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A B S T R A C T

Most crop models have been developed with crops growing under full sunlight conditions and they commonly
use daily cumulated global radiation as part of the climatic input data. This approach neglects the spatio-tem-
poral dimension of the light reduction experienced by the crop in agroforestry systems. In this study, we evaluate
the ability of the crop model STICS to predict winter wheat (Triticum aestivum L.) growth and yield under three
distinct light conditions using field observations from a two year artificial shade experiment. The shade structure
induced a continuous shade (CS) treatment characterized by a reduction of the proportion of light during the
entire day and a periodic shade (PS) treatment defined by an intermittent shade varying on the plot throughout
the day. These two shade conditions were compared to a no shade treatment (NS) receiving 100% of the
available light. The model accurately predicted the timing of the grain maturity stage under the PS treatment by
reducing the daily global radiation only. A correct prediction of this growth stage in the CS treatment required a
decrease of the daily maximum air temperature in addition to the reduction of global radiation. Overall, the
model accurately reproduces the total aboveground dry matter dynamics under the CS and NS treatments, but
did not simulate the reduction observed under the PS treatment correctly. Three parameters (nbjgrain, cgrain and
cgrainvo) involved in the determination of the number of grains have been calibrated with the NS treatment data
and were then used to predict the crop behavior under the shaded treatments. Using this adjusted parameter set,
the STICS model gave a good prediction of the grain number under all treatments. Nevertheless, the simulation
of final grain yield under the shade treatments was not satisfactory yet, presumably due to an overestimation of
the reallocation of the biomass between shoots and grains. Improving the prediction of these reallocation pro-
cesses is challenging and critical to improve the simulation of crop behavior under fluctuating light environ-
ments such as encountered in agroforestry systems.

1. Introduction

Within silvoarable agroforestry systems, defined here has the in-
tegration of tree rows within cropped area, the presence of a tree ca-
nopy reduces the incident light for the crop and induces a hetero-
geneous spatio-temporal light pattern, next to the competition for water
and nutrients. At the daily time scale, the tree canopy induces a dy-
namic light environment according to the path of the sun, the field
configuration, the species choice and tree management (Liu, 1991). At
the growing season time scale, the crop is subjected to an intensification
of shade following the tree phenology and leaf apparition. Finally, the
light environment evolves over the years according to the tree growth.
These effects can be minimized using well-thought implantation of the

trees with respect to the sun path, an appropriate tree density and an
adapted tree species choice and management (Cannell et al., 1996;
García-Barrios and Ong, 2004), even though they cannot be totally
removed. In order to support a better management of new agroforestry
systems in Europe, it is important to quantify and predict the potential
impact of this specific light environment on crop productivity, since
light is involved in most plant processes (e.g. photosynthesis or tran-
spiration).

Field experiments remain time-consuming and expensive, because
of the numerous potential combinations between tree and crop species,
the variety of pedo-climatic environments and practices as well as the
long term dynamics of these mixed systems (Knörzer et al., 2011). In
this context, crop models are powerful research tools that can help to
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improve our understanding of crop growth under reduced light condi-
tions. Since extended time series and various conditions can be simu-
lated, they can integrate climatic variability and long term effects
(Dumont et al., 2015; Palosuo et al., 2011). Crop models can also be
used to evaluate different field designs (Talbot, 2012) and management
strategies for agroforestry (Chimonyo et al., 2015).

In a recent review, Luedeling et al. (2016) give an overview of eight
existing models or modelling frameworks for agroforestry systems.
Most of these models share a common general framework, but they can
be classified according to the level of complexity with which the pro-
cesses are described. Firstly, we can separate process-based from em-
pirical models. Process-based models describe the crop and tree growth
in interaction with it is environment in terms of biophysical laws,
whereas empirical models use mathematical relationships independent
from these laws and obtained through experimental observations. A
second important difference is the spatio-temporal discretization used
by the model. Since questions can arise on the one hand on interactions
at the daily timescale and on the other hand on long term effects
(> 20 years), the models should maintain a balance between the ac-
curacy with which single processes are described, the system approach
and the computation time (Leroy et al., 2009; Malézieux et al., 2009;
Roupsard et al., 2008) and therefore the discretization level should be
adapted to the modelling objectives.

In a review comparing representative multi-species system models,
Malézieux et al. (2009) separated models implementing a process de-
scription at a yearly (Yield-SAFE, COMMIX, SORTIE/BC, SexI-FS) and
daily time step (CROPSYS, STICS, GEMINI, WaNuLCAS, Hi-sAFe).
However, even the daily time step is rather large if one needs to take
into account specific physiological reactions of plants to changes in
their environment. Since the light environment in agroforestry systems
can change considerably during the day, a time step even smaller than a
day could be necessary to take into account the biophysical con-
sequences of this environment. Models running at a daily time scale
inherently neglect the daily spatio-temporal dynamics existing in
agroforestry systems. Typically, in such models the radiation received
by the crop is summarized by the daily cumulated global radiation.
Nevertheless, several studies highlighted that a decrease in vegetative
growth is observed under a fluctuating and heterogeneous light en-
vironment, the decrease in biomass being however not proportional to
the light reduction (Artru et al., 2017; Dufour et al., 2013; Liu, 1991;
Pearcy et al., 1996; Peri et al., 2002). From a physiological point of
view, daily biomass growth of plants growing in a complex light en-
vironment can therefore not be estimated correctly from a daily cu-
mulated value of the global radiation. This raises questions about the
ability of the existing agroforestry models to correctly predict crop
growth under agroforestry conditions especially in climatic regions
where competition for light becomes important.

Furthermore, van Noordwijk and Lusiana (1999) highlighted that
linking separately developed models to simulate mixed cropping sys-
tems has its limitations, even if these models are process-based. They
argued that the effects of above- and below-ground resource competi-
tion is generally more pronounced under monocropped systems, since
these systems were not forced to develop strategies for resource sharing
between species and therefore models developed in this context do not
include specific mechanisms to do this. Moreover, plants can respond to
environmental changes by undergoing morphological and/or physio-
logical changes compensating for limiting conditions in order to
maintain crop growth; e.g. a change in leaf area or leaf shape during the
leaf development can occur in response to a reduced light environment
(Murchie and Niyogi, 2011; Peri et al., 2002; Retkute et al., 2015). If a
part of the mixed cropping model has been previously developed and
calibrated under full light monocropped conditions, the risk is to use a
model outside its range of validity (e.g. a reduced light environment),
which can lead to an over- or underestimation of crop growth.

