Permutation groups and the Morse-Hedlund Theorem

Émilie Charlier joint work with Svetlana Puzynina and Luca Zamboni

Département de Mathématique, Université de Liège

Worskshop "Ergodic Theory & Symbolic Dynamics" London, September 14, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Factor complexity of infinite words

The Fibonacci word

 $f = 01001010010010010010010010010010010\dots$

is the fixed point of the morphism 0 \mapsto 01 and 1 \mapsto 0.

Factors of length n:

1	0,1
2	00,01,10
3	001,010,100,101
4	0010,0100,0101,1001,1010
:	

It can be shown that there are exactly n + 1 factors of length n in f.

ション ふゆ アメリア メリア しょうくしゃ

Notation

- Alphabet: finite non-empty set, usually denoted by A.
- ► Word over A:
 - $x = x_0 x_1 x_2 \cdots$ (infinite word)
 - $x = x_0 x_1 \cdots x_{n-1}$ (finite word of length |x| = n).
- A^n is the set of all words of length *n* over *A*.
- ▶ Factor *u* of an infinite word *w*: $u = x_i \dots x_{i+j}$ for some $i, j \in \mathbb{N}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• $Fac_n(x)$ is the set of the factors of x of length n.

Factor complexity

The factor complexity of an infinite word x is the function $p_x : \mathbb{N} \to \mathbb{N}$ which counts the number of factors of length n of x:

$$\forall n \in \mathbb{N}, \ p_x(n) = |\operatorname{Fac}_n(x)|.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Some properties:

▶
$$\forall n \in \mathbb{N}, p_x(n) \leq |A|^n$$
.

• $p_x(n)$ is a non-decreasing function.

Some more examples

The (binary) Champernowne word

 $c = 0 \ 1 \ 10 \ 11 \ 100 \ 101 \ 110 \ 111 \ 1000 \cdots$

has maximal factor complexity 2^n .

► The Thue-Morse word is the fixed point of the morphism 0 → 01, 1 → 10 beginning with 0:

 $t = 0110100110010110 \cdots$

We have $p_t(3) = 6$: no factors 000, 111. The factor complexity of Thue-Morse is computed in [Brlek 1987].

Complexity and periodicity

- Purely periodic word: $x = v^{\omega} = vvv \cdots$
- Ultimately periodic word: $x = uv^{\omega} = uvvv \cdots$
- Aperiodic means not ultimately periodic.

Theorem (Hedlund-Morse 1940, first part) An infinite word x is aperiodic iff $\forall n \in \mathbb{N}, p_x(n) \ge n + 1$.

ション ふゆ く 山 マ チャット しょうくしゃ

Sturmian words and balance

An infinite word over A is C-balanced if for all factors u, v of the same length and for each a ∈ A, we have ||u|_a - |v|_a| ≤ C.

Theorem (Hedlund-Morse 1940, second part) An infinite word x is such that $\forall n \in \mathbb{N}$, $p_x(n) = n + 1$ iff it is binary, aperiodic and 1-balanced.

 Aperiodic binary infinite word of minimal complexity are called Sturmian words.

▶ We have already seen that the Fibonacci word is Sturmian.

Several generalizations of Morse-Hedlund

Other complexity functions, and their links with periodicity.

- Abelian complexity, which counts the number of abelian classes of words of each length *n* occurring in *x*: [Coven-Hedlund 1973], [Richomme-Saari-Zamboni 2011].
- Palindrome complexity, which counts the number of palindromes of each length n occurring in x: [Allouche-Baake-Cassaigne-Damanik 2003].
- Cyclic complexity, which counts the number of conjugacy classes of factors of each length *n* occurring in *x*: [Cassaigne-Fici-Sciortino-Zamboni 2017].

Maximal pattern complexity: [Kamae-Zamboni 2002].

Several generalizations of Morse-Hedlund

Higher dimensions:

- ► Nivat conjecture: Any 2-dimensional word having at most mn rectangular blocks of size m × n must be periodic.
- It is known that the converse is not true.
- [Durand-Rigo 2013], in which they re-interpret the notion of periodicity in terms of Presburger arithmetic.

