Permutation groups and the Morse-Hedlund Theorem

Émilie Charlier
joint work with Svetlana Puzynina and Luca Zamboni

Département de Mathématique, Université de Liège

Workshop “Ergodic Theory & Symbolic Dynamics”
London, September 14, 2017
Factor complexity of infinite words

The Fibonacci word

\[f = 01001010010010100101001001010010 \ldots \]

is the fixed point of the morphism 0 ↦ 01 and 1 ↦ 0.

Factors of length n:

<table>
<thead>
<tr>
<th>n</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0, 1</td>
</tr>
<tr>
<td>2</td>
<td>00, 01, 10</td>
</tr>
<tr>
<td>3</td>
<td>001, 010, 100, 101</td>
</tr>
<tr>
<td>4</td>
<td>0010, 0100, 0101, 1001, 1010</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
</tr>
</tbody>
</table>

It can be shown that there are exactly \(n + 1 \) factors of length \(n \) in \(f \).
Notation

- **Alphabet**: finite non-empty set, usually denoted by A.
- **Word over A**:
 \[x = x_0x_1x_2 \cdots \quad \text{(infinite word)} \]
 \[x = x_0x_1 \cdots x_{n-1} \quad \text{(finite word of length } |x| = n) \]
- A^n is the set of all words of length n over A.
- **Factor u of an infinite word w**: $u = x_i \ldots x_{i+j}$ for some $i, j \in \mathbb{N}$.
- **Fac$_n(x)$** is the set of the factors of x of length n.
The factor complexity of an infinite word x is the function $p_x : \mathbb{N} \to \mathbb{N}$ which counts the number of factors of length n of x:

$$\forall n \in \mathbb{N}, \ p_x(n) = |\text{Fac}_n(x)|.$$

Some properties:

- $\forall n \in \mathbb{N}, \ p_x(n) \leq |A|^n$.
- $p_x(n)$ is a non-decreasing function.
Some more examples

- The (binary) Champernowne word

 \[c = 0 \ 1 \ 10 \ 11 \ 100 \ 101 \ 110 \ 111 \ 1000 \cdots\]

 has maximal factor complexity \(2^n\).

- The Thue-Morse word is the fixed point of the morphism

 \[0 \mapsto 01, \ 1 \ mapsto 10\]

 beginning with 0:

 \[t = 01101001100101101\cdots\]

 We have \(p_t(3) = 6\): no factors 000, 111.

 The factor complexity of Thue-Morse is computed in [Brlek 1987].
Complexity and periodicity

- Purely periodic word: $x = v^\omega = vv \cdots$
- Ultimately periodic word: $x = uv^\omega = uvvv \cdots$
- Aperiodic means not ultimately periodic.

Theorem (Hedlund-Morse 1940, first part)

An infinite word x is aperiodic iff $\forall n \in \mathbb{N}, \ p_x(n) \geq n + 1$.

Sturmian words and balance

- An infinite word over A is C-balanced if for all factors u, v of the same length and for each $a \in A$, we have $|u_a - v_a| \leq C$.

Theorem (Hedlund-Morse 1940, second part)

An infinite word x is such that $\forall n \in \mathbb{N}$, $p_x(n) = n + 1$ iff it is binary, aperiodic and 1-balanced.

- Aperiodic binary infinite word of minimal complexity are called Sturmian words.
- We have already seen that the Fibonacci word is Sturmian.
Other complexity functions, and their links with periodicity.

- **Abelian complexity**, which counts the number of abelian classes of words of each length n occurring in x:
 [Coven-Hedlund 1973], [Richomme-Saari-Zamboni 2011].

- **Palindrome complexity**, which counts the number of palindromes of each length n occurring in x:
 [Allouche-Baake-Cassaigne-Damanik 2003].

- **Cyclic complexity**, which counts the number of conjugacy classes of factors of each length n occurring in x:
 [Cassaigne-Fici-Sciortino-Zamboni 2017].