Within the models presented by Luedeling et al. (2016) the model
Hi-sAFe is one of the most advanced, physically-based model linking

the different components involved in an agroforestry system. This
model was designed to simulate trees and crops species interaction and
management strategies in temperate regions. Within Hi-sAFe, the STICS
crop model is combined with a tree growth model in order to be able to
assess the interactions between the two components. STICS has already
been validated under full light conditions (Coucheney et al., 2015) but
never under shaded conditions while within silvoarable agroforestry
system, implementing an east-west tree line orientation induces a high
degree of light heterogeneity for the crop. In fact, in this configuration,
the field can be subdivided in three different shade areas subjected to:
(i) a dense and continuous shade during the day near the trees, (ii) a
dynamic shade in the afternoon, and (iii) a shade-free zone according to
the path of the sun. In this context, this paper deals with two specific
research questions: Using STICS crop model (i) Is it possible to predict
the response of winter wheat to these different light conditions, using a
single and common plant parameter set? (ii) Is the daily cumulated
global radiation sufficient as the main driver to simulate the develop-
ment of winter wheat subjected to periodic shade?

The aim of the present study is to assess the ability of the STICS crop
model (Brisson et al., 2008), to accurately predict winter wheat (T.
aestivum L.) development and final productivity under an artificial re-
duced heterogeneous light environment.

2. Material and methods

2.1. Field experiment and data set

During two consecutive growing seasons (2014–15 and 2015–16),
winter wheat (T. aestivum L., cultivar Edgard) was sown at the experi-
mental farm of Gembloux Agro-Bio Tech (50°33′ N, 4°42′E), in the
Hesbaye region, Belgium. In the two consecutive years, the experi-
mental plots were not exactly at the same location in the field due to
crop rotation management. Nevertheless, they were both located on a
Luvisol (WRB, FAO, 2014). The climate is temperate maritime, with an
average annual temperature of 9.96 °C and mean annual cumulated
rainfall of 805 mm over the last 30 year (1986–2015). The weather
conditions of both growing seasons were highly contrasted in terms of
rainfall and global radiation. The first growing season was character-
ized by a relatively dry and sunny spring (mean global radiation:
557 MJ/m2 and mean rainfall 43 mm from April to June), while the
second was wetter with lower radiation in spring (mean global radia-
tion: 472 MJ/m2 and mean rain fall 102 mm from April to June)
(Fig. 1c & d).

The seeds were sown on October 21th, 2014 (250 grains/m2) and on
October 27th, 2015 (300 grains/m2) following an East-West orientation
in both cases. The preceding crops were rapeseed (Brassica napus L.) in
2014–2015 and chicory (Cichorium intybus L.) in 2015–2016.
Fertilization followed the conventional practice applied in Belgium,
which means that three doses of nitrogen fertilizer were applied
throughout the growing season (75/75/75 in 2014-15 and 60/60/75 in
2015-16) respectively at Zadoks stages 26, 30 and 58.

In this field experiment, we applied artificial shade to the crop using
a greenhouse tunnel (68 × 5 m) installed in the field with an East-West
orientation and military tarps disposed on the southern face of the
structure. Based on the path of the sun, this resulted in three shade
levels corresponding to three distinct types of daily shade dynamics.
The continuous shade (CS) treatment reduces the proportion of light
during the entire day. The periodic shade (PS) treatment received an
intermittent shade. The shade structure orientation and the path of the
sun induce a moving shade on the plot during the day along the north-
south gradient. The no shade treatment (NS) received 100% of the
available light. Camouflage net was used as shade material to reproduce
a fluctuating sun/shade pattern, the holes in the cloth producing a
combination of direct and diffuse light patches. The application of
different shade layers followed the increasing shade produced by the
canopy of a late-flushing tree. As such, we monitored the phenological
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development of 60 hybrid-walnut trees located in a plantation in
Jenneret, Condroz region, Belgium (50°24′N, 5°27′E). To mimic the
walnut tree leaf expansion, we applied a first layer of camouflage net
after budburst when tree induces a significant shade (visual apprecia-
tion) and a second layer at the end of the maximal leaf expansion. In
2014–15, the first layer of shading was imposed 226 days after winter
wheat sowing (DAS, June 4th) and the second from 245 DAS (June
23th) until harvest 292 DAS (August 10th). In 2015–16, the first layer
was applied 218 DAS (June 2th) and the second from 240 DAS (June
23th) until harvest 289 DAS (August 11th). According to the observed
hybrid walnut and winter wheat phenology, the artificial shade layers
were applied 10 days and 7 days before wheat flowering for the
growing season 2014–15 and 2015–16, respectively.

Both growing seasons, daily climatic data (air temperature and
humidity, rainfall, wind speed, wind direction and global radiation)
were recorded by a weather station from the Royal Meteorological
Institute, located 3 km from the experimental site (Ernage, Gembloux,
50°59′N, 172 4°67′E). Under each treatment, incident global radiation
was recorded using quantum sensors (CS300 − Campbell Scientific
Inc., USA − accuracy ± 5 for the daily global radiation) installed
above the crop canopy level. The global radiation intercepted by the
whole PS plot was calculated using a spatial average of the global ra-
diation intercepted by three light sensors installed along a North-South
gradient. During the growing season, crop phenology, aboveground
biomass (sum of straw and spike dry matter biomass), final grain yield

and yield components (grain number per m2 and grain weight) were
monitored (6 measurements in 2014-15 and 2 measurements in
2015–16). Aboveground biomass (t/ha) was assessed four (June 18th)
and seven (June 21th) days after flowering in 2015 and 2016 respec-
tively, as well as the 7th of August in 2015 and the 8th of August in
2016 when all the treatments had reached maturity. The sampling
corresponds to three adjacent rows of 40 cm length at flowering and
50 cm at maturity stage. The measurements were performed on dried
samples. More details on the experimental setup are published in Artru
et al. (2017).