ション ふゆ く 山 マ チャット しょうくしゃ

Our contribution

- New notion of complexity by group actions.
- Encompass most complexity functions studied so far.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Abelian complexity

- ► Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: 00111 ~_{ab} 01101.
- The abelian complexity function a_x(n) counts the number of abelian classes of words of length n occurring in x.

For the Thue-Morse word $t = 0110100110010110\cdots$, we have

$$a_t(n) = \left\{ egin{array}{cc} 2 & ext{if } n ext{ is odd} \ 3 & ext{if } n ext{ is even} \end{array}
ight.$$

We have $a_t(3) = 2$ since there are 2 abelian classes of factors of length 3:

 $\{001, 010, 100\}$ and $\{011, 101, 110\}$.

Abelian complexity and periodicity

We clearly have the following implications:

```
ultimate periodicity \Rightarrow bounded factor complexity
\Rightarrow bounded abelian complexity.
```

However, we have just seen that the converse is not true: the Thue-Morse word is aperiodic and its abelian complexity function is bounded by 3.

Theorem (Coven-Hedlund 1973, part 1) An infinite word x is purely periodic iff $\exists n \ge 1$, $a_x(n) = 1$.

In particular, if x is aperiodic then $\forall n \ge 1$, $a_x(n) \ge 2$. The converse is false: take $x = 01^{\omega}$.

Abelian complexity and balance

We clearly have the following implications:

```
ultimate periodicity \Rightarrow bounded factor complexity
\Rightarrow bounded abelian complexity.
```

Theorem (Coven-Hedlund 1973, part 2) An infinite aperiodic word x is Sturmian iff $\forall n \ge 1$, $a_x(n) = 2$.

Theorem (Richomme-Saari-Zamboni 2011) An infinite word has bounded abelian complexity iff it is C-balanced for some $C \ge 1$.

ション ふゆ アメリア メリア しょうくしゃ

Cyclic complexity

- Two finite words u and v are conjugate if there exist words w₁, w₂ such that u = w₁w₂ and v = w₂w₁.
- The cyclic complexity function c_x(n) counts the number of conjugacy classes of words of length n occurring in x.

For the Thue-Morse word $t = 0110100110010110\cdots$, we have $c_t(4) = 4$ since there are 4 conjugacy classes of factors of length 4:

```
 \{ 0010, 0100 \} \\ \{ 0110, 1001, 1100, 0011 \} \\ \{ 0101, 1010 \} \\ \{ 1011, 1101 \}
```

Cyclic complexity, periodicity and Sturmian words

Theorem (Cassaigne-Fici-Sciortino-Zamboni 2014) An infinite word is ultimately periodic iff it has bounded cyclic complexity.

One always has

$$a_X(n) \leq c_X(n) \leq p_X(n).$$

Hence $c_x(n) = 1$ for some $n \ge 1$ implies that x is purely periodic.

In [Cassaigne-Fici-Sciortino-Zamboni 2014] they consider lim inf $c_x(n)$:

- Sturmian words satisfy lim inf $c_x(n) = 2$.
- ▶ But this is not a characterization of Sturmian words since the period-doubling word also has lim inf $c_x(n) = 2$.

Generalization via group actions

- Let G be a subgroup of the symmetric group S_n : $G \leq S_n$.
- G acts on Aⁿ by permuting the letters:

$$G \times A^n \to A^n, \ (g, u) \mapsto g \ast u = u_{g^{-1}(1)}u_{g^{-1}(2)}\cdots u_{g^{-1}(n)}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

• We write
$$u_1 \cdots u_n \stackrel{g}{\sim} u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)}$$
.

- ▶ 0100 $\stackrel{(1234)}{\frown}$ 0010.
- ► abcab ⁽¹²³⁾⁽⁴⁵⁾ ⊂ abba.
- In particular $g * u \sim_{ab} u$.
- G-equivalence relation on A^n : for $u, v \in A^n$, $u \sim_G v$ if $\exists g \in G, g * u = v$.
- $u \sim_G v$ implies $u \sim_{ab} v$.