- **Maximal pattern complexity**: [Kamae-Zamboni 2002].
Several generalizations of Morse-Hedlund

Higher dimensions:

- Nivat conjecture: Any 2-dimensional word having at most mn rectangular blocks of size $m \times n$ must be periodic.
- It is known that the converse is not true.
- [Durand-Rigo 2013], in which they re-interpret the notion of periodicity in terms of Presburger arithmetic.
Our contribution

- New notion of complexity by group actions.
- Encompass most complexity functions studied so far.
Abelian complexity

- Two finite words are **abelian equivalent** if they contain the same numbers of occurrences of each letter: $00111 \sim_{ab} 01101$.
- The **abelian complexity function** $a_x(n)$ counts the number of abelian classes of words of length n occurring in x.

For the Thue-Morse word $t = 0110100110010110 \cdots$, we have

$$a_t(n) = \begin{cases}
2 & \text{if } n \text{ is odd} \\
3 & \text{if } n \text{ is even}
\end{cases}$$

We have $a_t(3) = 2$ since there are 2 abelian classes of factors of length 3:

$$\{001, 010, 100\} \text{ and } \{011, 101, 110\}.$$
Abelian complexity and periodicity

We clearly have the following implications:

\[
\text{ultimate periodicity} \Rightarrow \text{bounded factor complexity} \\
\Rightarrow \text{bounded abelian complexity.}
\]

However, we have just seen that the converse is not true: the Thue-Morse word is aperiodic and its abelian complexity function is bounded by 3.

Theorem (Coven-Hedlund 1973, part 1)

An infinite word \(x \) is purely periodic iff \(\exists n \geq 1, a_x(n) = 1 \).

In particular, if \(x \) is aperiodic then \(\forall n \geq 1, a_x(n) \geq 2 \).

The converse is false: take \(x = 01^\omega \).
Abelian complexity and balance

We clearly have the following implications:

- ultimate periodicity \Rightarrow bounded factor complexity
 \Rightarrow bounded abelian complexity.

Theorem (Coven-Hedlund 1973, part 2)

An infinite aperiodic word x is Sturmian iff $\forall n \geq 1$, $a_x(n) = 2$.

Theorem (Richomme-Saari-Zamboni 2011)

An infinite word has bounded abelian complexity iff it is C-balanced for some $C \geq 1$.
Cyclic complexity

- Two finite words \(u \) and \(v \) are **conjugate** if there exist words \(w_1, w_2 \) such that \(u = w_1 w_2 \) and \(v = w_2 w_1 \).

- The **cyclic complexity function** \(c_x(n) \) counts the number of conjugacy classes of words of length \(n \) occurring in \(x \).

For the Thue-Morse word \(t = 0110100110010110 \cdots \), we have \(c_t(4) = 4 \) since there are 4 conjugacy classes of factors of length 4:

\[
\{0010, 0100\} \\
\{0110, 1001, 1100, 0011\} \\
\{0101, 1010\} \\
\{1011, 1101\}
\]
Cyclic complexity, periodicity and Sturmian words

Theorem (Cassaigne-Fici-Sciortino-Zamboni 2014)

An infinite word is ultimately periodic iff it has bounded cyclic complexity.

One always has

\[a_x(n) \leq c_x(n) \leq p_x(n). \]

Hence \(c_x(n) = 1 \) for some \(n \geq 1 \) implies that \(x \) is purely periodic.

In [Cassaigne-Fici-Sciortino-Zamboni 2014] they consider \(\liminf c_x(n) \):

- Sturmian words satisfy \(\liminf c_x(n) = 2 \).
- But this is not a characterization of Sturmian words since the period-doubling word also has \(\liminf c_x(n) = 2 \).
Generalization via group actions

- Let G be a subgroup of the symmetric group S_n: $G \leq S_n$.
- G acts on A^n by permuting the letters:

$$G \times A^n \to A^n, \quad (g, u) \mapsto g \ast u = u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)}.$$

- We write $u_1 \cdots u_n \overset{g}{\sim} u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)}$.

- $0100 \overset{(1234)}{\sim} 0010$.
- $abcab \overset{(123)(45)}{\sim} cabba$.
- In particular $g \ast u \sim_{ab} u$.
- G-equivalence relation on A^n: for $u, v \in A^n$, $u \sim_G v$ if $\exists g \in G$, $g \ast u = v$.
- $u \sim_G v$ implies $u \sim_{ab} v$.
Complexity by actions of groups

Now we consider a sequence of subgroups $\omega = (G_n)_{n \geq 1}$: for each $n \geq 1$, $G_n \leq S_n$.