2.2. Model set up

2.2.1. Structure of the STICS crop model
The STICS crop growth model (STICS v8.4, INRA, France) is fully

described in the literature (Brisson et al., 2008) and validated for a
broad range of crop species (Coucheney et al., 2015). It is a generic crop
model that simulates the soil–plant–atmosphere system dynamics on a
daily time step. The crop is characterized by its leaf area index (LAI), its
above-ground dry biomass as well as the number and the biomass of the
harvested organs. The duration between each physiological stage (e.g.
emergence, flowering, and maturity) is partly driven by the sum of
degree-days and is based on crop temperature derived from air tem-
perature using the energy balance approach. Other factors such as the
soil temperature and humidity at the rooting depth as well as

Fig. 1. Monthly climatic data recorded from October to August for the growing season 2014–15 (lightgrey), 2015–16 (dark grey) and comparison with the average climatic data from
1986 to 2016 (black ligne). Chart a et b represent the monthly average minimal and maximal air temperature respectively, chart c show the monthly cumulated global radiation and d the
cumulated rainfall. Vertical bars represent the standard error of the means of the mean data.
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vernalization requirement are implemented as reduction factors in the
definition of the daily phasic development of the crop.

In this study, we were interested in the productivity of winter wheat
crop under different ‘light environments’. The main formalisms of in-
terest are the aboveground biomass dynamics, the setting of the grain
(grain number) and the grain filling process. Thus, we focused our study
on the total aboveground biomass and end-season variables such as
grain yield, grain number per m2 and grain weight amongst all the
available output variables within STICS. The total aboveground bio-
mass (masec, t/ha) simulated by STICS relies on the accumulation of
the daily biomass production (dltams t/ha). This accumulation is driven
by the concept of radiation use efficiency and takes into account several
stress factors influencing crop growth processes such as thermal, hydric
and nutritive stresses. Final grain yield (mafruit, t/ha) is defined
through two main phase: first the grain number (nbgrains, grains/m2) is
determined before flowering and then the grain filling (daily accumu-
lation of biomass into the grains) occurs between flowering and ma-
turity. The grain number is a function of vitmoy (g/m2/d) defined as the
aboveground biomass growth rate (dltams, t/ha/d) during a fixed
period prevailing flowering (nbjgrain, days). This relation relies linearly
on two shape species parameters cgrain and cgrainvo and the grain
number is limited by two plant parameters that constrain the number of
grains with boundaries: nbgrmax and nbgrmin. The daily accumulation
of biomass into the grains (dltags in t/ha) is calculated by applying a
dynamic harvest index (ircarb) to the total aboveground biomass. In the
option we chose, this harvest index increases as a linear function of the
thermal time from flowering to maturity and depends on the viticarbt
(g.grain/g/d) parameter. Finally, grain weight (pgrain, g) is calculated
as the ratio between the final grain yield (mafruit) and the grain
numbers (nbgrains). This variable cannot exceed a varietal limit, de-
fined by the threshold parameter pgrainmaxi. A complete description of
the formalisms is available in Brisson et al. (2008). The variables of
interest and parameters presented below are synthetized Table A1 in
Appendix A.

2.2.2. Model parametrization and cultivar selection
To run a simulation with STICS, daily climatic input data as well as

soil, management and plants parameters are required. In this study,
input weather data files including daily minimum and maximum air
temperature, relative humidity, rainfall, wind speed, wind direction
and global radiation, were created from the data obtained from the
Royal Meteorological Institute weather station, located 3 km from the
experimental site (Ernage, Gembloux, 50°59′N, 172 4°67′E). As soon as
the shade structure was set up, we used data recorded under the dif-
ferent light treatments (NS, PS, and CS) to replace the daily global ra-
diation of the Ernage station. The potential evapotranspiration was
calculated with the Shuttleworth-Wallace equation (Brisson et al.,
1998). This equation is based on a resistive approach which accounts
for the convective conditions around the plants and is appropriate for
crops growing under a fluctuating microclimatic environment such as
observed under agroforestry systems.

Soil input parameters were obtained from soil analysis or derived
from basic soil measurements (Table 1). Pedotransfer functions have
been used to define the gravimetric water content at field capacity and
at wilting point for each soil layer (Jones et al., 1991). Moreover, the
model is able to take into account the detrimental impact of root zone
anoxia due to temporary excess of water on the shallow soil, which was
particularly relevant given the high amount of rainfall recorded in
2015-16, especially in June. Furthermore, the infil parameter (water
infiltrability at the base of each soil layers, mm/day) is estimated as a
function of textural classes from the pedotransfer table presented in
Brisson et al. (2008) and based on Jamagne et al. (1977). The same soil
description was used for all treatments and for both growing seasons.

For each growing season, the same crop management file (sowing
date, depth and density, dates and amounts of N rate supply, date and
depth of soil tillage) was used for the three treatments. The climatic,

soil and management inputs file used in this study are available in
zenodo.org with DOI 10.5281/zenodo.800568.

In addition, STICS requires specific plant parameters. The majority
of these parameters have been formulated to be generic to the species
and others are cultivar-dependent (13 parameters). The complete list of
model parameters and input variables is given in Brisson et al. (2008).
Preliminary calibration of the plant parameters set was performed by
Dumont et al. (2014, 2015, 2016) on a closely related cultivar (Julius)
within a wide range of management and environmental conditions in
the Hesbaye region.

2.3. Plant parameters calibration

The calibration was performed using only the field data from the NS
treatment of both growing seasons. That means that the data set was
split in two in order to on the one hand optimize the parameters using
regular conditions of crop growth (no shade) and on the other hand to
keep an independent data set composed of observations under the
shaded treatments for the model evaluation.

