Permutation groups and the Morse-Hedlund Theorem

Émilie Charlier
joint work with Svetlana Puzynina and Luca Zamboni

Département de Mathématique, Université de Liège
Worskshop "Ergodic Theory \& Symbolic Dynamics" London, September 14, 2017

Factor complexity of infinite words

The Fibonacci word

$$
f=01001010010010100101001001010010 \ldots
$$

is the fixed point of the morphism $0 \mapsto 01$ and $1 \mapsto 0$.
Factors of length n :

1	0,1
2	$00,01,10$
3	$001,010,100,101$
4	$0010,0100,0101,1001,1010$
\vdots	

It can be shown that there are exactly $n+1$ factors of length n in f.

Notation

- Alphabet: finite non-empty set, usually denoted by A.
- Word over A :

$$
\begin{aligned}
& x=x_{0} x_{1} x_{2} \cdots \quad \quad \text { (infinite word) } \\
& x=x_{0} x_{1} \cdots x_{n-1} \quad(\text { finite word of length }|x|=n) .
\end{aligned}
$$

- A^{n} is the set of all words of length n over A.
- Factor u of an infinite word $w: u=x_{i} \ldots x_{i+j}$ for some $i, j \in \mathbb{N}$.
- $\operatorname{Fac}_{n}(x)$ is the set of the factors of x of length n.

Factor complexity

The factor complexity of an infinite word x is the function $p_{x}: \mathbb{N} \rightarrow \mathbb{N}$ which counts the number of factors of length n of x :

$$
\forall n \in \mathbb{N}, p_{x}(n)=\left|\operatorname{Fac}_{n}(x)\right|
$$

Some properties:

- $\forall n \in \mathbb{N}, p_{x}(n) \leq|A|^{n}$.
- $p_{x}(n)$ is a non-decreasing function.

Some more examples

- The (binary) Champernowne word

$$
c=0110111001011101111000 \cdots
$$

has maximal factor complexity 2^{n}.

- The Thue-Morse word is the fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$ beginning with 0 :

$$
t=0110100110010110 \cdots
$$

We have $p_{t}(3)=6$: no factors 000,111 .
The factor complexity of Thue-Morse is computed in [Brlek 1987].

Complexity and periodicity

- Purely periodic word: $x=v^{\omega}=v v v \cdots$
- Ultimately periodic word: $x=u v^{\omega}=u v v v \cdots$
- Aperiodic means not ultimately periodic.

Theorem (Hedlund-Morse 1940, first part)
An infinite word x is aperiodic iff $\forall n \in \mathbb{N}, p_{x}(n) \geq n+1$.

Sturmian words and balance

- An infinite word over A is C-balanced if for all factors u, v of the same length and for each $a \in A$, we have $\left||u|_{a}-|v|_{a}\right| \leq C$.

Theorem (Hedlund-Morse 1940, second part)
An infinite word x is such that $\forall n \in \mathbb{N}, p_{x}(n)=n+1$ iff it is binary, aperiodic and 1-balanced.

- Aperiodic binary infinite word of minimal complexity are called Sturmian words.
- We have already seen that the Fibonacci word is Sturmian.

Several generalizations of Morse-Hedlund

Other complexity functions, and their links with periodicity.

- Abelian complexity, which counts the number of abelian classes of words of each length n occurring in x : [Coven-Hedlund 1973], [Richomme-Saari-Zamboni 2011].
- Palindrome complexity, which counts the number of palindromes of each length n occurring in x : [Allouche-Baake-Cassaigne-Damanik 2003].
- Cyclic complexity, which counts the number of conjugacy classes of factors of each length n occurring in x : [Cassaigne-Fici-Sciortino-Zamboni 2017].
- Maximal pattern complexity: [Kamae-Zamboni 2002].

Several generalizations of Morse-Hedlund

Higher dimensions:

- Nivat conjecture: Any 2-dimensional word having at most mn rectangular blocks of size $m \times n$ must be periodic.
- It is known that the converse is not true.
- [Durand-Rigo 2013], in which they re-interpret the notion of periodicity in terms of Presburger arithmetic.

Our contribution

- New notion of complexity by group actions.
- Encompass most complexity functions studied so far.

