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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Underground Pumped Storage Hydropower (UPSH) is an alternative to manage the electricity production in flat regions. UPSH 

plants consist of two reservoirs of which at least one is underground. For this last reservoir, abandoned mines could be 

considered. UPSH related activities may induce hydrochemical variations, such as the increase of the oxygen (O2) partial 

pressure (pO2), which may entail negative consequences in terms of environment and efficiency, especially in coal mined areas 

where the presence of sulfide minerals is common. This work assesses the main expected environmental impacts that UPSH 

using abandoned coal mines may induce. 
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1. Introduction 

One of the main concerns with respect to solar and wind energies, is that the electricity production is highly 

variable and is hardly adapted to the demand [1-5]. This fact tends to reduce their efficiency and limits their 

applicability. Energy storage systems (ESSs) are needed to manage the electricity production from renewable 
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sources and increase their utilization [6]. Underground Pumped Storage Hydropower (UPSH) [7] is an ESS that 

allows a large amount of electricity to be stored and produced. UPSH plants consist of two reservoirs, the lower one 

is underground while the upper one is located at the surface or at shallower depth [8]. The main advantage of UPSH 

is that it is not limited by the topography. Thus, UPSH is a potential alternative to manage the electricity production 

in flat regions, where conventional Pumped Storage Hydropower plants cannot be installed. 

The underground reservoir for UPSH plants can be excavated, but possibly the cheapest option, which is that 

considered in this work, consists in using abandoned underground cavities such as deep mines. The main concern 

regarding the use of abandoned mines is that their walls are not generally impervious, and thus pumped and stored 

water will interact with the surrounding porous medium. In previous studies, this interaction only has been 

considered from a water flow point of view determining the impacts produced by the water exchanges (1) on the 

natural piezometric head of the surrounding porous medium [9,10], and (2) on the efficiency of the plant [11,12]. 

Here, we focus on hydrochemistry modifications induced by UPSH related activities and predicted associated 

impacts on the environment. 

In a hypothetical UPSH plant using an abandoned mine, pumped water to the surface (i.e., upper) reservoir is 

aerated and its initial chemical composition evolves to be in equilibrium with the atmosphere leading to an increase 

of pO2 and associated chemical reactions. In addition, when this water is released into the underground reservoir, 

this may react with the surrounding porous and fractured medium and with the water occupying the reservoir. It may 

induce the precipitation or dissolution of minerals and its associated impacts (e.g., reduction or increase of the pH). 

In the specific case of abandoned coal mines, where sulfides are frequent [13], the increase of pO2 in the upper 

reservoir may induce sulfide oxidation when the water is released in the underground reservoir. This fact would lead 

to very low pH values [14] (i.e., acidification) and then affect the surrounding groundwater quality through the 

seepage exchange fluxes between the underground reservoir and the surrounding geological layers. 

It is thus of paramount importance to assess the environmental impacts and hydrochemical variations induced by 

UPSH when abandoned coal mines are used. This assessment must be done with regards to the Water Framework 

Directive [15] adopted by the European Union in October 2000, requiring that nations must guarantee the “good 

state” of the “water bodies”. Here, those groundwater quality impacts are investigated through a numerical reactive 

transport model. The main objective of this study is to establish potential impacts on the environment and highlight 

the importance of considering them for the design of future UPSH plants. 

 

2. Materials and methods 

2.1. Problem statement 

The problem is sketched schematically in Fig. 1. The underground reservoir consists in a cavity of 50 by 50 m on 

10 m height. The top and bottom of the underground reservoir are at 95 and 105 m depth, respectively. The 

underground reservoir is linked to the surface through a shaft of 10 by 10 m on 95 m height. The surrounding porous 

medium is 200 m thick and the external boundaries of the model are located at a 1000 m distance far from the 

underground reservoir. Under natural conditions, groundwater flows along the domain from the west to the east 

boundary since the head is chosen at 90 and 110 m depth on the west and east boundaries, respectively. The 

unconfined aquifer has a saturated thickness ranging between 110 and 90 m. In the central part of the domain, where 

the underground reservoir is located, the initial natural water level is corresponding to the top of the reservoir (95 m 

depth). Thus, it is totally saturated at the beginning. 

