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Understanding urban development types and
drivers in Wallonia. A multi-density approach

Abstract. In this study, urban development process in the Walloon region
(Belgium) has been analysed. Two main aspects of development are
quantitatively measured: the development type and the definition of the
main drivers of the urbanisation process. Unlike most existing studies that
consider the urban development as a binary process, this research considers
the urban development as a continuous process, characterized by different
levels of urban density. Eight urban classes are defined based on the
Belgian cadastral data for years 2000 and 2010. A multinomial logistic
regression model is employed to examine the main driving forces of the
different densities. Sixteen drivers were selected, including accessibility,
geo-physical features, policies and socio-economic factors. Finally, the
changes from the non-urban to one of the urban density classes are detected
and classified into different development types.

The results indicate that zoning status (political factor), slope, distance to
roads, population densities and mean land price respectively have impact
on the urbanization process whatever maybe the density. The results also
show that the impact of these factors highly varies from one density to
another.

Keywords: urban development; urban density; development type; driving
forces; multinomial logistic regression model; cadastral data.
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1 Introduction

Progress in urban development increases the consumption of natural
resources and may eventually cause environmental impacts. Therefore,
urbanization processes attract increasing attention (e.g. Batty, Xie and
Sun, 1999; Asensio, 2000; Hallowell and Baran, 2013; Kryvobokov et al.,
2015; Mustafa et al., 2015). Exiting models do usually not differentiate
between high-density and low-density urban developments (e.g. Li, Zhou
and Ouyang, 2013; Maimaitijiang et al., 2015). Yeh and Li (2002) argue
that examining the development of different urban densities is an
important factor in urban planning to help urban planners to set desirable
urban density and forms according to different planning objectives.
Mustafa et al. (2016) conclude that the assessment of urban flood damage
is highly improved by using several urban densities instead of urban/non-
urban classes.

This paper addresses the question of how to monitor and explain different
forms of urbanization over time. To do that, this study explores and
assesses urban development along seven urban-density classes against
non-urban class in the Walloon region (southern part of Belgium) in terms
of: (1) the main factors that steer the development and (2) the development
type over time.

In the past two decades, substantial advances have been made in urban
modelling studies through a wide range of analytic models to observe
and/or predict urban patterns. The existing analytic models can be
generally classified either as prescriptive or descriptive models.
Prescriptive models aim at determining the optimum urban patterns that
satisfy a set of goals, whereas descriptive models aim at the analysis and
simulation of current and/or future expected patterns. In line with the aims
of this study, we focus on descriptive models. Several descriptive
modelling approaches have been developed to analyse urban patterns.
Generally, the main approaches adopt cellular automata (e.g. Batty, Xie
and Sun, 1999; Feng et al., 2011; Mustafa et al., 2014), agent-based (e.g.
Zhang et al., 2010; Augustijn-Beckers, Flacke and Retsios, 2011), urban-
economic discrete-choice (e.g. Waddell, 2002; Kryvobokov et al., 2015),
statistical models (e.g. Hu and Lo, 2007; Vermeiren et al., 2012; Li, Zhou
and Ouyang, 2013), machine learning (e.g. Azari et al., 2016) and the
integration of different models (e.g. Liu et al., 2014; Mustafa et al., 2015).
A comprehensive review of a range of modelling approaches can be found
in Briassoulis (2000), Verburg et al. (2004) and Brown et al. (2012).

In this study, a statistical modelling approach is employed to track and
analyse the development process. A multinomial logistic regression model
(MLR) 1is selected to estimate the relationship between several
urbanization driving factors and urban densities.
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The expansion types of each urban density class can identify the future
trend of each class. For instance, if a magnitude of new urban lands,
related to a specific density class between two time-steps, is within
existing urban cores, then the development behaviour of this class tends to
be compacted. Authors defined three general development types (Hofthine
Wilson et al., 2003; Sun et al., 2013): (1) infill development, (2) edge-
development and (3) outlying development. In this study, the three types
of development (figure 1) are measured for each density class.

Infill expansion Edge-expansion Outlying
M Existing urban New urban cell

Fig. 1. Urban development types

This paper is structured as follows. Section 2 gives an overview of
potential urbanization drivers. Section 3 describes study area and presents
the methodology and the data preparation process. Section 4 gives the
detailed results and discusses the findings of this study, and finally the
paper concludes with a brief remark and some policy-recommendations.

2 Potential driving forces

Although there is no universal driving forces for urban development,
researchers have proposed various factors (table 1) which can be grouped
into four main sets: (i) accessibility indicators, (i1) geo-physical features,
(111) land-use policies and (iv) socio-economic factors (table 1).