Complexity by actions of groups

- Now we consider a sequence of subgroups ω = (G_n)_{n≥1}: for each n ≥ 1, G_n ≤ S_n.
- The group complexity p_{ω,x}(n) of x counts the number of G_n-classes of words of length n occurring in x.

For the Thue-Morse word $t = 0110100110010110 \cdots$ and $G_4 = \langle (13), (24) \rangle$, we have $p_{\omega,t}(4) = 7$ while $p_t(4) = 10$.

We have six singleton classes of length 4:

[0010], [0100], [0101], [1010], [1011], [1101]

and one class of order 4:

$$[0110 \stackrel{(13)(24)}{\frown} 1001 \stackrel{(24)}{\frown} 1100 \stackrel{(13)}{\frown} 0011].$$

Group actions: generalization of factor, abelian and cyclic complexities

Each choice of sequence $\omega = (G_n)_{n \ge 1}$ defines a unique complexity which reflects a different combinatorial property of an infinite word.

As particular cases, we recover

- ▶ factor complexity: if $\omega = (Id_n)_{n \ge 1}$ then $p_{\omega,x}(n) = p_x(n)$
- ▶ abelian complexity: if $\omega = (S_n)_{n \ge 1}$ then $p_{\omega,x}(n) = a_x(n)$

• cyclic complexity: if $\omega = \langle (12 \cdots n) \rangle_{n \ge 1}$ then $p_{\omega,x}(n) = c_x(n)$.

The quantity $\varepsilon(G)$

For
$$G \leq S_n$$
 and $i \in \{1, 2, ..., n\}$, the *G*-orbit of *i* is
$$G(i) = \{g(i) | g \in G\}.$$

The number of distinct G-orbits is denoted

$$\varepsilon(G) = |\{G(i) \mid i \in \{1, 2, \dots, n\}\}|.$$

▶ For n = 6 and G = < (13), (256) >, we have $\varepsilon(G) = 3$:

123456.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• If
$$G = Id$$
, then $\varepsilon(G) = n$.

• If G contains an *n*-cycle, then $\varepsilon(G) = 1$.

Complexity by group actions: $\varepsilon(G)$

• For $G \leq S_n$, $\varepsilon(G)$ is the number of G-orbits of $\{1, \ldots, n\}$.

Example (The Klein group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$) First take $G = \{id, (12), (34), (12)(34)\}$. Then the G-orbits are $\{1, 2\}$ and $\{3, 4\}$, hence $\varepsilon(G) = 2$. Second, consider $G' = \{id, (12)(34), (13)(24), (14)(23)\}$. Then the only G'-orbit is $\{1, 2, 3, 4\}$, hence $\varepsilon(G') = 1$.

This shows an interesting phenomenon: the quantity ε(G) depends on the embedding of G into S_n.

Generalisation of the Morse-Hedlund theorem

Theorem 1 (Charlier-Puzynina-Zamboni 2017)

Let x be an infinite aperiodic word, $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$.

▶ Then
$$\forall n \geq 1$$
, $p_{\omega,x}(n) \geq \varepsilon(G_n) + 1$.

• If
$$\forall n \geq 1$$
, $p_{\omega,x}(n) = \varepsilon(G_n) + 1$ then x is Sturmian.

Corollary

An infinite aperiodic word is Sturmian iff there exists $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$ such that $\forall n \ge 1$, $p_{\omega,x}(n) = \varepsilon(G_n) + 1$.

ション ふゆ アメリア メリア しょうくしゃ

Sketch of the proof

Theorem 1, second part

Let x be an infinite aperiodic word, $\omega = (G_n)_{n \ge 1}$, $G_n \le S_n$. If $\forall n \ge 1$, $p_{\omega,x}(n) = \varepsilon(G_n) + 1$ then x is Sturmian.

