.5(b) we demonstrate the dependence of
theU(τ) characteristics on the applied magnetic field, for fixed applied current. We
again note the presence of the resonances, which obey the exact same 1/τ behavior
as in Fig. 5.3(a). This leads us to the conclusion that Shapiro steps should also be
expected in U(B) characteristics, i.e. in magnetoresistance. For additional check,
we conducted simulations for varied inelastic phonon-electron scattering time of
the superconductor, such that the effective viscosity for vortex motion changes.
Even then resonances are observed to follow the same 1/τ behavior and where,
with increased viscosity (parameter Γ̃ in the theory), the vortices slow down, and
voltage slides down on the resonant curve [see Fig. 5.5(c)]. Further relations be-
tween vortex velocity and voltage will be explored in the next Section.

In a region where there is no interconversion between supercurrent and normal
current densities (i.e., wherever ∇Js = 0, thus well outside moving vortex cores)
the electric field E and the gauge-invariant vector potential Qs are related by the
simple gauge-independent equation

E = −∂Qs

∂t̃
= − ∂

∂t̃
(Q + ∇̃θ), (5.2)

where Q is the vector potential within a chosen gauge, and θ is the phase of the or-
der parameter in the same gauge. Our calculations show that the contribution of ∇̃θ
to Qs is far larger than that due to Q. This argument arises from the fact that the
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magnetic-flux contributions can be neglected relative to kinetic-energy contribu-
tions when the linear dimensions of the nanocircuits under consideration are small
by comparison with the Pearl length [242]. For this reason, at least for relatively
narrow nanocircuits it is an excellent approximation to write

E = − ∂

∂t̃
(∇̃θ), (5.3)

hence

Uab(t) =
∂

∂t̃

[
θb(t̃)− θa(t̃)

]
, (5.4)

which is the standard Josephson relation between voltage and phase (a and b being
the arbitrary points between which the voltage is measured). For additional check,
we plotted in Fig. 5.6 the change of phase θ12 = θ2− θ1 between the points where
the voltage is measured, together with the time derivative of θ12, and confirmed
that Ū |τ = nNv

∆θ12
τ , as stipulated by Eq. (5.4). As also shown in e.g. Ref. [243],

the dc average of U(t) during vortex crossing will be Udc = Φ0R, where R is the
rate of vortex crossings. The latter corresponds exactly to our resonant conditions.

Figure 5.6: Relation of voltage to phase. The temporal evolution of the phase
difference (blue line) and the temporal derivative of the phase difference (red dash-
dots) measured between the voltage contacts, for the situation corresponding to
Fig. 5.4.
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Finally, we take a step back to the case of faster oscillations of the pinning, the
so called ‘tapping’ mode. The reason is that a careful look at Fig. 5.3(a) reveals
the possibility of having a larger voltage at the resonance (see beginning of the
n = 1 curve) than in the case without any pinning in the sample (indicated by
an arrow in the vertical axis). This is highly counterintuitive, as adding pinning
to superconductors is supposed to anchor vortices and decrease dissipation. This
unusual feature is only possible in the tapping regime (see the dots separating the
tapping from the pinning regime in Fig. 5.3). Namely, the conditions to obtain
this phenomenon are such that when the vortex enters the sample, the pinning is
at its maximum, but weakens as vortex approaches. Therefore, the attractive force
between the vortex and the depletion region will accelerate the vortex, only to tap it
and release as if there is no pinning. Hence the average vortex velocity is expected
to be larger than in the case without pinning, which is a unique case of pinning-
enhanced dissipation.

5.3 Vortex velocimetry from stroboscopic resonances

In this Section we devise a novel concept for vortex velocity measurement stem-
ming from the frequency-dependent phenomena in a superconductor with a dy-
namic pinning landscape. Here, a sample of finite sizeL×W = 400×100 nm2 was
considered, once again with parameters of NbN, at bath temperature T0 = 0.9Tc,
with longitudinally applied current, in magnetic field perpendicular to its plane,
but with an oscillating channel of the width Wch = 26.5 nm, positioned across the
middle of the specimen (as shown in Fig. 5.7). For this purpose, a more realistic
theoretical framework was employed, consisting of Eqs. 2.42, 2.44 and 2.45, where
the calculations were done in the Coulomb gauge and extreme type II regime. The
added value of upgraded theoretical model reflects in the fact that the external ther-
mal potential ν(ext)(t, r) is now included directly in the equation of the thermal
balance

c̃
∂T̃

∂t̃
= k̃∇̃2T̃ − h̃

(
T̃ − T̃0

)
+
(
∇̃V

)2
+ ν(ext)(t, r), (5.5)

where the profile of the thermal potential in the channel is given as

ν(ext)(t, r) = 0.5h̃
Tc − T0

Tc

(
1− sin2πt

τ

)
, (5.6)

while vanishing everywhere outside the channel. Within such approach, in which
one accounts for spatial and temporal heat dissipation, one is able to precisely cap-
ture vortex velocities, even very high ones, and thereby discern different vortex
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Figure 5.7: The oblique view of the investigated system. Superconducting bridge
(of size L × W ) is exposed to perpendicular magnetic field B and longitudinal
transport current density J. In the center of the bridge a channel of depleted su-
perconductivity (of width Wch) is created by local heating, and varies over time.
Time-dependent voltage U(t) is measured across the channel.

phases at the crossover from Abrikosov to Josephson ones, each of which are tun-
able either by external modulation, or by temperature, current, or magnetic field.

In this upgraded model, behavior of the condensate during transitions between
hot (ON) and cold (off) states of the channel, and vice versa, is no longer deter-
mined only by τGL and period of the pinning, since thermal processes also occur
on some competing time scale. In fact, the response of the condensate in the chan-
nel depends on the thermal diffusion of the heat supplied by the time-dependent
pinning potential. The time over which the thermal diffusion becomes relevant
is proportional to the ratio of the c̃ and k̃ in Eq. 5.5. In principle, the parame-
ters used to calculate heat diffusion (thermal capacity, conductivity and heat trans-
fer coefficient) are temperature dependent [244] and also depend on the substrate
properties (e.g. thickness of the substrate ds, heat capacity cs, and heat conduc-
tivity ks of the substrate), as was explained in Section 2.2.1. However, it is their
respective ratio’s that determine the equilibration of temperature in the system,
and since the temperature dependence of individual parameters is not generic (or
known) for all materials, this analysis is restricted to few characteristic paramet-
ric choices, known in literature and covering the regimes of both slow and fast
heat diffusion in the system. Mainly for the computational convenience, we use
c̃ = 0.03 (which corrensponds to the real-unit heat capacity of the film cf = 0.15

mJ/cm3K), k̃ = 0.06 (with corresponding heat conductivity of the film in real units
kf = 1.33 mW/cmK), and h̃ = 2× 10−4 (the real-unit heat transfer coefficient of

105



Chapter 5

the film hf = 16.94 W/cm2K) [76, 145, 245, 246]. We note, however, that if only
temperature-independent thermal parameters of the superconducting film close to
Tc are taken into account, one can use Wiedemann-Franz law to estimate the di-
mensionless heat capacity c̃ = 0.65 (cf = 3.25 mJ/cm3K) and heat conductivity
k̃ = 0.06 (kf = 1.33 mW/cmK) independently of the considered material. In real-
ity the substrate influence can hardly be neglected, and for example, in NbN films
considered in Ref. [247] effective heat capacity was dscs/d+ cf = 2.4 mJ/cm3K,
total heat conductivity dsks/d + kf = 1.1 mW/cmK, and hf = 56.5 W/cm2K.
Thus, for either set of parameters the thermalization time τth defined by the ratio
c̃/k̃ does not exceed 100τGL(0), which is considerably shorter than the period τ
of the thermal potential ν(ext)(t, r) used in this work. A case of c̃ and k̃ leading
to a thermalization time τth exceeding the period of the pinning potential τ would
lead to heat accumulation in the channel due to the ineffective heat removal via
diffusion, causing full depletion of superconductivity (i.e. forming a permanent
Josephson junction, and completely suppressing stroboscopic effects, which is not
of interest in the present analysis). Additionally, we estimate the time needed for
a vortex to cross the considered sample, τcross, to be of the order of 1000τGL(0).
When τ is in the range (τth, τcross), the effective heat removal is established, caus-
ing the distinct ON and OFF states in the channel, but there exists no synchronized
vortex motion in the sample, and thus no characteristic dynamics is found. Only
when τ & τcross vortex motion in the channel will be completely governed by
switching between ON and OFF states, causing the particular stroboscopic behav-
ior of the condensate.

In Fig. 5.8 one can find once again stroboscopic resonances in U(τ) character-
istics, for several different values of the applied current. As expected, in the regime
τ > τcross a synchronization between the vortex motion and the flashing channel
will arise whenever the flashing period is long enough for an integer number of
vortices to cross the sample along the depletion region, i.e. τ = nτcross. During
the synchronization, stroboscopic effect appears and manifests as recurring voltage
drops in the U(τ). Quasi-periodic behavior of the U(τ) characteristics shown in
Fig. 5.8 corroborates that, where in each consecutive stroboscopic state an addi-
tional vortex participates in the dynamics, relating the order of the resonance n ex-
actly to the number of crossing vortices while the channel is open. In other words,
the shift in the period τ between the subsequent resonances exactly corresponds to
the average crossing time of one vortex, τcross. This enables one to extract the av-
erage vortex velocity from the (experimentally accessible) voltage characteristics
shown in Fig. 5.8 (asW/τcross). During each resonance, the average voltage of the
system follows a 1/τ functional dependence (specifically Un = 2πn/τ ), which is
indicated by dotted lines in Fig. 5.8. To emphasize again, the drops in U(τ) ex-
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Figure 5.8: Quasi-periodic voltage plotted versus period τ of the oscillating ther-
mal channel shown in Fig. 5.7, for given magnetic field and temperature, and for
five different values of the applied current. The inter-resonance period is denoted
as τcross. Dotted lines indicate the 1/τ profile of the voltage during the resonances.
Numbers n = 1− 7 indicate the order of the resonance. Fractional resonances are
also visible, and denoted by fractional n numbers.

hibit periodicity which is exactly equal to the τcross. One should however note the
fractional resonances in Fig. 5.8 [e.g. around τ = 600τGL(0) and 1600τGL(0),
for J = 4.9 × 10−3JGL(0)], where over the pulse duration of 2τ odd number of
vortices traverse the channel. With prolonged flashing the occurrence of fractional
resonances diminishes. By taking the above mentioned parameters of NbN, one
can estimate the frequency (1/τ ) presented in Fig. 5.8 to be in the range 4 GHz
to 120 GHz [222, 248], which is still below the gap frequency of NbN (νgap ≈ 1
THz). The same values yield τcross ≈ 40 ps, vortex velocityW/τcross ' 2.5 km/s,
and observed voltage drops during the resonances ≈ 0.5 mV. The required pinning
frequency to properly observe the resonances must be higher than 1/τcross (≈ 25
GHz). It is possible to lower 1/τcross by selecting a material with larger τGL(0) or
shorter inelastic scattering time, as seen in Fig. 5.5(c). Alternatively, one can force
vortices to travel longer distances by making the samples wider, thereby propor-
tionally increasing τcross. Additionally, we note here that all superconducting and
vortex-related time-scales become longer if the temperature is lowered, without
any qualitative changes to the reported stroboscopic behavior of the superconduct-
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Figure 5.9: Vortex velocities. (a)-(d) Spatial distribution of the vortex velocity
along the pinning channel during first four resonances. The black points show
the instantaneous vortex velocities, directly measured in the simulations. Average
vortex velocity (red line) compares well to W/τcross (green line).

ing condensate, which is seemingly more convenient for practical realization of
our predictions. However, since the specific heat, the thermal conductivity, and the
heat transfer coefficient decrease with decreasing temperature, the heating becomes
more localized - which may lead to heat accumulation so that periodic oscillations
of the order parameter may no longer be achieved [249]. Note that this problem of
local periodic heating and continuous cooling has been addressed in Ref. [250] in
the context of current driven phase slips in superconducting nanowires.