2.3.1. Phenological stage and grain yield threshold parameters
From the initial set of parameters calibrated by Dumont et al. (2014,

2015, 2016), some cultivar parameters were manually adjusted fol-
lowing field observed values. The cultivar parameters involved in the
prediction of the vegetative (stlevamf, stamflax and stlevdrp) and re-
productive (stdrpmat) phenological stages, as well as yield component
threshold parameters (pgrainmax and nbgrmax) were adjusted according
to field observations done under the NS treatment during both growing
seasons as explained above (Table 2). The remaining parameters were
fixed to the default value provided in STICS model (Brisson et al.,
2008). The complete plant parameter file used in this study is available
in zenodo.org with DOI 10.5281/zenodo.800568.

Table 1
Soil description for each layer.

Layer tick Field measurement Pedotransfer function

Clay Silt Sand Bulk
density

Gravimetric water
content

Infil

at field
capacity

at wilting
point

[m] [%] [%] [%] g/cm3 [%] [%] [mm/d]

0-25 10 84.5 5.5 1.3 19.38 9.23 2.25
25-50 15.75 80.75 3.5 1.5 16.33 7.53 6.91
50-70 14.75 81.75 3.5 1.53 16.34 7.71 7.00
70-100 14.5 82.5 3.0 1.53 18.00 9.48 3.45
100-150 14 83.5 2.2 1.53 20.32 11.81 3.33

Table 2
Value of the plant parameters defined in STICS model (initial set) and calibrated on the
NS treatment data of both experimental years (calibrated set).

Range Initial set Calibrated set Unit

Adjustement from field observation
stlevamf 0–6000 315 260 °C.days
stamflax 0–6000 325 275 °C.days
stlevdrp 0–6000 700 790 °C.days
stdrpmat 0–6000 850 800 °C.days
nbgrmax 0–1.106 28000 29000 grain/m2

pgraimaxi 0.003–0.5 0.05 0.042 g
viticarbt 5.10−5–0.002 0.007 0.0065 g grain/g plant/

°C.days
Calibration from linear regression
cgrain 0.01–1 0.045 0.0298 grains/g.day
cgrainvo −15.103 to 15.103 0 0.1546 –
nbjgrain 5–40 30 12 day
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In the field, we observed a mismatch between the occurrence of the
maturity stage under the CS treatment and the NS treatment. Given the
STICS formalism and the literature on the subject, it appeared that the
temperature, which is the main driver of the phenological development
in the model, had to be corrected. In the STICS formalism, the duration
between two phenological stages, i.e. between idrp (day of beginning of
grain filling, julian day) and imat (days of physiological maturity, julian
day), is expressed in degree-days and calculated on the basis of crop
temperature (TCULT). This crop temperature relies on the daily sum of
evaporative fluxes, the calculation of net radiation and the air tem-
perature. This daily crop temperature is calculated as the arithmetic
mean of the maximum and minimum crop temperature both depending,
amongst others, on the maximum and minimum air temperature (Tmax
and Tmin, °C) assumed to occur at midday and at the end of the night,
respectively. Given the experimental observation, the main difference
between non-shaded and shaded treatments is a reduction of the
maximal air temperature rather than of the minimal air temperature.
Unfortunately the experimental set-up did not included temperature
sensors under the three treatments (CS, PS and NS). Therefore, we
propose to use the Eqs. (1) and (2) to correct the temperature series that
were used to run the model.

=
+

−
+

Temp reduction
stdrpmat stshadedrp

ndshademat NS treatment
stdrpmat stshadedrp

ndshademat CS treatment (1)

=Tmax reduction x Temp reduction2 (2)

In this equation, the parameter stdrpmat (degree.days) corresponds to
the duration between the idrp (day of beginning of grain filling, julian
day) and imat (day of physiological maturity, julian day) stage; stsha-
dedrp (degree.days) corresponds to the duration between the first day of
shade application and the idrp stage; ndshademat defines the number of
days between the first day of shade application and the imat stage for
the NS treatment and the CS treatment. The maximal air temperature
(Tmax, °C) was recomputed using Eqs. (1) and (2) for the CS treatment,
while NS and PS did not show delay in phenology. Thus, according to
this adjusted value of Tmax and daily global radiation recorded under
the CS treatments, TCULT was decreased under the CS treatments
during periods with shade.

2.3.2. Final grain yield parameters
The calibration procedure on which this paper focuses implies the

optimization of three species-dependent parameters involved in the
grain number prediction, nbjgrain, cgrain and cgrainvo. First the nbjgrain
parameter was fixed analyzing sensitivity of the response of the simu-
lated mean canopy growth rate (vitmoy, g/m2/d) to different values of
nbjgrain ranging from 0 to 30 days before flowering. Second, the two
parameters cgrain and cgrainvo were optimized by linear regression on
observed values. These two parameters are involved in the relation
defining the proportion of actual grain number to the potential max-
imum number of grains (nbgrains/nbgrmax, axis y) as a function of
average aboveground growth rate (vitmoy, g/m2/d, axis x) during the
prevailing period of grain filling (nbjgrain). To perform this linear re-
gression, the daily biomass accumulation (dltams t/ha) was simulated
for the NS treatments of both growing seasons. Then, the vitmoy vari-
able was calculated as the ratio of this simulated dltams and the nbjgrain
parameter, which was fixed at 12 days. Thereafter, the ratio nbgrain-
sobs/nbgrmax was defined using the observed grain number under each
treatment in the field (nbgrainsobs) and a fixed value of the parameter
nbgrmax.

2.4. Model evaluation under the shaded conditions

The ability of STICS to predict the total aboveground biomass, final
yield and yield components was tested by comparing the model

estimation, calibrated on the NS treatment datasets, to the experimental
field observations including the datasets of the PS and CS shade treat-
ments during the two growing seasons. The statistical criteria used to
evaluate the model performance were the root mean square error
(RMSE), the Nash-Sutcliffe efficiency (NSE) and the pBias criterion. The
RMSE gives the standard deviation of the model prediction error (Eq.
(3)). The lower the RMSE values are (same unit as the variable), the
better is the model prediction. The NSE is a normalized statistic which
determines the relative magnitude of the residual variance compared to
the measured data variance (Eq. (4)). This criterion varies from 1 to the
negative infinite value, with NSE = 1 being the optimal value. The
closer the NSE value to 1, the more accurate the model prediction.
Values below 0 mean that the mean observed value is a better predictor
than the simulated one, and the performance of the model is judged
unacceptable.

