PFEM-FEM coupling for fluid-structure interaction problems involving free surfaces and large solid deformations

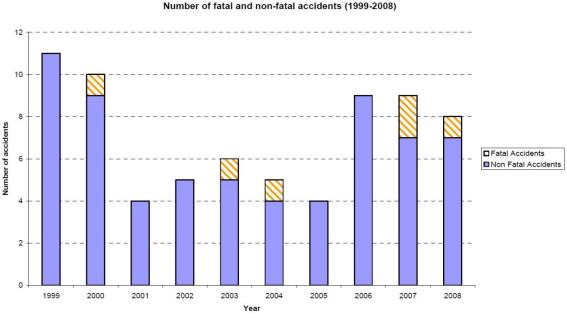
M. L. Cerquaglia, R. Boman, G. Deliége, L. Papeleux, J.-P. Ponthot

COUPLED 2017 - Rhodes

MOTIVATION

On 15 January 2009 the 1549 US Airways flight landed on the Hudson river after a collision with a flock of geese

Damages caused by bird strike represent a real threat in an aircraft life-cycle



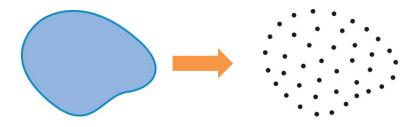
Bird strike is a complex free-surface fluid-structure interaction problem involving large deformations

Bird strike on a wind shield test

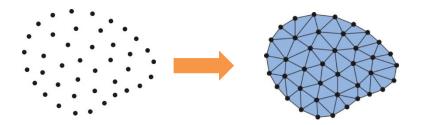
THE PFEM (Particle-Finite Element Method)

PFEM basics

I. The first step in the PFEM is discretizing the continuum with some particles/nodes:



- 2. The particles carry all the physical and mathematical information (density, viscosity, velocity, pressure, ...)
- 3. At each time step a new mesh is quickly built using a Delaunay triangulation:



4. The boundaries of the domain are identified via the α -shape algorithm:

All the triangles whose circumcircle has a radius r(x) larger than $\alpha h(x)$ are canceled.

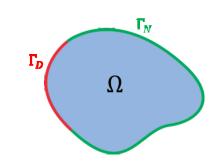
 α =scalar parameter (<u>usually between 1.2 and 1.5</u>!) h(x)= mean distance between two neighboring nodes

5. This new mesh is used to discretize the weak form using linear Finite Element shape functions:

$$\begin{cases}
\rho \frac{\mathrm{d} \boldsymbol{u}}{\mathrm{d} t} = \operatorname{div} \boldsymbol{\sigma} + \rho \boldsymbol{b} \\
\frac{\mathrm{d} \rho}{\mathrm{d} t} + \rho \operatorname{div}(\boldsymbol{u}) = 0
\end{cases} + \int \dots d\Omega$$
FEM shape functions

From now on I will focus on Newtonian incompressible fluid flows

$$\begin{cases} \rho_0 \frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t} = -\mathrm{div}(\boldsymbol{p} \boldsymbol{I}) + \mu \, \mathrm{div} \big(\mathrm{grad}(\boldsymbol{u}) + \mathrm{grad}(\boldsymbol{u})^{\mathrm{T}} \big) + \rho_0 \boldsymbol{b} & \text{in } \boldsymbol{\Omega} \\ \mathrm{div}(\boldsymbol{u}) = 0 & \text{in } \boldsymbol{\Omega} \\ \boldsymbol{u} = \overline{\boldsymbol{u}} & \text{on } \Gamma_D \quad , \boldsymbol{\sigma} \cdot \boldsymbol{n} = \overline{\boldsymbol{t}} & \text{on } \Gamma_N \end{cases}$$



$$\int_{\Omega} \rho_0 \frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t} \cdot \boldsymbol{w} \, \mathrm{d}\Omega = \int_{\Omega} p \mathbf{I} : \operatorname{grad}(\boldsymbol{w}) \, \mathrm{d}\Omega - \int_{\Omega} \mu \, \operatorname{grad}(\boldsymbol{u}) : \operatorname{grad}(\boldsymbol{w}) \, \mathrm{d}\Omega + \int_{\Omega} \rho_0 \, \boldsymbol{b} \cdot \boldsymbol{w} \, \mathrm{d}\Omega + \int_{\Gamma_N} \bar{\boldsymbol{t}} \cdot \boldsymbol{w} \, \mathrm{d}\Gamma$$