Typically in experiments the vortex velocity can only be reliably estimated
at high magnetic fields, since vortex-vortex interaction dominates over vortex-
pinning and therefore the velocity distribution function is very narrow [133]. As
discussed above, stroboscopic resonances occur with periodicity that matches the
crossing time of one additional vortex (τcross) from which one can determine
the average vortex velocity during the resonance. To verify this, in our numer-
ical simulations we directly tracked the velocities of individual vortices as they
pass along the channel, by developing a software (see Appendix A for details)
capable of mapping the vortex trajectory in real time (shown in Fig. 5.9, for
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one value of applied current). The obtained velocity profiles resemble the ve-
locity profiles measured in Ref. [251]. From this distribution of instantaneous
vortex velocities we can compute the average vortex velocity (red line) which
indeed matches the ratio of the channel length W and the corresponding U(τ)
resonance period, τcross (green line), as predicted in the above analysis. Fur-
thermore, by substituting the characteristic values of ξ(0) and Tc for different
materials one can easily compare the vortex velocities to be expected. Using
the parameters of Al [ξ(0) = 90 nm, τGL(0) = 0.38 ps, Tc = 1.37 K [109]]
and Pb [ξ(0) = 33 nm, τGL(0) = 72 fs, Tc = 7.2 K [252]], one obtains the
velocity multiplier ratios: MAl = ξAl(0)τNbNGL (0)/ξNbN (0)τAlGL(0) = 2.3 and
MPb = ξPb(0)τNbNGL (0)/ξNbN (0)τPbGL(0) = 4.5, estimating expected velocity for
Abrikosov vortices to be significantly larger than in NbN.

In what follows, we discuss the thermal effects related to the resonances and
the vortex behavior through U(τ) characteristics shown in Fig. 5.10 for the same
current used in Fig. 5.9, in the case when: (a) bath temperature is varied and (b)
maximal temperature in the channel is varied. From Fig. 5.10(a) one can conclude
that the resonant states are well preserved at low bath temperatures (T0 6 0.9Tc),
and that their behavior follows the trend exhibited in Fig. 5.8, where all vortices
traverse the sample in a single line along the channel [snapshot (1) in Fig. 5.10(a)].
Especially for the lowest considered bath temperature T0 = 0.86Tc, stroboscopic
states appear at integer resonances, without exhibiting fractional resonances. Clear
stroboscopic states persist up to a bath temperature exceeding 0.9Tc, after which
four additional crossing channels appear next to the pinning channel, along which
vortices traverse with mismatched velocities. This excess vortex motion outside
the pinning channel causes a jump to the higher dissipative state [snapshot (2) in
Fig. 5.10(a), corresponding to T0 = 0.92Tc]. In principle, stroboscopic resonances
in the U(τ) characteristic still exist in the higher dissipative state, but are concealed
and heavily smeared by the voltage harmonics produced from freely moving vor-
tices out of the depletion region.

As a consequence of an external potential modulation, heat released in the
channel varies, which affects the vortex motion in the channel. In Fig. 5.10(b) we
show how the U(τ) characteristics change with increase of the thermal potential
amplitude, ν(ext)

max . For a weak amplitude [ν(ext)
max 6 0.2h̃(Tc−T0)/Tc] non-invasive

regime is instated, where the vortex motion is barely affected, due to which the
resonances are accompanied by very weak voltage oscillations. These oscillations
become more visible as the amplitude is increased [0.2h̃(Tc − T0)/Tc < ν

(ext)
max 6

0.6h̃(Tc − T0)/Tc], and we have resonant states comparable to results in Fig. 5.8.
For further increased amplitude, more and more vortices pass through the channel
during the resonance, so the U(τ) shifts to the left. For the selected value of the
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Figure 5.10: The resonant behavior in U(τ) for different bath temperatures (a), and
for varied maximal temperature in the channel (b). (a) With increasing the bath
temperature, a transition to a higher dissipative state may occur, where additional
vortices move outside of the channel, thus creating additional harmonics that will
smear out the average voltage from the 1/τ behavior [depicted by Cooper-pair
density snapshots (1) for observable resonances and (2) for smeared resonances].
(b) By varying the maximal temperature in the channel, one may selectively switch
between different vortex phases, from Abrikosov vortex, transitional state between
Abrikosov and Josephson vortex, and to Josephson vortex [depicted by Cooper-pair
density snapshots (1)-(3), respectively, at τ = 1000τGL(0)].
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flashing period τ = 1000τGL(0), we show that by simple tuning of ν(ext)
max in the

range [0.6h̃(Tc − T0)/Tc, h̃(Tc − T0)/Tc] one can switch between different reso-
nant states and thereby manipulate the vortex velocity in the channel, thus entering
the invasive mode. Moreover, the obtained results show that by varying the heat
released in the channel, one can even controllably switch between different vor-
tex phases and study them in more detail. Snapshots of the Cooper-pair density
in Fig. 5.10(b) indicate that the vortex core deforms progressively with increasing
heating, so that the found vortex phase at the same resonance for sequentially in-
creasing ν(ext)

max can change from the Abrikosov vortex (1), to Abrikosov-Josephson
transition (2), and then Josephson vortex (3) [94, 182, 205, 253, 254]. The accom-
panying change in τcross indicates that vortex velocity multiply increases during the
transition between these vortex phases. Finally we emphasize that for any given
applied magnetic field (of magnitude lower than Bc2), one can tune either the cur-
rent or the local temperature in order to switch between different resonances and
study different types of vortices with core deformation.

In summary, the very first consideration of the effects of dynamic pinning land-
scape on resistive state in superconductors was presented in this Chapter. For a pin-
ning channel placed orthogonally to the direction of vortex motion, stroboscopic
matching between vortex dynamics and pinning oscillations was revealed, which
leaves unexpected signature as resonances in the measured voltage versus the pe-
riod of the pinning, continuous in wider parameter space (for different applied
current, magnetic field, microscopic sample parameters). Most of these parame-
ters are externally variable, hence system can be easily tuned along the resonant
condition, to achieve beneficial resistive conditions, Shapiro physics without any
nanostructuring, or advanced control of flux quanta, all of which deserve further ex-
perimental and theoretical pursuit. For an altered geometry and a dynamic pinning
channel placed along the direction of vortex motion, stroboscopic synchroniza-
tion between the vortex dynamics and the thermal oscillations in the channel was
again found, but now the shift between the subsequent resonances in the measured
voltage versus the flashing period is directly linked to the time needed for one addi-
tional vortex to traverse the channel. As a consequence, the voltage characteristic
versus the period of the pinning potential provides a direct and reliable measure of
the vortex velocity, and that in a broad range of velocities, from slow Abrikosov
vortices, to tenfold faster Josephson ones. Presented velocimetry method therefore
enables experimental confirmation of the limits of vortex velocity and the realistic
characterization of the speed of the emerging vortex-based devices and technology
[146, 188, 255, 256] and nicely corroborates the findings presented in Chapter 4.

The main results shown in this Chapter were published in Refs. [257] and
[258].
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Chapter 6

Vortex matter under electronic
gating

Superconductivity is known to occur not only in metals but also in doped semicon-
ductors. The latter started to be of interest in relation to SrTiO3 and Ba(Bi,Pb)O3 in
the 1960s and 1970s and became firmly established after the discovery of cuprate
high-temperature superconductors in the 1980s [259]. Carrier doping into parent
materials, which are usually insulators, could produce a variety of superconductors,
in which the carrier density is approximately one order of magnitude smaller than
that in metal superconductors. An important aspect of these low-carrier-density
superconductors is that critical temperature is strongly dependent on the carrier
density. In addition, carrier doping in insulators is a versatile and powerful route
towards new superconductors.

Carrier doping is usually performed by chemical means that inherently involve
randomness or disorder, such as substitution and intercalation; it is thus believed
that chemical carrier doping negatively impacts superconductivity. As a cleaner
solution for desired changing of the electronic structure of the superconductor with
high degree of tunability, electric field-based superconducting devices have been
proposed, mostly around the concept behind field-effect transistors (FETs) [259].
FET technology eventually evolved into metal-oxide semiconductor FET (MOS-
FET) devices with an insulated gate, whose voltage determines the conductivity of
the entire device. Another variation of this device is metal-insulator-semiconductor
FET (MISFET). Using a capacitor-like MOS (MIS) configuration, charge carriers
can be accumulated at the semiconductor channel through the application of gate
voltage, allowing one to change the channel conductivity between the source and
drain electrodes. It is expected that with the help of such devices the carrier density
and thus the transition temperature of low-carrier-density superconductors can be
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modified simply by changing the voltage, without inducing any chemical disorder.
First such successful experiment where the superconductivity was manipulated by
an external electric field was performed in 1960 [260], where a capacitor electrode
of MOSFET was replaced by a superconductor, yielding a slight improvement in
Tc (from 4 K, the critical temperature was increased by 70 µK) [259, 260].

From there on, electric-field control of superconductivity came under spotlight
[261, 262]. Especially after the discovery of high-Tc superconductors, the idea of
electronic gating started looking more realistic. To date, most successful examples
are based on channel materials that are in the vicinity of insulator-superconductor
transition, so that superconductivity can be modulated by an electric field. Con-
temporary field-induced devices utilize surface-confined superconductivity where
two-dimensional electron gas is formed, and the gate is located within several nm
distance (for example electric double layer transistor) [259]. Such two-dimensional
architecture is justified by the fact that significantly smaller electrical fields are
needed for the gating effect, where the bulk superconductors are impractical. Since
in the last couple of decades 2D superconductors have attracted much attention,
electronic gating could impose itself as a crucial technique in their analysis, char-
acterization, and manipulation, with strong emphasis of improvement of the super-
conducting properties. In the ultrathin and atomically flat structures where local
probing via electronic contact is a standardized procedure, a scanning tunneling
spectroscopy arises as a viable electronic gating technique for manipulation of su-
perconductivity.

6.1 Superconductivity in the two-dimensional limit

Superconductivity as an electronic state of matter exhibits robustness in the bulk
materials (specimens where all three spatial dimensions are much larger than both
coherence length and penetration depth). However, systems with reduced dimen-
sionality, such as thin films and nanowires, behave differently due to the spatial
confinement, and are more susceptible to thermal and quantum fluctuations. Su-
perconducting films have been thoroughly studied for decades now, which yielded
a significant number of superconducting devices, with a wide range of applications.
In this process, one particular question gained on significance - is there a limit im-
posed on the thickness of the film below which superconductivity cannot survive?
And if so, what changes does the superconductivity suffer while approaching this
limiting case? Answer to the first question lies in the recent experimental evidence
which revealed that surface-confined superconductivity can span through as little
as several atomic layers (monolayers) [263, 264, 265, 266, 267, 268, 269, 270]
with recent verification that it can even be preserved in one-atomic-layer metal
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Figure 6.1: Schematic structure representation of the one-atomic-layer supercon-
ducting metal films of Pb grown on Si(111), taken from Ref. [118]. Panel (a) shows
a striped incommensurate (SIC) phase, which has a Pb coverage of 4/3 monolay-
ers. Here, three of the four Pb atoms each form a covalent bond with an underlying
Si atom, with one Pb atom unbound to the Si substrate. (b) shows the so-called√

7 ×
√

3− Pb phase with a smaller coverage of 6/5 monolayers, where there are
six Pb atoms per five surface Si atoms. Circles with red outline represent Pb atoms,
while the ones with yellow and blue outline correspond to the first and the second
layer of Si, respectively.

films [118]. Another class of 2D superconductors have been proposed, based on
interface-confined films, buried below the surface of the structure [271]. However,
in that case one cannot use the surface-sensitive techniques like angular-resolved
photoemission spectroscopy (ARPES) or scanning tunneling spectroscopy (STS)
to probe the local superconducting properties and to characterize the electronic
band-structure. This is especially important for gated devices, where far stronger
electrical fields are necessary in order to reach and control the buried interfaces.
Note also that with high electric field dielectric breakdown becomes a very plau-
sible scenario. Therefore, the surface-confined systems became a benchmarking
etalon for studying the emerging phenomena in ultimately thin superconducting
films.

There are several types of surface-confined superconductors that have been
reported over time, such as granular superconducting films [271, 272], or disor-
dered homogeneous superconducting films [273, 274, 275, 276]. Arguably the
most important class, that became available over the last decade are the crystalline
ultrathin superconducting films [267, 269, 271, 277, 278, 279]. The thickness of
such films can be controlled at atomic level yielding high quality, laterally macro-
scopic, single-crystals. As a consequence, crystalline films behave as very weakly
disordered diffusive thin films hosting a perfect crystalline structure. For a given
thickness their superconducting properties are thus homogeneous, and as shown in
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Ref. [271], the quantum-size effects are present and evidenced, leading to resonant
behavior of the critical temperature as a function of film thickness.

Out of the group of crystalline ultrathin superconductors, In and Pb films grown
on silicon Si(111) substrate in UHV have initially attracted most attention. In such
combination, a very clean interface with Si(111) can be made, allowing for the
atomically smooth Pb and In films to be grown with a single-monolayer preci-
sion. Moreover, in Ref. [118] two different Pb/Si(111) superconducting mono-
layer structures have been reported, the so-called striped incommensurate phase
(SIC-Pb) and the

√
7×
√

3-Pb phase. In a unit cell of the SIC-Pb phase, there are
four Pb atoms per three surface Si atoms. Three of the four Pb atoms each form
a covalent bond with an underlying Si atom, leaving one Pb atom without bond-
ing to the Si substrate. Besides the covalent bonds with the Si substrate, the metal
atoms also form metallic bonds within the metal overlayer. In a unit cell of the√

7 ×
√

3-Pb phase, there are six Pb atoms per five surface Si atoms. Five of the
six Pb atoms each form a covalent bond with an underlying Si atom, leaving one
Pb atom without bonding to the Si substrate. Schematic representations of these
Pb phases are shown in Fig. 6.1.