Abelian complexity

- Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: $00111 \sim_{a b} 01101$.
- The abelian complexity function $a_{x}(n)$ counts the number of abelian classes of words of length n occurring in x.

For the Thue-Morse word $t=0110100110010110 \cdots$, we have

$$
a_{t}(n)= \begin{cases}2 & \text { if } n \text { is odd } \\ 3 & \text { if } n \text { is even }\end{cases}
$$

We have $a_{t}(3)=2$ since there are 2 abelian classes of factors of length 3 :

$$
\{001,010,100\} \text { and }\{011,101,110\}
$$

Abelian complexity and periodicity

We clearly have the following implications:

$$
\begin{aligned}
\text { ultimate periodicity } & \Rightarrow \text { bounded factor complexity } \\
& \Rightarrow \text { bounded abelian complexity. }
\end{aligned}
$$

However, we have just seen that the converse is not true: the Thue-Morse word is aperiodic and its abelian complexity function is bounded by 3 .

Theorem (Coven-Hedlund 1973, part 1)
An infinite word x is purely periodic iff $\exists n \geq 1, a_{x}(n)=1$.

In particular, if x is aperiodic then $\forall n \geq 1, a_{x}(n) \geq 2$.
The converse is false: take $x=01^{\omega}$.

Abelian complexity and balance

We clearly have the following implications:

$$
\begin{aligned}
\text { ultimate periodicity } & \Rightarrow \text { bounded factor complexity } \\
& \Rightarrow \text { bounded abelian complexity. }
\end{aligned}
$$

Theorem (Coven-Hedlund 1973, part 2)
An infinite aperiodic word x is Sturmian iff $\forall n \geq 1, a_{x}(n)=2$.

Theorem (Richomme-Saari-Zamboni 2011)
An infinite word has bounded abelian complexity iff it is C-balanced for some $C \geq 1$.

Cyclic complexity

- Two finite words u and v are conjugate if there exist words w_{1}, w_{2} such that $u=w_{1} w_{2}$ and $v=w_{2} w_{1}$.
- The cyclic complexity function $c_{x}(n)$ counts the number of conjugacy classes of words of length n occurring in x.

For the Thue-Morse word $t=0110100110010110 \cdots$, we have $c_{t}(4)=4$ since there are 4 conjugacy classes of factors of length 4 :

$$
\begin{gathered}
\{0010,0100\} \\
\{0110,1001,1100,0011\} \\
\{0101,1010\} \\
\{1011,1101\}
\end{gathered}
$$

Cyclic complexity, periodicity and Sturmian words

Theorem (Cassaigne-Fici-Sciortino-Zamboni 2014)
An infinite word is ultimately periodic iff it has bounded cyclic complexity.

One always has

$$
a_{x}(n) \leq c_{x}(n) \leq p_{x}(n)
$$

Hence $c_{x}(n)=1$ for some $n \geq 1$ implies that x is purely periodic.
In [Cassaigne-Fici-Sciortino-Zamboni 2014] they consider lim inf $c_{x}(n)$:

- Sturmian words satisfy $\lim \inf c_{x}(n)=2$.
- But this is not a characterization of Sturmian words since the period-doubling word also has $\lim \inf c_{x}(n)=2$.

Generalization via group actions

- Let G be a subgroup of the symmetric group $S_{n}: G \leq S_{n}$.
- G acts on A^{n} by permuting the letters:

$$
G \times A^{n} \rightarrow A^{n},(g, u) \mapsto g * u=u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)} .
$$

- We write $u_{1} \cdots u_{n} \stackrel{g}{\curvearrowright} u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)}$.
- $0100 \stackrel{(1234)}{\curvearrowright} 0010$.
- $a b c a b \stackrel{(123)(45)}{\sim}$ cabba.
- In particular $g * u \sim_{a b} u$.
- G-equivalence relation on A^{n} : for $u, v \in A^{n}, u \sim_{G} v$ if $\exists g \in G, g * u=v$.
- $u \sim_{G} v$ implies $u \sim_{a b} v$.

