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Abstract

This thesis is about the computer vision-based automation of specific tasks of face perception,
for specific applications where they are essential. These tasks, and the applications in which they
are automated, deal with the interpretation of facial expressions.

Our first application of interest is the automatic recognition of sign language, as carried out via
a chain of automatic systems that extract visual communication cues from the image of a signer,
transcribe these visual cues to an intermediary semantic notation, and translate this semantic nota-
tion to a comprehensible text in a spoken language. For use within the visual cue extraction part of
such a system chain, we propose a computer vision system that automatically extracts facial com-
munication cues from the image of a signer, based on a pre-existing facial landmark point tracking
method and its various robust refinements. With this system, our contribution notably lies in the
fruitful use of this tracking method and its refinements within a sign language recognition system
chain. We consider the facial communication cues extracted by our system as facial expressions
with a specific interpretation useful to this application.

Our second application of interest is the objective assessment of visual pursuit in patients with
a disorder of consciousness. In the clinical practice, this delicate assessment is done by a clini-
cian who manually moves a handheld mirror in front of the patient’s face while simultaneously
estimating the patient’s ability to track this visual stimulus. This clinical setup is appropriate, but
the assessment outcome was shown to be sensitive to the clinician’s subjectivity. For use with a
head-mounted device, we propose a computer vision system that attaches itself to the clinical pro-
cedure without disrupting it, and automatically estimates, in an objective way, the patient’s ability
to perform visual pursuit. Our system, combined with the use of a head-mounted device, therefore
takes the form of an assisting technology for the clinician. It is based on the tracking of the pa-
tient’s pupil and the mirror moved by the clinician, and the comparison of the obtained trajectories.
All methods used within our system are simple yet specific instantiations of general methods, for
the objective assessment of visual pursuit. We consider the visual pursuit ability extracted by our
system as a facial expression with a specific interpretation useful to this application.

To some extent, our third application of interest is the general-purpose automatic recognition
of facial expression codes in a muscle-based taxonomic coding system. We do not actually provide
any new computer vision system for this application. Instead, we consider a supervised classifi-
cation problem relevant to this application, and we empirically compare the performance of two
general classification approaches for solving this problem, namely hierarchical classification and
standard classification (“flat” classification, in this comparative context). We also compare these
approaches for solving a classification problem relevant to 3D shape recognition, as well as artifi-
cial classification problems we generate in a simulation framework of our design. Our contribution
lies in the general theoretical conclusions we reach from our empirical study of hierarchical vs. flat
classification, which are of interest for properly using hierarchical classification in vision-based
recognition problems, for example for an application of facial expression recognition.



ii

Résumé

Cette thèse traite de l’automatisation par vision par ordinateur de tâches spécifiques de perception
du visage, pour des applications spécifiques dans lesquelles elles sont essentielles. Ces tâches, et
les applications où elles sont automatisées, portent sur l’interprétation des expressions faciales.

Notre première application d’intérêt est la reconnaissance automatique de la langue des signes,
par une chaîne de systèmes qui extraient les indices de communication visuelle de l’image d’un
interprète, transcrivent ces indices en une notation sémantique intermédiaire, et traduisent cette
notation en un texte compréhensible dans une langue parlée. Pour son utilisation dans une telle
chaîne, nous proposons un système de vision par ordinateur qui extrait automatiquement les in-
dices de communication faciale de l’image d’un interprète, sur base d’une méthode pré-existante
pour le suivi de points de repère du visage. Notre contribution réside surtout dans l’utilisation
fructueuse de cette méthode de suivi et de ses raffinements, au sein d’une chaîne de systèmes pour
la reconnaissance de la langue des signes. Nous considérons les indices de communication faciale
extraits par notre système comme des expressions faciales avec une interprétation spécifique, qui
est utile à la reconnaissance automatique de la langue des signes.

Notre deuxième application d’intérêt est l’évaluation objective de la poursuite visuelle chez les
patients atteints d’un trouble de la conscience. Dans la pratique clinique, cette évaluation délicate
est effectuée par un clinicien qui déplace manuellement un miroir de poche devant le visage du
patient tout en estimant sa capacité à suivre ce stimulus. Cette procédure est appropriée, mais
cependant sensible à la subjectivité du clinicien. Pour une utilisation jointe avec un appareil monté
sur tête, nous proposons un système de vision par ordinateur qui s’attache à cette procédure sans
la perturber et estime automatiquement, de manière objective, la capacité du patient à effectuer
une poursuite visuelle. Joint à l’appareil monté sur tête, notre système prend la forme d’une
technologie d’assistance pour le clinicien, basée sur le suivi de la pupille du patient, le suivi du
miroir déplacé par le clinicien, et la comparaison des trajectoires obtenues. Nous considérons la
capacité de poursuite visuelle extraite par notre système comme une expression faciale avec une
interprétation spécifique, utile à l’évaluation objective de la poursuite visuelle.

Dans une certaine mesure, notre troisième application d’intérêt est la reconnaissance automa-
tique des expressions faciales, telles que décrites par un système de codage basé sur les muscles
du visage. Nous considérons un problème de classification lié à cette application, et nous com-
parons empiriquement deux approches générales pour le résoudre: la classification hiérarchique et
la classification standard (dite “plate” dans ce contexte de comparaison). Nous comparons aussi
ces approches pour résoudre un problème de classification lié à la reconnaissance de formes 3D,
ainsi que des problèmes générés dans un environnement de simulation de notre conception. Notre
contribution ne consiste pas en un nouveau système de vision par ordinateur, mais réside dans
les conclusions théoriques que nous tirons de notre étude empirique. Celles-ci sont d’intérêt pour
l’utilisation avantageuse de la classification hiérarchique dans des problèmes de reconnaissance
basée sur la vision, par exemple pour une application de reconnaissance des expressions faciales.
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Chapter 1

Introduction

The face is a central sense organ complex that gathers most of the sensory inputs from the envi-
ronment, to transmit them to the brain where they are processed [1]. In addition to its major role in
sensing for its owner, the face is a powerful visual source of information for an external observer.
On the one hand, each person’s face is unique, notably through the anatomical structure of the
skull. On the other hand, the contractions of muscles beneath the face skin and other neighboring
muscles allow each person’s face to move and deform in a variety of ways (Fig. 1.1). These static
and dynamic variations of the face can be perceived through mere macroscopic visual observation,
and further be given an interpretation, a cognitive process known as face perception [2]. People
use face perception thoroughly and effectively in their everyday social interactions. Recognizing
a person’s identity, age, or gender, determining the presence of an emotional state or a physiolog-
ical activity, detecting communication attempts and impending intents, all of those and more are
face perception tasks, and somewhat basic ones from a human perspective. Indeed, face percep-
tion is typically carried out by humans without much effort [3], for the purpose of laying some
ground knowledge toward inferring more complex semantics, such as understanding the course of
a conversation, or assessing specific skills or elaborated personality traits in a person. However
simple and casual it feels to humans, extensive and various areas of their brain are involved in
face perception [4]. A part of the temporal lobe called the fusiform gyrus is even hypothesized
to be specialized in face recognition, and is sometimes referred to as the fusiform face area for
that reason [5]. The expertise of the human brain in face perception also develops at a very young
age. For instance, provided that a normal social and perceptual experience is given in their early
developmental stages, infants are able to recognize familiar people by their face before one year
old [6]. At about the same age, they are also able to recognize basic emotions and infer simple
intents in people by watching their face, e.g., they can recognize anger and further interpret it as a
potential threat [7]. Because of the intuition and scientific evidence that face perception plays such
an important role in human society, developing automatic systems able to perform face perception
tasks as well as humans do became a major prospect in artificial intelligence. Since face percep-
tion is by definition performed through visual observation, the job naturally went to the field of
artificial intelligence that is given “artificial eyes”, namely computer vision.

