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Abstract. This work aims to develop a new core logging 
technique based on reflectance spectroscopy in the mid-
infrared domain (2.08 to 25 μm). This technique is suitable 
to analyse the mineralogy of rough surfaces and will be 
adapted on a rock strength testing machine that scratches 
the core surface. The FT-IR spectrometer used in this work 
was tested on a list of minerals which are important in oil & 
gas and mining exploration. The list contains species of 
carbonates, halides, phosphates, sulphates, sulphides, 
tectosilicates and phyllosilicates. Then, a semi-automatic 
method was developed for mineral identification, mapping 
and quantification on the rough surfaces. It will be 
demonstrated that this process is powerful for the estimation 
of the mineral distribution at the exploration stage. Moreover, 
as it is non-destructive, low cost and quite fast, it will thus be 
helpful to extract additional data from the cores in a profitable 
way. This is critical to improve the resource efficiency, to 
reduce operational risks and to optimise the production in a 
sustainable way. These knowledges are the basis of the 
geometallurgical concept. 
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1 Introduction  
 

Several techniques have already been developed for mineral 

identification by infrared spectroscopy. Different scales and 

wavelength domains are used.  

First, hyperspectral imaging is widely used in the 

shortwave and visible to near infrared (VNIR and SWIR, 

from 0.4 to 2.5 μm) for remote sensing applications (Taranik 

and Aslett, 2009). Well known projects are AVIRIS and 

ASTER developed at the NASA Jet Propulsion Laboratory 

(van der Meer and de Jong, 2001). Such techniques are also 

used for core logging, the Hyperspectral Core Imager (HCI-

2) developed by Corescan is an example (Pasten et al., 

2016). However, minerals such as tectosilicates, many 

oxides, sulphides and phosphates cannot be identified on 

these wavelength domains, and additional spectral ranges 

have to be studied. For example, the HyLogging system 

developed by the CSIRO covers a range between 6 and 14.5 

μm (Schodlok et al., 2016), which is part of the mid-infrared 

domain (MIR, 3-30 μm). 

Finally, the total MIR range is widely used for 

mineralogical purposes at the laboratory scale (Nakamoto, 

1963 and Chukanov, 2014, among others). However, this 

technique uses transmittance spectra which usually require 

the dilution of the sample into a transparent medium and is 

thus not suitable for fast and non-destructive core logging. 

 In this work, the FT-IR spectrometer covers the range 

from 2 to 25 μm usually used at the laboratory scale  but will 

be used in diffuse reflectance mode. This technique will 

allow studying the mineralogy of fresh rough surfaces 

generated by the scratch test in a non-destructive way.  

 

2 Theoretical aspects 
 

In the mid-infrared domain, the spectral features of the 

minerals are due to the vibrational processes of their 

molecules caused by the energy of absorbed light.  The 

absorptions occur solely at quantised energy levels 

corresponding to specific radiation frequencies. Therefore, 

the identification of minerals can be done by correlating the 

frequencies of absorption to the normal vibrations of 

isolated groups of atoms such as CO3
2-, SO4

2-, PO4
3- and 

SiO4
4- or neutral molecules such as H2O and NH3, which are 

considered independent in the structure. This method is thus 

adequate for carbonates, phosphates, silicates, etc., but 

much less for minerals composed of ionic liaisons like 

halides for which lattice vibrations have to be observed in 

the far-infrared (30 µm to 1 mm) (Chukanov, 2014). 

Infrared spectra of minerals are influenced by several 

factors. First, it is dependant of the symmetry of the real 

crystals that can be influenced by solid solutions, alterations 

and local defects. In addition, the particle size, the surface 

roughness (Figure 1) and the crystallographic orientation of 

the samples have non-negligible effects on the spectra in the 

mid-infrared domain. This is why it is generally preferred to 

use transmittance or absorbance spectra obtained with an 

immersion medium (as KBr), which are independent of 

these effects and considered unique for a given mineral 

(Vincent and Hunt, 1968; Chukanov, 2014; Salisbury et al., 

1987). For these reasons, it may be difficult to find relevant 

data in the literature for MIR reflectance spectra. Hopefully, 

three databases contain reflectance spectra of powders and 

polished surfaces: the United States Geological Survey 

(USGS), the John Hopkins University (JHU) and the Jet 

Propulsion Laboratory (JPL) spectral libraries. They are all 

part of the ASTER spectral library (Baldridge et al., 2009). 

The last factor to consider is the effect of mineral 

mixtures. According to Clark (1999), when two materials of 

known spectra are mixed, the resulting spectrum is not 



necessarily the linear combination of these two spectra. 