Representative results are obtained assuming day/night cycles of 12 hours (i.e., water is pumped during 12 hours 

and released during the next 12 hours). Pumping/injection rates are 43000 m
3
/d. Thus, the underground reservoir is 

almost emptied and filled during each pumping/injection cycle (only 1.4 m remains saturated after pumping). 

 



 Estanislao Pujades et al. / Energy Procedia 125 (2017) 504–510 505 

Available online at www.sciencedirect.com 

ScienceDirect 

Energy Procedia 00 (2017) 000–000  

www.elsevier.com/locate/procedia 

 

1876-6102 © 2017 The Authors. Published by Elsevier Ltd. 

Peer-review under responsibility of the scientific committee of the European Geosciences Union (EGU) General Assembly 2017 
– Division Energy, Resources and the Environment (ERE).  

European Geosciences Union General Assembly 2017, EGU 
Division Energy, Resources & Environment, ERE 

Water chemical evolution in Underground Pumped Storage 

Hydropower plants and induced consequences 

Estanislao Pujades
a,
*, Philippe Orban

a
, Anna Jurado

a
, Carlos Ayora

b
, Serge Brouyère

a
, 

Alain Dassargues
a
 

aHydrogeology and Environmental Geology, Geo3, Dpt ArGEnCo, Aquapole, University of Liege, 4000 Liege, Belgium 
bGHS, Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain  

Abstract 

Underground Pumped Storage Hydropower (UPSH) is an alternative to manage the electricity production in flat regions. UPSH 

plants consist of two reservoirs of which at least one is underground. For this last reservoir, abandoned mines could be 

considered. UPSH related activities may induce hydrochemical variations, such as the increase of the oxygen (O2) partial 

pressure (pO2), which may entail negative consequences in terms of environment and efficiency, especially in coal mined areas 

where the presence of sulfide minerals is common. This work assesses the main expected environmental impacts that UPSH 

using abandoned coal mines may induce. 

 

© 2017 The Authors. Published by Elsevier Ltd. 

Peer-review under responsibility of the scientific committee of the European Geosciences Union (EGU) General Assembly 2017 

– Division Energy, Resources and the Environment (ERE). 

Keywords: Groundwater; Coal mine; Pumped Storage Hydropower; Reactive transport 

1. Introduction 

One of the main concerns with respect to solar and wind energies, is that the electricity production is highly 

variable and is hardly adapted to the demand [1-5]. This fact tends to reduce their efficiency and limits their 

applicability. Energy storage systems (ESSs) are needed to manage the electricity production from renewable 

 

 
* Corresponding author. Tel.: +32-4-366-37-99; fax: +32-4-366-28-17. 

E-mail address: estanislao.pujades@gmail.com 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Energy Procedia 00 (2017) 000–000  

www.elsevier.com/locate/procedia 

 

1876-6102 © 2017 The Authors. Published by Elsevier Ltd. 

Peer-review under responsibility of the scientific committee of the European Geosciences Union (EGU) General Assembly 2017 
– Division Energy, Resources and the Environment (ERE).  

European Geosciences Union General Assembly 2017, EGU 
Division Energy, Resources & Environment, ERE 

Water chemical evolution in Underground Pumped Storage 

Hydropower plants and induced consequences 

Estanislao Pujades
a,
*, Philippe Orban

a
, Anna Jurado

a
, Carlos Ayora

b
, Serge Brouyère

a
, 

Alain Dassargues
a
 

aHydrogeology and Environmental Geology, Geo3, Dpt ArGEnCo, Aquapole, University of Liege, 4000 Liege, Belgium 
bGHS, Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain  

Abstract 

Underground Pumped Storage Hydropower (UPSH) is an alternative to manage the electricity production in flat regions. UPSH 

plants consist of two reservoirs of which at least one is underground. For this last reservoir, abandoned mines could be 

considered. UPSH related activities may induce hydrochemical variations, such as the increase of the oxygen (O2) partial 

pressure (pO2), which may entail negative consequences in terms of environment and efficiency, especially in coal mined areas 

where the presence of sulfide minerals is common. This work assesses the main expected environmental impacts that UPSH 

using abandoned coal mines may induce. 