The ambition in computer vision is of course greater than automating face perception only.
Broadly speaking, the working hypothesis in computer vision is that any and all cognitive pro-
cesses that humans carry out through their visual system can be emulated by computerized algo-
rithms, designed to aptly analyze and give an interpretation to raw visual data coming from imag-
ing technologies. Most interesting computer vision problems are hard and remain challenging as
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FIGURE 1.1: The superficial layer of the facial muscles and the neighboring mus-
cles of the neck. Illustration from the Atlas and text-book of human anatomy [8].

of today, such as object recognition with thousands of categories [9], and scene understanding,
which consists in giving a description of what is happening in a random scene of the world us-
ing the relevant elements composing the scene and their relationships [10]. Many such problems
require advanced, sophisticated solutions, sometimes for only marginally approaching the perfor-
mance of humans in the same tasks. As computer vision is essentially a field of applied sciences
and technologies, additional challenge comes from the fact that computer vision solutions should
meet the needs of industry and business in order to be truly useful solutions for real-world appli-
cations, and hence become the engines of effective vision-based systems. As a result, anticipating
limited resources is an early and legitimate concern when designing computer vision solutions, and
researchers often have to compromise on the quality and suitability of the available visual data,
as well as the accuracy, robustness, and time complexity of their algorithms. Limited resources is
especially a concern in application domains where the degree of personal and social intrusiveness
of the proposed solutions is critical, i.e., in applications designed to interact with humans, or ana-
lyze human behaviors. Indeed, vision and interpretation are non-interfering, discreet processes by
nature, and intrusive vision-based systems may quickly bring discomfort to their users and/or bias
social cues, therefore losing the greater part of their real-world applicability. In particular, as a re-
sult of the major role of face perception in social-cognitive processes, computer vision solutions to
face perception automation problems are notably subjected to the systematic, inherently imposed
constraint to be not or only mildly intrusive in their setup, their functioning, and their production
of an interpretation.

Nowadays, effective vision-based face perception systems are used in a variety of application
domains, e.g., in biometrics [11], video surveillance [12], image database management [13], hu-
man computer interaction [14], marketing studies [15], and behavioral studies [16], to name a few.
At the core of such systems are computer vision solutions developed and perfected throughout
many years of research, toward emulating face perception tasks that may seem easy and basic
from a human perspective. For instance, face detection, i.e., the problem of finding the locations
of human faces in a random image, was truly effectively tackled for the first time in [17], where
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the machine learning approach known as boosting was used with simple image features rapidly
computed from the summed area table of the image. This breakthrough seminal work was later
improved in various ways [18], but it demonstrated by itself that vision-based face detection could
be used in real-world applications, with human-like robustness and processing speed. Face align-
ment, i.e., the problem of finding the locations of fiducial landmark points in a face image, such
as the eye corners, the nose tip, the mouth corners, etc., is another problem that has been widely
studied in the computer vision community with great success. The first practical, fast and accu-
rate solutions to face alignment were based on the iterative refinement of the locations of facial
landmark points from a coarse initial estimate, using a deformable shape model and an image
cost function [19, 20]. Building on this optimization approach, robust face alignment solutions
were later proposed to cope with random changes in identity and illumination conditions [21, 22,
23, 24]. Another popular computer vision problem is emotion recognition, which is normally de-
fined as recognizing in face images the so-called prototypical emotions, i.e., happiness, sadness,
anger, disgust, surprise, and fear. Very effective solutions have been proposed for this problem,
which have human-like performance on data produced in a laboratory environment, i.e., in an
environment where the illumination conditions are controlled and the subjects are collaborative.
For instance, the authors of [25] proposed to use image features that encode the local directional
patterns of the face texture, and perform emotion recognition from these features with the machine
learning method known as support vector machine. Face recognition, i.e., the problem of identity
retrieval from a face image, has also received a lot of attention in the computer vision community
[26]. Recently, Facebook proposed its face recognition system called DeepFace, which uses 3D
face modeling and the powerful machine learning approach known as deep learning with artificial
neural networks. DeepFace has a performance nearly equivalent to that of humans in the task of
distinguishing thousand of faces from each other [27], which is particularly impressive because
DeepFace was benchmarked on the “Labeled Faces in the Wild” dataset [28].

The term “in the wild” is used to distinguish data produced in a laboratory environment from
data acquired from one or several more natural sources, i.e., data acquired in random environments
where no control is applied a priori. Achieving human-like performance in the wild is actually an
attractive challenge common to most interesting computer vision problems. For some years now,
recurrent events are organized where computer vision researchers are invited to test their methods
and present their results on in the wild benchmark datasets for various visual tasks. To name a
few which pertain to the automation of face perception tasks: the “300 Faces In-the-Wild Chal-
lenge” for face alignment [29], the “IARPA Janus Benchmark A Challenge” for face recognition
[30], and the “Emotion Recognition in the Wild Challenge” for emotion recognition [31]. Good
performance in the wild is however not necessarily a must-have in every real-world application. If
for some application the visual conditions can somehow be controlled without foreseeable issue,
then designing a solution on the basis of these controlled conditions will most likely require less
effort to eventually offer a vision-based system that is still effective for this application. Addition-
ally, for most visual tasks performed in the wild, there remains a significant gap in performance
between computer vision solutions and humans, often restricting such solutions to applications
where severe inaccuracies and serious errors can be tolerated. This performance gap also impacts
the real-world applicability of computer vision solutions proposed for face perception tasks in
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the wild, e.g., emotion recognition in the wild performs decently, but is still far to match human
performance [32, 33].

Face perception tasks are of course more numerous than the few examples we have men-
tioned so far. The computer vision problems of face detection, face alignment, emotion recogni-
tion, and face recognition are especially salient and popular, because they are intrinsically very
general-purpose. High-performance standalone solutions to such problems typically spark ideas
for improving various already existing applications, and sometimes inventing brand new ones.
As a matter of fact, the research effort in the development of novel computer vision solutions to
face perception automation is not as often driven by the requirements of specific applications than
by the overall goal of matching human performance in general-purpose problems. In this thesis,
however, we are mostly interested in satisfying the requirements of specific applications about the
automation of specific face perception tasks. Before we go into detail about these tasks and appli-
cations of interest to us, we believe it is useful to present and discuss what we consider as three
possible main axes of distinction for categorizing a face perception task.

