

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

Some notions of compactness in Functional Analysis and one related question about diametral dimensions

Loïc Demeulenaere (FRIA-FNRS Grantee)

Comprehensible Seminars - ULiège

October 5, 2017

Some notions of compactness

Diametral dimensions

Some notions of compactness

Diametral dimensions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some notions of compactness

Diametral dimensions

Mathematical Analysis

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Mathematical Analysis

• Main topics: *functions* and related notions, e.g. limits, distributions, measures, etc.

Mathematical Analysis

- Main topics: *functions* and related notions, e.g. limits, distributions, measures, etc.
- After "algebraic" equations, *functional* equations: differentiable equations, integral equations, optimization problems...

Mathematical Analysis

- Main topics: *functions* and related notions, e.g. limits, distributions, measures, etc.
- After "algebraic" equations, *functional* equations: differentiable equations, integral equations, optimization problems...

Study of sets of functions

Mathematical Analysis

- Main topics: *functions* and related notions, e.g. limits, distributions, measures, etc.
- After "algebraic" equations, *functional* equations: differentiable equations, integral equations, optimization problems...

Study of sets of functions Notions of convergence

(日) (伊) (日) (日) (日) (0) (0)

Mathematical Analysis

- Main topics: *functions* and related notions, e.g. limits, distributions, measures, etc.
- After "algebraic" equations, *functional* equations: differentiable equations, integral equations, optimization problems...

 $\left.\begin{array}{l} \mathsf{Study of sets of functions}\\ \mathsf{Notions of convergence}\end{array}\right\} \rightsquigarrow \mathit{Topological study of functional spaces} \\ \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples

 If K is a compact subset of ℝⁿ, if f is a function defined on K and if (f_m)_{m∈ℕ0} is a sequence of C₀(K) s.t.

$$\sup_{x\in K} |f_m(x) - f(x)| \to 0 \text{ if } m \to \infty,$$

then $f \in C_0(K)$.

Examples

 If K is a compact subset of ℝⁿ, if f is a function defined on K and if (f_m)_{m∈ℕ0} is a sequence of C₀(K) s.t.

$$\sup_{x\in K} |f_m(x) - f(x)| \to 0 \text{ if } m \to \infty,$$

then $f \in C_0(K)$.

 \sim Convergence in $C_0(K)$ endowed with the metric defined by $\sup_K |.|.$

Examples

• Lebesgue's dominated convergence theorem: if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $L^1(\mathbb{R})$ which converges pointwise to f and if there exists $F \in L^1(\mathbb{R})$ with $|f_m| \leq F$ a.e. on $\mathbb{R} \ \forall m$, then $f \in L^1(\mathbb{R})$ and

$$\int_{\mathbb{R}} |f_m(x) - f(x)| \, dx \to 0 \text{ if } m \to \infty.$$

Examples

• Lebesgue's dominated convergence theorem: if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $L^1(\mathbb{R})$ which converges pointwise to f and if there exists $F \in L^1(\mathbb{R})$ with $|f_m| \leq F$ a.e. on $\mathbb{R} \ \forall m$, then $f \in L^1(\mathbb{R})$ and

$$\int_{\mathbb{R}} |f_m(x) - f(x)| \, dx \to 0 \text{ if } m \to \infty.$$

 \sim Convergence in $L^1(\mathbb{R})$ for the metric defined by $\int_{\mathbb{R}} |.| dx$.

Examples

• Lebesgue's dominated convergence theorem: if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $L^1(\mathbb{R})$ which converges pointwise to f and if there exists $F \in L^1(\mathbb{R})$ with $|f_m| \leq F$ a.e. on $\mathbb{R} \ \forall m$, then $f \in L^1(\mathbb{R})$ and

$$\int_{\mathbb{R}} |f_m(x) - f(x)| \, dx \to 0 \text{ if } m \to \infty.$$

- \sim Convergence in L¹(\mathbb{R}) for the metric defined by $\int_{\mathbb{R}} |.| dx$.
 - Fourier series: convergence in $L^2([a, b])$ for the metric defined by $\sqrt{\int_a^b |.|^2 dx}$.

• ...