- ▶ Since $\varepsilon(G_1) = 1$, then $p_{\omega,x}(1) = 2$, and hence x is binary.
- Suppose that x is not Sturmian, that is, not 1-balanced.
- ▶ Key lemma: $\exists n \ge 2$, a Sturmian word y and a bispecial factor $u \in \{0, 1\}^{n-2}$ of y s.t. $\operatorname{Fac}_n(x) = \operatorname{Fac}_n(y) \cup \{0u0, 1u1\}.$
- ► u is a bispecial factor of y means that u0, u1, 0u, 1u are factors of y.
- Since y is Sturmian, exactly one of 0u0 and 1u1 is a factor of y, hence p_{w,x}(n) ≥ p_{w,y}(n) + 1.
- Apply first part of the theorem to y to get $p_{\omega,x}(n) \ge p_{\omega,y}(n) + 1 \ge \epsilon(G_n) + 2$, a contradiction.

Generalisation of the Morse-Hedlund theorem

Partial converse:

Theorem 2 (Charlier-Puzynina-Zamboni 2017)

Let x be a Sturmian word and $\omega = (G_n)_{n \ge 1}$, where G_n is an abelian subgroup of S_n . Then $\exists \omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$, such that $\forall n \ge 1$,

► G'_n is isomorphic to G_n

•
$$p_{\omega',x}(n) = \varepsilon(G'_n) + 1.$$

As particular cases, we recover:

- ▶ Morse-Hedlund theorem: $\omega = (Id_n)_{n \ge 1}$, $p_{\omega,x}(n) = p_x(n)$, $\varepsilon(G_n) = n$.
- Abelian complexity: $\omega = (S_n)_{n \ge 1}$, $p_{\omega,x}(n) = a_x(n)$, $\varepsilon(G_n) = 1$.

We cannot always take G' = G

Theorem 2

Let x be a Sturmian word and $\omega = (G_n)_{n \ge 1}$, where G_n is an abelian subgroup of S_n . Then $\exists \omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$, such that $\forall n \ge 1$, G'_n is isomorphic to G_n and $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

Consider the factors of length 4 of the Fibonacci word: 0010,0100,0101,1001,1010.

Let $G_4 = \langle (1234) \rangle$. Then $\varepsilon(G_4) = 1$ and $p_{\omega,f}(4) = 3 > \varepsilon(G_4) + 1$: $[0100 \stackrel{(1234)}{\frown} 0010], [0101 \stackrel{(1234)}{\frown} 1010], [1001].$

But we can take $G'_4 = \langle (1324) \rangle$. Then $\varepsilon(G'_4) = 1$ and $p_{\omega',f}(4) = 2 = \varepsilon(G'_4) + 1$:

$$[0010 \stackrel{(1324)}{\frown} 0100], \quad [0101 \stackrel{(1324)}{\frown} 1001 \stackrel{(1324)}{\frown} 1010]$$

We cannot replace "isomorphic" by "conjugate"

Theorem 2

Let x be a Sturmian word and $\omega = (G_n)_{n\geq 1}$, where G_n is an abelian subgroup of S_n . Then $\exists \omega' = (G'_n)_{n\geq 1}$, $G'_n \leq S_n$, such that $\forall n \geq 1$, G'_n is isomorphic to G_n and $p_{\omega',x}(n) = \varepsilon(G'_n) + 1$.

Let $G = <(123)(456) > \le S_6$. This is a cyclic subgroup of order 3. Then $\varepsilon(G) = 2$ and we can show that

$$\left|\operatorname{\mathsf{Fac}}_6(f)/_{\sim_{G'}}\right| \geq 4$$

ション ふゆ く 山 マ チャット しょうくしゃ

for each subgroup G' of S_6 which is conjugate to G.

Sketches of proof

Theorem 2

Let x be a Sturmian word and $\omega = (G_n)_{n \ge 1}$, where G_n is an abelian subgroup of S_n . Then $\exists \omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$, such that $\forall n \ge 1$,

• G'_n is isomorphic to G_n

•
$$p_{\omega',x}(n) = \varepsilon(G'_n) + 1$$
.

First we prove Theorem 2 for an *n*-cycle. **abc-permutation** [Pak-Redlich 2008]: The numbers 1, 2, ..., n are divided into three subintervals of length *a*, *b* and *c* which are rearranged in the order *c*, *b*, *a*:

 $1,2,\ldots,n\mapsto c+b+1,c+b+2,\ldots,n,c+1,c+2,\ldots,c+b,1,2,\ldots,c$

Factors of length 6 in Fibonacci

Consider the *abc*-permutation with a = 1, b = 2, c = 3 on the lexicographic array of length 6.