The first main axis of distinction is whether a face perception task is about characterizing a
property of the face seen as a mere object, or about recognizing the state of some hidden process
that shows through the face. For instance, face detection and face alignment are computer vision
problems associated with object-focused face perception tasks. They are exclusively about the
localization of the face object, and the deformation patterns of the face object shape, respectively.
Face recognition and emotion recognition are in contrast associated with hidden process-related
face perception tasks: a person’s identity shows on the face, as well as a person’s emotions, but the
face is in these cases a means to access information about the hidden processes of individual names
and emotional states, respectively. Likewise, face-based age estimation and gender recognition
are face perception tasks that aim at revealing semantics beyond the face object, about the hidden
processes that are the current effect of time on a person, and the biological sex, respectively.
Solving a problem of object-focused face perception task is often considered an upstream stage
toward solving what is seen as a more advanced problem of hidden process-related face perception
task. This problem decomposition strategy is intuitive and often successful, but it has its drawback:
it may wrongly presuppose what the true relationship between the face object and the hidden
process is, and therefore lead to suboptimal performance in the automation of the end task despite
intense research efforts dedicated to automate the intermediary task presumed to be necessary.

The second main axis of distinction is about the amount of complementary context informa-
tion that is needed to infer a valid interpretation in a face perception task. In other words, this
distinction is about the degree of dependence of a face perception task on information that cannot
be gathered by visual observation of the face. Object-focused face perception tasks are typically
context-free, as they can be carried out solely by visual observation of the face and provide a
unique, valid interpretation on this basis, e.g., “the face is there” in face detection, or “the nose tip
and eye corners are there” in face alignment. Some hidden process-related face perception tasks
require little to no context information to be carried out, e.g., in face recognition, the uniqueness of
a person’s identity shows on the face without much visual ambiguity (except for a few exceptions,
e.g., identical twins or doppelgangers). Likewise, in emotion recognition with sane, collabora-
tive subjects, the patterns of facial muscle contractions used to display a prototypical emotion are
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mostly without visual ambiguity (even though some subjects may display prototypical emotions
via their face in an unexpected manner). Many other hidden process-related face perception tasks
are however strongly influenced by context. For instance, the recognition of more complex, subtle
emotions in the face, such as anguish, boredom, embarrassment, envy, frustration, guilt, humilia-
tion, lust, pity, remorse, shyness, and worry, to name a few, represents a much harder problem that
is seldom addressed, as it requires to integrate cultural and personal factors, and probably other
pieces of context information, in order to provide valid interpretations. Besides, we believe that
the recognition of the prototypical emotions in the wild, i.e., with non-collaborative subjects, is
also plagued by ambiguities at the visual level in the face, which could explain the performance
gap between humans and computer vision solutions in this case. Another example is the task of
age estimation by face observation. Humans actually use more information than what shows on
the face to narrow down a plausible age range for a person, such as the estimated physical condi-
tion of the subject, and various social cues [34]. One last, maybe more obvious example is the face
perception task of physical attractiveness estimation, which requires to take into account not only
various cultural factors, but also observer-related factors, like the observer’s idea of his/her own
attractiveness [35]. A common strategy used in the automation of context-dependent face percep-
tion tasks is to assume the context to be fixed a priori once and for all, in order to match a unique
interpretation to any visual appearance of the face. This strategy may however recast the complex
face perception task one originally tries to automate into another, simpler one of lesser interest
from a practical standpoint. Such semantic loss is illustrated by the solutions commonly proposed
for the problem of emotion recognition, which are limited to the recognition of six prototypical
emotions, deemed to be mostly independent of any context and fully characterized by the visual
information found in the face.

The third main axis of distinction, which is of particular interest to us in this thesis, is whether
a face perception task deals with a facial expression or not. Precisely defining what facial expres-
sions are is not a trivial exercise. In the usual language, facial expressions are hardly dissociable
of complex semantics beyond the visual level, and are thus naturally associated to hidden process-
related face perception tasks: “an expression of anger” conveys an emotional state, “an expression
of approval” gives a communication cue, “an expression of weariness” indicates a physiological
activity, etc. In the field of behavioral psychology, it is proposed to consider facial expressions
as patterns of facial muscle contractions, stripped of any interpretation that is beyond the face
object. Therefore, in behavioral psychology, distinguising and recognizing facial expressions are
object-focused face perception tasks, e.g., simultaneously raising the inner eyebrows and the up-
per eyelids is a facial expression with the code [1+5] in the taxonomic coding system of facial
expressions proposed in [36]. It is then proposed as a second step to study how the facial expres-
sion codes may be further interpreted to reveal the state of a hidden process, e.g., an emotion, a
feeling of pain, a depression cue, and so forth. This psychology-based definition of facial expres-
sions is appealing to computer vision researchers, mostly because it is almost purely visual and
requires very little context. It is however quite bare and postpones any effort of interpretation that
is beyond the face object, whereas examples in the usual language clearly indicate that very often
facial expressions carry complex meaning. Furthermore, focusing on the facial muscles only is
insufficient in our opinion, because we think that head and eye movements largely contribute to
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facial expressions in many cases. We therefore propose to use the following definition for a facial
expression and its possible interpretation, and we construct the third main axis of distinction of
face perception tasks on the basis of this definition.

A facial expression is a shared and temporary human behavior, purposeful or not,
conscious or not, which primarily involves the whole face or parts of the face.

An interpretation for a facial expression is a semantic concept derived by the joint
analysis of the visual information obtained about the face during the display of the
facial expression, and the context information relevant to the particular interpretation.

Our definition of facial expressions encompasses and extends the psychology-based definition.
Facial muscle contractions may be involved in our definition, but not only. Also, the recognition
of a facial expression is a face perception task that is not limited to provide an object-focused
interpretation in our definition. To clarify, we give below some examples of face perception tasks
that do and do not belong to the interpretation of facial expressions according to our definition.

• Recognizing facial expression codes in a descriptive taxonomic coding system.

Yes. In this case, facial expressions are interpreted as patterns of facial muscle movements
in a coding system. This face perception task is object-focused, but may require a some
context, e.g., to know to which extent a particular person can contract some facial muscle.

• Recognizing emotions, like happiness, sadness, fear, etc.

Yes. This face perception task interprets facial expressions as emotional states, therefore it is
hidden process-related. Context information should here include how emotions are facially
displayed in the targeted population, for example accounting for cultural conventions.

• Recognizing a physiological activity, like blinking, sneezing, yawning, etc.

Yes. Such face perception tasks interpret a facial expression as the indicator of a physio-
logical activity. They are therefore hidden process-related. They are not context-free, since
reflex or semi-autonomous facial expressions can be visually mistaken with purposeful fa-
cial expressions, e.g. blinking with winking.

• Recognizing a head movement, like a head shake, nodding, etc.

Yes. Even though it is the neck muscles that are involved here and not the facial muscles, the
observer performs a face perception task in the category of facial expression interpretation
according to our definition. Such tasks are most often hidden process-related and context-
dependent as, for instance, the recognition of nonverbal approval.