Examples

• Lebesgue's dominated convergence theorem: if $(f_m)_{m \in \mathbb{N}_0}$ is a sequence of $L^1(\mathbb{R})$ which converges pointwise to f and if there exists $F \in L^1(\mathbb{R})$ with $|f_m| \leq F$ a.e. on $\mathbb{R} \ \forall m$, then $f \in L^1(\mathbb{R})$ and

$$\int_{\mathbb{R}} |f_m(x) - f(x)| \, dx \to 0 \text{ if } m \to \infty.$$

- \sim Convergence in L¹(\mathbb{R}) for the metric defined by $\int_{\mathbb{R}} |.| dx$.
 - Fourier series: convergence in $L^2([a, b])$ for the metric defined by $\sqrt{\int_a^b |.|^2 dx}$.
 - ...
 - Common feature of these metrics: they are defined by *norms*.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

(Semi)norms

Definition

If E is a vector space on \mathbb{C} , a map $p: E \to [0,\infty)$ is a *seminorm* if

- 1. $p(x+y) \leq p(x) + p(y) \ \forall x, y \in E;$
- 2. $p(\lambda x) = |\lambda|p(x) \ \forall x \in E, \ \forall \lambda \in \mathbb{C}.$

(Semi)norms

Definition

If E is a vector space on \mathbb{C} , a map $p: E \to [0,\infty)$ is a *seminorm* if

1.
$$p(x+y) \le p(x) + p(y) \ \forall x, y \in E;$$

2.
$$p(\lambda x) = |\lambda| p(x) \ \forall x \in E, \ \forall \lambda \in \mathbb{C}.$$

If $p(x) = 0 \Leftrightarrow x = 0$, then p is a norm.

(Semi)norms

Definition

If E is a vector space on \mathbb{C} , a map $p: E \to [0,\infty)$ is a *seminorm* if

1.
$$p(x+y) \le p(x) + p(y) \ \forall x, y \in E;$$

2. $p(\lambda x) = |\lambda|p(x) \ \forall x \in E, \ \forall \lambda \in \mathbb{C}.$
f $p(x) = 0 \Leftrightarrow x = 0$, then p is a norm.

Property

The (semi)norm p defines a vector (pseudo)metric on E:

$$d(x,y)=p(x-y).$$

 \sim Notions of convergent sequences, Cauchy sequences, etc.

(Semi)norms

Definition

If E is a vector space on \mathbb{C} , a map $p: E \to [0,\infty)$ is a *seminorm* if

1.
$$p(x + y) \le p(x) + p(y) \ \forall x, y \in E;$$

2. $p(\lambda x) = |\lambda|p(x) \ \forall x \in E, \ \forall \lambda \in \mathbb{C}.$
f $p(x) = 0 \Leftrightarrow x = 0$, then p is a norm.

Property

The (semi)norm p defines a vector (pseudo)metric on E:

$$d(x,y)=p(x-y).$$

 $\, \sim \,$ Notions of convergent sequences, Cauchy sequences, etc. Examples

 $C_0(K)$, $L^1(\mathbb{R})$, $L^2([a, b])$ are (complete) normed spaces (i.e. Banach spaces).

In general

In general, one single (semi)norm is not sufficient...

If Ω is an open subset of ℝⁿ and if (f_m)_{m∈ℕ0} is a sequence of C₀(Ω) which uniformly converges to f on every compact of Ω, then f ∈ C₀(Ω).

In general

In general, one single (semi)norm is not sufficient...

- If Ω is an open subset of ℝⁿ and if (f_m)_{m∈ℕ0} is a sequence of C₀(Ω) which uniformly converges to f on every compact of Ω, then f ∈ C₀(Ω).
- \rightsquigarrow Convergence defined by a family of seminorms $\sup_{K} |.|$ (K compact of Ω).

In general

In general, one single (semi)norm is not sufficient...

- If Ω is an open subset of ℝⁿ and if (f_m)_{m∈ℕ0} is a sequence of C₀(Ω) which uniformly converges to f on every compact of Ω, then f ∈ C₀(Ω).
- \rightsquigarrow Convergence defined by a family of seminorms $\sup_{K} |.|$ (K compact of Ω).
 - For holomorphic functions: likewise!