The group complexity $p_{\omega,x}(n)$ of x counts the number of G_n-classes of words of length n occurring in x.

For the Thue-Morse word $t = 0110100110010110 \cdots$ and $G_4 = \langle (13), (24) \rangle$, we have $p_{\omega,t}(4) = 7$ while $p_t(4) = 10$.

We have six singleton classes of length 4:

$$[0010], [0100], [0101], [1010], [1011], [1101]$$

and one class of order 4:

$$[0110 \,(13)(24)\, 1001 \,(24)\, 1100 \,(13)\, 0011].$$
Group actions: generalization of factor, abelian and cyclic complexities

Each choice of sequence $\omega = (G_n)_{n \geq 1}$ defines a unique complexity which reflects a different combinatorial property of an infinite word.

As particular cases, we recover

- **factor complexity**: if $\omega = (Id_n)_{n \geq 1}$ then $p_{\omega,x}(n) = p_x(n)$
- **abelian complexity**: if $\omega = (S_n)_{n \geq 1}$ then $p_{\omega,x}(n) = a_x(n)$
- **cyclic complexity**: if $\omega = < (12 \cdots n) >_{n \geq 1}$ then $p_{\omega,x}(n) = c_x(n)$.
The quantity $\varepsilon(G)$

- For $G \leq S_n$ and $i \in \{1, 2, \ldots, n\}$, the G-orbit of i is

 $$G(i) = \{g(i) \mid g \in G\}.$$

- The number of distinct G-orbits is denoted

 $$\varepsilon(G) = |\{G(i) \mid i \in \{1, 2, \ldots, n\}\}|.$$

- For $n = 6$ and $G = \langle (13), (256) \rangle$, we have $\varepsilon(G) = 3$:

 $$123456.$$

- If $G = Id$, then $\varepsilon(G) = n$.

- If G contains an n-cycle, then $\varepsilon(G) = 1$.
Complexity by group actions: $\varepsilon(G)$

- For $G \leq S_n$, $\varepsilon(G)$ is the number of G-orbits of $\{1, \ldots, n\}$.

Example (The Klein group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$)
First take $G = \{\text{id}, (12), (34), (12)(34)\}$.
Then the G-orbits are $\{1, 2\}$ and $\{3, 4\}$, hence $\varepsilon(G) = 2$.

Second, consider $G' = \{\text{id}, (12)(34), (13)(24), (14)(23)\}$.
Then the only G'-orbit is $\{1, 2, 3, 4\}$, hence $\varepsilon(G') = 1$.

- This shows an interesting phenomenon: the quantity $\varepsilon(G)$ depends on the embedding of G into S_n.
Generalisation of the Morse-Hedlund theorem

Theorem 1 (Charlier-Puzynina-Zamboni 2017)
Let x be an infinite aperiodic word, $\omega = (G_n)_{n \geq 1}$, $G_n \leq S_n$.

- Then $\forall n \geq 1$, $p_{\omega,x}(n) \geq \varepsilon(G_n) + 1$.
- If $\forall n \geq 1$, $p_{\omega,x}(n) = \varepsilon(G_n) + 1$ then x is Sturmian.

Corollary
An infinite aperiodic word is Sturmian iff there exists $\omega = (G_n)_{n \geq 1}$, $G_n \leq S_n$ such that $\forall n \geq 1$, $p_{\omega,x}(n) = \varepsilon(G_n) + 1$.

Sketch of the proof

Theorem 1, second part

Let x be an infinite aperiodic word, $\omega = (G_n)_{n \geq 1}$, $G_n \leq S_n$.

If $\forall n \geq 1$, $p_{\omega,x}(n) = \varepsilon(G_n) + 1$ then x is Sturmian.