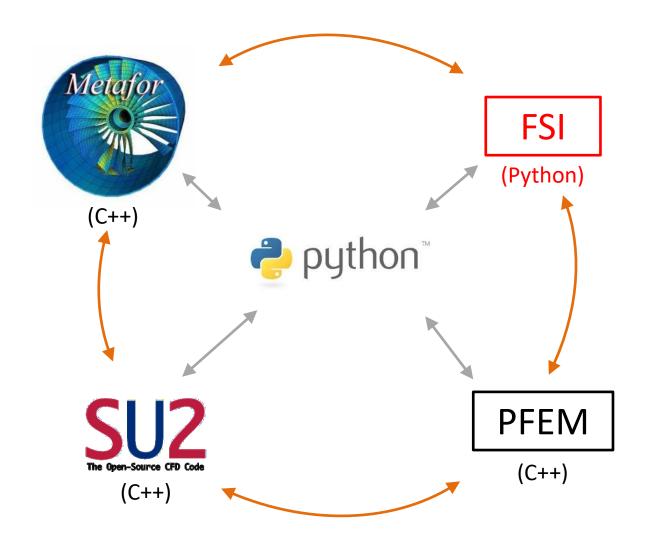
$$\int_{\Omega} \mu \, \operatorname{grad}(\boldsymbol{u})^{\mathrm{T}} : \operatorname{grad}(\boldsymbol{w}) \, \mathrm{d}\Omega + \int_{\Omega} \rho_0 \, \boldsymbol{b} \cdot \boldsymbol{w} \, \mathrm{d}\Omega + \int_{\Gamma_N} \bar{\boldsymbol{t}} \cdot \boldsymbol{w} \, \mathrm{d}\Gamma$$

$$\int_{\Omega} \operatorname{div}(\boldsymbol{u}) q \, \mathrm{d}\Omega = \sum_{e=1}^{N_{el}} \int_{\Omega_0^e} \tau_{\mathrm{pspg}}^e \frac{1}{\rho_0} \operatorname{grad}(q) \left(\rho_0 \frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}\boldsymbol{t}} + \operatorname{div}(p \mathbf{I}) - \mu \, \operatorname{div}(\operatorname{grad}(\boldsymbol{u}) + \operatorname{grad}(\boldsymbol{u})^{\mathrm{T}}) - \rho_0 \boldsymbol{b} \right)$$

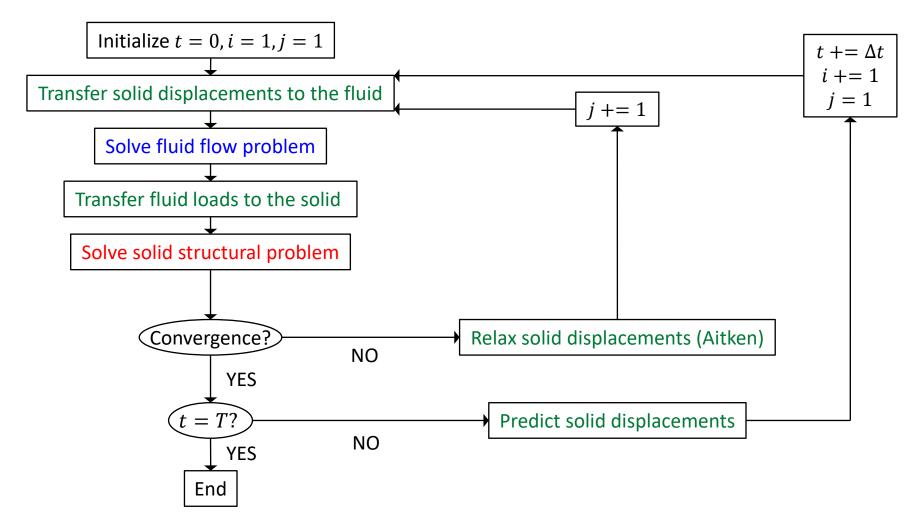
[Tezduyar et al. (1992), Cremonesi et al. (2010)]