• Recognizing an eye movement, like eye-rolling, target fixation, etc.

Yes. Even though it is the eye muscles that are involved here, the eyes are part of the face
and their temporary movements are facial expressions according to our definition. Such
tasks are typically hidden process-related, e.g., determining whether a person is aware of
his/her surroundings or not. They are also most often context-dependent, e.g., it may be
required to know the position of the target fixed by the person to give a valid interpretation.
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• Recognizing a personal characteristic, like identity, gender, age, etc.

No. Personal characteristics are not shared by people, by definition. Also, personal char-
acteristics are typically persistent, and hardly definable as temporary. Such face perception
tasks do therefore not belong to the category of facial expression interpretation, according
to our definition. They are however hidden process-related, and often context-dependent.

• Recognizing the presence or location of the whole face, the nose tip, the eye corners, etc.

No. These object-focused, context-free face perception tasks are not about human behaviors
a priori, and therefore do not fit in our definition of a facial expression. They may however
consist of an upstream stage toward recognizing a facial expression.

We now introduce the practical and theoretical contributions of this thesis, which is about
the computer vision-based automation of specific face perception tasks in specific applications of
facial expression interpretation. Our practical contributions consist of the development of effec-
tive vision-based systems within two specific application domains: sign language recognition, for
which we propose our facial cue extraction system based on the analysis of face images (Chap. 2),
and visual pursuit assessment in patients with a disorder of consciousness, for which we propose
our objective score calculation system based on the analysis of eye images (Chap. 3). In both of
our systems, we make a fruitful use of well-studied, mature computer vision methods to solve the
problems related to our application domains of interest. Our theoretical contributions come from
an empirical study where we compared the performance of hierarchical and standard, “flat” clas-
sification in specific vision-based recognition problems (Chap. 4). The first problem considered in
this study is the recognition of facial expression codes in a descriptive taxonomic coding system.
We believe that the general conclusions we reached in this study are of interest for properly us-
ing hierarchical classification in vision-based recognition problems, in particular in muscle-based
facial expression recognition, toward a performance gain over flat classification.

Our contributions do not reside in the development of general-purpose computer vision meth-
ods for the automation of tasks of facial expression interpretation. In other words, this thesis is
not about inherently novel algorithmic techniques that would be universally usable for solving any
and all problems related to the interpretation of facial expressions. Instead, the focus in this thesis
is given to (1) our practical use of state-of-the-art computer vision methods for developing two
effective vision-based systems in two application domains about facial expression interpretation,
and (2) our empirical study and theoretical conclusions about hierarchical vs. flat classification in
vision-based recognition problems such as facial expression code recognition. As an aside, we try
to use a comprehensive terminology in this thesis for structuring the concept of facial expression
interpretation, the main elements of which terminology have been presented in this introductory
chapter. Finally, in the conclusion of this thesis, we give further comments about our overall work,
and consider possible paths for improvement (Chap. 5). We also briefly mention in the conclusion
the contribution we made to the development of another vision-based system within the appli-
cation domain of drowsiness monitoring. This system was proven effective enough to allow the
creation of a commercial activity via a spin-off company from the university of Liège.
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Chapter 2

Facial cue extraction system for
automatic sign language recognition

In this chapter, we present our computer vision system that extracts specific facial expressions

used in the recognition of sign language. Specifically, our system robustly tracks landmark points

on a signer’s face in a video, and derives sign language facial communication cues from the

tracked landmark points. We originally developed this system as a contribution to the SignSpeak

project, funded by the European Community’s 7th Framework Programme, where the goal was

to create a new vision-based technology for translating sign language to text and improve the

communication between deaf and hearing people [37]. To showcase the usefulness of our sign

language facial cues, we report some results obtained with the sign language recognition system

chain originally proposed in SignSpeak, which incorporates our system. We also give an eval-

uation of the facial landmark point tracking performance of our system. Besides in SignSpeak

activity reports, part of our work was published in an paper gathering early SignSpeak results on

video-based sign language facial and hand cue extraction, in the proceedings of the 4th Workshop

on the Representation and Processing of Sign Languages [38]. Another publication related to

our work in SignSpeak describes a face shape-annotated sign language recognition dataset, in the

proceedings of the 8th International Conference on Language Resources and Evaluation [39]. Af-

ter SignSpeak, we participated to follow-up published work where our facial cue extraction system

was used, including (1) a system that recognizes the visible phonemes, which was shown to im-

prove sign language translation, in the proceedings of the 10th International Workshop on Spoken

Language Translation [40], and (2) a technique to enhance sign language avatar animation with

facial expressions and mouthing, in the 3rd International Symposium on Sign Language Transla-

tion and Avatar Technology [41]. The content of this chapter is an original compilation of the

unpublished work on our facial cue extraction system, and the jointly published work where our

system was used or partly described. In any case and unless explicitly stated otherwise, all work

presented in this chapter is our own.

2.1 Introduction

Sign languages are used by about 70 million deaf people around the world as their mother lan-
guage, and several millions of hearing people as their secondary language [42]. People able to
sign, i.e., to perform some form of sign language, are commonly referred to as signers. A generic
and simple “contact” sign language, called International Sign, helps signers to quickly understand
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each other in congresses, sports events, and when traveling and socializing. Yet the richer local
sign languages are preferred by signers in their everyday interactions [43]. Local sign languages
are not simple gestural codes nor pantomimes, but complex ways of communication which nat-
urally develop and diversify through time and location. Each country typically has one or more
local sign languages, and even some dialect forms do exist. Interestingly, local sign languages
share linguistic roots in the same way as spoken languages do [44], but are otherwise largely in-
dependent of the surrounding spoken languages used in the same regions. This is because the
natural local sign languages typically develop within the deaf communities, independently of the
spoken languages. Actually, ways of communication that are primarily based on exploiting the
visual-gestural medium are thought to have existed and developed in parallel for as long as the
articulated speech in human history [45]. As a consequence of the strong differences between
spoken languages and local sign languages, signers which depend the most on the visual-gestural
medium, i.e., the deaf and hard of hearing communities, encounter huge difficulties to communi-
cate with the hearing people that do not use sign language (and the other way around). Therefore,
deaf people cannot easily integrate into the educational, social, and work environments typically
designed for the hearing people [46]. Since the vast majority of hearing people cannot be com-
pelled to learn functioning elements of sign language, and since the deaf people obviously cannot
adjust any further to environments designed for hearing people, the social gap between the deaf
and hearing communities is strongly present, even in the countries plainly aware of, and willing
to tackle this issue [47]. In our modern times, in which the research in artificial intelligence and
the industrialization of information technologies are booming, it is expected that this gap between
signers and speakers be somehow bridged by the development and spread of automatic systems
specialized to recognize sign language [48].