Complexity by actions of groups

- Now we consider a sequence of subgroups $\omega=\left(G_{n}\right)_{n \geq 1}$: for each $n \geq 1, G_{n} \leq S_{n}$.
- The group complexity $p_{\omega, x}(n)$ of x counts the number of G_{n}-classes of words of length n occurring in x.

For the Thue-Morse word $t=0110100110010110 \cdots$ and $G_{4}=\langle(13),(24)\rangle$, we have $p_{\omega, t}(4)=7$ while $p_{t}(4)=10$.
We have six singleton classes of length 4 :
[0010], [0100], [0101], [1010], [1011], [1101]
and one class of order 4:

$$
[0110 \stackrel{(13)(24)}{\curvearrowright} 1001 \stackrel{(24)}{\curvearrowright} 1100 \stackrel{(13)}{\curvearrowright} 0011] .
$$

Group actions: generalization of factor, abelian and cyclic complexities

Each choice of sequence $\omega=\left(G_{n}\right)_{n \geq 1}$ defines a unique complexity which reflects a different combinatorial property of an infinite word.

As particular cases, we recover

- factor complexity: if $\omega=\left(I d_{n}\right)_{n \geq 1}$ then $p_{\omega, x}(n)=p_{x}(n)$
- abelian complexity: if $\omega=\left(S_{n}\right)_{n \geq 1}$ then $p_{\omega, x}(n)=a_{x}(n)$
- cyclic complexity: if $\omega=<(12 \cdots n)>_{n \geq 1}$ then

$$
p_{\omega, x}(n)=c_{x}(n)
$$

The quantity $\varepsilon(G)$

- For $G \leq S_{n}$ and $i \in\{1,2, \ldots, n\}$, the G-orbit of i is

$$
G(i)=\{g(i) \mid g \in G\}
$$

- The number of distinct G-orbits is denoted

$$
\varepsilon(G)=|\{G(i) \mid i \in\{1,2, \ldots, n\}\}| .
$$

- For $n=6$ and $G=<(13),(256)>$, we have $\varepsilon(G)=3$:

123456.

- If $G=I d$, then $\varepsilon(G)=n$.
- If G contains an n-cycle, then $\varepsilon(G)=1$.

Complexity by group actions: $\varepsilon(G)$

- For $G \leq S_{n}, \varepsilon(G)$ is the number of G-orbits of $\{1, \ldots, n\}$.

Example (The Klein group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$)
First take $G=\{$ id, (12), (34), (12)(34) \}.
Then the G-orbits are $\{1,2\}$ and $\{3,4\}$, hence $\varepsilon(G)=2$.
Second, consider $G^{\prime}=\{$ id, (12)(34), (13)(24), (14)(23) $\}$. Then the only G^{\prime}-orbit is $\{1,2,3,4\}$, hence $\varepsilon\left(G^{\prime}\right)=1$.

- This shows an interesting phenomenon: the quantity $\varepsilon(G)$ depends on the embedding of G into S_{n}.

Generalisation of the Morse-Hedlund theorem

Theorem 1 (Charlier-Puzynina-Zamboni 2017)
Let x be an infinite aperiodic word, $\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$.

- Then $\forall n \geq 1, p_{\omega, x}(n) \geq \varepsilon\left(G_{n}\right)+1$.
- If $\forall n \geq 1, p_{\omega, x}(n)=\varepsilon\left(G_{n}\right)+1$ then x is Sturmian.

Corollary
An infinite aperiodic word is Sturmian iff there exists $\omega=\left(G_{n}\right)_{n \geq 1}$, $G_{n} \leq S_{n}$ such that $\forall n \geq 1, p_{\omega, x}(n)=\varepsilon\left(G_{n}\right)+1$.

Sketch of the proof

Theorem 1, second part
Let x be an infinite aperiodic word, $\omega=\left(G_{n}\right)_{n \geq 1}, G_{n} \leq S_{n}$. If $\forall n \geq 1, p_{\omega, x}(n)=\varepsilon\left(G_{n}\right)+1$ then x is Sturmian.