COUPLING STRATEGIES

Implementation

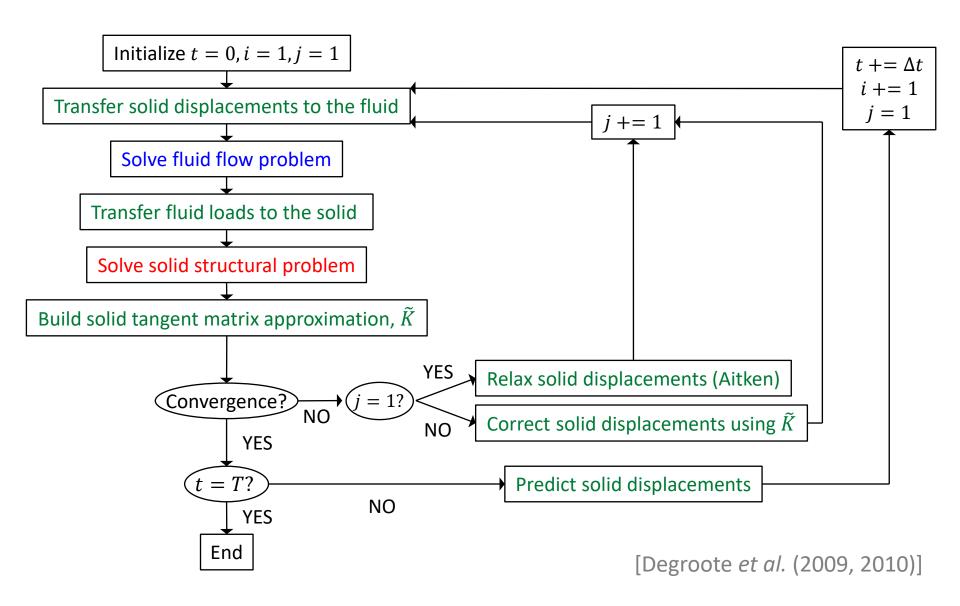


Block-Gauss Seidel with Aitken relaxation (BGS)



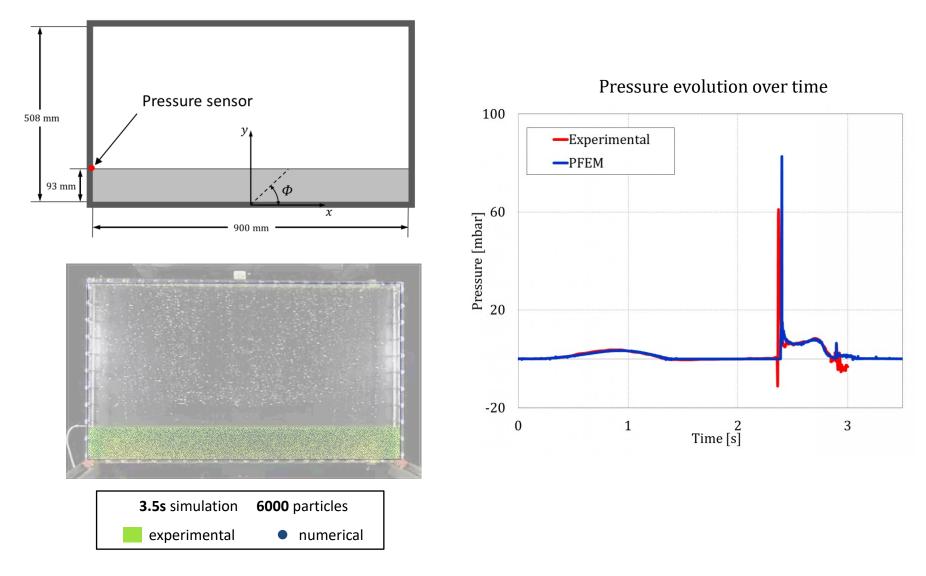
[Kuttler and Wall (2008), Habchi et al. (2012)]