From a perceptual point of view, the difference between sign and spoken languages lies in the
type and number of modalities that are at play during the communication process [49]. Indeed,
spoken languages primarily use the auditory-vocal medium and therefore focus on a single modal-
ity that is the vocal tract. Sign languages use the visual-gestural medium, where the hand gestures,
facial expressions, and body posture correspond to multiple parallel modalities, which altogether
convey communication cues from the signer to the viewer. Hand gestures are of course essential
to sign languages, but the other modalities play an important role as well, especially facial ex-
pressions. In fact, during a communication in sign language, the viewer looks more at the face
than at the hands of the signer, for seizing clarity and sensitivity. In frequent occurrences, hand
gestures are even ambiguous in isolation, and facial expressions then behave as nonmanual gram-
matical and semantic markers that are crucial to convey the specific message, e.g., to indicate the
negation, or the interrogative, as shown in Fig. 2.1. In many sign languages, the most important,
disambiguating facial expressions include raising or lowering the eyebrows, opening or closing
the eyes or the mouth, and nodding or shaking the head.

Perceptually, sign languages are multimodal by nature. From a linguistic point of view, how-
ever, a communication in sign language has a sequential structure composed of small grammatical
units, i.e. morphemes, just like words compose a communication in a spoken language. Fluent
signers can point out which sequence of morphemes corresponds to a sentence in sign language,
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FIGURE 2.1: Left: the “Yes/No” interrogative facial expression used in
the American sign language (ASL). Right: the hand gesture “You” in ASL
with the “Yes/No” facial expression in ASL, meaning either “Is it you?”, or
“Are you. . . ?”, or “Did you?”. Pictures from the ASL University website

(http://www.lifeprint.com/).

by watching and combining information from the hand gestures, facial expressions, and body pos-
ture [50, 44]. This sequential linguistic view of sign language helps designing an automatic sign
language recognition system. Indeed, the problem of sign language recognition can therefore be
divided into two parts: (1) converting the sign language multimodal communication signal into a
sequence of morphemes, and (2) converting the sequence of morphemes into a well-constructed
text in a target spoken language. Assuming that sign language morphemes can be expressed in a
text form, the first part corresponds to a transcription process, and the second part corresponds to
a translation process.

Transcribing a sign language is not as natural a process as transcribing a spoken language.
When transcribing a spoken language, the target text form is most of the time given, rich, and
intuitive, because writing is actually a natural complementary technology to speech [51]. Sign
languages, however, do not have natural text forms associated to them [52], and writing down
a communication in sign language first requires to define its target text form. A sign language
can receive a somewhat expressive text form, via a morpheme-by-morpheme annotation proce-
dure known as glossing, a glossed sentence being the resulting sequence of morpheme labels, or
glosses [50]. Glossing is actually more general than its application to the transcription of sign
languages. This annotation procedure was originally invented as an accessory tool to help a reader
understand, via labels in a familiar language, the lexical and morphological patterns of a sentence
in a foreign language. For example, German “Es geht mir gut” may be glossed using English as “It
goes to-me good”, which is not a correct translation, but a sequence of labels that retain the neces-
sary information to reconstruct the smooth, grammatically correct and meaningful corresponding
sentence in English, i.e., “I’m doing fine”. In sign language glossing, the glosses are typically
composed of words in the target spoken language, as well as of various other exotic notations
to account for what cannot be expressed with words. For instance, in American sign language
(ASL) glossing, the contraction between two words is denoted by “__^__”, which gives the ASL
gloss “DO__^__NOT KNOW I” for the sentence “I don’t know”. Using an effective glossing
procedure, one can therefore accurately transcribe sign language, and further produce so-called
parallel corpora that include glossed sentences in a source sign language, and written sentences
in a target spoken language. In all generality, parallel corpora are datasets of aligned transcribed

http://www.lifeprint.com/
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sentences from a pair of source and target languages. Such corpora are typically used by machine
translation methods to learn a translation model between a source and a target language of any
nature [53]. This means that the translation process part of a sign language recognition system can
be pretty much a boilerplate implementation of a standard machine translation method based on
parallel corpora. If the source language is a glossed sign language, the quality of the translation
will mostly rest upon the quality and expressiveness of the glossing procedure.

An end-to-end, fully automatic sign language recognition system should include a part that
performs automatic glossing, in the same way as a voice-based translation system between two
spoken languages includes a part that performs automatic speech transcription. Speech to text
technologies attempt to segment the vocal tract signal and assign their associated text elements to
the voice segments [54]. In sign language, the visual signal to transcribe, i.e., to gloss, is composed
of multiple modalities that are all important for the communication process [49]. Automatically
glossing sentences in sign language thus requires a system able to divide the multimodal visual
signal with gloss-level time boundaries, and assign their associated glosses to the segments defined
by these time boundaries. Note that this view corresponds to the automatic glossing of continuous
sign language [37], where full sentences are to be analyzed, with the signer performing one sign
after the other naturally, without pausing. However, the visual signal segmention part is sometimes
left aside in the problem of automatic glossing, therefore focusing on the simpler isolated sign
recognition problem [55, 56, 57]. In any case, effectively tackling single-gloss recognition from
the multimodal visual signal is an essential part of any automatic glossing system.

In practice, a cheap yet effective way to capture the multimodal visual signal from sign lan-
guage is to acquire videos where the signer appears whole from the waistline up. Using such
video data, one can take a component-based view and independently extract information about the
hands, face, and body posture, using computer vision methods. The information extracted from all
modalities can then be combined into a full high-level representation of the multimodal visual sig-
nal [38], and, from this point onward, automatic glossing can be treated as a supervised machine
learning problem, where the machine has to learn how to infer gloss labels from the combined
representation of visual features extracted from videos of the signers. The recognized glosses can
then be fed to a standard machine translation system, trained with parallel corpora of glossed and
spoken language-transcribed sentences, to produce the final spoken language translation.

The work presented in this chapter is about the computer vision system we developed for the
automatic extraction of sign language-specific facial expressions from a communication in sign
language recorded on video. Our system, an early version of which was partly introduced in [38],
is based on the tracking of a set of facial landmark points in the signer’s face image. For track-
ing these landmark points, we use a face alignment method called active appearance models, in
particular the formulation proposed by [21], with several refinements. On the basis of the frame-
by-frame configurations of the tracked facial landmark points, our system continuously extracts
specific facial expressions useful for sign language recognition, e.g., measurements of the mouth
and eye opening degrees. It is noteworthy that we did not specify these facial expressions ac-
cording to codes in a general-purpose facial expression coding system, such as the one in [36].
Instead, the facial expressions we extract with our system were specified in a way that is directly
useful to sign language recognition, notably with the help of linguistics and machine translation
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experts specialized in sign language. Because this specification comes from the contextual need to
effectively identify facial communication cues in sign language, we consider that our system auto-
mates a face perception task of facial expression interpretation (cf. our discussion in Chap. 1), and
we call our system a sign language facial [communication] cue extraction system, to emphasize
that, ultimately, its role is to automatically provide facial cues within a sign language recognition
system chain.