- Since $\varepsilon(G_1) = 1$, then $p_{\omega,x}(1) = 2$, and hence x is binary.
- Suppose that x is not Sturmian, that is, not 1-balanced.
- Key lemma: $\exists n \geq 2$, a Sturmian word y and a bispecial factor $u \in \{0, 1\}^{n-2}$ of y s.t. $\text{Fac}_n(x) = \text{Fac}_n(y) \cup \{0u0, 1u1\}$.
- u is a **bispecial** factor of y means that $u0, u1, 0u, 1u$ are factors of y.
- Since y is Sturmian, exactly one of $0u0$ and $1u1$ is a factor of y, hence $p_{\omega,x}(n) \geq p_{\omega,y}(n) + 1$.
- Apply first part of the theorem to y to get $p_{\omega,x}(n) \geq p_{\omega,y}(n) + 1 \geq \varepsilon(G_n) + 2$, a contradiction.
Generalisation of the Morse-Hedlund theorem

Partial converse:

Theorem 2 (Charlier-Puzynina-Zamboni 2017)

Let x be a Sturmian word and $\omega = (G_n)_{n \geq 1}$, where G_n is an abelian subgroup of S_n. Then $\exists \omega' = (G'_n)_{n \geq 1}$, $G'_n \leq S_n$, such that $\forall n \geq 1$,

1. G'_n is isomorphic to G_n
2. $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

As particular cases, we recover:

1. Morse-Hedlund theorem: $\omega = (Id_n)_{n \geq 1}$, $p_{\omega,x}(n) = p_x(n)$, $\varepsilon(G_n) = n$.
2. Abelian complexity: $\omega = (S_n)_{n \geq 1}$, $p_{\omega,x}(n) = a_x(n)$, $\varepsilon(G_n) = 1$.
We cannot always take $G' = G$

Theorem 2
Let x be a Sturmian word and $\omega = (G_n)_{n \geq 1}$, where G_n is an abelian subgroup of S_n. Then $\exists \omega' = (G'_n)_{n \geq 1}$, $G'_n \leq S_n$, such that $\forall n \geq 1$, G'_n is isomorphic to G_n and $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

Consider the factors of length 4 of the Fibonacci word:

$$0010, 0100, 0101, 1001, 1010.$$

Let $G_4 = \langle (1234) \rangle$. Then $\varepsilon(G_4) = 1$ and $p_{\omega,f}(4) = 3 > \varepsilon(G_4) + 1$:

$$[0100 \overset{(1234)}{\sim} 0010], \quad [0101 \overset{(1234)}{\sim} 1010], \quad [1001].$$

But we can take $G'_4 = \langle (1324) \rangle$. Then $\varepsilon(G'_4) = 1$ and $p_{\omega',f}(4) = 2 = \varepsilon(G'_4) + 1$:

$$[0010 \overset{(1324)}{\sim} 0100], \quad [0101 \overset{(1324)}{\sim} 1001 \overset{(1324)}{\sim} 1010].$$
We cannot replace "isomorphic" by "conjugate"

Theorem 2
Let x be a Sturmian word and $\omega = (G_n)_{n \geq 1}$, where G_n is an abelian subgroup of S_n. Then $\exists \omega' = (G'_n)_{n \geq 1}$, $G'_n \leq S_n$, such that $\forall n \geq 1$, G'_n is isomorphic to G_n and $p_{\omega', x}(n) = \varepsilon(G'_n) + 1$.

Let $G = \langle (123)(456) \rangle \leq S_6$. This is a cyclic subgroup of order 3. Then $\varepsilon(G) = 2$ and we can show that

$$\left| \text{Fac}_6(f) / \sim_{G'} \right| \geq 4$$

for each subgroup G' of S_6 which is conjugate to G.
Sketches of proof

Theorem 2
Let x be a Sturmian word and $\omega = (G_n)_{n \geq 1}$, where G_n is an abelian subgroup of S_n. Then $\exists \omega' = (G'_n)_{n \geq 1}, G'_n \leq S_n$, such that $\forall n \geq 1$,

- G'_n is isomorphic to G_n
- $p_{\omega', x}(n) = \varepsilon(G'_n) + 1$.

First we prove Theorem 2 for an n-cycle.

abc-permutation [Pak-Redlich 2008]: The numbers $1, 2, \ldots, n$ are divided into three subintervals of length a, b and c which are rearranged in the order c, b, a:

![Diagram of abc-permutation]

$1, 2, \ldots, n \mapsto c+b+1, c+b+2, \ldots, n, c+1, c+2, \ldots, c+b, 1, 2, \ldots, c$
Consider the *abc*-permutation with $a = 1$, $b = 2$, $c = 3$ on the lexicographic array of length 6.

\[
\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
\hline
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

This *abc*-permutation can be seen as a 6-cycle: (163524).