Interface Quasi-Newton - Inverse Least Squares (IQN-ILS)

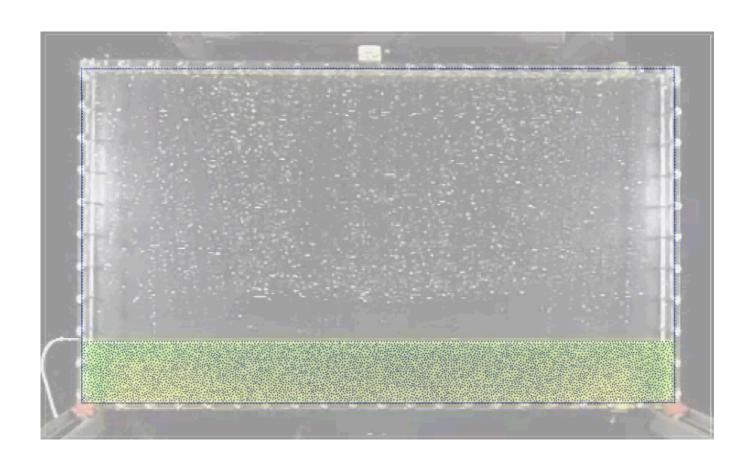


APPLICATIONS

Sloshing of an oscillating water reservoir



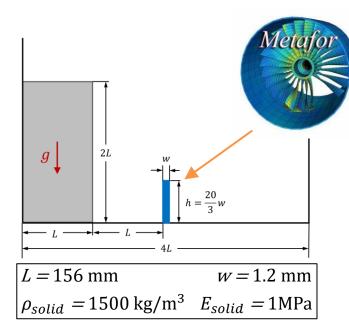
Sloshing of an oscillating water reservoir