Peculiar characteristics of ultrathin metallic films (when compared to bulk ma-
terials) are mostly due to the effects of electron confinement in the film, and the
influence of the film-substrate and the film-vacuum interfaces. This confinement
manifests itself in the formation of quantum wells with discrete energy spectrum
[280], whose influence can be traced, for example, in the observed oscillations
of the critical temperature [281, 282]. Furthermore, better understanding of fun-
damental properties of metals, like electron-phonon coupling, was possible from
confinement studies in 2D films [283]. In such films, electron motion is only con-
fined in the direction normal to the surface, which allows one to describe emerg-
ing quantum wells with dispersion relation E(k||) for the component of electron
wave vector k|| along the directions parallel to the film. Effective masses meff are
used to describe the dispersion with the parallel component of the wave vector k||,
E = ~2k2

||/2meff . As determined experimentally from ARPES, measured disper-
sion relations generally agree well with those from theoretical calculations based
on free-standing films [281].

To date, STS, magnetometry and electrical transport measurements conducted
on surface-confined superconducting properties of Pb/Si(111) nano-islands have
revealed that both the critical temperature and the gap diminish with decreasing
film thickness. The presence of vortices has been reported in ultrathin Pb/Si(111)
films under perpendicular applied magnetic field [118, 263, 284, 285]. Due to
the confinement in nano-islands, stable vortex arrangements, other than the trian-
gular lattice, are expected to emerge. Giant vortex - a single vortex core, com-
prising of multiple flux quanta (having an integer winding number L > 1 of 2π
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Figure 6.2: Evolution of the confined condensates in magnetic field, measured by
STS in Ref. [286]. Three islands of different geometries are denoted with Ni,
where i = 1, 2, 3. The thicknesses of the islands are between 2.3 nm (N2 and
N3) and 2.8 nm (N1), with 8 and 10 single atomic layers of Pb, respectively. The
magnetic flux Φ threading each island (in units of Φ0) and the vorticity L are given
for each value of the applied magnetic field. The measurements were performed at
320 mK.

phase changes) is one of these stable states reported in Pb/Si(111) islands [286].
As an examplary case, in Fig. 6.2 we show experimental data from Ref. [286],
where it is clearly seen how the confinement affects the vortex arrangement in
three Pb/Si(111) nano-islands of different geometry.

The first manipulation of the vortex states in ultrathin Pb films using STS probe,
accompanied by a brief theoretical analysis was performed in Ref. [287]. In this
case, a large tunneling current was used as a local source of heating, attracting
vortices, with a conclusion that geometrical barrier for vortex penetration (exit)
can be efficiently influenced only in the case of rather extreme suppression of the
superconducting state. However, the question remained if more subtle electronic
(not thermal) excitations can induce noticeable changes in these delicate surface-
confined superconducting condensates, and with what consequences.
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6.2 Scanning electronic gating of the atomically thin su-
perconductors

Due to its indispensable role in the characterization of 2D superconductors, the
STM technique has gained a privileged position in the field. On the other hand,
STM could prove very useful as a potential candidate for electronic gating in which
superconductivity is modified via electric field. Already in Chapter 3 the main
features and operation principles of the STM technique were outlined. Scanning
tunneling spectroscopy is a regime of STM where the tunneling current is mea-
sured between a sharp metallic tip and a conducting sample separated by a thin
insulating barrier, generally vacuum. The ability to control the spacing between
the tip and the sample, as well as of the lateral position of the tip, using piezo-
electric transducers with extremely high precision, brought additional degree of
freedom to the well-established point-contact tunneling spectroscopy. In addition
to imaging the surface topography with atomic-scale resolution, it allows one to
probe the electronic local density of states (LDOS) with exceptional spatial reso-
lution and well-controlled tunneling barriers. The tunneling regime is defined by
a set of three inter-dependent parameters: the electrode spacing z, the tunneling
current I , and the bias voltage U . To study intrinsic sample properties with lowest
degree of invasion, it is preferable to use tips with a featureless density of states
and a well-defined Fermi surface. The metals most commonly used for the tip are
Au, W, Ir, and PtIr.

Locally-resolved electron spectroscopy is probably the most sophisticated ap-
plication of STM. The electronic density of states can be accessed by recording the
tunneling current I(U) while the bias voltage is swept with the tip held at a fixed
vertical position. If a positive bias voltage U is applied to the sample, electrons
will tunnel into unoccupied states, whereas at negative bias they will tunnel out of
occupied states. Although the interpretation of spectra can be quite complex, it can
be shown that in ideal conditions the tunneling conductance dI/dU(U) provides
a valid measurement of the sample LDOS (general dependence of the tunneling
conductance and LDOS can be found, for example, in Ref. [288]). dI/dU spectra
can be obtained either as a derivative of I(U) curves with respect to the voltage
or directly by using an oscillatory excitation of small amplitude and recording the
response with a lock-in amplifier.

STS measurements proved to be indispensable in the analysis of ultrathin su-
perconducting Pb islands, in particular when one aims to determine the energy gap
and LDOS of the structure. Figure 6.3(a) shows the characteristic profile of the
conductance, obtained from STS. Presented results are taken from Ref. [284] and
correspond to the hexagonal Pb island of the thickness of 5.5 nm (see inset) in the
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Figure 6.3: (a) Characteristic normalized local tunneling conductance spectrum
dI/dU(U) of a Pb island at B = 0 T (circles) and the best fit using standard
BCS DOS with ∆ = 1.12 meV, T = 4.3 K (red line). Zero-bias conductance is
indicated with an arrow. Data taken from Ref. [284]. (b) Spatial variations of the
local dI/dU spectra (the conductance varies from 0 to 100 nS) as a function of the
distance from an island edge. Data taken from Ref. [289]. (c) Evolution of the
local tunneling dI/dU spectra in the magnetic field, according to Ref. [284]. The
central inset shows a topographic image of the islands, while left and right bottom
graphs represent dI/dU(U,B) measured at points C and E, respectively.
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absence of magnetic field. The minimal value of the conductance found at zero
bias voltage [the zero-bias conductance (ZBC)] occurs due to the presence of the
superconducting state. Maxima occur when the tunneling current destroys super-
conductivity, and the structure goes to the normal state. In order to obtain the value
of the superconducting gap, one usually needs to fit dI/dU(U) curve with DOS
calculated from BCS theory. From this fit, one extracts the information about the
superconducting gap as the voltage distance between the two maxima in the con-
ductance. This measurement can be taken at different locations in the sample, or
even over the entire specimen. For example, in the analysis of the proximity ef-
fect in the Pb islands, the spatial distribution of dI/dU(U) is proved to be very
useful. Such data is presented in Fig. 6.3(b), taken from Ref. [289], where it was
found that due to proximity effect superconductivity can survive in the amorphous
Pb monolayer relatively far outside the superconducting island. Conductance can
also be measured in the presence of magnetic field, as is shown in Fig. 6.3(c). This
image comes from Ref. [284], where the influence of confinement of the Pb island
on the vortex matter was studied. In that case, while scanning with the tip, detailed
information about vortex structure can be obtained.

However, ZBC maps represent a handy tool for imaging the vortex matter in
real space. Since ZBC value changes with respect to the magnetic field (see Fig.
6.4(a), taken from Ref. [286]), measurement of ZBC at every point of the island
can be used for unambiguous mapping of the vortex distribution, as it was done
in Ref. [286], with examples shown in Fig. 6.4(b) for four different values of the
magnetic field.

One important ingredient that needs to be mentioned here is the influence of
the relative work function existing between the tip and the island. Work function
represents the minimal energy needed to remove an electron from a solid to a point
in the nearby vacuum. Since each material is characterized with a specific work
function, and since in general the materials used to make the tip and the island
do not have to be the same, a difference in their respective work functions can in-
duce a finite voltage. For example, if STS is performed with an IrPt tip on the Pb
island, where the tip and the island are comparable in size, a difference in their
respectable work functions can induce a voltage of the order of several mV. This
voltage is not supposed to strongly affect superconductivity in the island, as ad-
ditional evidence suggests that in mesoscopic superconductors position-dependent
STS at much higher biases is needed to locally deplete superconductivity due to
local pair-breaking [287]. Nevertheless, since the additional energy added through
the work function is not negligible neither compared to the superconducting gap,
nor compared to the electronic levels in the island [290], thus some effects are
expected to emerge due to such interaction.

Recently, the analysis of the confinement effects on vortices in ultrathin Pb
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Figure 6.4: (a) Local tunneling conductance spectra dI/dU(U) (black lines) ac-
quired at the periphery of the smallest crystal N3 of (b) at different magnetic fields.
Gray line correspond to the normal state spectrum. The spectra are presented nor-
malized to unity at 50 nS. (b) ZBC maps of three Pb islands, (denoted as N1, N2
and N3) revealing the extension of the vortex cores at four different values of mag-
netic field. The locations characterized by a superconducting gap are intentionally
saturated in black; the cores of individual vortices appear as small bright spots (see
the color bar). With the same contrast, the L > 2 phases are revealed as extended
regions. Data taken from Ref. [286].

islands was performed via STS, when moving the tip across the island [286]. The
resulting diagram of measured ZBC for different positions of the tip, as a function
of magnetic field, is shown in Fig. 6.5(a), taken for the island N3 presented in
Fig. 6.4(b). From the diagram one sees a series of sharp transition lines, each
corresponding to a threshold field between the states with different vorticity. One
can notice there that at around 0.6 T the first vortex enters the sample and sits in
the center [see also snapshot of the ZBC of the island N3 in Fig. 6.4(b), taken at
0.6 T]. At 0.9 T vorticity is changed to L = 2, and this state is maintained until 1.3
T. From the snapshot taken at 1 T in Fig. 6.4(b), one sees clearly a single round
object located at the sample center, instead of two individual vortices. This state
corresponds to L = 2 giant vortex. Even for L = 3 state first occurring around
1.3 T, similar phenomenon is visible, corresponding to a giant vortex. From the
flat and symmetric transition lines between different vortex states regardless of the
position of the tip, one concludes that all ZBC measurements performed on this

121



Chapter 6

Figure 6.5: (a) Vorticity phase diagram from [286]. Top: ZBC maps of corre-
sponding vortex configurations. Dashed line: The scanning line along which the
ZBC-field diagram was acquired. Bottom: Color-coded diagram of ZBC values vs
magnetic field, taken over the dashed line crossing the island. Abrupt transitions
separate the phases of different vorticity L. (b,c) In-plane dispersion of QWS for
17 and 22 ML of Pb on Si(111), respectively, obtained by ARPES in Ref. [281].

island were non-invasive to the superconducting state.
However, in ultrathin superconductors it is expected that quantization of the

electron motion in the direction normal to the film results in the formation of so-
called quantum-well states (QWS), and the band structure of the single-electron
states splits in a series of two-dimensional parabolic sub-bands [291]. These QWS
are able to move up or down in energy through electrostatic gating. When a QWS
passes the Fermi level, a new sub-band becomes relevant to superconductivity,
as this passage should be accompanied by a significant change of the density of
single-electron states near the Fermi level. In ultrathin Pb islands, due to the in-
herent crystal configuration, QWS are rather flat, which can be seen from ARPES
images shown in Fig. 6.5(b) and (c), taken from Ref. [281]. On the other hand,
the exact energy position of QWS strongly depend on the island thickness, and, in
fact, QWS move down in energy with increasing the film thickness [291]. Conse-
quently, the electronic properties of a thin metallic film will be greatly modulated
by varying its thickness at nanoscale. This indicates that the direct effect of gat-
ing should actually be dependent on the number of atomic layers in the island. In
Ref. [267] the dependence on sample thickness of the energy levels of QWS with
respect to the Fermi level was studied for ultrathin Pb islands using STS, and their
most relevant data is presented in Fig. 6.6(a). Here it is visible that only for spe-
cific thicknesses certain energy levels lie in close vicinity of the Fermi level. By
checking the composition of the islands N1, N2, and N3 from Ref. [286] [Fig.
6.4(b)], which are 10, 8 and 8 atomic layers thick, respectively (including the wet-
ting layer), and comparing to the measurements of Ref. [267] shown in Fig. 6.5(b)
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Figure 6.6: (a) Display of the locations of the quantum-well states for Pb islands
of various thicknesses [given in monolayers (ML)], as reported by Eom et al. in
Ref. [267]. The red color is for even number of MLs and the blue is for odd
number of MLs. Measurement of the energy levels was done by STS. (b) Locations
of quantum-well states (QWS) for Pb islands of various thicknesses obtained by
ARPES. Sample 1 is an annealed Pb island, and Sample 2 is unannealed Pb island,
in both of which the QWS were measured at 5 and 50 K. Experimental data is
taken from Ref. [292]. Theoretical calculations of QWS levels from Ref. [290] are
shown as well.

for 8 and 10 monolayers, one sees that there are no QWS close to the Fermi energy
in those three islands. Therefore, any gating effect can hardly be relevant in that
case. On the other hand, data shown in Fig. 6.6(a) indicate that in the case of is-
lands that are 6, 9, 11, 13, 16, and 18 monolayers thick one should have an energy
level sufficiently close to the Fermi level, on which the effects of the STS-based
gating might become significant. Comparing these energy levels to the ARPES
data in Fig. 6.6(b) some definite difference can be seen. We recall that results of
Eom et al. in Ref. [267] are obtained by STS, which inherently already contains
gating contribution. Fortunately, ARPES measurements of QWS energy levels in
islands of different thickness done in Ref. [292] and presented in Fig. 6.6(b) are
free of such an influence. From ARPES data one sees that the thicknesses in atomic
layers closest to the Fermi energy are 7, 9, 11, 14, 18, 20 ML, and are expected to
be most susceptible to STS gating. In fact, one could say that Fig. 6.6(b) and (a)
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summarize the change in electronic structure before and after (i.e. during) gating,
respectively. Depending on the position of the energy state (below or above the
Fermi level), the presence of STS gating is expected to enhance superconductiv-
ity (energy state is above EF and gating drags it below the Fermi energy) or to
suppress it (energy level is below EF and gating drags it above the Fermi energy).