Indeed, there are two principal types of mixtures: linear 

mixtures and intimate mixtures. In the case of linear 

mixtures, the materials are optically separated and there is 

no multiple scattering between them while in intimate 

mixtures, the materials are in intimate contact (mineral 

grains of soil for instance) and multiple scattering occurs. In 

this case, the resulting signal is a highly non-linear 

combination of the initial spectra. Several authors 

demonstrated that there was a potential for deriving 

individual mineral abundance in a particulate surface 

knowing the reflectance spectra of endmembers (Hapke, 

1981; Smith et al., 1985). However, in practice, many of the 

algorithms of spectral unmixing are based on the linear 

mixture hypothesis. They generally provide exploitable 

results, but can lead to approximations for intimate mixtures 

(Dobigeon et al., 2014). 

 
Figure 1. Spectra of a highly pure and finely grained calcite 

sample measured with the ALPHA spectrometer. When comparing 

the spectra of the rough surface and the polished section, it can be 

seen that a modification of the particle size and/or of the roughness 

causes different modifications on reflectance spectra. First, it 

modifies the intensity of the spectral features, then, it can convert 

spectral features displayed as minima in maxima or inversely and 

finally, the frequency of the absorption feature is shifted. This 

explains why it is particularly difficult to perform analyses on 

reflectance spectra. 
 

3 Materials and method description 
 
The FT-IR spectrometer is the ALPHA model from Bruker 

Optik with the A241/DL module to perform reflection 

measurements (Figure 2). It has a sampling spot of 7 mm in 

diameter and can be used on any type of solid surface 

without sample preparation. It can also be used on powders. 
Its optimal resolution is 4 cm-1 for a time of measurement of 

about 1 minute per spot.  

In addition, minerals which are important in oil & gas 

and mining exploration were selected (Table 1). 

Unfortunately, all the minerals of the list were not available 

as solid samples but every group is represented. The 

samples were analysed by XRD and appeared highly pure 

except samples 7 and 10 that appear as mixtures. First, 

spectra of minerals from the list were studied from the 

literature and the databases to assess the validity of mid-

infrared reflectance spectroscopy for mineral identification. 

Then, the reflectance spectra of the high purity samples 

were measured on rough fresh surfaces with the ALPHA 

spectrometer and compared to the existing databases to 

verify their correspondence. Moreover, automatic 

identification algorithms were tested on these spectra. 

 

Figure 2. ALPHA spectrometer with the A241/DL configuration 

for reflection (Bruker Optik GmbH, available from the OPUS help, 

2014). 

 

Table 1. List of minerals to analyse and their availability as solid 

samples.  

Next, a drill core composed of a red conglomerate cut by 

two thinner black benches was used. It is part of the rocks 

underlying the lower orebody of the Kamoto mine, 

Democratic Republic of the Congo and is 16.8 cm long. It 

was scratched longitudinally to analyse the rock strength 

and a fresh rough surface was thus created along it. This 

groove surface is 1 cm wide. Reflectance spectra were 

measured along the groove every 7 mm (size of the 

sampling spot), and 24 spectra were thus obtained. They 

were then analysed with the semi-automated method 

calibrated with the highly pure minerals spectra in order to 

identify the minerals, to map them and to quantify them on 

the fresh surface. In addition, the powder produced along 



the core by the scratch test was recovered and analysed by 

XRD to validate the results of the semi-automatic method. 

However, as this powder corresponds to a volume of 

destroyed rock, a perfect coincidence between the XRD 

results and the surface analysis is not expected. The powder 

contained about 35% dolomite, 27% quartz, 23% 

muscovite, 9% chlorite IIb (probably clinochlore) and 6% 

hematite. Trace of rutile was detected as well.  

In a few words, this semi-automatic method uses four 

software: OPUS (Bruker Optik) for  spectra measurement, 

and for mineral identification by using the three spectral 

libraries (USGS, JPL, JHU) ; Matlab (MathWorks) for 

building an hyperspectral image representing the drill core 

groove; ENVI (Exelis Visual Information Solutions) to 

extract the most representative spectra of the image (the so 

called end-members, to avoid the treatment of each pixel 

one-by-one) and to perform mineral mapping and 

quantification by using spectral linear unmixing algorithms 

and the spectral libraries. The method is said to be semi-

automatic because the mineral identification step is not 

trivial and requires the user’s validation and skills. The 

method nevertheless provided convincing results.  
 