Table 1. Summary of the driving factors of urban development in the literature.

Accessibility Geo-physical Land-use Socio-economic

indicators features policies factors
Shu et al. (2014) * *
Mustafa et al. (2014) * * * *
Li, Zhou and Ouyang . %
(2013)
Cammerer, Thieken and % %
Verburg (2013)
Poelmans and Van % % *

Rompaey (2010)
Braimoh and Onishi (2007)  * * *
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Accessibility indicators are often included in urban development models
by means of simple indicators, such as distance to cities, distance to the
road network and distance to water bodies (Serneels and Lambin, 2001;
QUAN et al., 2006; Braimoh and Onishi, 2007). In this study, we
considered Euclidean distances to different roads categories and to the 11
Belgian cities with the largest population.

Geo-physical factors are commonly considered as major drivers of the
spatial distribution and expansion of urban areas (Li, Zhou and Ouyang,
2013). There is often a relationship between development and a number of
these factors, especially the topography of the study area (Cammerer,
Thieken and Verburg, 2013; Li, Zhou and Ouyang, 2013). We considered
elevation and slope as geo-physical factors in this study.

Zoning status is often considered as one of the potential urban
development drivers. It has been classified as the most pervasive driver in
USA (Brueckner, 2011). In the Walloon region, land allocation is
controlled by several regulations including the regional development plan,
referred to as "plan de secteur (PDS)". In this paper, we consider this
zoning plan, which defines the legally authorized land-use type for all the
territory.

This study also selects a number of socio-economic factors. Population is
one of the most active drivers of development (Liu and Ma, 2011). In this
respect, the evolution of net and gross population densities and number of
households were considered. Economic development could also be
considered as a driver of urban development; there is a relation between
economic increase and urban development (Liu and Ma, 2011) and
furthermore economic development has an important influence on people's
location choices. In this respect, employment rate, richness level, housing
and land prices are considered.

3 Methodology

3.1  Study area

The Walloon region lies between latitudes 49°28' and 50°49'N and
stretches between longitudes 2°50' and 6°28'E (figure 2). The Walloon
region is the predominantly French-speaking region of Belgium. It has a
territory of 16,844 km?, corresponding to 55% of the Belgium territory.
The population size in 2010 was equal to 3,498,384 inhabitants,
representing a third of the entire Belgian population (Belgian Federal
Government, 2015). Administratively, it comprises five provinces:
Hainaut, Liége, Luxembourg, Namur, and Walloon Brabant. It has 20
administrative arrondissements and 262 municipalities. The geography of
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the area goes from flat to hilly with altitude ranges from 0 to 693m above
see-level.

The main metropolitan areas are Charleroi, Liége, Mons and Namur. They
are all characterized by a historical city-centre around which the urban
development was spread. Urban density greatly varies over the study area.
The population is mainly concentrated on the main metropolitan centres.
The rest of the territory is less densely inhabited. Consequently, several
urban densities can be easily detected in the region and thus we can
examine the sensitivity of different urbanization drivers to urban density.
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Fig. 2. Study area

3.2  Multinomial logistic regression (MLR) model

Binomial logistic regression models are used whenever the dependent
variable is binary which takes values 0 or 1. When a dependent variable
has more than two categories then a multinomial logistic regression
models can be used. The multinomial logistic regression models have two
basic forms, ordinal and non-ordinal (often referred to simply as MLR).
The ordinal one is employed whenever each category of dependent
variable is assumed to have a meaningful sequential order. Parallel lines
test is usually performed to evaluate this assumption. In this study, the
significance of Chi-Square statistic of the parallel lines test is 0.000. Given
that the assumption of the parallel lines is violated, and thus we have to
adopt a non-ordinal alternative (MLR).
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The MLR model is applied to investigate the contribution of the selected
driving forces (independent variables, X) on the probability of urban
development along the different density classes (dependent variables, Y).
The MLR analysis yields coefficients for each driving force (X). These
coefficients are then interpreted as weights in a formula that generates a
map for each urban density class depicting the probability of each cell in
the landscape to be converted into this class. If the Y variable is a
categorical map with k& classes, taking on values 0, /,..., k-1 and X is a set
of explanatory variables X;, X>,..., X, then the logit for each non-reference
class kj,..., k, against the reference class kyp model is calculated through:

=k,
log(f02d) = a1, +f, X, + X, +. 4 X, (1)

(Y=k,)
Y=k

where log(h) is the natural logarithm of class k, against the reference

class ko, a is the intercept, Sk, is the regression coefficients of class k.
The probabilities P of each class can be calculated with the following
formula:

1
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The goodness-of-fit, in terms of predictive ability and the interpretability,
of the MLR outcomes is evaluated using the McFadden pseudo R-square
and the Relative Operating Characteristic (ROC) statistic respectively
(Clark and Hosking, 1986; Braimoh and Onishi, 2007; Lin et al., 2014;
Mustafa et al., 2014; Shu et al., 2014).