6.3 Modulation of the superconducting properties of an
ultrathin Pb island via electronic gating

The suggestion that only the Pb islands of specific thickness are feasible for elec-
tronic gating implores for more detailed exploration of such samples. The first
experimental attempt was performed recently in the Institut des Nanosciences de
Paris (France) [293] where the 9 ML Pb crystal was in situ grown on Si(111), and
the experiment was performed in UHV (P < 10−10 mbar) [284, 286]. PtIr tips
were used for spectroscopy, and in order to resolve fine spectroscopic features, the
STS was performed at T = 300 mK.

The effective diameter of the studied Pb island was estimated as Deff ≈ 120
nm, and its thickness as d ≈ 2.2 nm, corresponding to 9 single atomic layers of
Pb in (111) direction (including the presence of wetting layer which forms at the
entire Pb/Si interface). An overview of the sample is shown in Fig. 6.7(a). In such
a system, it is expected that the atomic lattices of Si and Pb are mismatched, in-
troducing disorder at the Pb/Si interface, which therefore limits the electron mean
free path in Pb island to ` ≈ 2d = 4.4 nm [269], and plays a role in its supercon-
ducting properties. For such thin films in dirty limit, by taking into account that
BCS coherence length for bulk Pb is ξ(Pb)

0 = 83 nm, and the London penetration
depth of bulk Pb is λ(Pb)

L = 37 nm, one can estimate the effective coherence length

as ξeff (0K) = 0.855

√
ξ

(Pb)
0 ` = 16.34 nm and the effective penetration depth as

Λeff (0K) ≈ 0.752λ
(Pb)2

L ξ
(Pb)
0 `−2 = 4.41 µm, according to Eqs. 2.32 and 2.33,

respectively. These estimates indicate that one deals with extreme type II supercon-
ductor in this (` � ξeff � Λeff ) diffusive limit, with κ∗ = Λeff/ξeff ≈ 270. It
is, therefore, reasonable to assume that the magnetic field fully penetrates the sam-
ple (d � Deff � Λeff ), as the Meissner-Ochsenfeld effect is negligible. Based
on the ratio of the effective island diameter and the effective coherence length,
Deff/ξeff ≈ 7� Λeff , one expects a strong influence of confinement.

ZBC as a function of the magnetic field was first recorded at a particular posi-
tion indicated by a dark spot in Fig. 6.7(a). The sample was zero-field-cooled, and
the magnetic field was slowly increased until superconductivity was destroyed, fol-
lowed by a downward field sweep (i.e. from normal state, field is slowly decreased
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Figure 6.7: (a) Oblique view of the studied Pb island under the STM tip, with thick-
ness of 2.2 nm (9 ML). Dark spot marks the position at which tip was located when
ZBC vs magnetic field curves were obtained, shown in (b). Black line indicates the
trajectory over which the tip was moved in order to obtain the ZBC phase diagram
shown in Fig. 6.8. (b) ZBC as a function of magnetic field taken at the dark spot
seen in (a), recorded when field was measured from zero-field cooled state (orange
curve) and when field was decreased from larger value (green curve). Insets show
the illustration of vortex (L = 1) and giant vortices for the states L = 2 and 3.

to zero), both at a rate of 4.45 × 10−5 T/s. The results are shown in Fig. 6.7(b).
Out of the visible noise, plateaus can be recognized in the measured conductance,
corresponding to states with different vorticities. During the upward sweep of the
magnetic field signs of transitions in between different states L can be seen around
0.20 T, 0.43 T, 0.55 T, while in the downward sweep the switch between plateaus
occurs at 0.13 T, 0.32 T, 0.50 T. In both cases, at larger magnetic field it becomes
harder to distinguish the transitions. Provided snapshots in Fig. 6.7(b) help one to
correlate the changes in dI/dU(U = 0, B) seen in ZBC to states L = 1, 2, and 3,
the latter two in the giant-vortex form.

In the second phase of the experiment the diagram of ZBC versus magnetic
field (swept up and down) was taken as the tip was moved across the island, slightly
off-center [along the line depicted in Fig. 6.7(a)]. The results is shown in Fig. 6.8.
Unlike what was found in Fig. 6.5(a), here some of the transition lines between
different vortex states are curved, a phenomenon that becomes more and more pro-
nounced as the magnetic field is increased. To highlight this behavior, simplified
color-coded diagram is also provided in Fig. 6.8. There the measured spatial pro-
files of ZBC for states L = 1 and L = 2 are also shown, indicating that giant vortex
is formed at higher vorticities. Initially, at the very first transition from L = 0 to
1, just a straight delimiting line is seen in the diagram. However, when L = 1
switches to L = 2, mild curving in the transition lines for both upward and down-
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Figure 6.8: Phase diagrams (on the left) of the measured ZBC as a function of
magnetic field, taken as the tip is moved along the black line in Fig. 6.7(a). Dia-
grams were recorded for field swept up (a) and down (b). On the right side are the
corresponding simplified color-coded versions of the same diagrams, to highlight
the transitions. ZBC maps of the island for states L = 1 and L = 2 shown as insets
indicate that at higher vorticities the giant vortex state forms.

ward field sweep can be seen. When states change from L = 2 to 3, a curvature in
the transition line is seen until deep into the sample. Even more obvious manifesta-
tion of the phenomenon is seen at L = 3 to 4 transition. The unique features of this
phase diagram are qualitatively well preserved regardless of the direction of sweep
of the magnetic field, even though a mild hysteresis can be observed between Figs.
6.8(a) and (b).

Finally, one may be led to conclude that the anomalous behavior seen in ZBC
is a direct consequence of an invasive interaction between the STS tip and the is-
land. As reported in this experiment, superconductivity is not destroyed during the
spectroscopy, meaning that some intrinsic and subtle relation between the island
and the tip is responsible for the observed behavior. Another argument in favor
of this interpretation is the fact that during the performed spectroscopy the bias
voltage is swept between a positive and a negative value of the same magnitude,
and therefore any subsequent influence of that bias is expected to be cancelled out.
Therefore, the observed behavior must be caused by other alternative mechanism.
We recall the fact that the considered Pb island of 9 ML thickness has an energy
level very close to the Fermi energy [see Fig. 6.6(b)], suggesting that this level can
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Figure 6.9: (a) STM probe with multiple tips. Depending on which tip the measure-
ment at point A is performed, the work function of the probe may affect different
portions of the island underneath. Sketches illustrate the scenario’s corresponding
to the case when the active tip (depicted in blue) is at the front edge of the probe, so
most of the island is not affected by the gating produced by the high electrostatic
potential region (green region) (1), case with the active tip in the middle of the
probe, causing partial gating in the island while imaging only point A (2), and the
worst case scenario, where active tip is at the back edge of the probe, leading to a
major part of the island being gated (3). Regions affected by gating are denoted by
green color. (b) Artifacts in ZBC map due to multiple-tip imaging. Insets taken in
the absence of magnetic field where the tip doubling effect is evident (green and
red contours), and at 0.44 T, where the tip tripling is evidenced by red, green and
blue contours of the same island.

be easily influenced by the contribution of the work function of the tip above the
island, regardless of it performing spectroscopy or not.

Further, we note the problem of multiple tips, arising in realistic STS probes.
Due to the local clustering of atoms at the surface of the probe, it is possible to
have more than one tip through which the tunneling is performed, causing several
distinct features. First, the actual position of the active tip on the surface of the
probe remains unknown and therefore it is not possible to know where exactly the
spatial scope of influence of the gating in the island begins and where it ends, with
respect to the position of the tunneling tip. This is illustrated in Fig. 6.9(a), where
the recorded measurement of ZBC in point A depends on the position of the active
tip (blue) on the probe surface. Since there is more than one atomic cluster on the
probe that can be used for imaging, depending on which of them is currently active
(blue), the work function may exert gating in a narrow section (1), significant part
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(2), or almost entire (3) island. Additionally, more than one tip can be active at the
same time, due to which artifacts may appear in the final image, as shown in Fig.
6.9(b) in the absence of magnetic field and at 0.44 T. Both of these issues may lead
to some ambiguities in the interpretation of experimental results, as will be more
obvious in the discussion below. In the following Section the gTDGL framework is
employed to provide further insights in the behavior of vortex matter in the studied
island in the presence of local electronic gating, taking into account above caveats.

6.4 gTDGL analysis of vortex matter under electronic gat-
ing

Based on the AFM image from the experiment, a map of the area 13.2ξeff (0K)×
13.2ξeff (0K) (215×215 nm2), shown in Fig. 6.10(a), was prepared for numerical
simulations using gTDGL model, so that all the geometrical features of the realistic
Pb island are preserved. In this case, only the gTDGL equation for the order pa-
rameter is relevant, since in this extreme type-II ultrathin island the magnetic field
is homogeneous and there is no applied current. Since only the experimental ZBC
was used to build up the phase diagrams shown in Fig. 6.8, in the following sim-
ulations no spectroscopy is considered, so the entire theoretical analysis addresses
the mere presence of the STM probe above the island and the ambiguity over the
exact position of the tip on the surface of the probe. Moreover, it is estimated in the
experiment that the diameter of the curvature of the probe is comparable to (and
may even exceed) the size of the island. Based on the evidence that can be found
in the literature [294], which substantiate this claim, we show the image of the
PtIr STM tip obtained by transmission electron microscopy (TEM) in Fig. 6.10(b).
During the scanning, due to the differences in the work functions between the STM
probe and the island the electric field is generated over a region of a finite size, and
this is where the effect of gating is relevant. Therefore, by taking into account size
comparison between the STM probe and the Pb island, it is reasonable to assume
that only the part of the island that is currently covered by the electric field effect
of the probe is affected by the gating. Depending on the position of the tip on the
probe, as the tip is moved while scanning [along the line shown in Fig. 6.10(a)],
different percentage of the total surface of the island will be exposed to gating.
To make this more clear, we stress again the different scenarios of gating while
scanning, which are illustrated in Fig. 6.10(c). In the case (1) the tip is located at
the front of the STM probe, and as the probe moves between points A and B, tip
only measures ZBC in the part of the island which is not yet fully affected by the
gating (green area). Intermediate case (2) corresponds to the situation where the
tip is located at the center of the surface of the probe, so that during the gating, in
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Figure 6.10: (a) Oblique view of the considered sample, in a simulation area
13.2ξeff (0K) × 13.2ξeff (0K). White line marks the trajectory along which the
tip motion is simulated. (b) Transmission electron microscopy image of the STM
tip, taken from Ref [294] (c) Schematic representation of the STM probe scanning
the area between the points A and B, when the tip is located at the front of the
probe (1), at the middle of the probe (2), and at the back of the probe.

the island exist both the area affected by the gating, and the pristine one, and the
tip probes within the fully gated area. In the last scenario (3), the position of the
tip is at the back side of the probe, so as it moves it always measures ZBC in the
sample as it recovers from gating effect.