 

© 2017 The Authors. Published by Elsevier Ltd. 

Peer-review under responsibility of the scientific committee of the European Geosciences Union (EGU) General Assembly 2017 

– Division Energy, Resources and the Environment (ERE). 

Keywords: Groundwater; Coal mine; Pumped Storage Hydropower; Reactive transport 

1. Introduction 

One of the main concerns with respect to solar and wind energies, is that the electricity production is highly 

variable and is hardly adapted to the demand [1-5]. This fact tends to reduce their efficiency and limits their 

applicability. Energy storage systems (ESSs) are needed to manage the electricity production from renewable 

 

 
* Corresponding author. Tel.: +32-4-366-37-99; fax: +32-4-366-28-17. 

E-mail address: estanislao.pujades@gmail.com 

2 Pujades et al. / Energy Procedia 00 (2017) 000–000 
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The underground reservoir for UPSH plants can be excavated, but possibly the cheapest option, which is that 

considered in this work, consists in using abandoned underground cavities such as deep mines. The main concern 

regarding the use of abandoned mines is that their walls are not generally impervious, and thus pumped and stored 

water will interact with the surrounding porous medium. In previous studies, this interaction only has been 

considered from a water flow point of view determining the impacts produced by the water exchanges (1) on the 

natural piezometric head of the surrounding porous medium [9,10], and (2) on the efficiency of the plant [11,12]. 

Here, we focus on hydrochemistry modifications induced by UPSH related activities and predicted associated 
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this may react with the surrounding porous and fractured medium and with the water occupying the reservoir. It may 
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to very low pH values [14] (i.e., acidification) and then affect the surrounding groundwater quality through the 

seepage exchange fluxes between the underground reservoir and the surrounding geological layers. 

It is thus of paramount importance to assess the environmental impacts and hydrochemical variations induced by 

UPSH when abandoned coal mines are used. This assessment must be done with regards to the Water Framework 

Directive [15] adopted by the European Union in October 2000, requiring that nations must guarantee the “good 

state” of the “water bodies”. Here, those groundwater quality impacts are investigated through a numerical reactive 

transport model. The main objective of this study is to establish potential impacts on the environment and highlight 

the importance of considering them for the design of future UPSH plants. 

 

2. Materials and methods 
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The problem is sketched schematically in Fig. 1. The underground reservoir consists in a cavity of 50 by 50 m on 
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underground reservoir is linked to the surface through a shaft of 10 by 10 m on 95 m height. The surrounding porous 

medium is 200 m thick and the external boundaries of the model are located at a 1000 m distance far from the 
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boundary since the head is chosen at 90 and 110 m depth on the west and east boundaries, respectively. The 

unconfined aquifer has a saturated thickness ranging between 110 and 90 m. In the central part of the domain, where 

the underground reservoir is located, the initial natural water level is corresponding to the top of the reservoir (95 m 

depth). Thus, it is totally saturated at the beginning. 

Representative results are obtained assuming day/night cycles of 12 hours (i.e., water is pumped during 12 hours 

and released during the next 12 hours). Pumping/injection rates are 43000 m
3
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Fig. 1. View of the considered simplified problem. 