The McFadden pseudo R-square (MFR2) tries to mimic the R-squared
statistic of linear regression models. An MFR2 of 1 indicates a perfect fit,
while MFR2 of 0 indicates no relationship. It is calculated according to the
following formula:

In(Z, )
In(Z)

MFR2=1—- 3)

where L, is the value of the likelihood function for the full model as fitted
with X and Ly is the value of the likelihood function if all S except a are 0.

The ROC statistic compares the probability map, produced by the MLR, to
a map with the observed changes of urban cells for each class between two
time-steps. It first divides the probability outcomes into percentile groups
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from high to low probability and then calculates the proportion of true-
positives and false-positives for a range of specified threshold values and
relates them to each other in a graph. The ROC measures the area under
the curve and its value should range between 0.5 (random fit) and 1
(perfect fit).

Prior to performing the MLR model, we have to consider three aspects
that may exist among the model inputs that might potentially affect the
regression results: disparity in units, autocorrelation and multicollinearity.
Due to disparity in units and scale of the explanatory variables (table 4),
the logit coefficients cannot be used directly to measure the relative
contribution of each variable to the urban development process.
Consequently, all continuous X were standardized before performing the
MLR model. Categorical X were not standardized to keep the meaning of
the dummy variable.

Spatial autocorrelation in one or more X will bias the results of the
regression analysis. Autocorrelation is the propensity for cell value to be
similar to surrounding cells. Moran's I statistic was processed to detect
spatial autocorrelation for each X It is given as:

> (- ), )
M [=n-——-= €))

e

i ]

where M I is the Moran's 1 statistic for each X, n is the number of
neighbour cells to be taken into account, w spatial weights and X;; cells
values at location i/j. The locations depend on the cell neighbours,
considering shared-border neighbours (X;) and possibly also diagonal
neighbours (X;). We considered only X; neighbours. Moran's I value ranges
between -1 and +1, where +1 means absolute autocorrelation and -1 none
autocorrelation. To reduce the spatial autocorrelation, it is recommended
to calibrate the model based on a structured or random sample from the
whole dataset (Huang, Xie and Tay, 2010; Poelmans and Van Rompaey,
2010; Cammerer, Thieken and Verburg, 2013; Puertas, Henriquez and
Meza, 2014; Rienow and Goetzke, 2015). Alternatively, an autologistic
regression which considers an autocorrelative term in the regression model
can be employed. A number of studied showed that the autologistic
regression model outperformed the logistic models (e.g. Lin et al., 2011;
Shafizadeh-Moghadam and Helbich, 2015). Contrary, some studies (e.g.
Dormann, 2007) reported that the logistic regression model tends to
outperform the autologistic regression model in terms of model parameters
estimation. Comparing both modelling approaches (logistic vs
autologistic) goes beyond the scope of this paper. Our model has been
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calibrated through a data sampling approach, which is a common approach
in land-use change modelling.

Multicollinearity represents a high degree of dependency among a number
of X. It commonly occurs when a large number of X are introduced in a
regression model. It is because some of X may relatively measure the same
phenomena. Strong collinearities cause the erroneous estimation of
parameters and further affect the MLR results (Lin ef al., 2014). In this
context, a number of procedures is proposed to detect multicollinearity
among X such as tolerance value, variance inflation factor and Belsley
diagnostics (Belsley, Kuh and Welsh, 1980; Judge et al., 1985; Belsley,
1991; Kennedy, 2003). We wused Belsley diagnostics to detect
multicollinearity. The outcomes of Belsley diagnostics are condition
indices and variance-decomposition proportions for each X. A condition
index greater than 30 represents strong multicollinearity (Kennedy, 2003).
In that case, it is highly recommended to omit all X with variance-
decomposition proportions exceeding the tolerance of 0.5 (Kennedy,
2003).