The pBias measures the average tendency of simulated values to be
larger or smaller compared to the observed ones (Eq. (5)). The optimal
value of the pBias is 0, while positive and negative values indicate a
model under- and overestimation.

∑= −
=

ˆRMSE
n

yi1 (yi )
i

n

1

2

(3)

∑

∑
= −

−

−

=

=

ˆNSE
yi yi

y
1

( )

(yi )
i

n

i

n
1

2

1
2

(4)

∑= −
=

ˆpBias
n

yi yi100* 1 ( )
i

n

1 (5)

Where n is the total number of measurements, yi is the measured value
for the ith measurement, y is the average of the measured value, and ŷi
is the simulated value for the ith measurement.

3. Results

3.1. Impact of shade on wheat growth and yield: field observations

Winter wheat experienced similar light conditions before its LAImax

stage in both years, so no important differences in phenological de-
velopment should be expected due to that factor. Then, from flowering
to harvest, the cumulated global radiation received by the crop under
the CS treatment was reduced by 65% in 2014–15 and 56% in 2015–16.
For the PS treatment, it varied from 55% to 35% in 2014–15 and from
46% to 31% in 2015–16. In 2014–15, these contrasted conditions re-
sulted in a phenological time lag between the treatments. We observed
a mismatch of 7 days between the occurrence of the maturity under the
CS treatment (5 August 2015) and the NS and PS treatment (29 July
2015). In other words, under the NS and PS treatment the interval
between flowering and maturity was 45 days, while it was 52 days
under the CS treatment. In 2016, the phenological delay was observed
but not quantified.

This reduction of the available incident global radiation under the
CS and PS treatments led to a decrease of the final aboveground bio-
mass as compared to the NS treatment (Fig. 2). For both growing sea-
sons, the difference between the treatments was mainly due to a sig-
nificant reduction of spike biomass under the shade treatments
(Table 3). At harvest, the total aboveground biomass under the shade
treatments was significantly reduced as compared to the NS treatment
(Fig. 2).

The reduction of the global radiation received by the crop mainly
affected yield elaboration processes with detrimental consequences for
the final grain yield (t/ha) and grain number per m2. Table 3 presents
the mean value of the final grain yield and the yield components ob-
served under the NS treatment and the relative reduction of the values
of these variables under the CS and PS treatments. At harvest, in
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2014–15 and 2015–16, we observed a significant yield reduction for the
CS and PS treatment in comparison to the NS treatment (Table 3). This
decrease was related to a significant reduction of both grain weight and
grain number under the CS and PS treatments as compared to the NS
treatment. Moreover, grain size calibration reveals that under the NS
treatment, the final grain yield mainly relies on large grains (< 2.5 mm
and<2.8 mm: 84% in 2014–2015 and 66% in 2015–16) and a small
proportion of medium (<2.5 mm and>2.8 mm: 10% in 2014–2015
and 23% in 2015-16) and small grain sizes (< 2.2 mm and<2.5 mm:
3% both growing season). Nevertheless, these proportions change when
wheat is exposed to a shade treatment. Under the CS treatments, the
final grain is composed by on average 31–26% of large grain, 39–44%
of medium grain and by 8–6% of small grain, respectively for the season
2014–15 and 2015–16. Under the PS shade treatment, we observe
65%–36% of large grains, 22%–36% of medium grains and 8–21% of

small grains size. As a consequence, shading significantly decreased the
harvest index (HI) at maturity (Table 3). The large differences in ob-
served aboveground biomass dynamics and final yield between the 2
years can be explained by a reduction of the available global radiation
and an important waterlogging event in 2016 with particularly un-
favorable weather conditions for winter wheat during the grain setting
and the grain filling period (Fig. 2).

3.2. Plant parameters calibration

3.2.1. Phenological stage adjustment
When using the set of phenological parameters adjusted under NS

conditions (Table 2), the time to reach maturity for harvest under the
PS treatment was well predicted. However, under the CS treatments it
was reached seven days earlier in the simulation than observed in the

Fig. 2. Simulated total aboveground biomass dynamics (t/ha) and field observations for the growing season 2014–15 and 2015–16 under the different light regimes (NS, PS, CS). In the
background, the grey surfaces represent the daily proportion of global radiation (right axis, %) received by the shade treatments as compared to the NS treatment. Vertical lines indicated
the date of the shade layers applications during the cropping seasons. Vertical bars represent the standard error of the means of the observed data.

Table 3
Mean value of total aboveground, spike dry matter, final grain yield, grain number, grain weight and harvest index of winter wheat for the NS treatments. Mean results obtained under the
PS and CS treatments are expressed in percentage of the nominal NS treatment. Statistical significance of the equality between treatments is represented by the p-value.

Total aboveground dry matter [t/ha] Spike dry matter [t/
ha]

Grain yield [t/ha] Grain number
[#/m²]

Grain weight [g] Harvest index [/]

at flowering at harvest at harvest

2014−15 NS 12.34 18.47 10.94 9.94 23788 0.042 0.55
PS [in% of
NS]

+7.77% −6.87% −12.06% −20.82% −9.54% −11.90% −16.36%

CS [in% of
NS]

−11.10% −27.61% −36.83% −49.19% −24.78% −33.33% −30.90%

p-value 0.12 0.03 0.02 7.84.10−6 0.01 1.20.10−7 0.017
2015−16 NS 10.06 14.38 8.08 6.10 14407 0.042 0.42

PS [in% of
NS]

−6.26% −11.05% −14.60% −17.37% −9.30% −7.14% −7.14%

CS [in% of
NS]

−4.57% −23.99% −32.79% −35.90% −19.11% −19.04% −14.28%

p-value 0.35 7.10−3 3.7.10−7 1.10−4 0.01 2.10−4 0.0024
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field. To correctly reproduce the delay which occurred in reality, the
daily mean air temperatures have been reduced during the shading
period, by adjusting the sole observed maximal temperature, following
the Eq. (1). We reduced the daily mean air temperature by 1.96 °C by
applying a reduction of 3.92 °C on the sole maximal air temperature
input (Eq. (2)).