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Locally convex spaces

Definition

A topological vector space (t.v.s.) E is a *locally convex space* (l.c.s.) if its topology can be defined by a family of seminorms \mathcal{P} :

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Locally convex spaces

Definition

A topological vector space (t.v.s.) E is a *locally convex space* (l.c.s.) if its topology can be defined by a family of seminorms \mathcal{P} : a subset U of E is a neighbourhood (ngbh) of $x \in E$ if $\exists p \in \mathcal{P}, \varepsilon > 0$ s.t.

$$\{y \in E : p(x-y) \leq \varepsilon\} \subseteq U.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Locally convex spaces

Definition

A topological vector space (t.v.s.) E is a *locally convex space* (l.c.s.) if its topology can be defined by a family of seminorms \mathcal{P} : a subset U of E is a neighbourhood (ngbh) of $x \in E$ if $\exists p \in \mathcal{P}, \varepsilon > 0$ s.t.

$$\{y \in E : p(x-y) \leq \varepsilon\} \subseteq U.$$

Remark

Good definition if $\forall p, q \in \mathcal{P}, \exists r \in \mathcal{P}, C > 0 \text{ s.t.}$

$$\sup(p(x),q(x)) \leq Cr(x) \qquad orall x \in E.$$

うして ふゆう ふほう ふほう うらつ

Locally convex spaces

Definition

A topological vector space (t.v.s.) E is a *locally convex space* (l.c.s.) if its topology can be defined by a family of seminorms \mathcal{P} : a subset U of E is a neighbourhood (ngbh) of $x \in E$ if $\exists p \in \mathcal{P}, \varepsilon > 0$ s.t.

$$\{y \in E : p(x-y) \leq \varepsilon\} \subseteq U.$$

Remark

Good definition if $\forall p, q \in \mathcal{P}, \exists r \in \mathcal{P}, C > 0 \text{ s.t.}$

$$\sup(p(x),q(x)) \leq Cr(x) \qquad orall x \in E.$$

 \sim *Functional Analysis:* study of l.c.s.

Examples of topological properties

For a l.c.s. (E, \mathcal{P}) ,

- *E* is Hausdorff iff $\cap_{p \in \mathcal{P}} \ker(p) = \{0\};$
- every x ∈ E has a countable basis of nghbs iff P can be chosen countable;
- E is metrizable iff the two previous points are verified.

ション ふゆ アメリア メリア しょうくの

Examples of topological properties

For a l.c.s. (E, \mathcal{P}) ,

- *E* is Hausdorff iff $\cap_{p \in \mathcal{P}} \ker(p) = \{0\};$
- every x ∈ E has a countable basis of nghbs iff P can be chosen countable;
- E is metrizable iff the two previous points are verified.

Definition

A Fréchet space is a complete, metrizable, l.c.s.

Some notions of compactness

Diametral dimensions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Some notions linked to compactness

Let E be an l.c.s.

A bounded set of E is a subset B of E s.t., for every 0-ngbh
 U, ∃λ > 0 : B ⊆ λU.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Some notions linked to compactness

Let E be an l.c.s.

- A bounded set of E is a subset B of E s.t., for every 0-ngbh U, $\exists \lambda > 0 : B \subseteq \lambda U$.
- If U, V is 2 subsets of E, V is precompact with respect to U if, ∀ε > 0, ∃P finite subset of E s.t.

 $V \subseteq \varepsilon U + P.$

ション ふゆ アメリア メリア しょうくの

Some notions linked to compactness

Let E be an l.c.s.

- A bounded set of E is a subset B of E s.t., for every 0-ngbh U, $\exists \lambda > 0 : B \subseteq \lambda U$.
- If U, V is 2 subsets of E, V is precompact with respect to U if, ∀ε > 0, ∃P finite subset of E s.t.

$$V\subseteq \varepsilon U+P.$$

• $K \subseteq E$ is *precompact* if it is precompact with respect to each 0-ngbh.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Links

Proposition

$\mathsf{Compact} \implies \mathsf{Precompact} \implies \mathsf{Bounded}.$

Links

Proposition

$\mathsf{Compact} \implies \mathsf{Precompact} \implies \mathsf{Bounded}.$

Remarks

• A precompact set is not always compact, but, in *complete spaces*, a set is precompact iff its closure is compact.

ション ふゆ アメリア メリア しょうくの

Links

Proposition

$\mathsf{Compact} \implies \mathsf{Precompact} \implies \mathsf{Bounded}.$

Remarks

- A precompact set is not always compact, but, in *complete spaces*, a set is precompact iff its closure is compact.
- The closed unit ball of an infinite-dimensional normed space is never precompact. In particular, a closed bounded set is not always (pre)compact.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two important classes of Fréchet spaces

Let *E* be a Fréchet space.

• *E* is *Montel* if every bounded set is precompact.
◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Two important classes of Fréchet spaces

Let *E* be a Fréchet space.