This *abc*-permutation can be seen as a <u>6-cycle</u>: (163524).

For $G \leq S_n$, we say that \sim_G is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_n(x)$: $u \sim_{ab} v \Leftrightarrow u \sim_G v$.

Factors of length 6 in Fibonacci

Consider the *abc*-permutation with a = 1, b = 2, c = 3 on the lexicographic array of length 6.

This *abc*-permutation can be seen as a <u>6-cycle</u>: (163524).

For $G \leq S_n$, we say that \sim_G is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_n(x)$: $u \sim_{ab} v \Leftrightarrow u \sim_G v$.

Factors of length 6 in Fibonacci

Consider the *abc*-permutation with a = 1, b = 2, c = 3 on the lexicographic array of length 6.

ション ふゆ く 山 マ チャット しょうくしゃ

This *abc*-permutation can be seen as a 6-cycle: (163524).

For $G \leq S_n$, we say that \sim_G is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_n(x)$: $u \sim_{ab} v \Leftrightarrow u \sim_G v$.

(abc)-permutations

Lemma

Let x be a Sturmian word. Then for each $n \ge 1$ there exists an (a, b, c)-permutation on $\{1, 2, ..., n\}$ which is an n-cycle σ such that $\sim_{\langle \sigma \rangle}$ is abelian transitive on x.

Comments:

- ▶ We exhibit our (*a*, *b*, *c*)-permutation candidate.
- ▶ We show that it is actually an *n*-cycle [Pak, Redlich, 2008].
- We use lexicographic arrays for the proof of the abelian transitivity.
- ► In fact, we prove that $w_{(i+1)} = \sigma(w_{(i)})$ in each abelian class, where $w_{(i)}$ are ordered lexicographically.

A corollary

Corollary

If x is a Sturmian word then for each n there exists a cyclic group G_n generated by an n-cycle such that $|\operatorname{Fac}_n(x)/_{\sim G_n}| = 2$.

In contrast, if we set $G_n = \langle (1, 2, ..., n) \rangle$ for each $n \ge 1$, then lim sup $p_{\omega,x}(n) = +\infty$, while lim inf $p_{\omega,x} = 2$. [Cassaigne, Fici, Sciortino, Zamboni, 2015]

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem 2: construction for abelian groups

Theorem (Fundamental theorem of finite abelian groups) Every finite abelian group G can be written as a direct product of cyclic groups $\mathbb{Z}/m_1 \mathbb{Z} \times \mathbb{Z}/m_2 \mathbb{Z} \times \cdots \times \mathbb{Z}/m_k \mathbb{Z}$ where the m_i are prime powers.

- ► The sequence (m₁, m₂,..., m_k) determines G up to isomorphism.
- The trace of G is given by $T(G) = m_1 + m_2 + \cdots + m_k$.

Proposition (Hoffman 1987)

If an abelian group G is embedded in S_n , then $T(G) \leq n$.

Does Theorem 2 hold for non-abelian groups?

Question

Let x be a Sturmian word and $\omega = (G_n)_{n \ge 1}$, where $G_n \le S_n$. Does there exist $\omega' = (G'_n)_{n \ge 1}$, $G'_n \le S_n$, such that for all $n \ge 1$,

ション ふゆ アメリア メリア しょうくしゃ

• G'_n is isomorphic to G_n

•
$$p_{\omega',x}(n) = \varepsilon(G'_n) + 1.$$

Minimal complexity

complexity type	minimal complexity	words family
factor	n+1	Sturmian
abelian	2	Sturmian
cyclic	$\liminf = 2$	Sturmian+
group	$\varepsilon(G_n)+1$	Sturmian
maximal pattern	2n+1	Sturmian+
arithmetical	linear	(asymptotically) Toeplitz

Arithmetical complexity: [Avgustinovich-Cassaigne-Frid 2006]