In the results section of this chapter, we first present some facial landmark point tracking
results, obtained with the face alignment method on which our sign language facial cue extraction
system is based. As a byproduct of the design of our system, we created facial landmark point
annotations, which were incorporated into a sign language recognition dataset (described in length
in [39]). We also briefly present this dataset in the results section of this chapter. Then, to showcase
the usefulness of our system in the automatic recognition of sign language, we present some
results obtained with a gloss recognition system, which uses our facial cues in combination with
hand cues [58, 37]. Finally, we present some typical machine translation results from glosses to
spoken language, and we show how these results can be improved by closely integrating the gloss
recognition and machine translation frameworks with a viseme, i.e., visible phoneme recognition
system, as opposed to the standard sequential approach of gloss recognition followed by machine
translation. This viseme recognition system is based on our system to extract sign language facial
cues, and seemingly performs the automatic recognition of mouthing, i.e., silently pronouncing
words of a spoken language while signing [40].

2.2 Material and methods

2.2.1 Face alignment

The problem of face alignment is often treated as a particular instance of the general problem
of deformable object alignment, which consists in finding the best image locations of a set of
landmark points a priori defined for some object of interest that has a deformable shape, e.g.,
the face, an internal organ, etc. Therefore, even though in the following our phrasing may seem
limited to face alignment, the reader should keep in mind that most of the technicalities presented
in this section can be used as is for solving other deformable object alignment problems. Also
note that all material and methods presented in this section about face alignment can be found in
the literature, in one form or another. Yet all formulation of the concepts and all implementation
choices are our own, and we hope that the reader will find our presentation useful to grasp what
face alignment is all about, and how we implemented face alignment in our application.

Formally, the problem of face alignment in a 2D image is as follows. We define a facial
landmark point as a couple (xi, ci), where xi is a variable image location, i.e., a 2D point in some
image coordinate system, and ci is a fixed, predefined semantic concept about the face, e.g., “the
inner corner of the left eye”. LetL = {(xi, ci)}, i ∈ {1, . . . , L}, be a set of facial landmark points.
The size L of this set is arbitrary, but finite. Let I be a (possibly infinite) set of images containing
a face. The problem of face alignment consists in finding an algorithmic method which, for any
image I ∈ I, moves the L facial landmark points of L, so that their image location xi in I best
corresponds to their semantic concept ci.
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Point indices Face parts

0–2 right eyebrow upper part

3–5 left eyebrow upper part

6–9 right eye eyelids

10–13 left eye eyelids

14–15 nasal ridge

16–17 nasal base

18–21, 24–25 upper lip

18, 21–23, 26–27 lower lip

28–37 cheeks and chin

FIGURE 2.2: An example of a face shape annotation with 38 landmark points.
We annotated 369 such images with these landmark points for the seven signers of
the RWTH-PHOENIX-Weather sign language recognition dataset (introduced in
[39]). These images and shape annotations are available for download at https:

//iis.uibk.ac.at/datasets/phoenix-annotations.

The number L of facial landmark points one can define is arbitrary, as well as the anatomical
face regions where to anchor them, embodied by the semantic concepts {ci}. However, as face
alignment methods usually involve building statistical models from shape-annotated face images
provided by human annotators, e.g., the shape-annotated image in Fig. 2.2, there are two rules
of thumb for defining the facial landmark points: (1) to place them in regions where a human
annotator can find them consistently for various people’s faces with various facial expressions,
and (2) to increase their density in regions that deform the most within the face, e.g., the mouth
region. The expected resolution of the face image may be an important aspect as well, because
if the face image resolution is poor, a human annotator will find it difficult to accurately adjust a
fine-grained face shape composed of many landmark points.

Of the many methods proposed for face alignment, we use active appearance models in this
work (AAMs, first proposed by [20]), as a part of our facial cue extraction system, which is to be
used eventually as a part of a sign language recognition system chain. Our choice to use AAMs
is arbitrary, and another face alignment method could be used instead, for the same purpose and
with similar benefits. Indeed, there exist other methods than AAMs which have been proven to
be better suited for performing face alignment in the wild, e.g., constrained local models [59],
cascaded shape regression models [23, 60], and deep convolutional network models [24]. AAMs
however have multiple interesting qualities, for which they deserve consideration:

1. They have a principled and appealing formulation: their machinery is easy to grasp, based
on what is called the generative approach to modeling.

2. They are widely studied: many refinements have been proposed to improve their robustness
to occlusions, their time efficiency, and their generalization capabilities.

https://iis.uibk.ac.at/datasets/phoenix-annotations
https://iis.uibk.ac.at/datasets/phoenix-annotations
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3. They are flexible: the gradient descent-based formulation of their alignment procedure al-
lows to incorporate various custom terms in the form of smooth constraints.

4. They are effective in practice: they integrate smoothly as a functional part of real-world
systems for various face-centered applications.

In light of these qualities, and despite their suboptimal performance in the wild [61], we believe
that AAMs constitute a method of choice in our application. Indeed, our application context
does not require a face alignment method with outstanding performances in the wild. We aim
at extracting facial communication cues from videos of signers who are aware of being filmed
by a camera. Moreover, signers naturally try to make themselves be well-understood via the
visual-gestural medium, notably meaning here to be “easy-to-see”, for the purpose of obtaining a
high-quality communication in sign language. Yet it is natural for signers to perform large head
movements, extreme facial expressions, and to wave their hands in front of their face. AAMs
allow us to tackle these difficulties elegantly by the addition of refinements designed to be robust
against such cases.

It must however be pointed out that AAMs have difficulties to effectively generalize with re-
spect to identity, i.e., to be fast, robust, and generic to all people, even in controlled, not in the wild
conditions [21]. To tackle this limitation, we use the strategy proposed in [62], for creating on-the-
fly a fast and robust AAM specific to a new signer, by adapting a slower and less robust generic
AAM built from many different people’s faces. This strategy helps us achieve a generalization
performance of a quality that allows our system to work with most people’s faces.

Modeling the deformable face shape

One could consider it is a good strategy to break up the problem of face alignment into multi-
ple independent problems of single landmark point alignment. However, ignoring the geometric
relationships between the landmark points of the face shape is actually prone to failure in most
practical cases, because the relationship between a single landmark point and the image is typ-
ically ambiguous at the local level. AAMs and many other face alignment methods therefore
take a holistic approach for modeling the face shape, i.e., they consider the landmark points as
a whole, by representing them and their geometric relationships with a single shape model. A
holistic shape model can indeed be used to regularize the face alignment procedure, i.e., to resolve
the local shape-to-image ambiguities and thus prevent absurd, non-valid face shapes to be even
considered as possible solutions by the procedure.

AAMs build and use a holistic shape model in the form of a parametric point distribution
model (PDM). A parametric PDM is a mapping between a set Θ of shape parameters and the set
of image locations {xi} of the L facial landmark points in L (see previous section). We denote a
parametric PDM, from this point forward simply called PDM, as a vector mapping

s : R|Θ| → R2L, θ 7→ [x1; . . . ; xL], (2.1)

where θ is the shape parameter vector that contains the shape parameters in the (ordered) set Θ,
and where [x1; . . . ; xL] is the 2L long shape vector that contains the stacked 2D coordinates of
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image locations {xi} of theL facial landmark points. Without loss of generality, the parameterized
shape vector s(θ) can be denoted as [x1(θ); . . . ; xL(θ)]. Also, in the following, when the shape
parameters have fixed values, we often conveniently abuse the notation in Eq. 2.1 by omitting the
explicit mention of the fixed shape parameter vector θ̂, and denote the mapped fixed shape vector
s(θ̂) simply as s, and a mapped fixed landmark point location xi(θ̂) simply as xi.