- *E* is *Montel* if every bounded set is precompact.
- *E* is *Schwartz* if, for every 0-ngbh *U*, there exists a 0-ngbh *V* which is precompact with respect to *U*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Two important classes of Fréchet spaces

Let *E* be a Fréchet space.

- *E* is *Montel* if every bounded set is precompact.
- *E* is *Schwartz* if, for every 0-ngbh *U*, there exists a 0-ngbh *V* which is precompact with respect to *U*.

Examples

• If Ω is an open set of \mathbb{C} , $H(\Omega)$ is Schwartz and Montel.

うして ふゆう ふほう ふほう うらつ

Two important classes of Fréchet spaces

Let *E* be a Fréchet space.

- *E* is *Montel* if every bounded set is precompact.
- *E* is *Schwartz* if, for every 0-ngbh *U*, there exists a 0-ngbh *V* which is precompact with respect to *U*.

Examples

- If Ω is an open set of \mathbb{C} , $H(\Omega)$ is Schwartz and Montel.
- An infinite-dimensional Banach space is neither Montel, nor Schwartz.

うして ふゆう ふほう ふほう うらつ

Two important classes of Fréchet spaces

Let *E* be a Fréchet space.

- *E* is *Montel* if every bounded set is precompact.
- *E* is *Schwartz* if, for every 0-ngbh *U*, there exists a 0-ngbh *V* which is precompact with respect to *U*.

Examples

- If Ω is an open set of \mathbb{C} , $H(\Omega)$ is Schwartz and Montel.
- An infinite-dimensional Banach space is neither Montel, nor Schwartz.

Warning!

A Schwartz space is always Montel, but the converse is false!

Introduction

Some notions of compactness

Diametral dimensions

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

(ロ)、

Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

lsomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition

An *isomorphism* of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition

An *isomorphism* of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

• Question: when are 2 t.v.s. non-isomorphic?

Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition

An *isomorphism* of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

- Question: when are 2 t.v.s. non-isomorphic?
- → *Topological (linear) invariants:* properties preserved by isomorphisms

Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition

An *isomorphism* of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

• Question: when are 2 t.v.s. non-isomorphic?

→ *Topological (linear) invariants:* properties preserved by isomorphisms

Examples

Dimension in linear algebra, being Hausdorff in topological spaces, etc.

Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

Definition

An *isomorphism* of t.v.s. is a linear, bijective, continuous, and open map between 2 t.v.s.

• Question: when are 2 t.v.s. non-isomorphic?

→ *Topological (linear) invariants:* properties preserved by isomorphisms

Examples

Dimension in linear algebra, being Hausdorff in topological spaces, etc.

And diametral dimension(s) in t.v.s.!

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Kolmogorov's diameters

Let *E* be a vector space, $V, U \subseteq E, V \subseteq \lambda U$ ($\lambda > 0$).

Kolmogorov's diameters

Let *E* be a vector space, $V, U \subseteq E, V \subseteq \lambda U$ ($\lambda > 0$).

Definition

The n^{th} Kolmogorov's diameters of V with respect to U is

$$\delta_n(V, U) = \inf \left\{ \delta > 0 : \exists L \subseteq E, \dim(L) \le n, \text{ s.t. } V \subseteq \delta U + L \right\}.$$

Kolmogorov's diameters

Let *E* be a vector space, $V, U \subseteq E, V \subseteq \lambda U$ ($\lambda > 0$).

Definition

The n^{th} Kolmogorov's diameters of V with respect to U is

$$\delta_n(V, U) = \inf \left\{ \delta > 0 : \exists L \subseteq E, \dim(L) \le n, \text{ s.t. } V \subseteq \delta U + L \right\}.$$

Important property

If U is a ball centred at 0 and associated to a seminorm, then

V is precompact with respect to $U \Leftrightarrow \delta_n(V, U) \to 0$.

Diametral dimensions

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Diametral dimension

Let E be a t.v.s. and \mathcal{U} be a basis of 0-nghbs.

Definition

The diametral dimension of E is

$$\Delta(E) = \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, V \subseteq U, \text{ s.t. } \xi_n \delta_n(V, U) \to 0 \right\}.$$

Diametral dimensions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Diametral dimension

Let E be a t.v.s. and \mathcal{U} be a basis of 0-nghbs.