For $G \leq S_n$, we say that \sim_G is abelian transitive on x if $\forall u, v \in \text{Fac}_n(x) : u \sim_{ab} v \iff u \sim_G v$.
Factors of length 6 in Fibonacci

Consider the abc-permutation with $a = 1$, $b = 2$, $c = 3$ on the lexicographic array of length 6.

\[
\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

This abc-permutation can be seen as a 6-cycle: (163524).

For $G \leq S_n$, we say that \sim_G is abelian transitive on x if
\[
\forall u, v \in \text{Fac}_n(x): u \sim_{ab} v \iff u \sim_G v.
\]
Factors of length 6 in Fibonacci

Consider the \textit{abc}-permutation with \(a = 1, \ b = 2, \ c = 3 \) on the lexicographic array of length 6.

\[
\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
\hline
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}
\]

This \textit{abc}-permutation can be seen as a 6-cycle: (163524).

For \(G \leq S_n \), we say that \(\sim_G \) is \textit{abelian transitive} on \(x \) if \(\forall u, v \in \text{Fac}_n(x) : u \sim_{ab} v \iff u \sim_G v. \)
Lemma

Let \(x\) be a Sturmian word. Then for each \(n \geq 1\) there exists an \((a, b, c)\)-permutation on \(\{1, 2, \ldots, n\}\) which is an \(n\)-cycle \(\sigma\) such that \(\sim_{\langle \sigma \rangle}\) is abelian transitive on \(x\).

Comments:

- We exhibit our \((a, b, c)\)-permutation candidate.
- We show that it is actually an \(n\)-cycle [Pak, Redlich, 2008].
- We use lexicographic arrays for the proof of the abelian transitivity.
- In fact, we prove that \(w_{(i+1)} = \sigma(w_{(i)})\) in each abelian class, where \(w_{(i)}\) are ordered lexicographically.
Corollary

If x is a Sturmian word then for each n there exists a cyclic group G_n generated by an n-cycle such that $|\text{Fac}_n(x)/\sim_{G_n}| = 2$.

In contrast, if we set $G_n = \langle (1, 2, \ldots, n) \rangle$ for each $n \geq 1$, then $\lim \sup p_{\omega,x}(n) = +\infty$, while $\lim \inf p_{\omega,x} = 2$. [Cassaigne, Fici, Sciortino, Zamboni, 2015]
Theorem 2: construction for abelian groups

Theorem (Fundamental theorem of finite abelian groups)

Every finite abelian group G can be written as a direct product of cyclic groups $\mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}$ where the m_i are prime powers.

- The sequence (m_1, m_2, \ldots, m_k) determines G up to isomorphism.
- The trace of G is given by $T(G) = m_1 + m_2 + \cdots + m_k$.

Proposition (Hoffman 1987)

If an abelian group G is embedded in S_n, then $T(G) \leq n$.
Open problem

Does Theorem 2 hold for non-abelian groups?

Question

Let x be a Sturmian word and $\omega = (G_n)_{n \geq 1}$, where $G_n \leq S_n$. Does there exist $\omega' = (G'_n)_{n \geq 1}$, $G'_n \leq S_n$, such that for all $n \geq 1$,

- G'_n is isomorphic to G_n
- $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

Minimal complexity

<table>
<thead>
<tr>
<th>complexity type</th>
<th>minimal complexity</th>
<th>words family</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor</td>
<td>$n+1$</td>
<td>Sturmian</td>
</tr>
<tr>
<td>abelian</td>
<td>2</td>
<td>Sturmian</td>
</tr>
<tr>
<td>cyclic</td>
<td>$\lim \inf = 2$</td>
<td>Sturmian+</td>
</tr>
<tr>
<td>group</td>
<td>$\varepsilon(G_n) + 1$</td>
<td>Sturmian</td>
</tr>
<tr>
<td>maximal pattern</td>
<td>$2n+1$</td>
<td>Sturmian+</td>
</tr>
<tr>
<td>arithmetical</td>
<td>linear</td>
<td>(asymptotically) Toeplitz</td>
</tr>
</tbody>
</table>

Arithmetical complexity: [Avgustinovich-Cassaigne-Frid 2006]