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Factor complexity of in�nite words

The Fibonacci word

f = 01001010010010100101001001010010 . . .

is the �xed point of the morphism 0 7→ 01 and 1 7→ 0.

Factors of length n:

1 0,1
2 00,01,10
3 001,010,100,101
4 0010,0100,0101,1001,1010
...

It can be shown that there are exactly n+ 1 factors of length n in f .



Notation

I Alphabet: �nite non-empty set, usually denoted by A.
I Word over A:

x = x0x1x2 · · · (in�nite word)
x = x0x1 · · · xn−1 (�nite word of length |x | = n).

I An is the set of all words of length n over A.
I Factor u of an in�nite word w : u = xi . . . xi+j for some

i , j ∈ N.
I Facn(x) is the set of the factors of x of length n.



Factor complexity

The factor complexity of an in�nite word x is the function
px : N→ N which counts the number of factors of length n of x :

∀n ∈ N, px(n) =
∣∣Facn(x)∣∣.

Some properties:

I ∀n ∈ N, px(n) ≤ |A|n.
I px(n) is a non-decreasing function.



Some more examples

I The (binary) Champernowne word

c = 0 1 10 11 100 101 110 111 1000 · · ·

has maximal factor complexity 2n.
I The Thue-Morse word is the �xed point of the morphism

0 7→ 01, 1 7→ 10 beginning with 0:

t = 0110100110010110 · · ·

We have pt(3) = 6: no factors 000, 111.
The factor complexity of Thue-Morse is computed in [Brlek

1987].



Complexity and periodicity

I Purely periodic word: x = vω = vvv · · ·
I Ultimately periodic word: x = uvω = uvvv · · ·
I Aperiodic means not ultimately periodic.

Theorem (Hedlund-Morse 1940, �rst part)

An in�nite word x is aperiodic i� ∀n ∈ N, px(n) ≥ n + 1.



Sturmian words and balance

I An in�nite word over A is C -balanced if for all factors u, v of
the same length and for each a ∈ A, we have

∣∣|u|a− |v |a∣∣ ≤ C .

Theorem (Hedlund-Morse 1940, second part)

An in�nite word x is such that ∀n ∈ N, px(n) = n + 1 i� it is

binary, aperiodic and 1-balanced.

I Aperiodic binary in�nite word of minimal complexity are called
Sturmian words.

I We have already seen that the Fibonacci word is Sturmian.



Several generalizations of Morse-Hedlund

Other complexity functions, and their links with periodicity.
I Abelian complexity, which counts the number of abelian

classes of words of each length n occurring in x :
[Coven-Hedlund 1973], [Richomme-Saari-Zamboni 2011].

I Palindrome complexity, which counts the number of
palindromes of each length n occurring in x :
[Allouche-Baake-Cassaigne-Damanik 2003].

I Cyclic complexity, which counts the number of conjugacy
classes of factors of each length n occurring in x :
[Cassaigne-Fici-Sciortino-Zamboni 2017].

I Maximal pattern complexity: [Kamae-Zamboni 2002].



Several generalizations of Morse-Hedlund

Higher dimensions:
I Nivat conjecture: Any 2-dimensional word having at most mn

rectangular blocks of size m × n must be periodic.
I It is known that the converse is not true.
I [Durand-Rigo 2013], in which they re-interpret the notion of

periodicity in terms of Presburger arithmetic.



Our contribution

I New notion of complexity by group actions.
I Encompass most complexity functions studied so far.



Abelian complexity

I Two �nite words are abelian equivalent if they contain the
same numbers of occurrences of each letter: 00111 ∼ab 01101.

I The abelian complexity function ax(n) counts the number of
abelian classes of words of length n occurring in x .

For the Thue-Morse word t = 0110100110010110 · · · , we have

at(n) =

{
2 if n is odd
3 if n is even

We have at(3) = 2 since there are 2 abelian classes of factors of
length 3:

{001, 010, 100} and {011, 101, 110}.



Abelian complexity and periodicity

We clearly have the following implications:

ultimate periodicity ⇒ bounded factor complexity
⇒ bounded abelian complexity.

However, we have just seen that the converse is not true: the
Thue-Morse word is aperiodic and its abelian complexity function is
bounded by 3.

Theorem (Coven-Hedlund 1973, part 1)

An in�nite word x is purely periodic i� ∃n ≥ 1, ax(n) = 1.

In particular, if x is aperiodic then ∀n ≥ 1, ax(n) ≥ 2.
The converse is false: take x = 01ω.