=
+

−
+

= °Temp reduction C800 158
55

800 158
62

1.96

Tmax reduction = 3.92 °C

In 2014-15, TCULT was reduced by 2.79 °C on average during the
shade period under the CS as compared to the NS treatment. Likewise,
in 2015–16, TCULT was reduced by 2.72 °C on average during the
shade period under the CS as compared to the NS treatment. Under the
CS treatment, the proposed reduction of the daily maximal air tem-
perature showed good efficiency to improve the prediction of the grain
maturity stage. This adjustment allowed to extend the grain filling
period by 7 days in 2015, maturity reach on the 5th of august and
8 days in 2016, maturity reach on the 2nd of august as compared to the
NS treatment, which was close to the field observations.

3.2.2. Impact of nbjgrain, cgrain and cgrainvo parameters on final grain
number

Fig. 3 presents the variation of the average plant growth (vitmoy) as
a function of the length of the observed period of growth prior to
flowering (nbjgrain). Results are reported for the NS treatments and
both growing seasons. The graph shows that in case a value of nbjgrain
lower than 5 or greater than 18 days would have been used, the pre-
dicted vitmoy would have been too slightly responsive. This would have
furthermore led to unrealistic optimization of the cgrain and cgrainvo
parameter values. Contrarily, vitmoy appeared highly sensitive when
nbjgrain ranges from 6 to 17 days. More precisely, vitmoy achieves a
maximal value during the season 2014–15 at nbjgrain equaling 12 days
and a minimal value the following season when nbjgrain equals 8. In
order to maximize the contrast within the responses of vitmoy we
would recommend to select a value in between those thresholds; we
arbitrarily fixed the nbjgrain parameter at 12 days (vertical solid line in
Fig. 3). Fig. 4 and Table 2 present the default species parameter values
proposed in STICS and the adjusted cgrain and cgrainvo using linear
regression applied on the relationship between vitmoy and nbgrainsobs/
nbgrmax, with the nbjgrain parameter fixed at 12 days.

3.3. Model evaluation

3.3.1. Prediction of the aboveground biomass dynamics
Overall, the simulations of the total aboveground biomass dynamics

reflected the rank observed in the field experiment between the shade
treatments. Nevertheless, detailed examination of the different treat-
ments showed that at harvest the relative reduction of the total
aboveground biomass for the PS treatment was higher in the simulation
(-12.19% in 2015 and −22.29% in 2016) than in the field (−6.87% in
2015 and −11.05% in 2016). Under the CS treatment in 2015 this
reduction was smaller in the simulation (−22.20%) than in the field
(−27.61%), while in 2016 is was higher in the simulation (−28.66%)
than in the field (−23.99%) (Fig. 2, Table 4). On average the total
aboveground biomass prediction for the PS and CS datasets was good,
the RMSE equaled 1.02 and 1.08 t/ha, the NSE was 0.57 and 0.77, and
the pbias was −2.7 and −5.3%, at flowering and at harvest, respec-
tively (Table 4).

3.3.2. Prediction of final yield and yield components
Overall, the simulations reflected the trends observed in the field

experiment, with a decrease of the final grain yield and the grain
number per m2 with increasing shade level. The calibration procedures
clearly improved the agreement between simulated and measured va-
lues for the grain number component (Fig. 5): using the adjusted plant
parameter set for the shaded treatment allowed to increase the model
efficiency up to 0.96 and to reduce RMSE from 4882 to 749 grains per

Fig. 3. Sensibility of the mean canopy growth rate (VITMOY, g/m2/d) to the number of
days prevailing grain filling period (nbjgrain, days). The vertical bar indicate the number
of days fixed in this study to compute the grain number, nbjgrain = 12 days.

Fig. 4. Calibration of the parameters cgrain and cgrainvo from NS treatment observed
data. These two parameters are respectively defined as the slope and the intercept of the
regression between the proportion of grain number (NBGRAINSobs/nbgrmax) and plant
growth (VITMOY) during the pre-grain filling period. The dashed line represent this re-
lation for the initial set of plant parameter (cgrain = 0.045, cgrainvo= 0,
nbjgrain = 30 days) and the solid line result from the adjustment from the observed data
(cgrain = 0.0298, cgrainvo = 0.1546 and nbjgrain = 12 days).

Table 4
Root mean square error (RMSE), model efficiency (NSE) and pBias of the predicted
aboveground dry matter at flowering and at harvest for the calibration dataset and va-
lidation dataset.

Calibration set Validation set

NS treatment 2014–15 and
2015–16

CS & PS treatment 2014–15 and
2015–16

DM at flowering DM at harvest DM at flowering DM at harvest
[t/ha] [t/ha] [t/ha] [t/ha]

RMSE 0.82 0.44 1.02 1.08
NSE 0.48 0.95 0.57 0.77
pBias 2 −1.2 −2.7 −5.3
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m2 for the validation set (Table 5). A slight underestimation was still
present for the season 2015-16 (Fig. 5). Nevertheless, the prediction on
the final grain yield gave very similar results using both types of
parameter sets. On the validation dataset, yield was slightly over-
estimated for all the treatments (Fig. 5, Table 5). Furthermore, the
model failed to reproduce the field observation trend for the grain
weight component and this regardless of the plant parameters used
(Fig. 5). Apart from the NS treatment in 2015, grain weight was over-
estimated for all the other treatments (Fig. 5). For the growing season
2015-14, grain number was not involved in the grain yield determi-
nation as the simulated final grain yield (NS = 9.24; PS = 8.15 and
CS = 7.14 t/ha) did not exceed the pgrainmaxi x nbgrains limit, equal to
10.68, 9.51 and 8.46 t/ha for the NS, PS and CS treatments respectively.
For the season 2015–16, considering that the number of grains

(nbgrains) was correctly simulated, one can conclude that the final
grain yield has been bounded by the pgrainmaxi parameters value.

