

### Development of solar energy in Africa

# A challenge in terms of resource availability and recycling



Eric PIRARD Sandra BELBOOM

### Solar Energy in Africa Energy for all



# Solar Energy in Africa

- Solar capacity
  - Sub-Saharan Africa represents 11.4 TW of solar capacity
    - If 0,02 0,05% landmass covered with PV panels
- Distributed solar
  - Complementary rather than revolutionary
    - Solar will take off after 2030 : learning improvements + lower costs in technology.
    - A drop by 30 % is needed to be competitive with current grid cost (LCOE))

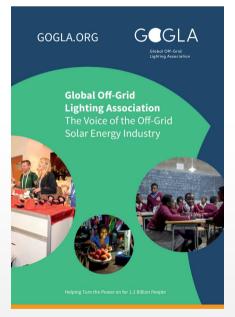
### o 25 % of all households

- If Africa were to close the gap to universal electricity access, only 2 % of all energy delivered would come through off-grid connections
- Distributed solar is likely to have a profound effect in the provision of electricity to those who do not already have it!

### • Access to capital

- Cost cut by 50% if Africans obtain the same cost of capital as in Germany (IEA).
  - ✓ Ex. Scaling Solar (WB) to support the low-carbon expansion of Africa's power sector.




Penny 201 Adamson Mindeenew





# Energy for All

A myriad of initiatives •



Scaling Solar WORLD BANK GROUP





### Home solar kit distribution, Nigeria

Organization involved: Overseas Private Investment Corporation (OPIC)

Activity: Received ACEF grant for early stage development (\$525,000). Then received USD \$15M OPIC loan to facilitate distribution of solar kits to an off-grid market of some 90M households, followed by an additional USD \$35M expansion loan.

The Technology: 80 W residential, pay-as-you-go systems. Payments can be made with mobile phones via text messaging.

### Projected outcomes:

As a Power Africa Partner, Nova-Lumos (Lumos) intends to deploy 15 million Solar Power systems in the next 5 years, representing an installed capacity of over 700 MW





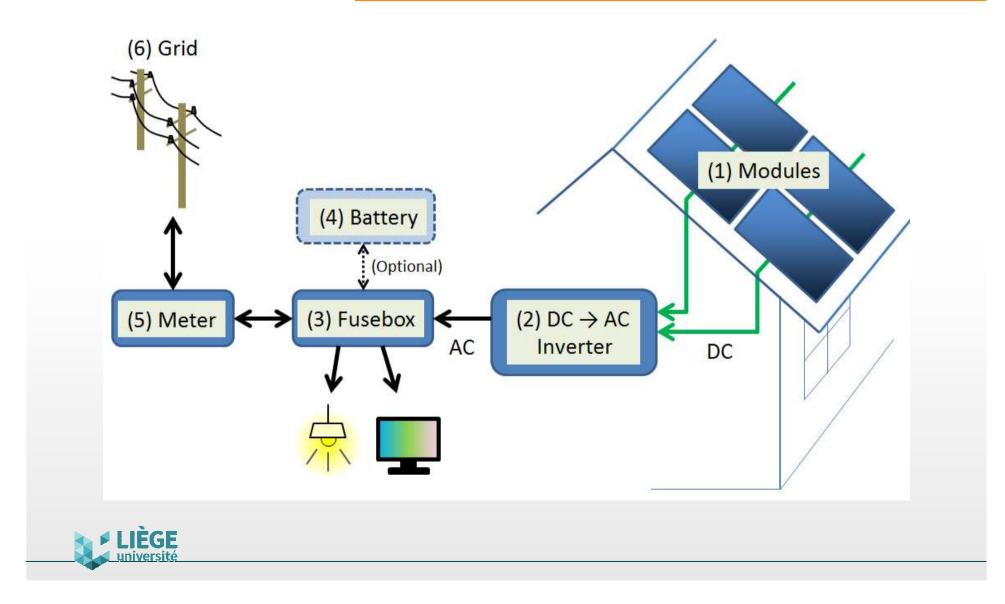
Distribution of home solar kits allows households the opportunity to use a variety of appliances, as well as reduce reliance on kerosene lamps and diesel generators