- Since $\varepsilon\left(G_{1}\right)=1$, then $p_{\omega, x}(1)=2$, and hence x is binary.
- Suppose that x is not Sturmian, that is, not 1-balanced.
- Key lemma: $\exists n \geq 2$, a Sturmian word y and a bispecial factor $u \in\{0,1\}^{n-2}$ of y s.t. $\operatorname{Fac}_{n}(x)=\operatorname{Fac}_{n}(y) \cup\{0 u 0,1 u 1\}$.
- u is a bispecial factor of y means that $u 0, u 1,0 u, 1 u$ are factors of y.
- Since y is Sturmian, exactly one of $0 u 0$ and $1 u 1$ is a factor of y, hence $p_{\omega, x}(n) \geq p_{\omega, y}(n)+1$.
- Apply first part of the theorem to y to get $p_{\omega, x}(n) \geq p_{\omega, y}(n)+1 \geq \epsilon\left(G_{n}\right)+2$, a contradiction.

Generalisation of the Morse-Hedlund theorem

Partial converse:
Theorem 2 (Charlier-Puzynina-Zamboni 2017)
Let x be a Sturmian word and $\omega=\left(G_{n}\right)_{n \geq 1}$, where G_{n} is an abelian subgroup of S_{n}. Then $\exists \omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$, such that $\forall n \geq 1$,

- G_{n}^{\prime} is isomorphic to G_{n}
- $p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

As particular cases, we recover:

- Morse-Hedlund theorem: $\omega=\left(I d_{n}\right)_{n \geq 1}, p_{\omega, x}(n)=p_{x}(n)$, $\varepsilon\left(G_{n}\right)=n$.
- Abelian complexity: $\omega=\left(S_{n}\right)_{n \geq 1}, p_{\omega, x}(n)=a_{x}(n), \varepsilon\left(G_{n}\right)=1$.

We cannot always take $G^{\prime}=G$
Theorem 2
Let x be a Sturmian word and $\omega=\left(G_{n}\right)_{n \geq 1}$, where G_{n} is an abelian subgroup of S_{n}. Then $\exists \omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$, such that $\forall n \geq 1, G_{n}^{\prime}$ is isomorphic to G_{n} and $p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

Consider the factors of length 4 of the Fibonacci word: 0010, 0100, 0101, 1001, 1010.

Let $G_{4}=\langle(1234)\rangle$. Then $\varepsilon\left(G_{4}\right)=1$ and $p_{\omega, f}(4)=3>\varepsilon\left(G_{4}\right)+1$:

$$
[0100 \stackrel{(1234)}{\curvearrowright} 0010], \quad[0101 \stackrel{(1234)}{\curvearrowright} 1010], \quad[1001] .
$$

But we can take $G_{4}^{\prime}=\langle(1324)\rangle$. Then $\varepsilon\left(G_{4}^{\prime}\right)=1$ and $p_{\omega^{\prime}, f}(4)=2=\varepsilon\left(G_{4}^{\prime}\right)+1$:

$$
[0010 \stackrel{(1324)}{\curvearrowright} 0100], \quad[0101 \stackrel{(1324)}{\curvearrowright} 1001 \stackrel{(1324)}{\curvearrowright} 1010] .
$$

We cannot replace "isomorphic" by "conjugate"

Theorem 2
Let x be a Sturmian word and $\omega=\left(G_{n}\right)_{n \geq 1}$, where G_{n} is an abelian subgroup of S_{n}. Then $\exists \omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$, such that $\forall n \geq 1, G_{n}^{\prime}$ is isomorphic to G_{n} and $p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

Let $G=<(123)(456)>\leq S_{6}$. This is a cyclic subgroup of order 3 . Then $\varepsilon(G)=2$ and we can show that

$$
\left|\operatorname{Fac}_{6}(f) / \sim_{G^{\prime}}\right| \geq 4
$$

for each subgroup G^{\prime} of S_{6} which is conjugate to G.