A PDM can produce a complete face shape for any values of the shape parameters, which is
why this type of modeling is called generative, as opposed to discriminative modeling. A discrim-
inative model cannot be used to actually produce face shapes, but retains only what is needed to
apply shape regularization within the face alignment procedure, e.g., in [60], where shape regu-
larization is learned as a series of regression models, one for each stage of an iterative alignment
procedure, each model being used to apply a holistic correction to independently estimated facial
landmark point locations at this stage.

The PDM shape parameters in Θ are partitioned in two parameter subsets, which account
for two different types of shape deformation called global and local, i.e., in vectorial form, θ =

[θ(g);θ(l)], where θ(g) accounts for global shape deformation, and θ(l) accounts for local shape
deformation. The notion of global and local shape deformation has to do with the geometric in-
variants defined for a type of shape deformation. For instance, two face shapes can be considered
locally equivalent even though one is twice as large as the other, because the local shape defor-
mation is considered invariant to scaling. Conversely, two face shapes can be considered globally
equivalent even though they depict different people, because the global shape deformation is con-
sidered invariant to changes in identity. In total, four global shape parameters are chosen for the
PDM to account for global shape deformation, i.e., θ(g) = [s; tx; ty;α], where s controls isotropic
scaling, tx and ty control 2D horizontal and vertical translation, respectively, and α controls 2D
rotation. These parameters correspond to the four degrees of freedom (DoF) of the 2D similarity
transform, and can also be used to transform any fixed shape s = [x1; . . . ; xL] to another shape
s′ = [x′1; . . . ; x′L] with a similarity mapping N, as

N : θ(g), s 7→ s′, where x′i = s

[
cos(α) −sin(α)

sin(α) cos(α)

]
xi +

[
tx

ty

]
∀i ∈ {1, . . . , L}. (2.2)

The PDM local shape parameters θ(l) are meant to control any type of shape deformation that
cannot be described by global shape deformation based on the similarity transform. In AAMs,
the quantities used to define and manipulate the local shape parameters are obtained by statistical
analysis on a set of example face shapes, via a two-step procedure. Let {sj}, j ∈ {1, . . . , T}, be
a set of example face shapes, provided by human annotators. The first step of the procedure is to
align those shapes globally using a Procrustes analysis [63]. This Procrustes analysis effectively
removes the difference in global deformation between the example shapes {sj}, by transforming
every example shape sj with a 2D similarity N (Eq. 2.2), so that their transformed shape s′j is
globally equivalent to a common reference shape s0, i.e.,

s′j = N(θ̂
(g)
j , sj)

g
= s0, ∀j ∈ {1, . . . , T}, (2.3)

where θ̂(g)
j denotes the optimal global shape parameter values used to align sj to s0 and give s′j ,
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FIGURE 2.3: The local part of a PDM for the face shape, as a subspace model
built by PCA. The (triangulated) reference face shape s0 is shown to the left, and
to the right are the actions on s0 of the first three modes of local deformationφ1,
φ2, andφ3. The lengths of the deformation vectors are indicative of the variances

observed in the PCA for those modes. This illustration is from [65].

and
g
= denotes the global equivalence between two shapes. The second step of the procedure is

to apply a principal component analysis (PCA) to the set of aligned face shapes {s′j} [64], which
eventually gives a linear subspace model for the (globally aligned) face shape, as the mapping

s′ : θ(l) 7→ s0 +Φθ(l) = s0 +

N∑
i=1

θ
(l)
i φi,

Φ = [φ1 . . .φN ] ∈ R2L×N , θ(l) = [θ
(l)
1 ; . . . ; θ

(l)
N ],

(2.4)

where s0 is the reference face shape used in Eq. 2.3, here corresponding to the origin of the
subspace, andΦ is an orthogonal basis containing linear modes of local shape deformation, which
consist of the N principal components calculated on the globally aligned example face shapes.
Together, the 2D similarity transform defined in Eq. 2.2 and the subspace model defined in Eq. 2.4
give the complete form of the PDM mapping defined in Eq. 2.1, as

s : θ = [θ(g);θ(l)] 7→ N(θ(g), s′(θ(l))) = Nθ(g)(s0 +Φθ(l)), (2.5)

where we have used Nθ(g)(·) in place of N(θ(g), ·) to make the notation less cluttered. So defined,
a PDM has 4 + N DoF, which is typically less than the 2L DoF corresponding to the image
locations {xi} of the L landmark points, therefore limiting the possible face shapes that the PDM
can produce. To further prevent the production of non-valid face shapes, one should also keep trace
of the variances observed along the principal components calculated on the aligned face shapes.
Indeed, those variances estimated from valid face shapes provided by human annotators can be
used to define a validity region within the subspace, e.g., a hyperellipsoid or a hyperbox, within
which the values of the local parameters θ(l) should remain. Figure 2.3 shows a subspace model
built by PCA, representing the local part of a PDM for the deformable face shape.

Note that there exist appropriate methods other than PCA for building a PDM of the face.
For example, one can apply an independent component analysis to the example face shapes [66],
or model the shape as an elastic material using finite element modes of deformation, without
using any statistical analysis [67]. Still, PCA is most commonly used and met in the literature on
generative models of the face shape, because of its simplicity and adequacy in providing ways to
represent valid face shapes.
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Modeling the relationship between the face shape and the image

AAMs model the relationship between the face shape and the image as an image similarity func-
tion between a synthetic, shape-parameterized face image and a real image. For any given, real
target image, this similarity function is defined over the parameters of a fully generative model of
the face shape and face texture, i.e., a model that can produce photorealistic synthetic face images.
In this view, aligning the face to a target image consists in finding the optimal model shape and
texture parameter values, i.e., the parameter values that give the largest similarity value for the
target image. The aligned facial landmark points for the target image can then be retrieved from
the optimal shape parameter values. In contrast to this generative approach to modeling, discrimi-
native modeling of the relationship between the face shape and the image is more commonly met
in current face alignment methods, which focus on achieving high-quality performance in the wild
[61]. However, as mentioned above, our application to sign language recognition does not need
outstanding performance in the wild, and face alignment based on generative modeling, notably
as proposed in AAMs, is suitable in our case.