7

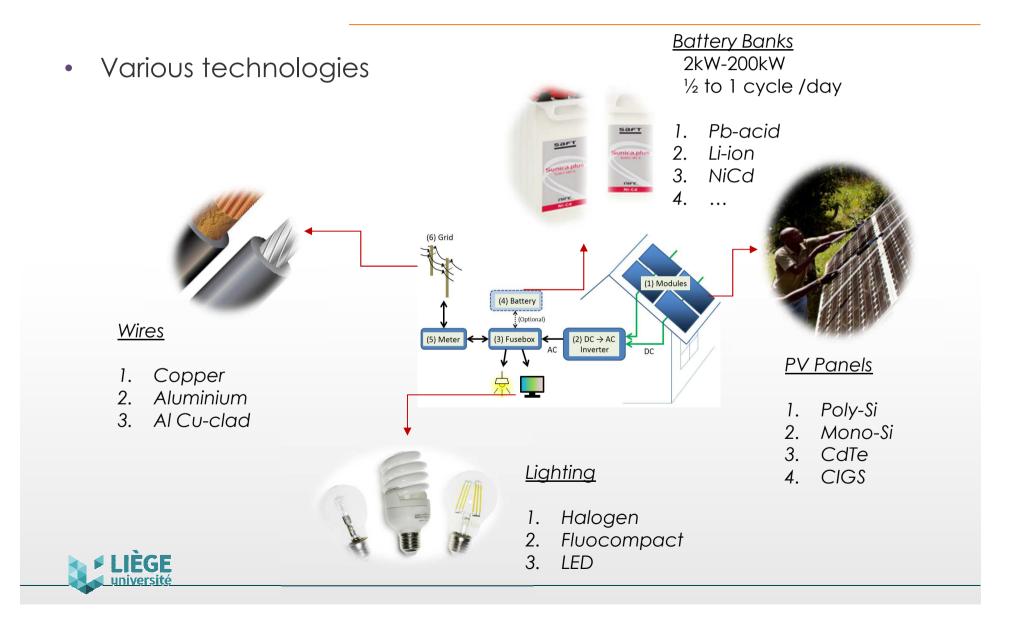


# Energy for All

- AREI African Renewable Energy Initiative
  - o Africa has the largest potential
  - Jump over technology gap
    - No fossil fuels, No central
    - Intelligent energy, user-oriented, smart grids
  - o 600 Mhab
    - Target 600 GW in 2030







### Solar Home Systems Technologies



### Solar Home Systems (SHS)



## Solar Home Systems (SHS)

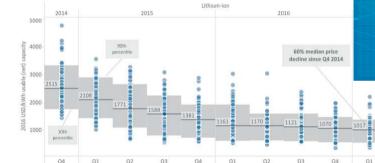


### Selection Criteria Which efficiency ?



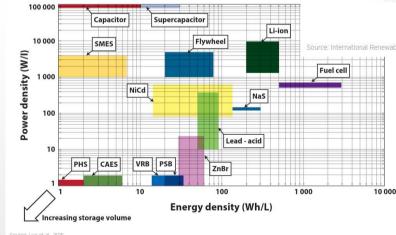
**ST**IRENA

Cost 0


> Lifetime 0


> > EGE

0


Storage efficiency Figure 29: Home storage lithium-ion system offers in Germany from Q4 2014 to Q1 2017

ole Energy Agency, based on EuPD Research, 2017

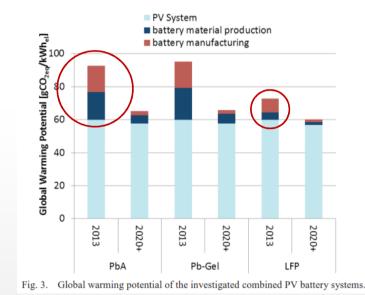




**ELECTRICITY STORAGE** 



### Li-ion > Pb-acid


- Higher lifetime and efficiencies ٠
- No maintenance
- No gassing ٠
- Easier to install ٠
- Better aesthetics •
- Lower total cost of ownership ٠

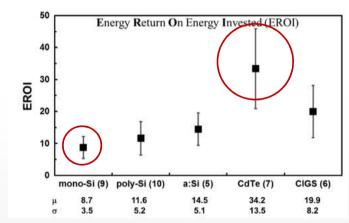
### o LCA

- Global Warming Potential
- Toxicity
- Abiotic Resource Depletion

Li-ion (LFP) > Pb-acid

• ...




