

Quality assessment of marketed eggs in Hanoi (Vietnam) Moula N¹.*, Luc D. D²., Bo H. X²., Duy N. V²., Xuan N. T²., Dang P.K²., Ton V. D².

Department of Animal Production, Faculty of Veterinary Medicine, University of Liege, Liege 4000, Belgium Faculty of Animal science, Vietnam National University of Agriculture, Hanoi, Vietnam *Corresponding author: Nassim.Moula@ulg.ac.be

INTRODUCTION

Poultry farming is the first sector of livestock that has been industrialized. The poultry sector plays an important role in the GDP of Vietnam. It is the second largest livestock after the pig livestock. The production and consumption of eggs in Vietnam is estimated as 5.64 billion and 102.6 eggs per person per year respectively. The aim of this study was to assess the quality of eggs in relation to the chicken breed and different marketing channels in Hanoi, Vietnam.

MATERIALS AND METHODS

In total, 431 chicken eggs were purchased from four different marketing channels in Hanoi, including households (89 eggs), supermarkets (152 eggs), public markets (130 eggs) and small grocery stores (50 eggs). Out of the 431 above-mentioned eggs, 119 eggs came from the commercial chicken breeds and 312 eggs from traditional local breeds. The quality of eggs for a consumer is represented by its cleanliness, nutritional quality, freshness, and price. A series of measurements is carried out just after their purchase.

RESULTS

According to the breed and the marketing channel, highly significant differences (P <0.05) were found in the freshness of the eggs (Haugh units), egg prices, eggs weight, egg shell, the white and the yolk of the egg. Though the chicken breed and marketing channels do not significantly affect (P> 0.05) the freshness of the eggs, however, they have a significant effect (P <0.05) on the size of the eggs marketed in Hanoi.

Table 1- Distribution (%) of USDA grade by Breed									
Haugh Unit	USDA	Distribbution of	Statistical						
value	grade		Significance						
		Bre	Chisq-	P-value					
		Industrial	Local	value					
72>	AA	10.67	25.29	0.97	ns				
60-72	А	9.05	22.97						
31-60	В	7.42	22.74						
<31	С	0.46	1.39						

Table 2- Distribution (%) of USDA grade by Marketing Channels								
Haugh	USDA	Distribbution of USDA grade (%)				Statistical S	Significance	
Unit	grade	Marketing Channels				Chisq-value	P-value	
value		Livestock	Public	Super-	Food Shoop			
			markets	markets				
	AA	14.62	10.21	6.50	4.64	129.63	***	
60-72	А	4.18	12.99	13.92	0.93			
31-60	В	1.36	6.50	15.31	6.96			
<21	C	_	0.46	_	4.64			
~31	C		0.40		4.04			
<31	С	-	0.46	-	4.64			

CONCLUSION

The results of this study show an important diversity in marketing channels and marketed eggs in Hanoi. In general, commercialized eggs in this work were fresh according to HU values. Indeed, it is a proof that this market is characterized by a steady and a variety of supply and consumption (eggs of local and industrial chickens; many marketing channels).

Table3- Distribution (%) of weight classes by Breed									
European weight classes	Weight	Distribbution of v	Statistical Significance						
		Bre	Chisq-	P-value					
		Industrial	Local	value					
X-Large	>73g	1.86	-	298.24	***				
Large	63-73g	18.79	0.93						
Medium	53-63g	6.50	18.56						
Small	<53g	0.46	52.90						

Table 4 – Least Squares Means and standard errors of egg weight, Haugh unit, volk color, volk/albumen ratio, price per egg and price per kg

unit	, your c	oloi, yolk/	arounterr	acio, price	. pci c ₅₅ ai	in pric	c pc		
	Breed	Marketing Chanels (MC) P-Value							R ²
		Livestock	Public markets	Supermark ets	Food Shoop	Breed (B)	MC	B* MC	
Egg weight	Indust	-	64.39±0.67 ^{a1}	63.20±1,09 ^{a1}	67.61±0.77 ^{b1}	***	***	***	.52
(g)	Local	49.14±0.53 ^a	50.29±0.58 ^{a2}	49.03±0.43 ^{a2}	55.68±1.18 ^{b2}				
Egg Shape	Indust	-	77,74±0,43	78,17±0,71	76,99±0,50	ns	**	ns	.05
	Local	75.65±0.35ª	76.64±0.38 ^{ab}	77.32±0.28 ^b	77.63±0.76 ^b				
Yolk Color	Indust	-	11.28±0.20	10.76±0.32	11.29±0.23	ns	ns	ns	.02
	Local	11.14±0.16	11.05±0.17	11.26±0.13	11.67±0.35				
Shell	Indust	-	7.82 ± 0.10^{1}	7.83±0.161	8.06±0.111	***	***	ns	.47
weight (g)	Local	6.34±0.08ª	6.54±0.08 ^{a2}	6.39±0.06 ^{a2}	7.10±0.17 ^{b2}				
Albumen	Indust	-	40.66±0.43 ^{aı}	39.02±0.70 ^{b1}	41.66±0.50 ^{a1}	***	***	ns	.75
weight(g)	Local	27.21±0.35 ^a	29.52±0.38 ^{a2}	28.55 ± 0.28^{a_2}	31.63±0.76 ^{b2}				
Yolk	Indust	-	15.90±0.28 ^{a1}	16.35±0.46ª	17.90±0.33 ^{b1}	***	***	ns	.26
weight(g)	Local	15.59±0.23ª	14.24±0.25 ^{b2}	14.09 ± 0.18^{b_2}	16.95±0.50 ^{c1}				
HU	Indust	-	68.69±1.511	64.21±2.481	65.99±1.751	***	***	***	.28
	Local	76.70±1.22 ^a	65.34±1.32 ^{b2}	62.04±0.99 ^{c1}	43.25±2.68 ^{d2}				
Price per	Indust	-	2.33±0.111	2.27±0.181	2.45±0.131	***	***	***	.52
egg (1000VD)	Local	3.52±0.09ª	4.08±0.10 ^{b2}	4.53±0.07 ^{bi}	3.11±0.20 ^{a2}				
Price per	Indust	-	34.91±26.511	35.95±4.321	37.15±3.061	***	***	***	·57
kg (1000VD)	Local	71.65±21.27 ^a	79.99±23.05 ^{b1}	93.69±17.20 ^{c1}	69.69±46.75 ^{d1}				
Y/A ratio	Indust	-	39.18 ± 0.89^{a_1}	42.46±1.56 ^{abi}	43.04±1.03 ^{a1}	***	***	ns	.43
	Local	57.42±0.72 ^a	48.39 ± 0.78^{b_2}	49.77±0.58 ^{b2}	53.90±1.58c2				
Fma. (n)	Indust	-	37.02±0.90 ^{ab1}	38.51±1.55 ^{b1}	34.43±1.04 ^{a1}	*	ns	ns	.04
	Local	37.59±0.72	39.29±0.791	38.37±0.601	38.92±1.59 ²				