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Examples

� If K is a compact subset of Rn, if f is a function de�ned on K
and if (fm)m∈N0

is a sequence of C0(K ) s.t.

sup
x∈K
|fm(x)− f (x)| → 0 if m→∞,

then f ∈ C0(K ).

; Convergence in C0(K ) endowed with the metric de�ned by
supK |.|.
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Examples

� Lebesgue's dominated convergence theorem: if (fm)m∈N0

is a sequence of L1(R) which converges pointwise to f and if
there exists F ∈ L1(R) with |fm| ≤ F a.e. on R ∀m, then
f ∈ L1(R) and∫

R
|fm(x)− f (x)| dx → 0 if m→∞.

; Convergence in L1(R) for the metric de�ned by
∫
R |.| dx .

� Fourier series: convergence in L2([a, b]) for the metric

de�ned by
√∫ b

a |.|2 dx .
� ...

� Common feature of these metrics: they are de�ned by norms.
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(Semi)norms

De�nition
If E is a vector space on C, a map p : E → [0,∞) is a seminorm if

1. p(x + y) ≤ p(x) + p(y) ∀x , y ∈ E ;

2. p(λx) = |λ|p(x) ∀x ∈ E , ∀λ ∈ C.

If p(x) = 0⇔ x = 0, then p is a norm.

Property

The (semi)norm p de�nes a vector (pseudo)metric on E :

d(x , y) = p(x − y).

; Notions of convergent sequences, Cauchy sequences, etc.

Examples

C0(K ), L1(R), L2([a, b]) are (complete) normed spaces (i.e.
Banach spaces).
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In general

In general, one single (semi)norm is not su�cient...

� If Ω is an open subset of Rn and if (fm)m∈N0
is a sequence of

C0(Ω) which uniformly converges to f on every compact of Ω,
then f ∈ C0(Ω).

; Convergence de�ned by a family of seminorms supK |.| (K
compact of Ω).

� For holomorphic functions: likewise!
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Locally convex spaces

De�nition
A topological vector space (t.v.s.) E is a locally convex space (l.c.s.) if
its topology can be de�ned by a family of seminorms P:

a subset U of E is a neighbourhood (ngbh) of x ∈ E if
∃p ∈ P, ε > 0 s.t.

{y ∈ E : p(x − y) ≤ ε} ⊆ U.

Remark
Good de�nition if ∀p, q ∈ P, ∃r ∈ P, C > 0 s.t.

sup(p(x), q(x)) ≤ Cr(x) ∀x ∈ E .

; Functional Analysis: study of l.c.s.
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Examples of topological properties

For a l.c.s. (E ,P) ,

� E is Hausdor� i� ∩p∈P ker(p) = {0};
� every x ∈ E has a countable basis of nghbs i� P can be
chosen countable;

� E is metrizable i� the two previous points are veri�ed.

De�nition
A Fréchet space is a complete, metrizable, l.c.s.
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Some notions linked to compactness

Let E be an l.c.s.

� A bounded set of E is a subset B of E s.t., for every 0-ngbh
U, ∃λ > 0 : B ⊆ λU.

� If U,V is 2 subsets of E , V is precompact with respect to U
if, ∀ε > 0, ∃P �nite subset of E s.t.

V ⊆ εU + P.

� K ⊆ E is precompact if it is precompact with respect to each
0-ngbh.
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Links

Proposition

Compact =⇒ Precompact =⇒ Bounded.

Remarks

� A precompact set is not always compact, but, in complete

spaces, a set is precompact i� its closure is compact.

� The closed unit ball of an in�nite-dimensional normed space is
never precompact. In particular, a closed bounded set is not
always (pre)compact.
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Two important classes of Fréchet spaces

Let E be a Fréchet space.

� E is Montel if every bounded set is precompact.

� E is Schwartz if, for every 0-ngbh U, there exists a 0-ngbh V
which is precompact with respect to U.

Examples

� If Ω is an open set of C, H(Ω) is Schwartz and Montel.

� An in�nite-dimensional Banach space is neither Montel, nor
Schwartz.

Warning!

A Schwartz space is always Montel, but the converse is false!
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Isomorphisms and topological invariants

Sometimes, we have to compare the structures of l.c.s./t.v.s.