**Jülch V. et al, 2015**, A holistic comparative analysis of different storage systems using levelized cost of storage and life cycle indicators, 9<sup>th</sup> Int. Renewable Energy Storage Conference, IRES2015



- ERO(E)I
  - Energy Return on Energy Invested



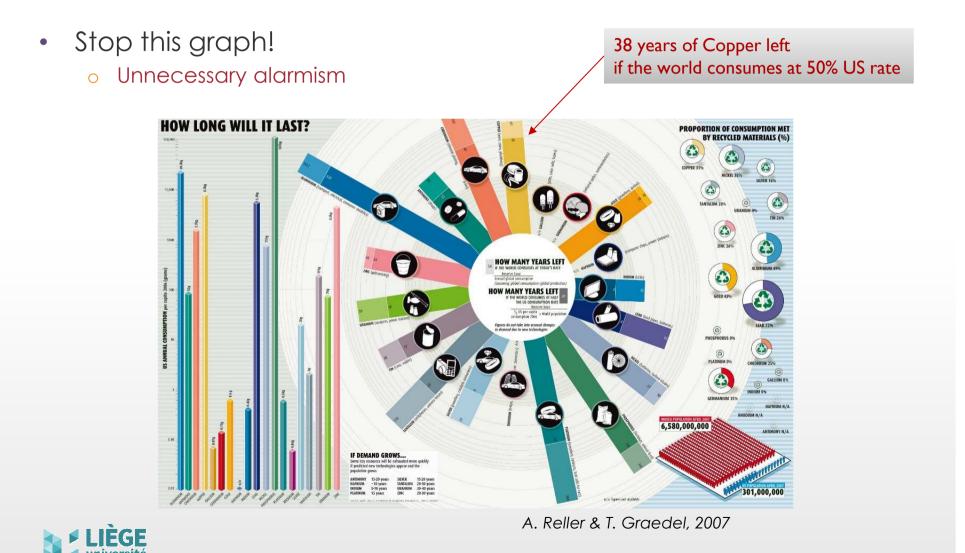
© First Solar



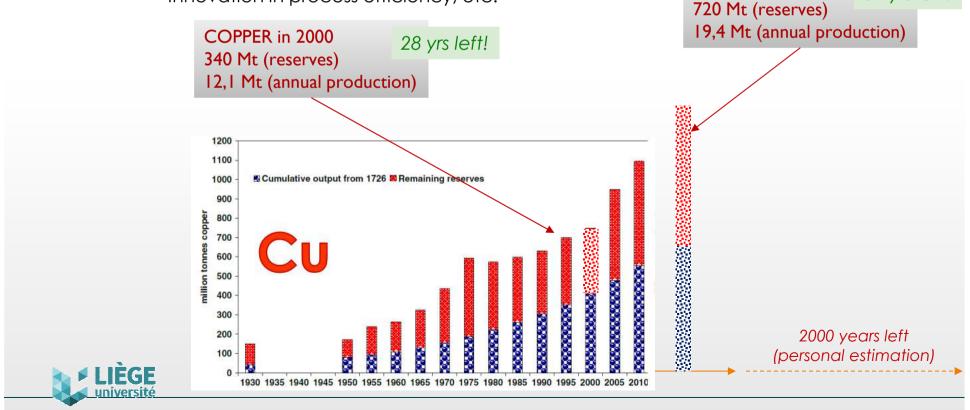
CdTe > Poly-Si

**Bhandari et al., 2015,** Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis, Renewable and Sustainable Energy Reviews 47, 133–141




### • Let's take another perspective




Future products will not only be optimized with regard to their functionality but also their recyclability and the sustainable availability of resources.







- Copper: a key metal
  - o Reserves are **dynamic** and increase with
    - Metal price
    - Renewed Exploration
    - Innovation in process efficiency, etc.



COPPER in 2017

37 yrs left!