2.2. Numerical model 

The problem is simulated using the code PHAST [16,17]. PHAST solves multicomponent, reactive solute 

transport in three-dimensional saturated groundwater flow [18]. Geochemical reactions are solved by the 

geochemical code PHREEQC [19,20] while flow and transport are solved with a modified version of HST3D 

[21,22]. Taking advantage of the problem symmetry (i.e., there is a no-flow boundary just in the center crossing the 

domain from the west to the east boundaries), only the half of the problem is modeled (Fig. 2). 

 

 

Fig. 2. View of the meshed numerical model with half of the considered problem. 

It is assumed that the hydraulic conductivity (K) and storage coefficient (S) (i.e., effective drainage porosity in 

unconfined conditions) of the surrounding porous medium are respectively 0.01 m/d and 0.05. Dispersivity is 

assumed to be 10 m in the flow direction (west to east direction) and 1 m in the other two orthogonal directions. The 

underground reservoir is simulated by adopting a very large value for K of 10
5
 m/d and S of 1. A very high 

dispersivity (in the three main directions) is adopted for the underground reservoir: 10
4
 m. It means that released 

water is mixing rapidly and homogeneously with the water filling the reservoir. A sensitivity analysis of the adopted 

dispersivity for the underground reservoir is performed by comparing the results of different scenarios in which 

dispersivity is reduced up to 10 m. Dirichlet boundary conditions (BCs) are adopted in the west and east boundaries 

to allow groundwater flow through those boundaries. An initial hydraulic gradient of 5·10
-3

 is obtained by 

prescribing the piezometric head at a depth of 90 m and 100 m on the west and east boundaries, respectively. 

Pumping and injection are simulated by prescribing flow-rate BCs in nodes located inside the underground 

reservoir. In total, pumping and injection rates (distributed on the nodes located inside the reservoir) are 21500 m
3
/d. 

Note that this value is half that specified in section 2.1 because only half of the problem is modeled. 

 



 Estanislao Pujades et al. / Energy Procedia 125 (2017) 504–510 507
 Pujades et al. / Energy Procedia 00 (2017) 000–000  3 

 

Fig. 1. View of the considered simplified problem. 

2.2. Numerical model 

The problem is simulated using the code PHAST [16,17]. PHAST solves multicomponent, reactive solute 

transport in three-dimensional saturated groundwater flow [18]. Geochemical reactions are solved by the 

geochemical code PHREEQC [19,20] while flow and transport are solved with a modified version of HST3D 

[21,22]. Taking advantage of the problem symmetry (i.e., there is a no-flow boundary just in the center crossing the 

domain from the west to the east boundaries), only the half of the problem is modeled (Fig. 2). 

 

 

Fig. 2. View of the meshed numerical model with half of the considered problem. 

It is assumed that the hydraulic conductivity (K) and storage coefficient (S) (i.e., effective drainage porosity in 

unconfined conditions) of the surrounding porous medium are respectively 0.01 m/d and 0.05. Dispersivity is 

assumed to be 10 m in the flow direction (west to east direction) and 1 m in the other two orthogonal directions. The 

underground reservoir is simulated by adopting a very large value for K of 10
5
 m/d and S of 1. A very high 

dispersivity (in the three main directions) is adopted for the underground reservoir: 10
4
 m. It means that released 

water is mixing rapidly and homogeneously with the water filling the reservoir. A sensitivity analysis of the adopted 

dispersivity for the underground reservoir is performed by comparing the results of different scenarios in which 

dispersivity is reduced up to 10 m. Dirichlet boundary conditions (BCs) are adopted in the west and east boundaries 

to allow groundwater flow through those boundaries. An initial hydraulic gradient of 5·10
-3

 is obtained by 

prescribing the piezometric head at a depth of 90 m and 100 m on the west and east boundaries, respectively. 

Pumping and injection are simulated by prescribing flow-rate BCs in nodes located inside the underground 

reservoir. In total, pumping and injection rates (distributed on the nodes located inside the reservoir) are 21500 m
3
/d. 

Note that this value is half that specified in section 2.1 because only half of the problem is modeled. 