4 Results and discussion 
 

The mid-infrared reflectance spectra of powders and 

polished surfaces were studied from the literature and the 

three databases  for the minerals of interest (Table 1). It 

appeared they are reliable identification tools because each 

mineral has different spectra due to its specific structure and 

composition. Minerals from the same classes (ex. dolomite 

and calcite) have comparable spectra but their 

differentiation is possible. The exception concerns minerals 

which are really similar, such as orthoclase and sanidine, or 

Mg and Fe-clinochlore, for which the identification can lead 

to uncertainties, especially when they are mixed together. 

On the other hand, the MIR spectroscopy is probably not the 

most adequate method to study the occurrence of sulphides 

and halides because they have no or few features in the MIR 

domain; pyrite has only one feature while halite has a flat 

spectrum.  
Then, the reflectance spectra of rough surfaces of high 

purity samples were compared to the existing databases.  

Despite small discrepancies, it has been shown that the 

behaviour of measured spectra was highly similar to the 

reference spectra. An example can be seen in Figure 3 for 

albite and gypsum. It was also shown that the rough surfaces 

have intermediate spectra between polished section and 

powders due to the particle size and roughness effect. This 

can be seen in Figure 4 for dolomite and quartz. USGS, JHU 

and JPL libraries can thus be used to analyse the spectra 

acquired with the ALPHA spectrometer on rough surfaces. 

Finally, the Kamoto core was analysed with the semi-

automated method in order to identify, map and quantify the 

minerals before knowing the XRD results, and without 

advanced geological information. The results are visible in 

Figure 5. Clinochlore, dolomite, quartz, muscovite and 

hematite (even if it was not part of Table 1) were correctly 

identified by using the spectral libraries. However, the trace 

of rutile was not detected. In addition, the errors between the 

mean of the quantification results and the XRD are up to 

14%, which is acceptable for the estimation of the minerals 

distribution. The errors are mainly due to two factors: the 

use of spectra from database (which are slightly different 

from the measured spectra due to mineralogical aspects, 

particle size and roughness effects) and the occurrence of 

intimate mixtures. Nevertheless, the most important aspect 

of these results is that two distinct zones of conglomerate 

and iron oxides can be observed. It proves that the technique 

can be efficient for mapping the different mineralogical 

zones of drill cores.  

 

Figure 3. Comparison of measured spectra with reference spectra 

coming from the JHU library for gypsum (top) and albite (bottom). 

It can be seen that despite some discrepancies (new features, 

different intensities), the measured spectra (red) are really close to 

the polished section spectra (blue).  

 

Figure 4. Comparison of measured spectra with reference spectra 

from the JHU library for dolomite (top) and quartz (bottom). It can 

be seen that measured spectra (red) have behaviour in between the 

polished section spectra (blue) and the powder spectra (green) due 

to the particle size and roughness effect. They are nevertheless 

easily identifiable from the reference spectra.  



 
Figure 5. Results of the semi-automatic method for mineral 

identification, mapping and quantification on the scratched surface 

of the Kamoto core. 24 spectra were measured along the surface, 

each spectrum corresponding to a spot of 7 mm in diameter. The 

XRD analysis was performed on the powder corresponding to the 

volume of rock destroyed by the scratch test and results should thus 

not coincide perfectly with the surface analysis. The five major 

minerals detected by the XRD were correctly identified and the 

errors compared to the XRD are acceptable for a first estimation of 

the mineral distribution. Two zones are clearly visible: the 

conglomerate is composed of clinochlore and dolomite while the 

darker layers are composed of hematite and muscovite.  

 

5 Conclusion and perspectives 
 
Overall, it can be concluded that mid-infrared reflectance 

spectroscopy is adequate tool for mineral identification and 

logging of scratched surfaces. The method developed in this 

work, despite its non-automatic minerals identification and 

its limitations for accurate quantitative analysis, is powerful 

for a first approximation of the minerals distribution at the 

exploration stage.  

One of the innovative aspects of the technique is its 

suitability to rough surfaces without the need of sample 

preparation. In addition, the technology allows the detection 

of much more minerals than VNIR and SWIR instruments 

(tectosilicates, oxides and some sulphides). Moreover, it is 

quite fast and can provide quite high resolution maps as 1 

minute is needed per spot of 7 mm. The method will thus be 

helpful to extract additional data from the cores in a 

profitable way. It represents a step towards automatic core 

characterisation which is the basis of a coherent 

geometallurgical approach.  

In addition, it can be noticed that the applicability of the 

MIR reflectance spectroscopy is not limited to core logging. 

In fact, it would probably bring a non-negligible help in the 

industry and for other geometallurgical purposes as it 

combines grain size and mineralogical information in a 

single measure. However, further research is needed to 

develop these particular topics.  
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