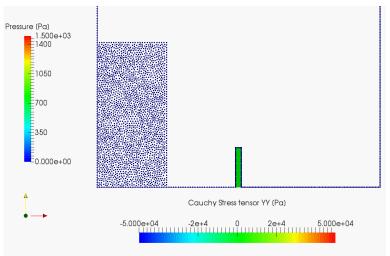


experimental

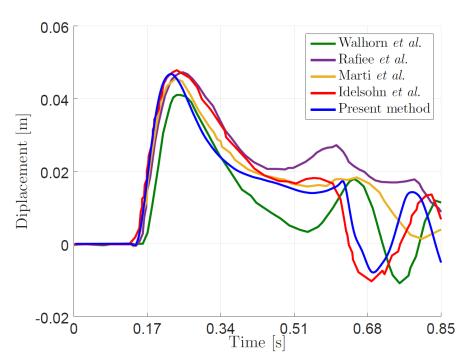
numerical

Dam break against an elastic obstacle

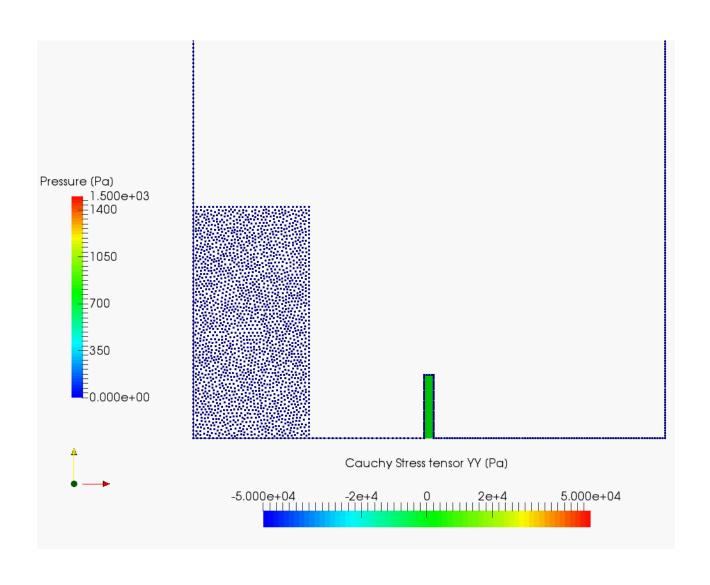




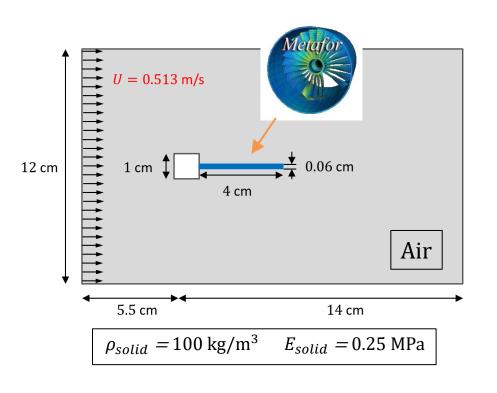
Horizontal tip displacement over time

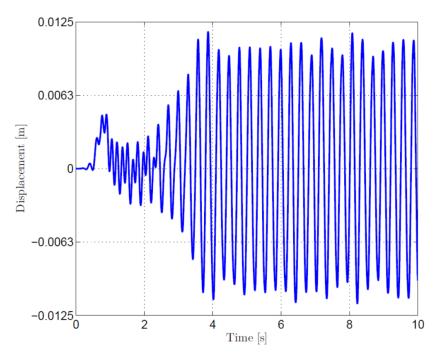


Dam break against an elastic obstacle



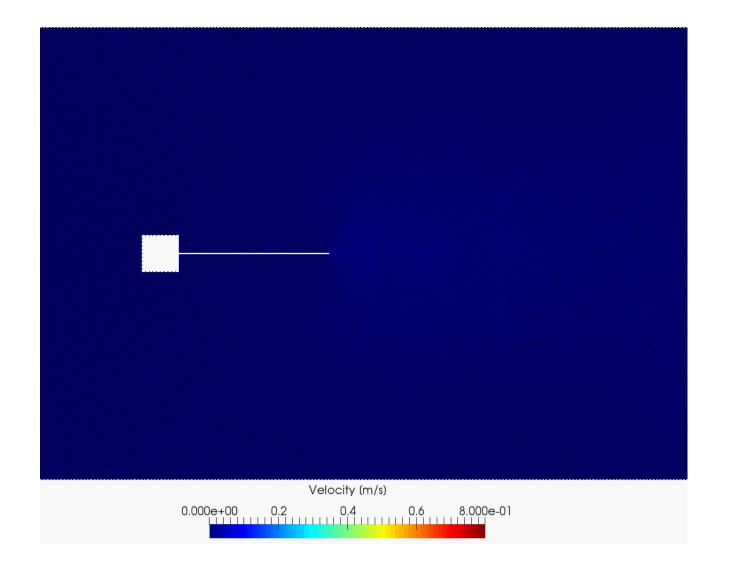
Vortex-induced vibrations (VIV) of a flexible cantilever



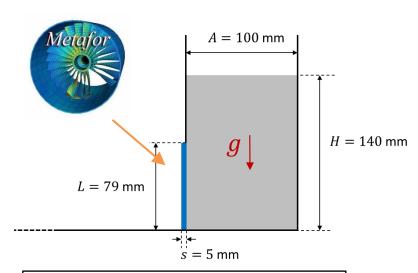


Quantity	PFEM-FEM	Literature
Maximum tip displacement	1.15 mm	0.95 – 1.25 mm
Frequency	3.25 Hz	2.94 – 3.25 Hz

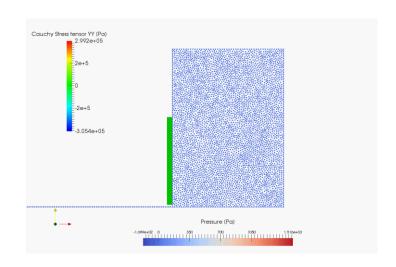
Vortex-induced vibrations (VIV) of a flexible cantilever