 

4 Pujades et al. / Energy Procedia 00 (2017) 000–000 

2.3. Hydrochemistry 

Pyrite is usually the most common sulfide mineral in coal mined environments [23]. Thus, it is considered that 

the surrounding porous medium contains 0.25% of pyrite. This value can be considered as a conservative high value. 

It is assumed that the rest of the porous medium is not reacting or reacting with very slow rates. Groundwater that 

(1) initially is placed in the domain (i.e., underground reservoir and porous medium), (2) enters through the west 

boundary during all simulated time and (3) flows out through the east boundary at the beginning are in equilibrium 

with pyrite of the matrix (0.25%). The chemical composition of the injected water during each cycle is defined from 

the characteristics of the pumped water (of the previous cycle) and considering that water in the upper reservoir 

reaches equilibrium with atmospheric O2. Thus, assuming that pO2 reaches a value of 10
-0.7

 before injection into the 

underground reservoir. 

Main reactions occurring in the system are as follows: 

 
2+ 2- +

2 2 2 4FeS + 7 2 O  +H O Fe +2SO +2H→        (R1) 

2+ + 3+

2 2Fe 1 4O +H Fe +1 2 H O+ →         (R2) 

( )3+ +

2 3 solid
Fe +3H O Fe OH +3H→         (R3) 

3 2+ 2- +

2 2 4FeS +14Fe 8H O 15Fe +2SO +16H+
+ →        (R4) 

 

Ferrihydrite (≈Fe(OH)3) precipitation induced by reaction R3 may occur if the water pH is higher than 6. Other 

minerals precipitate with lower values of pH. Goethite ( FeOOH+3H+
) may precipitate for pH between 4 and 6, 

whilst schwertmannite ( ( ) ( )8 8 44.5 1.75
Fe O OH SO ) precipitates for pH lower than 4 [24]. Goethite and schwertmannite 

precipitate as follows: 
3

2FeOOH+3H Fe +2H O+ +
→          (R5) 

( ) ( ) 3 2

8 8 4 2 44.5 1.75
Fe O OH SO +20.5H 8Fe +12.5H O 1.75SO+ + −

→ +      (R6) 

High pO2 induces pyrite oxidation (R1) and dissolution in Fe
2+

, SO4
2-

 and H
+
. Thus, pyrite oxidation produces a 

decrease in pH. If O2 is still available after R1, R2 may occur and Fe
2+

 is transformed in Fe
3+

, which consumes 

protons. The amount of protons consumed by R2 are much less than those produced by R1. Therefore, R2 cannot 

counterbalance the pH reduction induced by R1. After that, ferrihydrite (R3), goethite (R5) or schwertmannite (R6) 

precipitate depending on the pH of the solution. The common characteristic of these three reactions is that they 

contribute to the pH reduction. Finally, available Fe
3+

 reacts oxidizing more pyrite (R4). These reactions are typical 

of acid mine drainage processes [25,26]. Note that pyrite oxidation in the numerical model is calculated under the 

kinetic law defined in the PHREEQC database [27]. 

3. Results 

Fig. 3 shows the pH evolution inside the lower reservoir and at downgradient distances of 5, 15, 30 and 45 m 

from the underground reservoir. The pH decreases abruptly during the first cycles from the initial pH (≈7) to 3 

inside the underground reservoir and 5 m downgradient. After that, the pH continues decreasing more smoothly 

reaching a value of 2.4 after 30 days. The pH also decreases farther but logically the delay needed for the pH 

starting to decrease is longer with the distance. In the same manner, the pH reduction is smaller at longer distances. 

At 15 m the pH starts to decrease after 1.5 days and reaches a value of 4 after 30 days of activity, whilst at 30 m the 

pH starts to decrease after 10-15 days and reaches a value of 6.4. Finally, at 45 m the reduction of the pH can be 

considered as negligible. More time is probably needed to observe the impact of the UPSH plant at such distance 

and farther. Oscillations observed in the results are produced by the simulated pumpings and injections. 
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Fig. 3. Simulated pH evolution in the underground reservoir and at 4 different downgradient distances (5, 10, 30 and 45 m). 