In order to reproduce the main features of the phase diagram from Fig. 6.8, one
must evaluate which superconducting properties are affected by the gating effect,
and if those properties are accessible within the gTDGL model. Previous reports
on the influence of the STS probe on the superconducting condensate were primar-
ily focused on thermal effects [119, 287]. In addition to possible local heating, it is
also reasonable to suspect that gating-induced changes in the electronic structure of
the ultrathin material can cause the fundamental superconducting properties to be
locally modified as well. However, gTDGL theory does not provide the complete
microscopic description of superconductivity. Instead, the only accessible parame-
ters are seen in Eq. 2.65, namely the critical temperature, inelastic electron-phonon
scattering time, and diffusion parameter, which is governed by the product of the
electronic mean free path and the Fermi velocity. The inelastic electron-phonon
scattering time only plays a role in dynamical processes when the system is driven
out of the equilibrium, so one can neglect its contribution in this particular case,
since the duration of experimental measurements takes sufficiently long time for
one to assume that all detected states are in equilibrium. The density of states is
also featured in the gTDGL model (see, for example, Eq. 2.24), however, it affects
all the terms in the relevant equation in the same way, so the obtained vortex state
for a given magnetic field would not change if only the density of states changes.
Based on these arguments, gTDGL can primarily account for the influence of local
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Figure 6.11: (a,b) Phase diagrams of the value of Cooper-pair density (CPD) under
the tip as a function of magnetic field, obtained as the tip is moved along the line
indicated in Fig. 6.10(a), and taken during sweep up and down of the magnetic
field, respectively, for a pristine Pb island in the absence of any heating or gating
by the tip. Each vorticity state is accompanied by the corresponding inset showing
spatial distribution of CPD, where the dashed lines indicate the line along which
the phase diagram was recorded, and the arrows indicate the direction of the tip
motion.

gating through heating and/or changes in Tc [T (r, t)], as well as the change in dif-
fusivity through the mean free path [`(r, t)] and the Fermi velocity [vF (r, t)] of the
pairing electrons. For this purpose Eq. 2.65 is applicable for describing the spatial
variations in the mean free path, the Fermi velocity, and Tc while the pure heating
effects can be considered through thermal kernels f and g. The temperature of the
sample in simulations is taken the same as in the experiment (T0 = 300 mK), with
the critical temperature of the pristine Pb island taken as T (pristine)

c = 7.2 K. The
parameter Γ̃ has the value 10. In order to directly compare the results with the
experiment, we follow the analogous behavior of the square modulus of the order
parameter (|χ|2) and ZBC.

As a reference, we first present the phase diagram of |χ|2 under the tip in the
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pristine Pb island (in absence of any gating or heating by the tip) in Fig. 6.11(a)
(magnetic field swept up) and Fig. 6.11(b) (magnetic field swept down), taken as
the tip is moved down along the line shown in Fig. 6.10(a). In this island scanning
is completely non-invasive, and similarly to the diagram in Fig. 6.5(a), one notices
that transitions between states of different vorticity are described with straight ver-
tical, symmetric lines. For such a sample, an hysteresis is also noticeable, where
the corresponding transitions in vorticity [see insets in (c)] occurring at 0.56 T
(L = 0 to 1), 0.83 T (L = 1 to 2), and 1.7 T (L = 2 to 3) during field swept
up, occur at 0.2 T, 0.45 T, and 0.65 T during sweep down of the magnetic field
[see Cooper-pair density (CPD) plots of the states with L = 1, 2, and 3 in (d)].
Moreover, during the sweep down of the magnetic field transitions between states
with even higher vorticities are found at 0.85 T (L = 3 to 4), and 1.04 T (L = 4
to 5) [see CPD plots of the states with L = 4 and 5 in (d)]. These results serve as
a reference for the following discussion, where the heating and/or gating by the tip
are considered.

Let us first present the study of a purely thermal influence of the tip on the
condensate, where the presence of the STM tip and its tunneling current leads to a
local hot spot, i.e. distribution of T/Tc ratio as

T

Tc
=


T̃ (r, t), under the tip,

T0

T
(pristine)
c

= 0.042, everywhere else.
(6.1)

The ratio T̃ (r, t) can take any value from the interval (0, 1), and is further used in
the thermal kernels f and g in Eq. 2.65. From there, the phase diagram of |χ|2
under the tip is recorded as a function of magnetic field and the position of the
tip. For each value of magnetic field, the tip scans the island in every point of the
designated trajectory, forward and backward, over a sufficiently long simulation
time for the vortex state to equilibriate for every position of the tip. Snapshots
depicting the distribution of Cooper-pair density (CPD) in the island for different
positions of the tip are shown in Fig. 6.12(a), when the thermal coefficient of the
area under the tip is taken as T̃ (r, t) = 0.1. The corresponding phase diagram is
given in Fig. 6.12(b), and from it one notices that transitions between vortex states
occur at lower magnetic fields, when compared to the ones seen in Fig. 6.11(a).
There are still very subtle kinks in the transition lines between states with different
vorticities, however no particular curvature is detected here. The same character of
the phase diagram perseveres when the heating under the tip is further enhanced.
In particular, when the thermal ratio T̃ (r, t) is increased to 0.3, the corresponding
phase diagram shown in Fig. 6.12(c) reveals no drastic change in the transitions
between found states. Here, the transitions occur at even lower magnetic fields,
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Figure 6.12: (a) Snapshots of the superconducting condensate in equilibrium at
B = 0.53 T (transition from L = 0 to L = 1 state), taken at nine different
locations, as the tip performs the scan across the island. Scanning trajectory is
denoted with dashed line, and it starts from the green dot (t1). As the tip moves
further (instances t2 - t4), the part of the island under it experiences the increase in
temperature to T = 0.1Tc, which allows the vortex to penetrate inside the island.
At the instance t5 the tip reaches the purple dot, and it reverses its motion back to
green dot (instances t6-t9). In the final snapshot, the vortex remains in the island,
as a stable state. (b) Diagram of |χ|2 under the tip taken as the tip moves along the
dashed line in (a), versus the magnetic field, corresponding to the tip-induced local
increase of temperature to 0.1Tc, where no curved transition lines are found in the
diagram. (c) The phase diagram obtained in the same way as the one in (b), with
increased tip-induced heating (T = 0.3Tc). Once again, no pronounced curved
transitions between states of different vorticity are found.

with visible small kinks at every transition line, and again without any special
curvature in those lines. Therefore, one can conclude that the observed behavior,
which is purely due to thermal effects, cannot be responsible for the phenomenon
seen in experiment and shown in Fig. 6.8. The tip-induced thermal influence
considered in the simulations (up to 30 percent of the critical temperature) can even
be considered greatly exaggerated, since during the experimental measurement the
temperature of the island was directly measured, and never exceeded 350 mK (T̃ ≈
0.05) [295].

Therefore, in what follows we turn our attention to the possible gating effects
of the tip on the island. As a consequence of the additional electronic band crossing
the Fermi level produced by the electrostatic gating, one may expect that the STM
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probe changes the critical temperature of the gated part of the island. However, it
was found in Ref. [296] that the Pb islands with thickness of 9 ML (where gating
is relevant) exhibited a minimal change in Tc compared to the 8 ML islands (where
gating is not relevant), so we can safely exclude at this stage the contribution of
changing Tc from the explanation of the observed effects in experiment.

The only remaining parameter to consider as a variable in gTDGL model is the
diffusivity, which may indeed change due to the presence of the STM tip. The main
constituents of the diffusivity, namely the mean free path and the Fermi velocity,
are directly affected by the additional energy level introduced to the superconduct-
ing state via gating. In ultrathin Pb, the energy bands in question are fairly flat
[281] and carry large density of states, hence can cause considerable change in
the average mean free path and the Fermi velocity of electrons participating in the
Cooper pairing. Though the experimental data shown in Fig. 6.6(a,b) lead one to
conclude that the gating-induced electronic-band-crossing would enhance the over-
all superconducting properties of the island in question, it is however not trivial to
directly quantify the resulting enhancement. That is why, similarly to the case of
heating, we model the change in diffusivity as

D(r, t)
D(pristine)

=


pD(r, t), under the tip,

1, everywhere else,

(6.2)

where, in general, pD(r, t) takes values below 1 in case of enhanced superconduc-
tivity, and above 1 in case of suppressed superconductivity. Moreover, one should
also keep in mind the possible ambiguity in the interpretation of the experimental
results regarding the actual position of the tip on the STM probe, as illustrated in
Fig. 6.10(c). Under the assumption that the total area of the electric field effect
of the probe (i. e. where the gating is relevant) is comparable to the size of the
Pb island under investigation, we consider two possible cases: (i) case where the
tip is located at the frontal part of the probe moving across the island [as in in-
set (1) in Fig. 6.10(c)], and scans the part of the island that is being affected by
the gating, and case (ii) where the tip is at the back of the moving probe [as de-
picted in inset (3) in Fig. 6.10(c)], so it scans the gated part of the island that is
about to be recovered to the pristine state. For multiple values of parameter pD
we conducted simulations in which due to the presence of the tip, gating enhances
superconducting properties, and the clearly noticeable change in the system occurs
when pD ≤ 0.5. We present the phase diagrams in Fig. 6.13 for pD = 0.3, where
panel (a) corresponds to the case (i) and panel (b) to case (ii) regarding the location
of the tip on the probe. In these diagrams, transitions between the states of different
vorticity are clearly curved, with curvatures becoming more pronounced at higher
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Figure 6.13: (a,b) Phase diagrams of the value of the order parameter under the
tip as a function of magnetic field, obtained when the tip is located at the front
of the STM probe [see Fig. 6.10(c), inset (1)], or in the back of the STM probe
[as depicted in inset (3) in Fig. 6.10(c)], respectively, and moves along the line
indicated in Fig. 6.10(a). (c,d) Vorticity diagrams corresponding to (a) and (b),
respectively, obtained by detecting the number of vortices in the island for every
tip position and each value of the applied magnetic field.

magnetic fields. In order to make it easier to distinguish the transitions between
the different states, we also provide the matching diagrams of the vorticity in the
island in panels (c) and (d) of the Fig. 6.13, corresponding to cases (i) and (ii),
respectively. For each position of the tip and for each value of the magnetic field,
the vorticity diagrams were obtained by inspecting the phase of the order param-
eter in the entire island. It turns out from these diagrams that the gating in setup
(i) (panels (a) and (c) in Fig. 6.13) causes the curvatures in the transition lines to
be in the opposite direction compared to the experimental data in Fig. 6.8. On the
other hand, simulation of the gating based on the setup (ii) [see Fig. 6.13(b,d)]
qualitatively reproduces the experimental results seen in Fig. 6.8.

As the diagrams in Fig. 6.13(a,c) suggest [case (i)], while the gating becomes
relevant in the larger area of the island during the scanning, manifested through
the local decrease of the diffusivity, vortices can be driven out of the island due to
the enhancement of superconductivity. At lower magnetic fields it is necessary for
the tip to gate more of the island in order to expel vortices, however, as the mag-
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Figure 6.14: Sequence of the gating procedure as the tip moves across the Pb island
at B = 0.62 T, when the tip is located in the front of the STM probe (a), or in the
back of the STM probe (b). As reflected through the Cooper-pair density plots at
six characteristic instances, the tip is driven across the island (top to bottom in the
images). The correspondingly gated area (GA) is denoted by the stretching red
band on the right, where superconductivity is enhanced.

netic field increases and the states of higher vorticities are stabilized, it becomes
easier to drive the vortices outside the island. As an illustration, for the magnetic
field of 0.62 T, we display the behavior of the superconducting condensate through
six-instances-long sequence of the gating in Fig. 6.14(a). From there, it is clear
that when the tip progresses further into the island [so that the gated area (GA) is
increased], instead of the two vortices being present in the sample, as prior to the
gating (t1 and t2), one of them will be pushed out (t3 and t4), finally leaving the
island with only one vortex present (t5 and t6).

If the situation is reversed [case (ii)], so that superconductivity recovers from
the enhancement as the tip moves deeper in the island, vortex entry is facilitated,
increasingly more with increase of the magnetic field. For such a scenario we also
provided insets of the CPD in Fig. 6.14(b) during the gating at B = 0.62 T. From
the insets it is visible that now the gated area (GA) decreases as the tip progresses
further into the island, which allows entry of an additional vortex into the island.
Due to the qualitative agreement between the phase diagrams in Figs. 6.8(a) and
6.13(b), one can argue that this is likely the behavior occurring in the experiment.