Abelian complexity and balance

We clearly have the following implications:

ultimate periodicity ⇒ bounded factor complexity
⇒ bounded abelian complexity.

Theorem (Coven-Hedlund 1973, part 2)

An in�nite aperiodic word x is Sturmian i� ∀n ≥ 1, ax(n) = 2.

Theorem (Richomme-Saari-Zamboni 2011)

An in�nite word has bounded abelian complexity i� it is C-balanced

for some C ≥ 1.



Cyclic complexity

I Two �nite words u and v are conjugate if there exist words w1,
w2 such that u = w1w2 and v = w2w1.

I The cyclic complexity function cx(n) counts the number of
conjugacy classes of words of length n occurring in x .

For the Thue-Morse word t = 0110100110010110 · · · , we have
ct(4) = 4 since there are 4 conjugacy classes of factors of length 4:

{0010, 0100}
{0110, 1001, 1100, 0011}

{0101, 1010}
{1011, 1101}



Cyclic complexity, periodicity and Sturmian words

Theorem (Cassaigne-Fici-Sciortino-Zamboni 2014)

An in�nite word is ultimately periodic i� it has bounded cyclic

complexity.

One always has
ax(n) ≤ cx(n) ≤ px(n).

Hence cx(n) = 1 for some n ≥ 1 implies that x is purely periodic.

In [Cassaigne-Fici-Sciortino-Zamboni 2014] they consider lim inf cx(n):
I Sturmian words satisfy lim inf cx(n) = 2.
I But this is not a characterization of Sturmian words since the

period-doubling word also has lim inf cx(n) = 2.



Generalization via group actions

I Let G be a subgroup of the symmetric group Sn: G ≤ Sn.
I G acts on An by permuting the letters:

G × An → An, (g , u) 7→ g ∗ u = ug−1(1)ug−1(2) · · · ug−1(n).

I We write u1 · · · un
g
y ug−1(1)ug−1(2) · · · ug−1(n).

I 0100
(1234)
y 0010.

I abcab
(123)(45)

y cabba.
I In particular g ∗ u ∼ab u.
I G -equivalence relation on An: for u, v ∈ An, u ∼G v if
∃g ∈ G , g ∗ u = v .

I u ∼G v implies u ∼ab v .



Complexity by actions of groups

I Now we consider a sequence of subgroups ω = (Gn)n≥1: for
each n ≥ 1, Gn ≤ Sn.

I The group complexity pω,x(n) of x counts the number of
Gn-classes of words of length n occurring in x .

For the Thue-Morse word t = 0110100110010110 · · · and
G4 = 〈(13), (24)〉, we have pω,t(4) = 7 while pt(4) = 10.

We have six singleton classes of length 4:

[0010], [0100], [0101], [1010], [1011], [1101]

and one class of order 4:

[0110
(13)(24)
y 1001

(24)
y 1100

(13)
y 0011].



Group actions: generalization of factor, abelian and cyclic

complexities

Each choice of sequence ω = (Gn)n≥1 de�nes a unique complexity
which re�ects a di�erent combinatorial property of an in�nite word.

As particular cases, we recover
I factor complexity: if ω = (Idn)n≥1 then pω,x(n) = px(n)

I abelian complexity: if ω = (Sn)n≥1 then pω,x(n) = ax(n)

I cyclic complexity: if ω =< (12 · · · n) >n≥1 then
pω,x(n) = cx(n).



The quantity ε(G )

I For G ≤ Sn and i ∈ {1, 2, . . . , n}, the G -orbit of i is

G (i) = {g(i) | g ∈ G}.

I The number of distinct G -orbits is denoted

ε(G ) =
∣∣{G (i) | i ∈ {1, 2, . . . , n}}

∣∣.
I For n = 6 and G =< (13), (256) >, we have ε(G ) = 3:

123456.

I If G = Id , then ε(G ) = n.

I If G contains an n-cycle, then ε(G ) = 1.



Complexity by group actions: ε(G )

I For G ≤ Sn, ε(G ) is the number of G -orbits of {1, . . . , n}.

Example (The Klein group Z /2Z×Z /2Z)
First take G = {id, (12), (34), (12)(34)}.
Then the G -orbits are {1, 2} and {3, 4}, hence ε(G ) = 2.

Second, consider G ′ = {id, (12)(34), (13)(24), (14)(23)}.
Then the only G ′-orbit is {1, 2, 3, 4}, hence ε(G ′) = 1.

