Research in Food Science and Formulation: From raw material to final product

University of Liège

Gembloux Agro-Bio Tech

Department AgroBioChem

Food Science and Formulation

Atisa

Human forces

Academics:

- Dr Ir Christophe Blecker
- Dr Ir Sabine Danthine

and a team of MSc. and Ph.D graduate students, postdoctoral fellows, research associates and technicians make up the lab

FoodIsLife

R&D platform in food science and biotechnology

VUE A - Vue depuis l'evenue de la faculti

FoodIsLife: R&D platform

- Expertise in the area of food science and biotechnology
- Cutting-edge lab-scale equipments
- Access to pilot-scale equipments
- Reinforcement of the links between university and private partners
- Promotion of the Walloon expertise in food science research at an national and international level

Skills

- Research activities in food science, microbial biotechnology, biological chemistry

Equipments

- Lab equipments
- Pilot scale equipements: for the production of small quantities (as test sample) to medium quantities (10 Kg for preproduction to several hundreds of Kg for scaling-up demonstration)

Transformations

- Cracking
- Use of physical treatments
- By-products valorization

Extraction

- Technofunctional properties
- Physical or enzymatic modifications

- Formulation engineering
 - Study of interactions between ingredients
 - Food model development
 - Full characterisation (physico-chemical and sensory analysis)

Final products

Examples of activities carried out in the field of cracking and valorization of bioproducts

- Cracking of agricultural raw materials allows us to produce new ingredients
- Cracking can lead to clean label ingredients and provide added values to agricultural productions

A long tradition of by-product valorization exists in Gembloux : more than 20 years! (different fields)

Cracking in Gembloux Agro-Bio Tech

Some examples of starting raw materials

- Milk
- Egg yolk
- Insects
- Cereals (wheat, spelt, oats)
- Sugar beet leaves
- Date
- Flax seed
- Pea

Milk fractionation

- Proteins
 - Proteose-peptone fraction

- Lipids
 - Anhydrous milk fat
 - Polar lipids

Date fractionation

- Seed (pit)
 - Oil, phenolic compounds
- Flesh
 - Dietary fiber, pectin
 - Proteins

Industrial fractionation of pea

Industrial valorisation of our research

Start of pea processing facility Launch of pea protein Pisane®, pea fibres Swelite® and Exafine® and pea starch Nastar®

Product characterization

Techno functional properties

Physical state of powders

Interfacial properties

Physico-chemical properties of lipids

Equipment (1)

Interfacial properties

Adsorption kinetics, monolayers, CMC...

Equipment (2)

- Emulsions, foams,...

1:10 1:11 1:12 1:13 1:14 1:15 1:16 1:17 1:18 1:19 1:20 1:21 1:22 1:23 1:24 1:37 2:08 2:38 3:08 4:08 4:38 5:08

Equipment (3)

Rheology, texture analysis, particule/globule sizer,

...

Equipment (4)

• Microscopy:

Equipment (5)

Thermal properties:

Equipment (6)

• Oils & fats:

Equipment (7)

Oils & fats : polymorphism

From

Fundamental research

То

Applications

Example: MFGM

• Fundamental understanding: last MFGM models (2000 & 2010)

Specific research towards purification
fractionation to get new products
with added value

- Scaling-up (industrial level)
- By-product valorization (buttermilk)
- Formulation of new products
- Patent: Dalemans D., <u>Blecker C.</u>, Bodson P., <u>Danthine S.</u>, Deroanne C., Paquot M. (2008). Milk ingredient enriched in polar lipids and uses thereof. International Patent, WO/ 2008/009636

« Extraction, transformation, valorization and utilization of lipids (& by or co-products) »

Fundamental understanding of lipid crystallization (phase behavior diagrams...) Fundamental understanding of lipid networks building Elucidation of lipid structures for diversified physical functionalities

Development and/or improvement of soft modification processes (physical/enzymatic) directed towards modulation of lipids functionality

Studies of extraction and refining practices (with valorization of co-products). Preservative strategies (oxidation)

Extraction

Refining

Fat

modifications

Crystallization

Thermal properties

Example: Puff pastry margarines

- margarine's plasticity is different; a post-crystallization at 15°C makes margarine brittle as observed in texture profiles and by preparing the puff pastries.

This poor plasticity negatively influences baking ability of the 15°C post-crystallized margarine.

Conclusion

- We can do:
 - Food technology
 - Pilot-scale development
 - Formulation
 - Physico-chemical analysis
- We can not do:
 - Chemical analysis (chromatography)
 - Nutrition

Link to full publications report

http://orbi.ulg.ac.be/orbi-report?query=%28%28uid %3Au300145%29%29&model=a&format=apa&data=metric&data=metri cs&data=pr&sort_by0=1&order0=DESC&sort_by1=3&order1=ASC&sort _by2=2&order2=ASC&output=html&language=fr&title=Publications+et +communications+de+Christophe+Blecker+%5Bu300145%5D