- Tellurium : a scarce by-product •
  - Rarer than gold
  - By-product of Copper
    - » 450 g Te/ 500 t Cu





© First Solar

| Technology | Elements | Annual EU Demand<br>(tonnes) |        | Annual EU Demand<br>/ World Supply |       |                           |
|------------|----------|------------------------------|--------|------------------------------------|-------|---------------------------|
|            |          | 2020                         | 2030   | 2020                               | 2030  |                           |
|            | Te       | 150                          | 126    | 12.0%                              | 6.9%  |                           |
|            | In       | 145                          | 121    | 7.6%                               | 4.9%  |                           |
|            | Sn       | 14,913                       | 12,505 | 3.6%                               | 2.6%  | Estimated to 50,4% (2011) |
|            | Ag       | 619                          | 519    | 1.7%                               | 1.2%  | Revised to 6,9% (2013)    |
| Solar PV   | Ga       | 4                            | 3      | 0.8%                               | 0.5%  |                           |
|            | Se       | 15                           | 13     | 0.4%                               | 0.3%  | Increase in Cu mining!    |
|            | Cd       | 109                          | 91     | 0.3%                               | 0.2%  |                           |
|            | Cu       | 70,650                       | 59,241 | 0.3%                               | 0.2%  |                           |
|            | Pb       | 8,672                        | 7,272  | 0.1%                               | <0.1% |                           |
| CSP        | Ag       | 19                           | 19     | 0.1%                               | 0.1%  |                           |

JRC SCIENTIFIC AND POLICY REPORTS Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector

Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies







- Cobalt : a strategic metal
  - o DR Congo
    - 53 % world production
    - > 50 % world reserves
  - Alternative deposits ?
    - Ni laterites
    - Cu-Ni sulphides

• LMO, LFP, LTO,...

• Alternative technologies ?

NMC Li (Ni<sub>0.5</sub>Mn<sub>0.2</sub>Co<sub>0.3</sub>)O<sub>2</sub>









World mine production of cobalt (USGS)

| Key active material   | lithium nickel manganese<br>cobal oxide                              | lithium manganese oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lithium nickel cobalt<br>aluminum | lithium iron phosphate | lithium titanate oxide |
|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|------------------------|
| Technology short name | NMC                                                                  | LMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NCA                               | LFP                    | LTO                    |
| Cathode               | LiNi <sub>x</sub> Mn <sub>y</sub> Co <sub>1-x-y</sub> O <sub>2</sub> | LiMn₂O₄ (spinel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LiNiCoAlO <sub>2</sub>            | LiFePO₄                | variable               |
| Anode                 | C (graphite)                                                         | C (graphite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C (graphite)                      | C (graphite)           | Li₄Ti₅O <sub>12</sub>  |
| Safety                | 4                                                                    | al and a second s | al l                              | 4                      | 4                      |
| Power Density         | 4                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                 | 4                      | 4                      |
| Energy Denisty        | 4                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                 | <b>a</b>               | 4                      |
| Cell costs advantage  | 4                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                 | 4                      | al I                   |
| Lifetime              | 4                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                 | 4                      | 4                      |
| BESS performance      | 4                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                 |                        |                        |



### Recyclability Undergoing the crush test



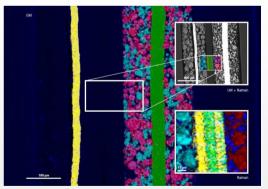
- Mass recovery balance targets
  - Set by legislation
- Low residual value of materials
  - Need for tax incentives
  - No incentive for recovery of critical elements
- High risk linked to
  - o Upscaling
  - o Product design
  - Continuous evolution of technologies
- How to assess recyclability?
  - o Often model-based
  - Need for physical validation (crush test)



### Recycling/recovery rate

Total weight based recycling/recovery rate of all materials/elements/compounds in the product after physical sorting and final treatment processing

### Environmental impact score of recycling


- Recipe end-point indicator (type E weighting)
   GWP (Global warming potential)
- GWP (Global warming pote
   AP (Acidification potential)
- EP (Eutrophication potential)
  ODP (Ozone Layer Depletion Potential)
- ODP (Ozone Layer Depletion Potentia)



Walloon Region - Technological Innovation Project (**Reverse Metallurgy**, 61 M€) Modular platform to validate the recyclability of end-of-life products.