This analysis of the observed gating effect points out the change in the par-
ticular superconducting properties, expected to occur in the ultrathin crystalline
films whose thickness imposes specific conditions on the electronic structure. gT-
DGL theory nicely reproduces the main features seen in experiment, based on local
change in electronic properties and not the thermal ones. However, in order to fully
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grasp the phenomenon presented here, or reach better quantitative agreement be-
tween theory and the experiment one must enter the domain of the microscopic
theory of superconductivity, which is out of the scope of this thesis.
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Conclusion

The principal objective of this thesis was to study the novel effects emerging in vor-
tex matter, in mesoscopic superconducting condensates under externally-controlled
temporal and spatial variations. Since the presence of vortices is of great im-
portance in both fundamental scientific research of superconductors and practical
applications, where their dissipative motion can be either detrimental or benefi-
cial (depending on how the working principles of device are postulated), it is of
paramount value to understand how can one manipulate vortices with precision,
yet in a variety of ways. The overall behavior of vortices depends on a multi-
tude of conditions (i.e. spatial and temporal confinement, inherent and externally
added disorder, permanent or dynamic artificial pinning landscapes with stationary
or varying intensity and distribution), so their efficient manipulation can be a diffi-
cult task. Here, different approaches in control of vortex matter have been shown,
starting from systems where current lensing arising due to geometric features of the
sample causes vortex motion with extremely high velocities, over superconducting
systems with dynamic pinning landscapes in which the stroboscopic resonances
arise, to finally ultrathin crystalline superconducting structures under the influence
of electronic gating that can locally change the superconducting properties of the
sample.

Common properties of the dynamic behavior of the superconducting conden-
sate and the vortex matter arising from the presence of the magnetic field and the
transport electric current can be very conveniently and accurately described by
generalized time-dependent Ginzburg-Landau (gTDGL) theory. On the basis of
the gTDGL model we developed a powerful theoretical simulation tool, capable of
treating superconductivity in samples of arbitrary geometry, and in the presence of
external temporally and spatially dependent potentials used to manipulate the vor-
tex matter. Substantiated with the microscopic justification, the model detailed and
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used in this thesis accounts for the possible inhomogeneities in the material param-
eters, while the inclusion of the equation of thermal balance in the model provided
the means to address the ever-present self-heating effects of the system, which,
finally, allows one to theoretically treat even more complex realistic systems.

The first major success of our gTDGL model was to capture the relevant phe-
nomena regarding the ultrafast vortex matter, which was evidenced for the very first
time in the group of prof. Eli Zeldov at Weizmann Institute of Science in Israel.
Using a nanoscale SQUID with unpreceded spatial resolution and sensitivity, they
were able to image for the first time vortices penetrating into a superconducting mi-
crobridge at rates of tens of GHz and moving with super-fast velocities up to tens
of km/s. Such velocities exceed the pair-breaking speed limit of the Cooper-pair
condensate by two orders of magnitude, a phenomenon that our simulations were
able to capture as well. This study, based on both experimental and theoretical
analysis, revealed striking metamorphosis of vortices at such extreme velocities,
including unconventional dynamic states comprising cascades of bifurcations of
vortex channels as the current and magnetic field are increased. Moreover, our
work brings about the fundamental issue of whether the notion of a vortex as a
stable topological defect remains applicable at such extreme velocities. We pre-
sented our study of the actual evolution of vortex patterns and discussion of the
underlying physics in a clear and visually self-explanatory way in order to reach
out a broad scientific audience. The physics of superfast vortex matter may have
far-reaching interdisciplinary implications in such seemingly different fields as dy-
namics of supersonic dislocations, particles motion in viscous media, or general
pattern formations out of equilibrium.

Another important aspect of this thesis concerns the dynamic landscape used
to control the motion of vortex matter in superconducting condensates. There, we
explored the temporal matching phenomena of the characteristic vortex dynamics
under applied current and magnetic field, to a specially designed time-dependent
thermal pinning landscape, in order to develop an innovative method for experi-
mental monitoring, reliable measurement, and tuning of the vortex velocity. We
not only propose a novel technique, but also analyze its sensitivity to the relevant
experimental factors, and discuss the high vortex velocities for different supercon-
ducting materials of current interest (also for potential applications). On funda-
mental end, we discuss the ability of the method to probe the mobility of different
kinds of vortices (Abrikosov to Josephson) encountered on the path to the Larkin-
Ovchinnikov instability at ultrahigh vortex velocity. Understanding the kinematics
of those vortices and their properties is very important for mastering the dissipation
in superconductors at high driving currents and hence is of technological relevance
as well.

External modulation of the superconducting condensate can be observed in ul-
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trathin islands, where strong quantum confinement exists, so the quantization of
the electron motion emerges, resulting in the formation of electronic quantum-well
states. It was noticed that in the samples of specific thickness these quantum wells
are very sensitive to external modulation via STM probe by changing the elec-
tronic structure of the superconductor. In this study, where experimental data from
the research group at INSP Paris are complemented by our theoretical analysis,
evidences for electronic gating were found. The shown gTDGL simulations ex-
clude the local heating as the source of experimentally observed phenomena, and
reproduce a very peculiar experimentally recorded phase diagram when assuming a
purely electronic effect of the tip on the superconducting condensate. Considering
that gTDGL theory successfully captured all the key features seen in experimental
phase diagram, further simulations of particular vortex devices are foreseen (such
as quantum switches where the tunneling conductance through the vortex is manip-
ulated by electronically changing its vorticity [297], or transport switches where for
fixed applied current the vortex flow is turned on-off by the gating, or the dynamic
resistivity is tuned in desired range - of potential use for adjusting the sensitivity of
crystalline superconducting single-photon detectors), where local gating can be of
particular use.

Although we provided thorough theoretical analysis of novel phenomena aris-
ing from manipulation of vortex matter, still more work needs to be done in this
field. For example, the mere existence of above mentioned ultrafast vortices raises
many questions, both from fundamental science and possible application stand-
points (high-field magnets, superconducting digital memory and qubits, THz radi-
ation sources, to name a few).

Though the presented gTDGL model proved to be a powerful asset in the anal-
ysis of realistic systems, there is still room for improvement. One of the most
frequent criticisms directed towards gTDGL theory is the fact that it is trustwor-
thy only at the temperatures close to the critical one. Even though some empirical
solutions have been proposed, the actual expansion of the theory to wider tempera-
ture ranges must be provided in the microscopic framework (such as BCS theory),
which is far from a trivial task. Moreover, since the significant computational re-
sources are needed for simulations of the large-scale superconducting structures,
such as circuitry consisting of a multiple superconducting devices, an innovative
approach in the development of the optimal equation solvers must be employed,
where advanced algorithms for resource management are utilized. Finally, the all-
inclusive gTDGL model, which solves all of the Eqs. 2.65-2.68 simultaneously,
without simplifications through usage of additional gauges, is needed in order to
maximize the reliability when studying the realistic systems.
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Details about numerical approach

A.1 Euler method for temporal derivatives

Euler method is a computational algorithm employed for solving the first-order
differential equations of the form

dχ

dt̃
= P

(
χ, t̃
)
, (A.1)

defined with a corresponding initial guess χ(t̃ = t̃0) = χ0. Function P
(
χ, t̃
)

contains some known dependence on quantities χ and t̃, and it also can include
spatial derivatives of χ. On a finite and discrete interval,

[
t̃0, t̃T

]
, where t̃k and

t̃k+1 are two adjacent instances (t̃0 ≤ t̃k < t̃k+1 ≤ t̃T , and ∆t̃ = t̃k+1 − t̃k),
within the forward finite difference representation one can exchange Eq. A.1 with
an approximate expression

χ
(
t̃k+1

)
− χ

(
t̃k
)

∆t̃
=
χ(k+1) − χ(k)

∆t̃
= P

[
χ
(
t̃k
)
, t̃k
]

= P (k), (A.2)

for every instance t̃k ∈
[
t̃0, t̃T

]
. This is, in essence, the Euler method. From here

it is easy to obtain updated value of χ at instance t̃k+1, as

χ(k+1) = χ(k) + ∆t̃f (k). (A.3)

One can notice here that Eq. A.3 has exactly the same form of Eq. 2.52 from
Chapter 2. The Euler method is a first-order method, which means that the local
error (error per step) is proportional to the square of the step size, and the global
error (error at a given time) is proportional to the step size. In this thesis, Euler
method is used in combination with direct explicit approach for solving partial
differential equation (first gTDGL equation), which imposes some constraints on
the time step, ∆t̃. This will be explained in the following Section.
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A.2 Direct explicit solution of first gTDGL equation in ar-
bitrary geometries

First gTDGL equation in this work is solved with the combination of Euler method
and direct explicit solver. The form of this equation is given in Eqs. 2.52 and 2.53.
However, in order to determine the spatio-temporal behavior of complex order pa-
rameter χ in arbitrary geometries, one must somehow introduce the geometry into
the equation itself. This is done through the boundary conditions. For the first
gTDGL equation, there are two possible boundary conditions considered in this
thesis: superconductor-insulator (vacuum) interface [SI(V)], and superconductor-
normal metal interface (SN).

First boundary condition prohibits the flow of supercurrent component perpen-
dicular to the interface

[(
∇̃ − iQ

)
χ|SI(V ) = 0

]
, and second condition imposes

vanishing order parameter (χ|SN = 0). Since all the nonuniform geometries con-
sidered in this thesis exhibit nonuniformity only through SI(V) boundary, one can
devise a simple way to include these boundary conditions inside Eq. 2.52 by in-
troducing a map L of the 2D geometry, constructed upon a rectangle of the size
Lx × Ly (with a corresponding number of gridpoints Nx × Ny, where the size
of each unit cell is ∆x × ∆y), where superconducting area at some point is de-
noted by Lm,n = 1, and insulator (vacuum) in another point is denoted by value 0.
Within finite-difference representation and link-variable method, these boundary
conditions are implemented in the following way:

χ(k+1)
m,n = χ(k)

m,n + ∆t̃f (k)
m,nLm,n = χ(k)

m,n + ∆t̃Φ(k)
m,nLm,n−

∆t̃

[
iVm,n +

Γ̃2

1 + Γ̃2|χ(k)
m,n|2

<
{
χ(k)∗
m,nΦ(k)

m,n

}]
χ(k)
m,nLm,n,

(A.4)

and

Φ(k)
m,n = Θ

(
Ũ

(k)
xm+1,nχ

(k)
m+1,n − χ

(k)
m,n

)
Lm+1,n

∆x2
+

Θ

(
Ũ

(k)
xm−1,nχ

(k)
m−1,n − χ

(k)
m,n

)
Lm−1,n

∆x2
+

Θ

(
Ũ

(k)
ym,n+1χ

(k)
m,n+1 − χ

(k)
m,n

)
Lm,n+1

∆y2
+

Θ

(
Ũ

(k)
ym,n−1χ

(k)
m,n−1 − χ

(k)
m,n

)
Lm,n−1

∆y2
+ Θ

(
f (k)
m,n − g(k)

m,n|χ(k)
m,n|2

)
χ(k)
m,n,

(A.5)
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where Θ =

√
1+Γ̃2|χ(k)

m,n|2
u . Notice how the second-order derivatives (i.e. kinetic

term) in Eq. A.5 are now split, so they explicitly contain two components each
- forward and backward finite difference representation of first-order derivatives,
which are exactly the boundary conditions for the supercurrent left, right, up and
down from the given point (m,n). If any of the neighboring points is outside of
the superconducting region, components of the map parameter, Lm+1,n, Lm−1,n,
Lm,n+1, or Lm,n−1 are going to impose the boundary condition and set the com-
ponent of the second-order derivative to zero. On the other hand, if the current
point (m,n) is already outside of the superconductor, map parameter Lm,n = 0
prohibits any survival of the order parameter there.

Solving the first gTDGL equation is done in an iterative manner, where the
iterations are performed within the interval

[
t̃0, t̃T

]
, with each iteration done over

time ∆t̃. Since this equation is solved with direct explicit solver in combination
with Euler method, the solution will be conditionally stable, i.e. a relation between
∆t̃, ∆x, and ∆y exists. Since usually ∆x and ∆y are predefined, then limitations
are imposed upon ∆t̃ from being arbitrarily large. Further limitations on ∆t̃ can
be empirically found with increase of Γ̃, which can dramatically slow down the
performance of the simulations in case of realistic materials with large Γ̃.

A.3 Crank-Nicolson method for diffusion-like equations
in arbitrary geometries

Direct explicit solvers for diffusion-like equations (e.g. first and second gTDGL
equation, or equation of thermal balance) impose quite a limitation on the per-
formance of the simulation, which develops into a nuisance especially when one
works with large and realistic systems. For this reason, more stable algorithms
have been developed. Crank-Nicolson algorithm (CN) is one of them, which is a
second-order implicit method in time.