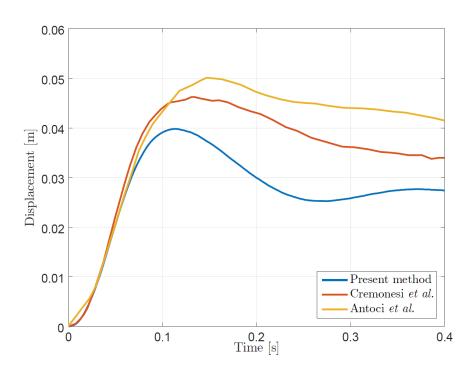


Dam break with an elastic gate (Ongoing work)



$$\rho_{solid} = 1100 \text{ kg/m}^3$$
 $E_{solid} = 10 \text{ MPa}$





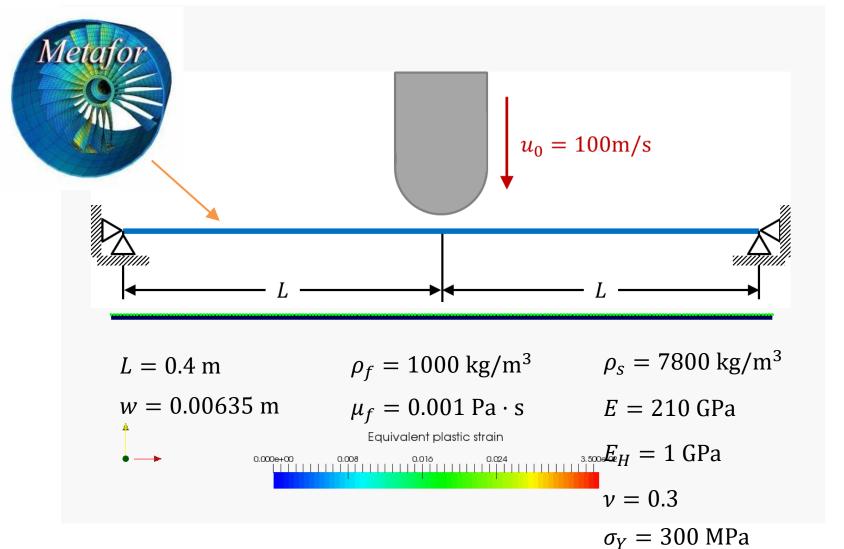
[Antoci et al. (2007)]

Dam break with an elastic gate (Ongoing work)

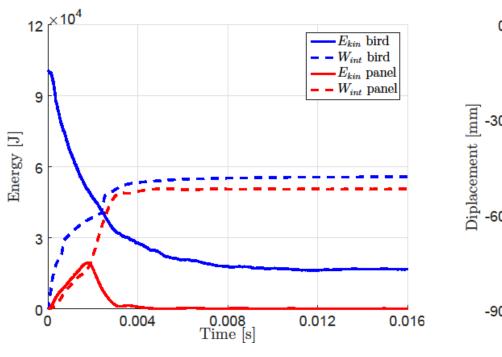
	Coupling strategy	n. Iterations per step	CPU Time [s]			
	BGS	6.53	1378.46	K	,	
_	IQN-ILS	6.22	1309.98	<u> </u>		Gain ~16%
	IQN-ILS (1)	5.20	1154.64	1		
Ī	IQN-ILS (2)	5.67	1247.68	_		
	IQN-ILS (4)	6.39	1349.33			
	IQN-ILS (6)	6.38	1336.14			

IQN-ILS (i) \rightarrow information from 'i' previous time steps is used for the approximation of the tangent matrix in the IQN-ILS strategy

Bird strike on a metallic flexible panel at 100 m/s



Bird strike on a metallic flexible panel at 100 m/s



Energy evolution

Panel center vertical displacement

CONCLUSIONS

Conclusions

- An original PFEM FEM fluid-structure coupling taking into account complex structural behavior has been proposed
- Results have been compared to experimental and other numerical results and good agreement was found
- Classical (BGS) and more sophisticated (IQN-ILS) coupling techniques are available in the proposed framework
- In the future, 3D problems will be addressed and the use of a compressible fluid will be investigated.