3.3 Dependent variables

The dependent variables are constituted by cells, whose status remains
non-urban and whose status changed from non-urban to one of urban
density classes between 2000 and 2010. The cadastral dataset (CAD) was
used to develop the dependent variables map. CAD is a vector map
representing buildings in two dimensions as polygons provided by the land
registry administration of Belgium. Each building comes with different
attributes, from which the construction date is the most important attribute
for our study. Using the construction date, two urban land-use maps were
developed for 2000 and 2010 years. The CAD vector data were rasterized
at a very fine cell dimension (2x2m). Due to the time and computational
resources constraints, the MLR model lasts for about 13 hours to manage
2x2m raster data, the rasterized cells were then aggregated to obtain
100x100m raster-grids. The cell size of 100x100m is one of the most
common cell dimensions used in land-use change studies (e.g. Jiang et al.,
2007; Poelmans and Van Rompaey, 2010; Sang et al., 2011; Munshi et al.,
2014), which allows cross-comparisons with standard datasets like
Corinne Land Cover. Each aggregated cell has a density value that
represents the number of rasterized 2x2m cells. This value has been used
to introduce the density in the aggregated CAD maps (100x100m raster-
grid).

In order to avoid overestimation of urban lands, two measures were
applied to the aggregated data: the minimum building density per cell
(MBDC) and the minimum building density per neighbour (MBDN).



Understanding urban development types and drivers

The average size of residential building in Belgium is about 10x10m
(Tannier and Thomas, 2013). The MBDC has been defined as 25
rasterized cells (corresponding to an average-sized building).

A threshold of five dwellings per hectare, corresponding to 5%25
rasterized cells, was fixed for considering that a cell was urbanized.
Neighbourhoods with such a density are indeed observable in the Walloon
region. We then performed an analysis using different thresholds of
MBDN using a search window of 3x3 cells for each MBDN cell less than
125 (5%25). These thresholds are 125, 250, 625, 1250 and 2500. Table 2
lists a comparison between (CORINE Land Cover) CLC data, CAD
original aggregated data and different MBDN thresholds.

Table 2. Comparison of area (km?) between CLC, CAD Org original aggregated CAD data,
MBDN_ 125, MBDN_250, MBDN_625, MBDN_1250 and MBDN_2500.

MBDN1 MBDN MBDN MBDN  MBDN

Year  CLC CAD Org s 250 625 1250 2500
2000 2506 3229 2599 2468 2093 1744 1579
2006 2513 - - A A - )

2010 - 3339 2716 2594 2230 1868 1693

We assumed that the number of changed cells between two time-steps
would increase until a specific value of MBDN and then start declining
along with the increase of MBDN. Actually, those cells are under
development at time-step 0 and reach the threshold of MBDN at time-step
1 are then considered as urban. If the MBDN threshold is very high, this
condition will not be reached because this threshold exceeds the observed
number of built cells at time-step 0 and 1. The number of changed cells
calculated in two provinces of the Walloon region confirmed our
assumption (figure 3). The result showed that the most appropriate
threshold for the MBDN is 625.
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Fig. 3. Number of changed cells between 2000 and 2010



Moustafa et al. 2017

We performed different multinomial logistic regression (MLR) models for
4, 6, 8 and 10 urban densities quantile classes (including the non-urban
class) and measured the goodness-of-fit in terms of misclassification rates.
The misclassification rates equalled 24.23%, 23.60%, 22.70% and
26.07%, respectively. As a result, for the final MLR, we used eight urban
classes, from Density0 (non-urban) to Density7 (highest urban-density),
each class has almost the same number of cells except for Density(
(Figure 4). Table 3 lists the density range for each class.

Road Network

e Urban class

Fig. 4. Urban density classes of 2010 (7 highest density, 1 lowest density)

Table 3. Urban classes density ranges in number of 2x2 pixels (% of 100x100 cell area)
covered by building footprints.

Class Min Max u Mode
Density0? - - - -
Densityl 25 (1.0%) 78 (3.2%) 51.5 32
Density2 79 (3.2%) 132 (5.3%) 105.5 127
Density3 133 (5.3%) 180 (7.2%) 156.5 138
Density4 181 (7.2%) 243 (9.8%) 212.0 182

DensityS 244 (9.8%) 330 (13.2%) 2870 254
Density6 331 (132%) 491 (19.7%) 4110 333
Density7 492 (19.7%) 2500 (100.0%)  1365.9 504

2 Density0 represents all non-urban cells and affected cells by MBDC and MBDN procedures. u:
mean.
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3.4 Independent variables

Statistical data related to the population volume, the number of
households, the employment rate, the richness index (a comparison of the
average income per capita in a given municipality with the average
income per capita in Belgium) and the mean land/housing price were
provided by the official Belgian statistics (Institut wallon de 1’évaluation,
de la prospective et de la statistique, 2011; Belgian Federal Government,
2013) and mapped with a resolution of 100x100m raster-grid at
municipality level. Gross population density was calculated for each
municipality as the number of inhabitants divided by the area of
municipality in km?, whereas net population density was calculated as the
number of inhabitants divided by the area of built-up lands of the
municipality in km?.