CN scheme for the diffusion-like differential equation can be written as

ũ(k+1) − ũ(k)

∆t̃
=

1

2

[
P (k+1)(ũ) + P (k)(ũ)

]
, (A.6)

where the solution of the next iteration, ũ(k+1), must be solved implicitly from
the system of algebraic equations. If the partial differential equation is nonlinear,
the discretization in t̃ will also be nonlinear so that advancing in time will involve
the solution of a system of nonlinear algebraic equations, though linearizations are
possible. In many problems, especially linear diffusion, the algebraic problem is
tridiagonal and may be efficiently solved with the tridiagonal matrix algorithm,
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which gives a fast O(n) direct solution as opposed to the usual O(n3) for a full
matrix. For example, one can rewrite first gTDGL equation (A.4) in this way, in
order to increase the stability of temporal convergence. Another equation that can
be solved this way is the second gTDGL equation (Eq. 2.58). In order to do so,
one must first transform Eq. 2.58 into a more user-friendly diffusion-like equation,
as was done in Ref. [298],

ũ
(k+1)
µm,n − ũ

(k)
µm,n

∆t̃
= =

{
e−iũ

(k)
µm,nχ(k)∗

m,nχ
(k)
m+1,n

}
Lm+1,nLm,n+

κ2Lm,n
∆(µ+ 1)2

[(
ũ(k)
µm,n+1

− ũ(k)
µm,n

)
Lm,n+1 +

(
ũ(k)
µm,n−1

− ũ(k)
µm,n

)
Lm,n−1

]
+

P̃
(
ũ

(k)
µ+1m,n

)
.

(A.7)
In order to derive Eq. A.7 from 2.58, µ-th component of the link variable Ũµm,n
(µ = x, y, with cyclic permutation for µ = x given as µ + 1 = y, and for µ = y

given as µ + 1 = x) needs to be represented as e−iũ
(k)
µm,n , where ũ(k)

µm,n is a real
function, directly proportional to the µ-th component of the vector potential. Order
parameter here is denoted once again with χ, and function P̃ contains remaining
terms from Eq. 2.58, independent of ũµ. Equation A.7 now has a form of diffusion
equation

∂ũµ(r, t̃)
∂t̃

= P (ũµ) + P̃ , (A.8)

and CN method can be implemented on it as

ũ(k+1)
µm,n −

∆t̃

2
=
{
e−iũ

(k+1)
µm,n χ(k+1)∗

m,n χ
(k+1)
m+1,n

}
Lm+1,nLm,n+

∆t̃κ2

2∆(µ+ 1)2

(
ũ(k+1)
µm,n+1

− ũ(k+1)
µm,n

)
Lm,n+1Lm,n+

∆t̃κ2

2∆(µ+ 1)2

(
ũ(k+1)
µm,n−1

− ũ(k+1)
µm,n

)
Lm,n−1Lm,n +

∆t̃

2
P̃
(
ũ

(k+1)
µ+1m,n

)
=

ũ(k)
µm,n −

∆t̃

2
=
{
e−iũ

(k)
µm,nχ(k)∗

m,nχ
(k)
m+1,n

}
Lm+1,nLm,n+

∆t̃κ2

2∆(µ+ 1)2

(
ũ(k)
µm,n+1

− ũ(k)
µm,n

)
Lm,n+1Lm,n+

∆t̃κ2

2∆(µ+ 1)2

(
ũ(k)
µm,n−1

− ũ(k)
µm,n

)
Lm,n−1Lm,n +

∆t̃

2
P̃
(
ũ

(k)
µ+1m,n

)
.

(A.9)

If one considers only the behavior of a superconducting film in the presence of
magnetic field, and in the absence of transport current, a unique boundary condition
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can be imposed on the vector potential, ∇̃ × Q = B̃ext, stating that at the edge of
simulated area, all magnetic field must be equal to the applied external magnetic
field. One can also consider (infinitely) long current-carrying filaments within this
treatment, but then, periodic boundary conditions [Q(r, t) = Q(r + L, t), where
L is the spatial period] must be provided in the direction of the dominant size of
the specimen. Then the current induced magnetic field contribution is added to the
remaining boundary condition at SI(V) interface as ∇̃ × Q = B̃ext + B̃I , where
the magnitude of B̃I is approximated as linear function of the applied current. The
orientation of the current-induced magnetic field must match the orientation of the
applied field at one side of the sample, while opposing it at the facing side. One
should also notice that within this approach, no nonuniformity, such as pinning
centers or constrictions, can be correctly included in the superconducting filaments.

A.4 Alternating Direction Implicit method for diffusion-
like equations in arbitrary geometries

Though it comes with an improved stability, CN scheme exploits excessive com-
putational resources, and thus can be very cumbersome for solving. The main dis-
advantage of the CN method lies in the fact that the matrices in the above equations
are banded, with a band width that is generally quite large. This makes direct solu-
tion of the system of linear equations quite costly (although efficient approximate
solutions exist, for example using the conjugate-gradient method preconditioned
with incomplete Cholesky factorization). However, CN algorithm can be further
modified in such a manner that the spatial operators are separated, thus providing
equation of simpler form. This approach is called alternating direction implicit
method (ADI), and in that case the equations that have to be solved in each step
have a less complex structure and can be solved efficiently with the tridiagonal ma-
trix algorithm (Gaussian elimination). As an introductory example, one can con-
sider diffusion-like kernel, written such that both spatial and temporal derivatives
are given explicitly

∂ũ

∂t̃
=
∂2ũ

∂x2
+
∂2ũ

∂y2
+ P (ũ) . (A.10)

The idea behind the ADI method here is to split Eq. A.10 into two CN-like equa-
tions, one with the x derivative taken implicitly and the other with the y derivative
taken implicitly,

ũ(k+1/2) − ũ(k)

∆t̃
=

1

2

[
∂2ũ

∂x2
+ P (ũ)

](k+1/2)

+
1

2

[
∂2ũ

∂y2
+ P (ũ)

](k)

, (A.11)
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ũ(k+1) − ũ(k+1/2)

∆t̃
=

1

2

[
∂2ũ

∂y2
+ P (ũ)

](k+1)

+
1

2

[
∂2ũ

∂x2
+ P (ũ)

](k+1/2)

.

(A.12)
Notice that the separation of the operators revolves around virtual instance t̃k+1/2,
at which Eq. A.11 is solved.

In the thesis, ADI method was used to solve Eq. 2.64 for both spatial and
temporal evolution of the temperature in arbitrary geometries. As just shown on a
simpler example, one first needs to start from discretized CN scheme for arbitrary
geometries, which takes the form

T̃ (k+1)
m,n − ∆t̃

2c̃

[(
T̃ (k+1)
m,n − T̃0

)
h̃+ J̃

(k+1)2

nm,n

]
Lm,n+

∆t̃

2

(
T̃

(k+1)
m+1,n − T̃

(k+1)
m,n

∆x2
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(A.13)
where the corresponding boundary condition ∇̃T̃ = 0 along the SI(V) interface is
implemented internally, with help of the map L. At the SN interface the Dirichlet
boundary condition is imposed, so in those points the value of T̃ (r) is implicitly
inherited from the user-defined initial solution for the temperature.

Under the assumption that spatial operators are independent, one can split Eq.
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A.13 into two simpler equations
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(A.14)
and
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(A.15)
The system of involved equations is symmetric and tridiagonal, and is typically
solved using tridiagonal matrix algorithm. It can be shown that this method is
unconditionally stable and second-order in time and space [299]. There are more
refined ADI methods such as the methods of Douglas [300], or the f-factor method
[301] which can be used for three or more dimensions.

A.5 Fast Fourier transform for direct solution of Poisson-
like equations

Fourier transform (FT) is a procedure in which a signal (a physical quantity) is con-
verted into a type of frequency domain. Besides the fact that such transformation
reveals certain properties of the observed quantity, otherwise inaccessible, one can
use Fourier transformation to solve differential equations. The convenience arising
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from FT is that in the frequency domain differential equations can turn into alge-
braic equations, thus making them much easier to solve. Following the solution
in frequency domain, one just needs to apply inverse FT in order to get real-time
and/or real-space distribution of the signal. When dealing with numerical calcula-
tions, discrete form of FT comes into play (dFT), and very reliable algorithm for
performing dFT of a discrete signal is fast FT (FFT). FFT method rapidly computes
signal transformations by factorizing the dFT matrix into a product of sparse fac-
tors. As a result, it manages to reduce the complexity of computing the dFT from
O(n2), which arises if one simply applies the definition of dFT, to O(n log n),
where n is the data size. FFT of a physical quantity f is obtained according to

f̂i,j =

Nx∑
m=0

Ny∑
n=0

fm,ncos
πjm

Nx

πin

Ny
, (A.16)

while the inverse FFT of a given quantity is

fm,n =
2

Nx

2

Ny

Nx∑
i=0

Ny∑
j=0

f̂i,jcos
πjm

Nx

πin

Ny
. (A.17)

Perfect example where FFT algorithm can be applied is Poisson-like differen-
tial equation, into which Eq. 2.44 transforms for extreme type II superconductors,
in the London gauge, ∇̃Q = 0. Equation 2.44 is solved in a region with Neumann
boundary conditions for electrostatic potential (∇̃V = 0 at SI(V) boundary and
∇̃V = Ja at SN boundary), arising from the fact that at SI(V) interface no current
density perpendicular to the boundary can exist, while at SN boundary all applied
current transforms into normal current density. Once the definition of the system
is done, the following prescription is followed in order to solve Poisson equation:
first, the boundary conditions which connect applied current density with the elec-
trostatic potential (∇̃V = Ja) are moved to the RHS of the equation Eq. 2.44, so
they form a unique quantity together with the divergence of the supercurrent:

∇̃2V = ∇̃J̃s − ∇̃J̃a = R. (A.18)

From there, one takes the FFT of RHS of Eq. 2.44 according to Eq. A.16. Equa-
tion 2.44 can still be preserved in the real space, but it should be rewritten so that
it is discretized (as in Eq. 2.61) and each quantity in it is described through corre-
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sponding inverse FFT as
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(A.19)
In this form, since every operation occurs under a same sum, sums can be omitted,
so, therefore, one can express the unknown V̂ as a function of R̂ and remaining
cosines, for every point i and j. What remains now is just to apply inverse FFT
from Eq. A.17 onto V̂ in order to obtain real-space electrostatic potential V .

Due to the all-Neumann boundary conditions, solution VPoisson of the Poisson-
like equation can only be determined up to an arbitrary constant, VPoisson =
Vtrue +C. Usually, the electrostatic potential does not play an important role, and
instead one uses difference of electrostatic potential between two points, so the
arbitrary constant presents no problem. However, within the gTDGL framework,
exactly the electrostatic potential is related with the phase of the order parame-
ter. Though phase itself does not carry much of a physical significance (instead
gradient of the phase is directly proportional to the current density), the arbitrary
constant inherited from electrostatic potential can dramatically slow down the con-
vergence of the numerical procedure. For this reason one can renormalize the
solution of the Poisson equation in such a way that, for example, Vrenormalized =
VPoisson−〈VPoisson〉. Such renormalized electrostatic potential in principle stabi-
lizes the convergence procedure.

Another important note here regards the geometries in which FFT can be ap-
plied. Unfortunately, presented FFT method cannot be used to solve Poisson
equation in nonuniform geometries, and as such it should be only utilized in
the case of specimens defined on an rectangular box. For arbitrary geometries,
one must employ different kind of numerical solver, based on algorithms such as
successive over-relaxation method or multigrid method. One can also impose vir-
tual relaxation time for electrostatic potential [302] and then solve diffusion-like
equation with one of the methods described in previous Sections.
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A.6 Successive over-relaxation method for iterative solu-
tion of Poisson-like equations in arbitrary geometries

The Successive Over-Relaxation method (SOR) is an algorithm used for solving
linear system of equations. It is derived from the Gauss-Seidel method, where an
over-relaxation factor ω was introduced in order to over-correct the solution, and
thus to speed-up the convergence of the procedure. SOR is an iterative method
where update of the solution throughout the iteration is performed in the following
way

V (k+1)
m,n = V (k)

m,n − ωR(k)
m,n, (A.20)

where index k now counts the iterations of the procedure, and R is the residual.
The procedure is convergent only for ω ∈ (0, 2), where if ω < 1 under-relaxation
occurs, while over-relaxation takes place for ω > 1. If ω = 1 method is reduced
to Gauss-Seidel algorithm. In general, it is not possible to compute in advance the
value of ω that will maximize the rate of convergence of SOR. Frequently, some
heuristic estimate is used, like the one based in Chebyshev acceleration, ω(k+1) =(
1− ρ2ω(k)/4

)−1
. Radius of convergence is defined on a rectangular mesh with a

grid cell of size ∆x×∆y, as

ρ =
∆y2cos π

Nx
+ ∆x2cos π

Ny

∆x2 + ∆y2
. (A.21)

One of the advantages of SOR is that it can treat the systems with nonuniform
geometries. In order to do so, one just needs to set the proper form of the residual,
and in the case of Eq. 2.44 this is determined as

R(k)
m,n =

aV
(k)
m,n + bV

(k)
m+1,n + cV

(k)
m−1,n + dV

(k)
m,n+1 + eV

(k)
m,n−1 − f

a
, (A.22)

where terms a = −
[
∆y2 (Lm+1,n + Lm−1,n) + ∆x2 (Lm,n+1 + Lm,n−1)

]
Lm,n,

b = ∆y2Lm+1,nLm,n, c = ∆y2Lm−1,nLm,n, d = ∆x2Lm,n+1Lm,n, and e =
∆x2Lm,n−1Lm,n. The remaining term f contains the right hand side of the Eq.
2.61, which is a divergence of the supercurrent multiplied with factor ∆x2∆y2.