Definition

The diametral dimension of E is

$$\Delta(E) = \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, V \subseteq U, \text{ s.t. } \xi_n \delta_n(V, U) \to 0 \right\}.$$

Properties

1. Δ is a topological invariant (if $E \cong F$, then $\Delta(E) = \Delta(F)$).

Diametral dimensions

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Diametral dimension

Let E be a t.v.s. and \mathcal{U} be a basis of 0-nghbs.

Definition

The diametral dimension of E is

$$\Delta(E) = \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, V \subseteq U, \text{ s.t. } \xi_n \delta_n(V, U) \to 0 \right\}.$$

Properties

- 1. Δ is a topological invariant (if $E \cong F$, then $\Delta(E) = \Delta(F)$).
- 2. If E is Fréchet,
 - if E is not Schwartz, $\Delta(E) = c_0$;
 - if *E* is Schwartz, $I_{\infty} \subseteq \Delta(E)$.

Diametral dimensions

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Another diametral dimension...

$$\mathsf{Definition} \\ \Delta_b(E) = \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, \xi_n \delta_n(B, U) \to 0 \right\}.$$

Diametral dimensions

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Another diametral dimension...

$$\mathsf{Definition} \\ \Delta_b(E) = \left\{ \xi \in \mathbb{C}^{\mathbb{N}_0} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, \xi_n \delta_n(B, U) \to 0 \right\}.$$

Open question

Do we have

$$\Delta(E) = \Delta_b(E)$$

if *E* is Fréchet?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Proposition

If E is Fréchet,

- if E is not Montel, $\Delta_b(E) = c_0$;
- if *E* is Montel, $I_{\infty} \subseteq \Delta_b(E)$.

Proposition

If E is Fréchet,

- if E is not Montel, $\Delta_b(E) = c_0$;
- if *E* is Montel, $I_{\infty} \subseteq \Delta_b(E)$.

Consequences

- If E is not Montel, $\Delta(E) = \Delta_b(E) = c_0$.
- If E is Montel but not Schwartz, then $\Delta(E) = c_0 \subsetneq \Delta_b(E)$.

うして ふゆう ふほう ふほう うらつ

Proposition

If E is Fréchet,

- if E is not Montel, $\Delta_b(E) = c_0$;
- if E is Montel, $I_{\infty} \subseteq \Delta_b(E)$.

Consequences

- If E is not Montel, $\Delta(E) = \Delta_b(E) = c_0$.
- If E is Montel but not Schwartz, then $\Delta(E) = c_0 \subsetneq \Delta_b(E)$.

New open question

Do we have

$$\Delta(E) = \Delta_b(E)$$

if *E* is Fréchet-Schwartz?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

A positive partial result

Slight variations of diametral dimensions...

$$\Delta^{\infty}(E) := \left\{ \xi \in \mathbb{C}^{\mathbb{N}_{0}} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, \text{ s.t. } (\xi_{n}\delta_{n}(V, U))_{n} \in \ell_{\infty} \right\},$$
$$\Delta^{\infty}_{b}(E) := \left\{ \xi \in \mathbb{C}^{\mathbb{N}_{0}} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, (\xi_{n}\delta_{n}(B, U))_{n} \in \ell_{\infty} \right\}.$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A positive partial result

Slight variations of diametral dimensions...

$$\Delta^{\infty}(E) := \left\{ \xi \in \mathbb{C}^{\mathbb{N}_{0}} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, \text{ s.t. } (\xi_{n}\delta_{n}(V, U))_{n} \in \ell_{\infty} \right\},$$
$$\Delta^{\infty}_{b}(E) := \left\{ \xi \in \mathbb{C}^{\mathbb{N}_{0}} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, (\xi_{n}\delta_{n}(B, U))_{n} \in \ell_{\infty} \right\}.$$

Theorem (2016, L.D., L. Frerick, J. Wengenroth) If *E* is Fréchet-Schwartz, then

$$\Delta^{\infty}(E) = \Delta^{\infty}_{b}(E).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A positive partial result

Slight variations of diametral dimensions...

$$\Delta^{\infty}(E) := \left\{ \xi \in \mathbb{C}^{\mathbb{N}_{0}} : \forall U \in \mathcal{U}, \exists V \in \mathcal{U}, \text{ s.t. } (\xi_{n}\delta_{n}(V, U))_{n} \in \ell_{\infty} \right\},$$
$$\Delta^{\infty}_{b}(E) := \left\{ \xi \in \mathbb{C}^{\mathbb{N}_{0}} : \forall U \in \mathcal{U}, \forall B \text{ bounded}, (\xi_{n}\delta_{n}(B, U))_{n} \in \ell_{\infty} \right\}.$$

Theorem (2016, L.D., L. Frerick, J. Wengenroth) If *E* is Fréchet-Schwartz, then

$$\Delta^{\infty}(E) = \Delta^{\infty}_{b}(E).$$

In particular, if $\Delta(E) = \Delta^{\infty}(E)$, then $\Delta(E) = \Delta_b(E)$.