- Collection
  - New business models needed
  - Develop product tracking
  - Limit transportation!
  - Prevent illegal exports
  - Certify recycling chains
- Regional (pre)processing
  - Easy dismantling / Sorting



Microchemical stratification of an Li-ion battery revealed by Multi-Modal SEM and Raman Imaging © Zeiss



### Pb-acid >>> Li-ion

|                  | Pb-acid           | Li-ion                   |
|------------------|-------------------|--------------------------|
| Collection       | Acid risk         | Fire risk                |
| Technology       | Simple / Stable   | Complex / Changing       |
| Comminution      | Easy              | Impossible               |
| Separation       | Easy<br>Physical  | Complex<br>Hydro/pyromet |
| Final processing | Regional (Africa) | International (Europe)   |



- Current PV Panels recycling
  - Only lab-scale experiments
  - Sub-economic at plant scale
- Future redesigned PV panels lacksquare
  - Improved dissassembling through
    - Encapsulation
    - Removable edge sealant
    - Wire saw to separate high purity Si wafer from glass

### PRODUCTION OF RECYCLABLE CRYSTALLINE SI PV MODULES

M.A.A. Goris<sup>1</sup>, V. Rosca<sup>1</sup>, L.J. Geerligs<sup>1</sup>, B. de Gier<sup>2</sup> EUPVSEC 2015 <sup>1</sup>ECN, P.O. Box 1, 1755 ZG Petten, The Netherlands; goris@ecn.nl; +31 88 5154505 <sup>2</sup>Eurotron, Van Beukelaarweg 45, 2971 VL Bleskensgraaf, The Netherlands



encapsulant was applied



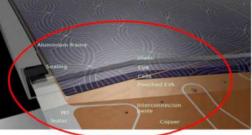



Figure 1: A cross-section of a foil-based metal wrap through (MWT) PV module



Figure 8: Separating solar cell from glass sheet for thermoplastic-based module. The separated cell is shown on the right

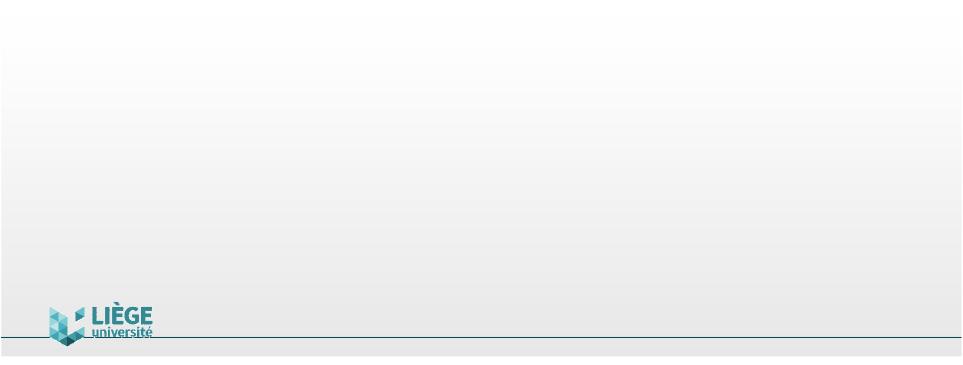


- Products need to be (re)designed for recycling
  - Privilege pure metals
  - Avoid mixing incompatible metals
  - Limit metal contamination
  - Avoid energy demanding processes
  - 0 ...

|                  | Cu                | Al Cu-clad             |
|------------------|-------------------|------------------------|
| Purity           | ++++              | 15% Cu                 |
| Process          | Pyromet           | Pyromet + Refinery     |
| Energy           | +                 | +++                    |
| Final processing | Regional (Africa) | International (Europe) |



### Take Away ...and keep in mind




## Take Away Message

- Resource availability
  - Not so critical in the short term (ex. 200 years)
  - Risk of supply chain disruption
    - Due to technical reasons (by-product of another metal)
    - Due to geopolitical reasons (strong concentration)
  - Resource Depletion is not properly modelled in current LCA
- Recyclability
  - Should be integrated in any energy policy
  - Requires efficient organisation of back-collection
  - Should privilege short loops : reuse, repair and recycle
    - Regional pre-processing facilities
  - Should lead to adopting technologies designed for efficient recycling
    - Installing regional recycling plants



### Thank You