The digital elevation model (DEM) provided by the Belgian National
Geographic Institute was used to calculate elevation and slope in
percentage for each cell.

Accessibility was measured by the Euclidean distance of a cell to four
categories of roads and major Belgian cities. Roads categories of 2002
were provided by Navteq. Four categories of roads were introduced in the
MLR (highways: high speed and volume controlled access roads,
major_roads: quick travel between and through cities, secondary roads:
moderate speed travel within cities and local roads: moderate speed travel
between neighbourhoods). The Belgian cities with the largest population,
a minimum population of 30,000, (Antwerp, Brussels, Wavre, Brugge,
Gent, Charleroi, Mons, Liege, Hasselt, Arlon and Namur) were used to
develop a map of distances to cities.

According to the zoning plan of the Walloon region, urban development is
only allowed in those zones that are designated for residential, economic
or leisure development. In other zones, such as agricultural and forest
areas, urban development is not permitted, unless specific conditions are
fulfilled. A zoning map was developed by discerning the zones where
urban development is not permitted (code 0) and the zones that are
designated for urban development (code 1). All maps were created as
raster grids with a resolution of 100x100m (table 4). The spatial resolution
is defined in function of the availability of data. The statistical data are
available at municipality level, whereas other variables could be calculated
at cell level. The combination of data at different resolutions is common in
land-use studies (e.g. Cammerer, Thieken and Verburg, 2013; Roy
Chowdhury and Maithani, 2014).
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Table 4. List of the selected drivers of urban development.

Driver Name Type?  Unit Resolution® u o

Xi Elevation 1 m 1 257.14 183.4

X Slope 1 % 1 5.51 57.02

X3 Dist to city 1 m 1 29028.16 15479.34

X Dist o m 1 793612 828257
Highways

x; bt oy m 1 41745 3757.23
Major_roads
Dist to

Xs Secondary road 1 m 1 1668.27 1425.25
s

X Dist o m 1 818.63 850.46

Local _roads
Dist to rail

Xs . 1 m 1 6962.07 5710.64
stations

Xo Num households 1 number 2 6421.52 12040.71

X, ~ Mean  housing € 2 139487 31965.1
price

X1 Mean land price 1 €/m? 2 51.1 99.73

X,  Employment 1 % 2 48.39 98.42
potential

Xi3 Richness index 1 % 2 95.71 61.62
Expansion

X population 1 inh/km? 2 206.95 354.33
density

Xis Net . population 1 inh/urban ) 819.52 522,97
density km?

Xi6 Zoning status 2 binary 1

a 1. Continuous, 2. Categorical. b 1. Cell level, 2. Municipality level. x: mean. : standard deviation

3.5 Identification of urban development types

Each type of urban development leads to different planning and
environmental consequences. Thus, identifying the types of development
over time is essential for monitoring and alleviating the consequences of
the urbanization process (Luck and Wu, 2002). In this context, three types
of development are measured for each density class.

The first type of development is infill. In this type of development, the
non-urban cells which are completely surrounded by urban cells, are
converted to cells corresponding to one of the density classes. Infill
development usually occupies vacant land, where public facilities such as
sewer, water, and roads already exist (Hoffhine Wilson et al., 2003).

The second type of development is edge-development, where non-urban
cells, which adjoin existing urban cells, are converted to one of the density
classes. This type represents an expansion of the existing urban patch and
has been called urban fringe development (Wasserman, 2000; Hofthine
Wilson et al., 2003)
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The final type of urban development is outlying, in which non-urban cells
are being converted to one of the density classes beyond existing
developed areas.

In order to identify expansion type, the raster maps of existing urban
patches associated with newly developed urban patches were firstly
converted to vector maps. Following the conversion steps, the boundaries
of each existing urban patch were detected.

The vector maps (map for each density class) of newly developed urban
patches were overlaid with the boundaries of each existing urban patch.
Using Select By Location function in ArcGIS, if the newly developed
urban patch was within the boundaries of existing urban patch, the patch
was categorized as infill development. If the newly developed urban patch
touches the boundary of existing urban patches, the patch was categorized
as edge-development. All other newly urban patches were then classified
as outlying development (figure 5).

. . Existing urban patch
. New utban patch

v

[

B C
L j:: L,“'R.J"'_{"'l """"E
._;’L{:ﬁ _1’] }’-r; T 3 RN
[g_Fﬂ ?ﬁ\w_—" g ng 3 = |
o J; é,; AR YL R j‘iﬁ---.