The simulated pH evolution in the porous medium can be also observed in Fig. 4 that displays the pH distribution 

in the downgradient direction from the underground reservoir at different simulation times (1, 15 and 30 days). 

These results are shown for a horizontal section located at 104 m depth. 

 

 

Fig. 4. Simulated horizontal pH distribution at a 104 m depth and in the downgradient direction after 1, 15 and 30 days. 

As mentioned previously, a sensitive analysis is performed to check that the dispersivity value attributed in the 

underground reservoir does not influence the calculated results too much. Fig. 5 shows the pH evolution at a 

downgradient distance of 5 m from the underground reservoir for two scenarios with dispersivity values of 10
4
 and 

10 m, respectively. As expected, the influence of the dispersivity in the underground reservoir is negligible. 

 

 

Fig. 5. Simulated pH evolution in the porous medium at a downgradient distance of 5 m from the underground reservoir. Results are shown for 

contrasted dispersivity values of 104 and 10 m in the underground reservoir. 
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Fig. 4. Simulated horizontal pH distribution at a 104 m depth and in the downgradient direction after 1, 15 and 30 days. 

As mentioned previously, a sensitive analysis is performed to check that the dispersivity value attributed in the 

underground reservoir does not influence the calculated results too much. Fig. 5 shows the pH evolution at a 

downgradient distance of 5 m from the underground reservoir for two scenarios with dispersivity values of 10
4
 and 

10 m, respectively. As expected, the influence of the dispersivity in the underground reservoir is negligible. 

 

 

Fig. 5. Simulated pH evolution in the porous medium at a downgradient distance of 5 m from the underground reservoir. Results are shown for 

contrasted dispersivity values of 104 and 10 m in the underground reservoir. 
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4. Discussion and conclusions 

The observed behavior in Fig. 3 and Fig. 4 is coherent with the reactions expected since the increment of pO2 

promotes pyrite oxidation when water is released into the underground reservoir. UPSH related activities imply thus 

a continuous input of O2, which is totally consumed for pyrite oxidation, in the underground reservoir and 

surrounding porous medium. As a consequence, the pH will decrease until the pyrite in the surrounding porous 

medium is totally consumed. The required time to consume all the pyrite in the vicinity of the underground reservoir 

will depend on several factors such as the percentage of pyrite, the volume of pumped and injected water and/or the 

hydraulic parameters of the porous medium. Anyway, the required time may be very long (from decades to 

centuries). 

Results show that UPSH can affect the groundwater quality by decreasing the pH. In addition, pH of water 

pumped and stored in the upper reservoir will also decrease with time. Thus, water quality of surface water streams 

may be affected if some overflow water stored in the upper reservoir is released into them. This possibility exists 

given the progressive filling of the underground reservoir by groundwater seepage inflows. Note that the pyrite 

dissolution in the vicinity of the underground reservoir could increase slightly the hydraulic conductivity and the 

storage coefficient (i.e., effective drainage porosity) of the surrounding porous medium. Consequently, groundwater 

exchanges between the underground reservoir and the surrounding porous medium, and thus, the potential impacts 

on the groundwater could also be increased. On the other hand, increased water exchanges induced by pyrite 

dissolution could have a positive influence on the pumps and turbines efficiency [12]. However, more negative 

effects could be predicted as low values of pH may corrode UPSH facilities. 

This work shows that, for the design of future UPSH plants, it will be essential to estimate hydrochemistry 

related issues, especially in coal mined contexts where the presence of sulfides is common. Predictions using 

reactive transport modelling are useful to estimate the groundwater quality evolution in and around UPSH systems. 

However, a detailed case-specific geological and hydrogeological characterization will be needed in real cases to 

obtain reliable predictions. 
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