I This shows an interesting phenomenon: the quantity ε(G )
depends on the embedding of G into Sn.



Generalisation of the Morse-Hedlund theorem

Theorem 1 (Charlier-Puzynina-Zamboni 2017)

Let x be an in�nite aperiodic word, ω = (Gn)n≥1, Gn ≤ Sn.
I Then ∀n ≥ 1, pω,x(n) ≥ ε(Gn) + 1.
I If ∀n ≥ 1, pω,x(n) = ε(Gn) + 1 then x is Sturmian.

Corollary

An in�nite aperiodic word is Sturmian i� there exists ω = (Gn)n≥1,
Gn ≤ Sn such that ∀n ≥ 1, pω,x(n) = ε(Gn) + 1.



Sketch of the proof

Theorem 1, second part
Let x be an in�nite aperiodic word, ω = (Gn)n≥1, Gn ≤ Sn.
If ∀n ≥ 1, pω,x(n) = ε(Gn) + 1 then x is Sturmian.

I Since ε(G1) = 1, then pω,x(1) = 2, and hence x is binary.
I Suppose that x is not Sturmian, that is, not 1-balanced.
I Key lemma: ∃n ≥ 2, a Sturmian word y and a bispecial factor

u ∈ {0, 1}n−2 of y s.t. Facn(x) = Facn(y) ∪ {0u0, 1u1}.
I u is a bispecial factor of y means that u0, u1, 0u, 1u are

factors of y .
I Since y is Sturmian, exactly one of 0u0 and 1u1 is a factor of

y , hence pω,x(n) ≥ pω,y (n) + 1.
I Apply �rst part of the theorem to y to get

pω,x(n) ≥ pω,y (n) + 1 ≥ ε(Gn) + 2, a contradiction.



Generalisation of the Morse-Hedlund theorem

Partial converse:

Theorem 2 (Charlier-Puzynina-Zamboni 2017)

Let x be a Sturmian word and ω = (Gn)n≥1, where Gn is an abelian
subgroup of Sn. Then ∃ω′ = (G ′n)n≥1, G

′
n ≤ Sn, such that ∀n ≥ 1,

I G ′n is isomorphic to Gn

I pω′,x(n) = ε(G ′n) + 1.

As particular cases, we recover:
I Morse-Hedlund theorem: ω = (Idn)n≥1, pω,x(n) = px(n),
ε(Gn) = n.

I Abelian complexity: ω = (Sn)n≥1, pω,x(n) = ax(n), ε(Gn) = 1.



We cannot always take G ′ = G

Theorem 2
Let x be a Sturmian word and ω = (Gn)n≥1, where Gn is an abelian
subgroup of Sn. Then ∃ω′ = (G ′

n
)n≥1, G

′
n
≤ Sn, such that ∀n ≥ 1, G ′

n
is

isomorphic to Gn and pω′,x(n) = ε(G ′
n
) + 1.

Consider the factors of length 4 of the Fibonacci word:

0010, 0100, 0101, 1001, 1010.

Let G4 = 〈(1234)〉. Then ε(G4) = 1 and pω,f (4) = 3 > ε(G4) + 1:

[0100
(1234)
y 0010], [0101

(1234)
y 1010], [1001].

But we can take G ′4 = 〈(1324)〉. Then ε(G ′4) = 1 and
pω′,f (4) = 2 = ε(G ′4) + 1:

[0010
(1324)
y 0100], [0101

(1324)
y 1001

(1324)
y 1010].



We cannot replace �isomorphic" by �conjugate"

Theorem 2
Let x be a Sturmian word and ω = (Gn)n≥1, where Gn is an abelian
subgroup of Sn. Then ∃ω′ = (G ′

n
)n≥1, G

′
n
≤ Sn, such that ∀n ≥ 1, G ′

n
is

isomorphic to Gn and pω′,x(n) = ε(G ′
n
) + 1.

Let G =< (123)(456) >≤ S6. This is a cyclic subgroup of order 3.
Then ε(G ) = 2 and we can show that∣∣Fac6(f )/∼

G ′

∣∣ ≥ 4

for each subgroup G ′ of S6 which is conjugate to G .



Sketches of proof

Theorem 2
Let x be a Sturmian word and ω = (Gn)n≥1, where Gn is an abelian
subgroup of Sn. Then ∃ω′ = (G ′

n
)n≥1, G

′
n
≤ Sn, such that ∀n ≥ 1,

I G ′
n
is isomorphic to Gn

I pω′,x(n) = ε(G ′
n
) + 1.