. . N
uer:: i’ 4 ,,,D CS L R
L

\a ‘I, ‘ ﬂ Id‘ z .= T‘ ]
h‘f f H‘1 f wj iy s BNl Rl LY
e W A A
] '., H.._,_,J""' jL.- 2’ d qﬂv j;s[t‘% Lf..n Bl 2 QU*LT"I-
- ORI W 2 e
ST Lty S O L g N
A convert raster 'ropolwgon Jl - J
B: detect boundries of existing utban B 1afill expansion
C: overlay new urban with the detected Ed
boundaries B Edge-expansion
D: categorise expansion types [ Outlying expansion

Fig. 5. The flow chart for identification of three urban development types
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4 Results and discussions

The urban area in 2000 in the Walloon region was 2093 km?, accounting
for 12.4% of the total area, and in 2010, the urban area increased to 2230
km?, accounting for 13.2% of the total area. The rate of increase varies
based on density (table 3): 36.6% (50.3 km?) for Densityl, 25.3% (34.8
km?) for Density2, 16.6% (22.9 km?) for Density3, 7.6% (10.5 km?) for
Density4, 5.2% (7.1 km?) for Density5, 3.9% (5.3 km?) for Density6 and
finally 4.9% (6.7 km?) for Density7.

As regard with the MLR model, all explanatory variables (X) have strong
degree of spatial autocorrelation with Moran's I value between 0.746 for
zoning and 0.999 for distance to cities. To reduce the spatial
autocorrelation, a random sample of 15,675 cells, around 1.15% of the
study area, distributed throughout the study area was used in the MLR
model. All X show low degree of multicollinearity with condition indices
between 1 and 9.15 for all X maps and 1 to 9.86 for the selected samples.
Thus, all X are introduced in the MLR model.

The goodness-of-fit of the MLR model in terms of predictive ability is
evaluated using McFadden pseudo R-square and it equals 0.244. Clark and
Hosking (1986) suggested that a McFadden pseudo R-square value greater
than 0.2 can be considered as a good fit. The MLR reveals a very good
correspondence with ROC values (figure 6): 0.775, 0.819, 0.829, 0.805,
0.793, 0.813 and 0.914 for classes 1, 2, 3, 4, 5, 6 and 7 respectively. In
general, ROC values higher than 0.7 can be considered as a reasonable fit
(Jr and Lemeshow, 2004; Poelmans, 2010; Cammerer, Thieken and
Verburg, 2013). This indicates that the MLR performs well and the
MLR’s outcomes could effectively interpret the process of urban
development in the Walloon region.

Table 5 gives the results of the MLR model. To relatively measure the
contribution of each X to the urban development process, the Odds Ratio
(OR), which equals exp(p), is calculated for each X. An OR greater than 1
(coefficients greater than 0) indicates a positive effect, i.e. the probability
of development increases by increasing the OR of the variable, whereas an
OR less than 1 (coefficients less than 0) indicates a negative effect, i.e. the
probability of urban development decreases by increasing the OR of the
variable. An OR of 1 (coefficients of 0) indicates the absence of a
significant contribution to development process (Braimoh and Onishi,
2007).

The interpretation of the parameters of the MLR model is most tangible by
considering the interpretation in terms of multiplicative effects on the
odds. Take as an example the parameter representing the effect of
elevation on Density7 expansion. This parameter equals 0.110. A one unit
increase would in elevation would imply that we have to multiply the odds
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by exp(0.110) = 1.117. Similarly, a five unit increase would imply that the
odds have to be multiplied by exp(5x0.110) = 1.7.
Generally, the impact of different drivers varies with different densities.
These drivers can be grouped into common drivers with impacts on
different urban classes and special drivers with impacts on individual
classes. The likelihood of urban development is notably influenced by
policies (zoning status). Zoning status has the strongest impact on urban
developments of all densities. Slope, distance to local roads, distance to
secondary roads, net/gross population densities and mean land price
respectively also demonstrate an impact on all density classes, but far less
important than zoning status.

Table 5. The coefficients () of MLR model and (OR value). Density0 is the reference class.