As a reminder, only one value of pgrainmaxi was used to account for
the cultivar (adjusted based on the NS treatment dataset). We ac-
knowledge that better results would have been obtained by adapting
this parameter for the PS and CS treatment. This could have been jus-
tified by the different physiological trait (or the difference in pheno-
type) expressed by a plant exposed to contrasted light environment, but
would have been contradictory with the genericity of the STICS model.

4. Discussion

4.1. Impact of shade on winter wheat phenology, growth and final yield

Field observations showed that applying a shade treatment during a
pre- (7–10 days) and post-flowering period of winter wheat leads to a
decrease of the overall plant biomass as well as a decrease of the grain
number per m2 and the final grain weight. This is in accordance with a
large body of literature on the subject (Artru et al., 2017; Demotes-
Mainard and Jeuffroy, 2004; Dufour et al., 2013; Fischer, 1985; Sinclair
and Jamieson, 2006). The literature suggests that the final grain yield
depends on the grain number determination and on the remobilization
of the pre-flowering reserve as well as on the photosynthesis occurring
during the grain filling period (Bijanzadeh and Emam, 2010; Boiffin
and Caneill, 1981; Gate, 1995).

From a physiological point of view, the shade treatment applied in
this study occurred during three critical periods for the final grain yield
elaboration: (i) the grain number settings period, just before flowering;
(ii) the cell production phase, from flowering until around 14 days after
flowering; and (iii) the cell expansion phase, from around 14 days after
flowering until maturity (Brocklehurst et al., 1978). In our field ex-
periment, the shade treatments influenced the composition of final
grain yield in terms of grain number and grain size proportion. The
larger amount of medium grain sizes (< 2.5 mm) under the CS

Fig. 5. Simulated versus measured final grains yield (t/ha), number of grain per m2 and grain weight (g) for the growing season 2014–15 and 2015–16 under the different light regimes
(NS, PS, CS) using the initial and adjusted plant parameter sets. Horizontal bars represent the standard error of the mean of the mean observed data.

Table 5
Root mean square error (RMSE), model efficiency (NSE) and pBias of the predicted yield,
grain number and grain weight with the initial and adjusted plant parameters set for the
calibration dataset and validation dataset.

Calibration set Validation set

NS treatment 2014-15 and
2015-16

CS & PS treatment 2014-15 and
2015-16

Yield Grain
number

Grain
weight

Yield Grain
number

Grain
weight

[t/ha] [#/m2] [g] [t/ha] [#/m2] [g]

Initial set
RMSE 1.02 4341 0.004 1.35 4882 0.004
NSE 0.71 0.12 0.14 −0.69 −0.22
pBias 3.6 18.4 −10.7 21.4 27.9 −3.7
Adjusted set
RMSE 0.66 299 0.003 1.25 749 0.009
NSE 0.88 0.99 0.26 0.96 −4.2
pBias −0.5 0.9 0 19.4 −1.7 24.4
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treatment as compared to the NS treatment may be due to either a
diminution of cell productions per grain or a reduction of the cell ex-
pansion during the filling stage or both. Nevertheless, large grain size
has also been observed under CS treatment certainly meaning that
under shade treatment some grains present an equivalent number of
cells and assimilate. In fact, field studies have shown that, although
these components are developed sequentially, there can be some com-
pensatory processes between the different yields components, with the
prior-established components influencing the later-formed ones (Beed
et al., 2007; Fischer, 2008; Jocković et al., 2014; Singh and Jenner,
1984). As for the grain number component, there is an unresolved
ongoing debate on the relative importance of sink and source functions
in the final yield determination. Some authors stipulate that grain
number is implied in the regulation of the amount of resources accu-
mulated in the grain during the grain filling period (Fischer, 2008),
while others found that the grain number is a consequence of the ac-
cumulated resources, just like grain weight (Sinclair and Jamieson,
2006, 2008).

4.2. Model calibration and evaluation

We evaluated the ability of the crop model STICS to accurately
predict winter wheat growth and yield under two reduced light en-
vironments using a common plant parameter set pre-calibrated on an
independent dataset under full light conditions (NS treatment).

This study clearly demonstrates that STICS results in an accurate
prediction of the total aboveground biomass dynamics under a constant
shade pattern of light using the daily global radiation as climatic input.
Nevertheless, the model consistently underestimates the total above-
ground biomass when using a daily cumulated global radiation for the
PS treatment. These results raise questions about the validity of the
relationship between the daily biomass accumulation and the inter-
cepted global radiation for plants growing under intermittent shade
regimes within a day. Furthermore, in STICS, the ratio of direct to
diffuse irradiance is only computed as a function of the latitude and the
date, while under shade treatments this ratio changes with higher
proportions of diffuse irradiance as compared to direct light and this
may induce variation in crop RUE (Sinclair et al., 1992). In STICS
model, the radiation use efficiency parameter defined in the plant
parameters set was the same whatever the light treatment.

Differences in crop phenology due to differences in air temperature
under shade and full light conditions are important to take into account.
When we reduced only the global radiation in the model, the predicted
maturity date in the CS treatment was seven days earlier than the date
observed in the field in 2015. While doing this, the simulated crop
temperature only slightly decreased under the shaded treatments as
compared to the NS treatment. This highlights the necessity to take the
changes in terms of air temperature into account in the modeling in
addition to the light reduction in order to correctly reproduce the effect
of shade on the crop temperature and thus on the thermal time that
drives the understory crop phenology. In fact, several authors have
reported that air temperature at crop canopy level is reduced under
agroforestry systems as well as under artificial shade structures. At a
daily time scale, temperature decreases at daytime and it gets warmer
at night under shade structures than in open air (Gosme et al., 2016;
Karki and Goodman, 2015). In mature agroforestry systems (15–20
years old plot), Gosme et al. (2016) found that in spring, when tem-
peratures are high and when the trees have leaves, the daily average air
temperature can decrease by 1.2 °C in the agroforestry plot as compared
to the control plot. Likewise, Karki and Goodman (2015) recorded a
maximum decrease of 3.8 °C in August under 15–20 years old loblolly
pine. However, Marrou et al. (2013) showed that, under photovoltaic
shelter, convective air movement allows to homogenize the mean daily
air temperature and the crop temperature and thus no differences were
observed as compared to the full sun treatment. Similarly to the PS
treatment applied in our study, this photovoltaic system induced

periodic shade during the day according to the light movement with the
path of the sun. These results confirm the assumption that in our ex-
periment, under CS the wheat probably experiences a lower ambient
temperature as compared to the NS, while no differences were observed
under the PS treatment. Thus, a decrease of around 2 °C to the daily
mean air temperature applied in this study under the CS treatment is
consistent with the range of values recorded in other studies.