De�nition
An isomorphism of t.v.s. is a linear, bijective, continuous, and open
map between 2 t.v.s.

� Question: when are 2 t.v.s. non-isomorphic?

; Topological (linear) invariants: properties preserved by
isomorphisms

Examples

Dimension in linear algebra, being Hausdor� in topological spaces,
etc.
And diametral dimension(s) in t.v.s.!
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Kolmogorov's diameters

Let E be a vector space, V ,U ⊆ E , V ⊆ λU (λ > 0).

De�nition
The nth Kolmogorov's diameters of V with respect to U is

δn(V ,U) = inf {δ > 0 : ∃L ⊆ E , dim(L) ≤ n, s.t. V ⊆ δU + L} .

Important property

If U is a ball centred at 0 and associated to a seminorm, then

V is precompact with respect to U ⇔ δn(V ,U)→ 0.
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Diametral dimension

Let E be a t.v.s. and U be a basis of 0-nghbs.

De�nition
The diametral dimension of E is

∆(E ) =
{
ξ ∈ CN0 : ∀U ∈ U , ∃V ∈ U ,V ⊆ U, s.t. ξnδn(V ,U)→ 0

}
.

Properties

1. ∆ is a topological invariant (if E ∼= F , then ∆(E ) = ∆(F )).

2. If E is Fréchet,
� if E is not Schwartz, ∆(E ) = c0;
� if E is Schwartz, l∞ ⊆ ∆(E ).
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Another diametral dimension...

De�nition

∆b(E ) =
{
ξ ∈ CN0 : ∀U ∈ U , ∀B bounded, ξnδn(B,U)→ 0

}
.

Open question

Do we have
∆(E ) = ∆b(E )

if E is Fréchet?
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Proposition

If E is Fréchet,

� if E is not Montel, ∆b(E ) = c0;

� if E is Montel, l∞ ⊆ ∆b(E ).

Consequences
� If E is not Montel, ∆(E ) = ∆b(E ) = c0.

� If E is Montel but not Schwartz, then ∆(E ) = c0 ( ∆b(E ).

New open question

Do we have
∆(E ) = ∆b(E )

if E is Fréchet-Schwartz?
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A positive partial result

Slight variations of diametral dimensions...

∆∞(E ) :=
{
ξ ∈ CN0 : ∀U ∈ U ,∃V ∈ U , s.t. (ξnδn(V ,U))n ∈ `∞

}
,

∆∞
b (E ) :=

{
ξ ∈ CN0 : ∀U ∈ U ,∀B bounded, (ξnδn(B,U))n ∈ `∞

}
.

Theorem (2016, L.D., L. Frerick, J. Wengenroth)

If E is Fréchet-Schwartz, then

∆∞(E ) = ∆∞
b (E ).

In particular, if ∆(E ) = ∆∞(E ), then ∆(E ) = ∆b(E ).
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Schwartz spaces with ∆(E ) = ∆∞(E )

� Classic sequence spaces (�Köthe echelon spaces�) (2017, F.
Bastin, L.D.);

� Hilbertizable spaces (in particular nuclear spaces) (2016, L.D.,
L. Frerick, J. Wengenroth).
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Another su�cient condition

De�nition (2013, T. Terzio§lu)

A bounded set B of a Fréchet space E is prominent if, for every
0-ngbh U, there exist a 0-nghb V and C > 0 s.t. ∀n

δn(V ,U) ≤ Cδn(B,V ).

Proposition (2013, T. Terzio§lu)

If E has a prominent bounded set, then ∆(E ) = ∆b(E ), but the
converse is false.

Spaces with prominent bounded sets (2016, L.D., L.F., J.W.)

Fréchet spaces with Property
(
Ω
)
: if U = (Uk)k ,

∀m,∃k ,∀j , ∃C > 0,∀r > 0,Uk ⊆ rUm +
C

r
Uj

(the converse is false).
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And for non-Fréchet/non-metrizable spaces?

Theorem (2017, F. Bastin, L.D.)

There exists a family of Schwartz (and/or nuclear), non-metrizable,
l.c.s. E with

∆(E ) 6= ∆b(E ).

Main idea: considering spaces for which the linear span of each
bounded set is �nite-dimensional.
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Thank you for your attention!
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