Sketches of proof

Theorem 2
Let x be a Sturmian word and $\omega=\left(G_{n}\right)_{n \geq 1}$, where G_{n} is an abelian subgroup of S_{n}. Then $\exists \omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$, such that $\forall n \geq 1$,

- G_{n}^{\prime} is isomorphic to G_{n}
- $p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

First we prove Theorem 2 for an n-cycle. abc-permutation [Pak-Redlich 2008]: The numbers $1,2, \ldots, n$ are divided into three subintervals of length a, b and c which are rearranged in the order c, b, a :

$1,2, \ldots, n \mapsto c+b+1, c+b+2, \ldots, n, c+1, c+2, \ldots, c+b, 1,2, \ldots, c$

Factors of length 6 in Fibonacci

Consider the $a b c$-permutation with $a=1, b=2, c=3$ on the lexicographic array of length 6 .

$$
\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

This abc-permutation can be seen as a 6-cycle: (163524).
For $G \leq S_{n}$, we say that \sim_{G} is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_{n}(x): u \sim_{a b} v \Leftrightarrow u \sim_{G} v$.

Factors of length 6 in Fibonacci

Consider the $a b c$-permutation with $a=1, b=2, c=3$ on the lexicographic array of length 6.

$$
\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

This abc-permutation can be seen as a 6-cycle: (163524).
For $G \leq S_{n}$, we say that \sim_{G} is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_{n}(x): u \sim_{a b} v \Leftrightarrow u \sim_{G} v$.

Factors of length 6 in Fibonacci

Consider the $a b c$-permutation with $a=1, b=2, c=3$ on the lexicographic array of length 6 .

$$
\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

This abc-permutation can be seen as a 6-cycle: (163524).
For $G \leq S_{n}$, we say that \sim_{G} is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_{n}(x): u \sim_{a b} v \Leftrightarrow u \sim_{G} v$.

(abc)-permutations

Lemma

Let x be a Sturmian word. Then for each $n \geq 1$ there exists an (a, b, c)-permutation on $\{1,2, \ldots, n\}$ which is an n-cycle σ such that $\sim_{\langle\sigma\rangle}$ is abelian transitive on x.

Comments:

- We exhibit our (a, b, c)-permutation candidate.
- We show that it is actually an n-cycle [Pak, Redlich, 2008].
- We use lexicographic arrays for the proof of the abelian transitivity.
- In fact, we prove that $w_{(i+1)}=\sigma\left(w_{(i)}\right)$ in each abelian class, where $w_{(i)}$ are ordered lexicographically.

A corollary

Corollary
If x is a Sturmian word then for each n there exists a cyclic group G_{n} generated by an n-cycle such that $\left|\operatorname{Fac}_{n}(x) / \sim_{G_{n}}\right|=2$.

In contrast, if we set $G_{n}=\langle(1,2, \ldots, n)\rangle$ for each $n \geq 1$, then $\lim \sup p_{\omega, x}(n)=+\infty$, while lim inf $p_{\omega, x}=2$.
[Cassaigne, Fici, Sciortino, Zamboni, 2015]

Theorem 2: construction for abelian groups

Theorem (Fundamental theorem of finite abelian groups)
Every finite abelian group G can be written as a direct product of cyclic groups $\mathbb{Z} / m_{1} \mathbb{Z} \times \mathbb{Z} / m_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}$ where the m_{i} are prime powers.

- The sequence $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ determines G up to isomorphism.
- The trace of G is given by $T(G)=m_{1}+m_{2}+\cdots+m_{k}$.

Proposition (Hoffman 1987)
If an abelian group G is embedded in S_{n}, then $T(G) \leq n$.

Open problem

Does Theorem 2 hold for non-abelian groups?
Question
Let x be a Sturmian word and $\omega=\left(G_{n}\right)_{n \geq 1}$, where $G_{n} \leq S_{n}$. Does there exist $\omega^{\prime}=\left(G_{n}^{\prime}\right)_{n \geq 1}, G_{n}^{\prime} \leq S_{n}$, such that for all $n \geq 1$,

- G_{n}^{\prime} is isomorphic to G_{n}
- $p_{\omega^{\prime}, x}(n)=\varepsilon\left(G_{n}^{\prime}\right)+1$.

Minimal complexity

complexity type	minimal complexity	words family
factor	$\mathrm{n}+1$	Sturmian
abelian	2	Sturmian
cyclic	$\lim \inf =2$	Sturmian+
group	$\varepsilon\left(G_{n}\right)+1$	Sturmian
maximal pattern	$2 n+1$	Sturmian+
arithmetical	linear	(asymptotically) Toeplitz

Arithmetical complexity: [Avgustinovich-Cassaigne-Frid 2006]