Schwartz spaces with $\Delta(E) = \Delta^{\infty}(E)$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Schwartz spaces with $\Delta(E) = \Delta^{\infty}(E)$

 Classic sequence spaces ("Köthe echelon spaces") (2017, F. Bastin, L.D.);

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Schwartz spaces with $\Delta(E) = \Delta^{\infty}(E)$

- Classic sequence spaces ("*Köthe echelon spaces*") (2017, F. Bastin, L.D.);
- Hilbertizable spaces (in particular nuclear spaces) (2016, L.D., L. Frerick, J. Wengenroth).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Another sufficient condition

Definition (2013, T. Terzioğlu)

A bounded set B of a Fréchet space E is prominent if, for every 0-ngbh U, there exist a 0-nghb V and C > 0 s.t. $\forall n$

 $\delta_n(V, U) \leq C \delta_n(B, V).$

うして ふゆう ふほう ふほう うらつ

Another sufficient condition

Definition (2013, T. Terzioğlu)

A bounded set B of a Fréchet space E is prominent if, for every 0-ngbh U, there exist a 0-nghb V and C > 0 s.t. $\forall n$

 $\delta_n(V,U) \leq C\delta_n(B,V).$

Proposition (2013, T. Terzioğlu)

If E has a prominent bounded set, then $\Delta(E) = \Delta_b(E)$, but the converse is false.

Another sufficient condition

Definition (2013, T. Terzioğlu)

A bounded set B of a Fréchet space E is prominent if, for every 0-ngbh U, there exist a 0-nghb V and C > 0 s.t. $\forall n$

 $\delta_n(V, U) \leq C \delta_n(B, V).$

Proposition (2013, T. Terzioğlu)

If E has a prominent bounded set, then $\Delta(E) = \Delta_b(E)$, but the converse is false.

Spaces with prominent bounded sets (2016, L.D., L.F., J.W.) Fréchet spaces with **Property** $(\overline{\Omega})$: if $\mathcal{U} = (U_k)_k$,

$$\forall m, \exists k, \forall j, \exists C > 0, \forall r > 0, U_k \subseteq rU_m + \frac{C}{r}U_j$$

(the converse is false).

Diametral dimensions

And for non-Fréchet/non-metrizable spaces?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

And for non-Fréchet/non-metrizable spaces?

Theorem (2017, F. Bastin, L.D.)

There exists a family of Schwartz (and/or nuclear), non-metrizable, l.c.s. *E* with

 $\Delta(E) \neq \Delta_b(E).$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

And for non-Fréchet/non-metrizable spaces?

Theorem (2017, F. Bastin, L.D.)

There exists a family of Schwartz (and/or nuclear), non-metrizable, l.c.s. *E* with

$$\Delta(E) \neq \Delta_b(E).$$

Main idea: considering spaces for which the linear span of each bounded set is finite-dimensional.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thank you for your attention!

うして ふゆう ふほう ふほう うらつ

References I

F. Bastin and L. Demeulenaere.
On the equality between two diametral dimensions.
Functiones et Approximatio, Commentarii Mathematici, 56(1):95–107, 2017.

L. Demeulenaere.

Dimension diamétrale, espaces de suites, propriétés (DN) et (Ω). Master's thesis, University of Liège, 2014.

L. Demeulenaere, L. Frerick, and J. Wengenroth. Diametral dimensions of Fréchet spaces. *Studia Math.*, 234(3):271–280, 2016.

H. Jarchow.

Locally Convex Spaces.

Mathematische Leitfäden. B.G. Teubner, Stuttgart, 1981.
Diametral dimensions

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

References II

R. G. Meise and D. Vogt.

Introduction to Functional Analysis.

Number 2 in Oxford Graduate Texts in Mathematics. Clarendon Press, Oxford, 1997. Translated from German by M.S. Ramanujan.

📑 T. Terzioğlu.

Quasinormability and diametral dimension. Turkish J. Math., 37(5):847-851, 2013.