In STICS, the grain number relies only on the rate of carbon accu-
mulation prior to flowering and in our study this formalism allows to
accurately predict the grain number under the NS as well as under the
shaded treatments, although the calibration of the nbjgrain, cgrain and
cgrainvo plant parameters was mandatory. By applying shade treat-
ments, several authors have shown that the duration of the critical
period of grain number establishment (nbjgrain parameter in STICS)
lasts about 20–30 days prior to flowering (Abbate et al., 1997; Demotes-
Mainard and Jeuffroy, 2004; Fischer, 1985). Within this period the
magnitude of wheat response varies according to the level and the
number of days of shade application. Furthermore, Fischer and
Stockman (1980) identified a maximal reduction of grain number when
shade was imposed around 10–13 days prior to flowering. Within this
period, the grain number determination remains highly sensitive to
environmental variations. Our results support this finding: the above-
ground biomass growth rate appears highly sensitive when the period
ranged between 8–15 days before flowering.

Thereafter, the grain filling process starts once the grain number has
been set and as in most of the current crop models, the final grain yield
relies on the partitioning of the pre- and post-flowering resource ac-
cumulation using a harvest index increase rate. This approach has the
advantage of globalizing the two sources of assimilates (current growth
and remobilization), while remaining economical in terms of number of
parameters. In STICS, in the option we chose, the proportion of biomass
allocated to the grain linearly increases with thermal time through the
vitircarbt (g.grain/g.biomass/dd) parameter. In this formalism, the grain
number (simulated) and the maximum grain weight (fixed parameter)
permit to bound the final grain yield, which allows to simulate con-
sistent carbon allocation rate to the grain and avoid unrealistic re-
mobilization level. The pgrainmaxi acts as a threshold parameter. It
could have been reduced to fit the grain weight observe under each of
the light treatments, but in that case the parameter set would have been
different for each treatment, thus losing the genericity of the modelling
work. In our simulations, too much biomass was allocated to the grain
under the shade conditions for both growing seasons. The remaining
differences between the predicted and observed final yield under the
shaded treatment were presumably caused by an overestimation of the
reallocation of the biomass between shoots and grains as simulated by
STICS, on which the user has no hand in the case of determinate
growing plants. The STICS yield parameter vitircarbt is the main para-
meter in the model that can be involved in the overestimation of the
final yield and as a consequence to an overestimation of the grain
weight for the shade treatment by inducing a high partitioning rate of
the aboveground biomass to the grain. In fact, this parameter has been
fixed to 6.5.10−4 whatever the light treatment, while in the field,
several studies have shown that after anthesis this partitioning can be
highly variable and depends on environmental conditions (Li et al.,
2013; Wheeler et al., 1996). For the season 2015–16, the predicted final
yield is bounded: although the number of grains was satisfactorily
predicted, final yield was overestimated by using the same pgrainmaxi
value under the three treatments (fixed here at 0.045 g). These final
yield predictions are not consistent with our field observations and
results reported in other studies show that applying shade treatments
prior to flowering until maturity affects grain number as well as grain
weight.

For both components (grain number and weight), the underlying
physiological mechanisms remain unclear. The simplest yield form-
alism proposed in the STICS model allowed to accurately reproduce the
grain number, but it overrides the complexity of the grain filling and
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thus failed to accurately predict the final grain yield under continuous
and intermittent shade environments. The formalism failed to reflect
possible variations in the contribution of either the reserve build up
during the vegetation or the actual photosynthesis efficiency, in re-
sponse to fluctuating growing conditions. To do so, Garcia de Cortazar-
Atauri et al. (2010) proposes to use the yield formalism implemented in
STICS for indeterminate growing plants. That formalism provides a
more mechanistic description of the final grain yield elaboration by
making a distinction between the grain number setting period, the cell
division phase and the cell elongation phase in the grain.

5. Conclusions

We evaluated the ability of the STICS crop model to simulate the
development and the final yield components of winter wheat growing
under heterogeneous light environment using a common set of plant
parameters. This was performed using field data from an artificial shade
experiment producing three contrasted shade treatments (NS, PS, CS)
on winter wheat during two growing seasons. We showed that the
overall aboveground biomass was well predicted for all three treat-

ments. However, under the CS treatment, the implementation of a re-
duction of the mean daily air temperature was necessary in addition to
the reduction of the incident global radiation to accurately simulate the
timing of the phenological stages. Regarding the final yield compo-
nents, the calibration of three plant parameters involved in the grain
number formalism was mandatory to accurately predict the grain
number under the NS treatment as well as under the shade conditions.
Nevertheless, final grain yield and thus grain weight remained over-
estimated under the continuous and periodic shade treatment. This
inaccuracy relies on the STICS yield prediction formalism. In fact, the
present formalization did not allow to adequately reflect the complexity
of reserve partitioning occurring for plants growing under fluctuating
shade conditions. Therefore, these results highlight the limits of the
STICS model when used to simulate crop growth under contrasted
shade conditions. Thus, further progress is necessary to accurately
predict the complexity of the winter wheat development and yield
under shade. An interesting next step would be to use the yield form-
alism used in STICS for indeterminate growing plants which involves a
“sink strength” function and source/sink ratio.
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