Densityl Density2 Density3  Density4 DensityS Density6 Density7
a -4.158 -4.603 -4.700 -4.583 -4.409 -4.500 -5.969
Elevation -0.078 -0.032 0.043 0.105 0.023 0.204* 0.110
(0.925) (0.969) (1.043) (1.111) (1.023) (1.226) (1.117)
Slope -0.237*  -0.078 -0.210* -0.644*  -0.693*  -0.840*  -1.185%
(0.789) (0.925) (0.811) (0.525) (0.500) (0.432) (0.306)
Dist to city 0.072 0.051 -0.099 -0.036 0.130%* 0.008 0.070
(1.074) (1.053) (0.906) (0.965) (1.139) (1.008) (1.072)
Dist to highways -0.129 0.014 -0.004 -0.165*  -0.146*  -0.306*  -0.917*
(0.879) (1.014) (0.996) (0.848) (0.864) (0.736) (0.400)
Dist to -0.113 -0.036 -0.021 -0.084 -0.244*  -0.215*  -0.587*
major_roads (0.893) (0.964) (0.980) (0.920) (0.783) (0.807) (0.556)
Dist to -0.265%  -0.257*  -0.141* -0.283*  -0.214*  -0.197*  -0.278*
secondary_roads (0.767) (0.774) (0.869) (0.754) (0.807) (0.822) (0.758)
Dist to local roads -0.651*  -0.536%  -0.587* -0.552*  -0.427*  -0.394*  -0.228*
- (0.521) (0.585) (0.556) (0.576) (0.653) (0.674) (0.796)
Dist to rail stations 0.002 -0.020 0.069 0.024 -0.136 -0.141 -0.289*
(1.002) (0.980) (1.071) (1.024) (0.873) (0.868) (0.749)
Num households 0.001 -0.016 -0.079 -0.098 -0.131*  -0.082 -0.086
(1.001) (0.984) (0.924) (0.907) (0.877) (0.922) (0.918)
Mean housing  0.027 0.029 0.074 0.037 0.096 0.038 -0.170
price (1.027) (1.029) (1.076) (1.038) (1.101) (1.039) (0.843)
Mean land price 0.079 0.127 0.083 0.191%* -0.054 0.250%* 0.198*
(1.082) (1.136) (1.087) (1.210) (0.947) (1.284) (1.219)
Employment -0.174*  -0.098 -0.027 0.001 0.105 0.205%* 0.236*
potential (0.840) (0.907) (0.974) (1.001) (1.111) (1.228) (1.266)
Richness index 0.159 0.032 0.057 -0.076 -0.043 -0.371*  -0.305*
(1.172) (1.033) (1.059) (0.927) (0.958) (0.690) (0.737)
Gross  population 0.311* 0.161* 0.210* 0.213 0.257 -0.076 0.045
density (1.365) (1.175) (1.233) (1.237) (1.293) (0.927) (1.046)
Net population -0.362*  -0.364 -0.451 -0.233 -0.078*  0.120 -0.070
density (0.696) (0.695) (0.637) (0.792) (0.925) (1.128) (0.932)
Zoning status 2.735% 3.639% 3.745% 3.278% 2.942% 2.807* 3.775%
(15.405) (38.050) (42.317) (26.523) (18.952) (16.555) (43.598)

* Significant P< 0.05
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Fig. 6. ROC curves of different urban classes

The impact of distance to local roads, namely intra-urban or inter-villages
roads, is generally decreasing with built-up densities. Distances to
highways and major_roads have a noticeable impact on the expansion of
high density projects (Density7) with OR of 0.40 and 0.56 respectively. It
should be stressed that a number of urban cores are directly accessible via
high-speed roads in the Walloon region. Employment potential has a
significant attraction impact on Density7. It is generally increasing with
density, which is what can be expected. The richness index and elevation
have moderate impacts on urban Density6. Distance to rail stations has a
moderate positive influence on urban Density7. Still this influence is much
lower than the proximity of high-speed roads, suggesting that urban areas
located nearby train stations are not yet sufficiently attractive for new
dense developments. This should be a major concern for urban policy
makers. Mean housing price represents a low influence on urban
development. This influence is negative for high density developments,
which is another source of concern given the shortage of available
housing, especially apartments, in areas characterized by a strong pressure
on the real estate market.

OR values for zoning show that policy has a very strong impact on the
highest density developments (Density7). Those high density
developments will most naturally be developed in areas where the legally-
binding plan allows such developments, in order to minimize the
administrative and financial risks of such operations. Zoning status impact
is taken a downward trend with classes 4, 5 and 6 respectively. We
consider those classes as suburbs. Quite understandably that urban
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developments in suburbs do not strictly follow policies. The zoning impact
on Densityl is very low compared to other classes. This class can be
considered as remote developments which can sometimes deviate from
existing zoning plans especially in agricultural zones. Land-use policies
also show a noticeable impact on classes 2 and 3. We considered those
both classes as low density developments in rural areas. It is not surprising
that new developments are mainly directed to urbanisable zones, where
there is an excess supply of such land. The MLR findings are in line with
the results reported in a number of other studies. Poelmans and Van
Rompaey (2010) examined the relation between urban development in
norther Belgium and slope, distance to different roads, major cities,
employment potential and zoning status using logistic regression. They
concluded that zoning status, slope, distance to roads are the major
determinants of the spatial pattern of urban development. Hu and Lo
(2007) used logistic regression to identify the forces that have driven the
urban growth in Atlanta. They reported that population density and
distance to roads were found to affect urbanization process.