A.7 Track and trace algorithm for simultaneous tracking
of a collective of particles

Moving superconducting vortices can serve as a basis for a number of super-fast
devices, and as such the need arises for precise description of their motion. As dis-
cussed in Chapters 4 and 5, direct measurement of the individual vortex velocity
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proves to be a difficult task for both theory and experiment, mostly because in-
formation obtained from a superconducting system is encoded by the contribution
from the entire condensate. Most frequently, one can indirectly obtain the aver-
age vortex velocity from the voltage of the system in a narrow range of applied
currents, where linear dependence between the voltage and vortex velocity exists.

However, if due to inhomogeneities in the system different vortex types coexist
together at the same time (as seen in Chapter 4), due to the averaging, such details
will be overlooked, and the velocity estimate from the voltage will not correspond
to reality. Moreover, such approach also fails to characterize vortex dynamics at
higher dissipative states. Within gTDGL framework, one can only reproduce the
experimental environment, and, thus, estimate the velocity from calculated voltage
in the system, since no quantity obtained from this theoretical model can be used
to fully characterize the dynamics of an individual vortex in real time.

On the other hand, if the snapshots of the condensate dynamics with distin-
guishable vortex cores could be obtained fast enough (e.g. on a scale ∝ τGL),
one could, in principle, measure the displacement of every vortex between each
frame, and thus monitor the dynamic behavior in details. This was a motivation for
development of one such tool, that, when provided with a series of images of the
dynamical behavior as an input, recognizes and traces the particles across multiple
frames, while gathering the information about the position of each particle in real
time. This software was developed under the name “Track & Trace”, and it can be
used to track down individual particles in any collective, bounded by an arbitrary
geometry.

As an input, series of images are prepared in form of frames, where each frame
corresponds to the snapshot of the system at a given instance. Software then reads
each of the images, and finds the points of highest contrast (local minima and
maxima) in every frame. After the inspection, every two consecutive images are
compared in order to calculate the displacement between the positions of local
extrema. Comparison is done in the following way: after one frame was scanned
for points of contrast, these locations are stored separately, and preserved until the
scanning of next frame was done. Then regions with a user-defined radius are
scanned in the second image, with origin at the points of the local extrema from
the first image. If any of the local extrema lies within the scanning region in both
frames, such event corresponds to a displacement of the same particle. This is how
particles are recognized and traced. Some processing of the data is also performed
here in order to account for the geometry and pinning. Program also needs to be
able to distinguish the new particles in the system, as well as terminate the data
collection for particles that exited the system. If more than one particle moves in
the system in such a way that there exists the distribution of velocities, then the
radius of the search area will have to be adapted. After successfully tracing all
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the particles throughout the entire range of provided images, this tool can provide
several insights. Besides the detailed description of the motion of each particle
(real time coordinate tracking, determination of the components of the velocity,
together with the spatio-temporal velocity distribution), statistical analysis can be
performed. One can readily obtain the spatial distribution of velocity averaged
for a specific type of particles, temporally and/or spatially averaged velocity for
each particle, and an average displacement between particles following the same
trajectory.

This software was mostly used to characterize the behavior of superconducting
vortices, but, in principle its application can be found in a broader area of research,
wherever one needs to characterize the “particle in a plane” system (with small
modifications, such software can be adapted to work with three dimensional sys-
tems, as well). Finally, as an evidence of its functionality, all the theoretical results
in Chapter 4 and Chapter 5 regarding the velocity measurements were calculated
by this tool.
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[93] Essmann, U., & Träuble, H. The direct observation of individual flux lines in
type II superconductors. Physics Letters A 24, 526-527 (1967).

[94] Vodolazov, D. Y., & Peeters, F. M. Rearrangement of the vortex lattice due to
instabilities of vortex flow. Physical Review B 76, 014521 (2007).

[95] Zhang, J. T. et al. Single-vortex pinning and penetration depth in supercon-
ducting NdFeAsO1xFx. Physical Review B 92, 134509 (2015).

[96] Maiorov, B. et al. Synergetic combination of different types of defect to opti-
mize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nature Materials
8, 389-404 (2009).

[97] Silhanek, A. V. et al. Evidence for vortex staircases in the whole angular
range due to competing correlated pinning mechanisms. Physical Review B
59, 13620 (1999).

[98] MacManus-Driscoll, J. L. et al. Strongly enhanced current densities in super-
conducting coated conductors of YBa2Cu3O7x +BaZrO3. Nature Materials 3,
439443 (2004).

[99] Editors: Moshchalkov, V. V., Woerdenweber, R., & Lang, W. Nanoscience
and Engineering in Superconductivity. Springer (2010).

[100] Kramer, R. B. G., Silhanek, A. V., Gillijns, W., & Moshchalkov, V. V. Imag-
ing the Statics and Dynamics of Superconducting Vortices and Antivortices
Induced by Magnetic Microdisks. Physical Review X 1, 021004 (2011).

[101] Adami, O. A. et al. Onset, evolution, and magnetic braking of vortex lattice
instabilities in nanostructured superconducting films. Physical Review B 92,
134506 (2015).

[102] Straver, E. W. J., Hoffman, J. E., Auslaender, O. M., Rugar,D., & Moler,
K. A. Controlled Manipulation of Individual Vortices in a Superconductor.
Applied Physics Letters 93, 172514 (2008).

[103] Villegas, J. E. et al. A superconducting reversible rectifier that controls the
motion of magnetic flux quanta. Science 302, 1188-1191 (2003).

162



Bibliography

[104] Hastings, M. B., Reichhardt, C. J. O., & Reichhardt, C. Ratchet Cellular
Automata. Physical Review Letters 90, 247004 (2003).

[105] Berciu, M., Rappoport, T. G., & Boldizs’ar, J. Manipulating spin and charge
in magnetic semiconductors using superconducting vortices. Nature 435, 71-
75 (2005).

[106] Weeks, C., Rosenberg, G., Seradjeh, B., & Franz, M. Anyons in a weakly
interacting system. Nature Physics 3, 796-801 (2007).

[107] Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I., & Vi-
nokur, V. M. Vortices in high-temperature superconductors. Reviews of Mod-
ern Physics 66, 1125-1388 (1994).

[108] Nelson, D. R. Defects and Geometry in Condensed Matter Physics. Cam-
bridge University Press (2002).

[109] Wynn, J. C. et al. Limits on Spin-Charge Separation from h/2e Fluxoids
in Very Underdoped YBa2Cu3O6+x. Physical Review Letters 87, 197002
(2001).

[110] Hoffman, J. E. et al. A Four Unit Cell Periodic Pattern of Quasi-Particle
States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+δ. Science 295, 466-469
(2002).

[111] Kafri, Y., Nelson, D. R., & Polkovnikov, A. Unzipping Vortices in Type-II
Superconductors. Physical Review B 76, 144501 (2007).

[112] Binning, G., & Roher, H. Scanning Tunneling Microscopy. Surface Science
126, 236-244 (1983).

[113] Giaever, I. Energy Gap in Superconductors Measured by Electron Tunnel-
ing. Physical Review Letters 5, 147-148 (1960).

[114] Wolfram, T. Inelastic Electron Tunneling Spectroscopy: Springer Series in
Solid State Sciences - Vol. 4. Springer (1978).

[115] Binning, G., Roher, H., Gerber, C., & Weibel, E. Surface Studies by Scan-
ning Tunneling Microscopy. Physical Review Letters 49, 57-61 (1982).

[116] Binning, G., Roher, H., Gerber, C., & Weibel, E. Tunneling through a con-
trollable vacuum gap. Applied Physics Letters 40, 178-180 (1982).

[117] Chen, C. J. Origin of atomic resolution on metal surfaces in scanning tun-
neling microscopy. Physical Review Letters 65, 448-451 (1990).

163



Bibliography

[118] Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on
Si(111). Nature Physics 6, 104-108 (2010).

[119] Ge, J. Y. et al. Nanoscale assembly of superconducting vortices with scan-
ning tunnelling microscope tip. Nature Communications 7, 13880 (2016).

[120] Binning, G., & Roher, H. Scanning Tunneling Microscopy. IBM Journal of
Research and Development 30, 279-293 (1986).

[121] Auslaender, O. M. et al. Mechanics of individual isolated vortices in a
cuprate superconductor. Nature Physics 5, 35-39 (2009).

[122] Black, R. C. et al. Magnetic microscopy using a liquid nitrogen cooled
YBa2Cu307 superconducting quantum interference device. Applied Physics
Letters 62, 2128-2130 (1993).

[123] Mathai, A., Song, D., Gim, Y., & Wellstood, F. C. One dimensional mag-
netic flux microscope based on the dc superconducting quantum interference
device. Applied Physics Letters 61, 598-600 (1989).

[124] Geng, Q., Minami, H., Chihara, K., Yuyama, J., & Goto, E. Technique for
measuring absolute intensity of weak magnetic fields by a SQUID pickup coil
system. Review of Scientific Instruments 63, 3972-3977 (1992).

[125] Buchanan D. S., Crum, D. B., Cox, D., & Wikswo, J. P. Advances in Bio-
magnetism. Plenum, New York (1989).

[126] Lee, T. S., Chemla, Y. R., Dantsker, E., & Clarke, J. High-Tc SQUID micro-
scope for room temperature samples. IEEE Transactions on Applied Super-
conductivity 7, 3147 - 3150 (1997).

[127] Kremen, A., Wissberg, S., Haham, N., Persky, E., Frenkel, Y., & Kalisky,
B. Mechanical Control of Individual Superconducting Vortices. Nano Letters
16, 1626-1630 (2016).

[128] Sivakov, A. G., Zhuravel’, A. P., Turutanov, O. G., & Dmitrenko, I. M. Spa-
tially resolved characterization of superconducting films and cryoelectronic
devices by means of low temperature scanning laser microscope. Applied sur-
face science 106, 390-395 (1996).

[129] Zhuravel’, A. P., Sivakov, A. G., Lukashenko, A. V., & Dmitrenko, I. M.
Low temperature scanning laser microscope for studies in high magnetic
fields. Proceedings of the 21st International Conference on Low Temperature
Physics (1996).

164



Bibliography

[130] Veshchunov, I. S. et al. Optical manipulation of single flux quanta. Nature
Communications 7, 12801 (2016).

[131] Huebener, R. P. Magnetic flux structures in superconductors. Springer-
Verlag Berlin Heidelberg GmbH (1979).

[132] Grimaldi, G. et al. Speed limit to the Abrikosov lattice in mesoscopic super-
conductors. Physical Review B 92 024513 (2015).

[133] Silhanek, A. V. et al. Influence of artificial pinning on vortex lattice insta-
bility in superconducting films. New Journal of Physics 14, 053006 (2012).

[134] Grimaldi, G. et al. Evidence for low-field crossover in the vortex critical
velocity of type-II superconducting thin films. Physical Review B 82, 024512
(2010).
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Kad budeš prolazila pored tvrd̄ave despotove...
Govorim ti, jer nisam još učio od prvih ljudi gospodarevog doma.

Zatočen sam
i govoriću ti.

Nisi ostala u ulici zasutoj lišćem studentskih dana...
Uhvatila si me za kosti, za mišiće prošlosti,

Kad bijah mlad, ili odveć star da te poznajem...
Nego, muči me nešto.

Šta je to sa imenima kojima te nazivam?
Je li te to stepa zatočila u svom beskraju?

Jesi li to bila ti na poljima Rusije
Koja sam vidio jednom kada sam sanjao naše ime.

Ništa od toga, ništa od toga nije jasno Nebu.
To me muči...

Kako si urasla u ove nerve i
Procvjetala bojom jeseni?

Nego, ima još nešto, ξ.
A to me razud̄uje u vremenima fizici znanim.

Vidio sam te jednom davno.
Sumnjao sam da si ti.

Vidio sam te u podnožju starog hrasta
Koji je rastao ispred moje zgrade

U Kotoru.
U jesen sam te gledao dok je

Lišće padalo pored tvojih kosa
Od kojih bijaše nebo.

Ćutiš?
Ne boj se...

Pa zar misliš da sad postoji
Nekakav bunar ili raskršće ili vodenica

U kojoj postoji nešto
Što će te ugristi?

Ne, ništa više ne obitava tamo,
Jer, evo, pojeli su me i zažalili.

Otrovao sam ih.

Marko Lješević