First we prove Theorem 2 for an n-cycle.
abc-permutation [Pak-Redlich 2008]: The numbers 1, 2, . . . , n are
divided into three subintervals of length a, b and c which are
rearranged in the order c, b, a:

1, 2, . . . , n 7→ c+b+1, c+b+2, . . . , n, c+1, c+2, . . . , c+b, 1, 2, . . . , c



Factors of length 6 in Fibonacci

Consider the abc-permutation with a = 1, b = 2, c = 3 on the
lexicographic array of length 6.

0 0 1 0 0 1
0 0 1 0 1 0
0 1 0 0 1 0
0 1 0 1 0 0
1 0 0 1 0 0
1 0 0 1 0 1
1 0 1 0 0 1

This abc-permutation can be seen as a 6-cycle: (163524).

For G ≤ Sn, we say that ∼G is abelian transitive on x if
∀u, v ∈ Facn(x): u ∼ab v ⇔ u ∼G v .



Factors of length 6 in Fibonacci

Consider the abc-permutation with a = 1, b = 2, c = 3 on the
lexicographic array of length 6.

0 0 1 0 0 1
0 0 1 0 1 0
0 1 0 0 1 0
0 1 0 1 0 0
1 0 0 1 0 0
1 0 0 1 0 1
1 0 1 0 0 1

This abc-permutation can be seen as a 6-cycle: (163524).

For G ≤ Sn, we say that ∼G is abelian transitive on x if
∀u, v ∈ Facn(x): u ∼ab v ⇔ u ∼G v .



Factors of length 6 in Fibonacci

Consider the abc-permutation with a = 1, b = 2, c = 3 on the
lexicographic array of length 6.

0 0 1 0 0 1
0 0 1 0 1 0
0 1 0 0 1 0
0 1 0 1 0 0
1 0 0 1 0 0
1 0 0 1 0 1
1 0 1 0 0 1

This abc-permutation can be seen as a 6-cycle: (163524).

For G ≤ Sn, we say that ∼G is abelian transitive on x if
∀u, v ∈ Facn(x): u ∼ab v ⇔ u ∼G v .



(abc)-permutations

Lemma
Let x be a Sturmian word. Then for each n ≥ 1 there exists an

(a, b, c)-permutation on {1, 2, . . . , n} which is an n-cycle σ such

that ∼〈σ〉 is abelian transitive on x.

Comments:
I We exhibit our (a, b, c)-permutation candidate.
I We show that it is actually an n-cycle [Pak, Redlich, 2008].
I We use lexicographic arrays for the proof of the abelian

transitivity.
I In fact, we prove that w(i+1) = σ(w(i)) in each abelian class,

where w(i) are ordered lexicographically.



A corollary

Corollary

If x is a Sturmian word then for each n there exists a cyclic group

Gn generated by an n-cycle such that
∣∣Facn(x)/∼Gn ∣∣ = 2.

In contrast, if we set Gn = 〈(1, 2, . . . , n)〉 for each n ≥ 1, then
lim sup pω,x(n) = +∞, while lim inf pω,x = 2.
[Cassaigne, Fici, Sciortino, Zamboni, 2015]



Theorem 2: construction for abelian groups

Theorem (Fundamental theorem of �nite abelian groups)

Every �nite abelian group G can be written as a direct product of

cyclic groups Z /m1 Z×Z /m2 Z× · · · × Z /mk Z where the mi are

prime powers.

I The sequence (m1,m2, . . . ,mk) determines G up to
isomorphism.

I The trace of G is given by T (G ) = m1 +m2 + · · ·+mk .

Proposition (Ho�man 1987)

If an abelian group G is embedded in Sn, then T (G ) ≤ n.



Open problem

Does Theorem 2 hold for non-abelian groups?

Question
Let x be a Sturmian word and ω = (Gn)n≥1, where Gn ≤ Sn.
Does there exist ω′ = (G ′n)n≥1, G

′
n ≤ Sn, such that for all n ≥ 1,

I G ′n is isomorphic to Gn

I pω′,x(n) = ε(G ′n) + 1.



Minimal complexity

complexity type minimal complexity words family
factor n+1 Sturmian
abelian 2 Sturmian
cyclic lim inf = 2 Sturmian+
group ε(Gn) + 1 Sturmian
maximal pattern 2n+1 Sturmian+
arithmetical linear (asymptotically) Toeplitz

Arithmetical complexity: [Avgustinovich-Cassaigne-Frid 2006]