General speaking, urban development patterns can be considered as an
oscillation between phases of diffusion and coalescence over time
(Winsborough, 1962; Yu and Ng, 2007; Shi et al., 2012). Diffusion is
considered as a dispersion of urban patches, while coalescence is the
fusion of urban patches into a limited number of patches (Dietzel et al.,
2005; Shi et al., 2012). Infill and edge developments are forms of
coalescence, whereas outlying developments represent diffusion (Xu et
al., 2007; Shi et al., 2012). The proportion of infill and edge urban
developments is about 92% of the total newly developed urban lands,
which indicates that the urban development between 2000 and 2010 was
obviously in the form of coalescence.

The edge-development was the dominant type of all urban classes’
expansion during the study period, occupying approximately 83% of the
total newly developed urban lands (Figure 7). This implies that the
urbanization process between 2000 and 2010 were prominently expanded
in the urban fringe spaces.
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Fig. 7. The area proportion (%) of each urban development type in 2000-2010

The result shows a gradual downward trend in the infill expansion type
from Density7 till Density2 and then shows an upward trend. Most of
infill newly urban patches of classes 1 and 2 are within major urban cores
(Figure 8). Those patches might be under urban development at the current
time and will be intensified in the future. The infill expansion type of
Density7 is greater than other urban classes with the implication of
compact urban growth near existing urban cores. In addition, the degree of
outlying expansion of Density7 indicates that high-density expansion can
also be found further from urban cores. Further analysis is still required to
see whether the new discontinuous developments were followed by later
efficient infill based on expansion patterns for different time periods.

Due to shortages of available urban space and the high cost of construction
in existing urban cores, investments in suburbs have become economically
attractive especially for individuals. That can explain the higher values of
the outlying expansion of density classes 7, 6, 5, 4 and 3.
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Fig. 8. The area proportion (%) of each urban development type in 2000-2010

5 Conclusions

In this study, we presented a comprehensive analysis of recent
urbanization process in the Walloon region (Belgium) between 2000 and
2010. A set of procedures were done to measure development types and
the main drivers of the urbanization process. This research considered
urban development as a continuum. It can be seen that the examination of
different urban densities expansion help with better understanding of
urbanization process and can be utilized by urban planners to generate
development scenarios according to different density strategies.

An examination of the driving forces of urban development process in the
Walloon region was required to help with improving land-use efficiency
and minimizing destruction to the regional ecosystem. A multinomial
logistic regression model (MLR) was employed to relatively measure the
impact of different drivers on the probability of development. Sixteen
drivers were selected from four sets of driving forces including geo-
physical features, land-use policies, socio-economic and accessibility.

The MLR model can include biophysical factors as well as socio-
economic factors. The model’s ability to include as many socio-economic
factors as necessary allows us to better understand human interactions
with urban systems. The MLR models can model any state. In the case of
urban to non-urban, the modeller should select the urban class as a
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reference class. The MLR also requires less demand of computation
resources for calibration. Despite these strengths, the MLR models suffer
some limitations. Firstly, it assumes that the occurrence probability is
linearly and additively related to the controlling factors on a logistic scale
(Cheng and Masser, 2003). If this assumption cannot be satisfied, the
performance may degrade. Secondly, unlike other urbanization modelling
approaches such as cellular automata or agent-based, the MLR models are
not temporally explicit. In other words, it can indicate the location of a
specific urban development, but cannot indicate when the development
will take place.

Three types of urban development were detected: (1) infill development,
(2) edge-expansion and (3) outlying expansion. The analysis indicated that
the development between 2000 and 2010 was mainly of infill and edge
developments, which reveals that the Walloon region experienced more
compacted urbanization pattern. This result is consistent with a number of
studies that refer to urban development have mostly concentrated in
developed urban cores (e.g. Schneider and Woodcock, 2008; Petrov,
Lavalle and Kasanko, 2009; Banzhaf and Lavery, 2010).

The results suggest that urban development in the Walloon region is
remarkably influenced by land-use policies. Therefore, a tighter control of
urban development through legislative measures would improve land-use
efficiency. Our findings highlighted that the impact of different drivers
varies along with urban density. This is especially the case for the land-use
policies, whose effects are much more significant for smaller densities
than for higher ones, with exception for the urban cores. Our approach can
predict future land consumption in accommodating a specific number of
dwellings along various levels of densities, which is critically important
for policy makers to restrict urban sprawl.
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