In order to get a fully generative model of the face shape and texture, AAMs couple their
holistic model of the deformable face shape, i.e., the PDM in Eq. 2.5, with a holistic “shape-
free” model of the variations of the face pixel intensities. Specifically, AAMs separately model
the dense and shape-normalized face texture, using a generative model that we call a parametric
texture distribution model (TDM). Let the normal shape be the reference shape s0, from the PDM
local subspace model in Eq. 2.4. Let S0 = {(ui, ai)}, i ∈ {1, . . . ,K}, be a set of normal pixels,
composed of theK fixed, normal locations {ui} and their corresponding variable intensities {ai}1.
To get a dense view of the shape-normalized texture, the normal pixel locations {ui} are typically
organized as a tight grid that spans the convex hull of s0. A parametric TDM is then defined as
a mapping between a set Λ of texture parameters and the set of intensities {ai} of the K normal
pixels. We denote a parametric TDM, from this point forward simply called TDM, as a vector
mapping

a : R|Λ| → RK , λ 7→ [a1; . . . ; aK ], (2.6)

where λ is the texture parameter vector that contains the texture parameters in the (ordered) set
Λ, and where [a1; . . . ; aK ] is a texture vector that contains the stacked intensities of the K normal
pixels in S0. Without loss of generality, the parameterized texture vector a(λ) can be denoted
as [a1(λ); . . . ; aK(λ)]. Also, in the following, when the texture parameters have fixed values,
we often conveniently abuse the notation in Eq. 2.6 by omitting the explicit mention of the fixed
texture parameter vector λ̂, and denote the mapped fixed texture vector a(λ̂) simply as a, and a
mapped fixed pixel intensity ai(λ̂) simply as ai.

For any values of the texture parameters, a TDM can produce a face texture, dense and shape-
normalized. A synthetic, photorealistic image of the face can then be obtained by projecting
a texture generated by the TDM onto a shape generated by a PDM, using the facial landmark
points as the control points of a warping function. Suitable warping functions parameterized by
control points include thin-plate splines, and the more commonly used piecewise affine warp,

1For simplicity, we only consider the case where a pixel value is a scalar, gray-level intensity. The case where
multiple color channels are involved, e.g., red, green, and blue, would be treated in a similar manner. However, since it
would make the notation somewhat cumbersome without bringing much more insight, we do not detail it.
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which involves the triangulation of the topology defined by the landmark points, as shown in
Fig. 2.3. AAMs actually evaluate the similarity function between real and generated images within
the normal domain, thus it is the texture of the real image that is in fact projected onto the normal
shape s0, to be compared to a texture generated by a TDM. Given a real image I and a face shape
s defined in the 2D coordinate system of I , a dense shape-normalized face texture vector can be
sampled from I as

[a1; . . . ; aK ], with ai = I(w(ui, s0, s)) ∀i ∈ {1, . . . ,K}, (2.7)

where I is seen as a function, I : R2 → R, which maps a pixel location w in the image coordinate
system (i.e., the image domain) to its corresponding intensity value ai, and where w(ui, s0, s) is
a control-point based warping function, defined by the landmark point correspondences between
s0 and s, which maps a pixel location ui in the normal domain to its warped location in the image
domain. To increase readability, we re-write more compactly Eq. 2.7 for the sampling of a normal
texture a from an image I given a face shape s, as

a = I(WS0(s)), (2.8)

where WS0(s) is a warping function, defined by the landmark point correspondences between s0

and s, which maps all the locations of the K normal pixels in S0 to their warped locations in the
image domain, and where I is a vector function, I : R2K → RK , which maps K pixel locations
in the image domain to their K corresponding intensity values a = [a1; . . . ; aK ].

Similarly to a PDM, the TDM texture parameters in Λ are partitioned in two parameter subsets
to separately account for global and local texture variation, i.e., in vectorial form, λ = [λ(g);λ(l)],
where λ(g) accounts for global texture variation, and λ(l) accounts for local texture variation.
Global texture variation parameters include illumination gain and bias, denoted γ and δ, respec-
tively, i.e., λ(g) = [γ; δ]. These parameters represent represent a simple linear transform in the
pixel intensities, and can also be used to map any fixed texture vector a to another one a′, as

λ(g),a 7→ a′ = γa + δ (2.9)

The TDM local texture parameters λ(l) are meant to control any type of texture variation that
cannot be described by global illumination gain or bias. Again similarly to a PDM, the quantities
used to define and manipulate the local texture parameters are obtained by statistical analysis on a
set of examples. Let {(Ij , sj)}, j ∈ {1, . . . , T}, be a set of example face shape-annotated images.
By repeatedly applying the sampling function in Eq. 2.8, a set {aj}, j ∈ {1, . . . , T}, of example
face textures are obtained, which are dense and shape-normalized. A Procrustes analysis is used
[63], so that the difference in illumination gain and bias between the example textures {aj} is
removed. Specifically, each example texture aj is transformed into a corresponding texture a′j
using the linear transform in Eq. 2.9, so that it is globally equivalent to a common reference face
texture a0, i.e.,

a′j = γ̂jaj + δ̂j
g
= a0, ∀j ∈ {1, . . . , T}, (2.10)

where γ̂j and δ̂j denote the optimal global illumination gain and bias, respectively, used to align
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FIGURE 2.4: The local part of a TDM for the dense and shape-normalized face
texture, as a subspace model built by PCA. The reference face texture a0 is shown
to the left, and to the right are color-based depictions of the first three modes of

local texture variation τ1, τ2, and τ3. This illustration is from [65].

+ + +

+++

FIGURE 2.5: A photorealistic face image is generated (right) by projecting the
texture generated by a TDM (upper line) onto the shape generated by a PDM
(lower line), using a warping function, which is roughly the inverse of the function

WS0 used in Eq. 2.8. This illustration is from [65].

aj to a0 and give a′j , and
g
= denotes the global equivalence between two textures. PCA is then

applied to the set of aligned face textures {a′j} [64], which eventually gives a linear subspace
model for the (globally) aligned, dense, and shape-normalized face texture, as the mapping

a′ : λ(l) 7→ a0 + Tλ(l) = a0 +

M∑
i=1

λ
(l)
i τi,

T = [τ1 . . .τM ] ∈ RK×M , λ(l) = [λ
(l)
1 ; . . . ;λ

(l)
M ],

(2.11)

where a0 is the reference face texture used in Eq. 2.10, here corresponding to the origin of the
subspace, and T is an orthogonal basis containing linear modes of local texture variation, which
consist of the M principal components calculated on the globally aligned face textures. Together,
the linear transform defined in Eq. 2.9 and the subspace model defined in Eq. 2.11 give the com-
plete form of the TDM mapping defined in Eq. 2.6, as

a : λ = [λ(g);λ(l)] 7→ γa′(λ(l)) + δ = γ(a0 + Tλ(l)) + δ. (2.12)

The total number of TDM parameters is 2 + M , which typically represents much less DoF
than the K DoF corresponding to the pixel intensities of a face texture. This lower dimensionality
favors the production of valid, realistic face textures. Figure 2.4 shows a subspace model built by
PCA, representing the local part of a TDM for the shape-normalized, dense face texture. Figure
2.5 illustrates how a PDM and a TDM can be used to generate a photorealistic image of the face.
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Minimizing the image difference function

AAMs consider face alignment as the problem of maximizing the similarity between (1) the target
image and (2) a synthetic image of the face generated using a PDM and a TDM. Face alignment
with AAMs can therefore be seen as an instance of the problem of deformable template matching,
which has been studied in length for decades in computer vision, and for which a comprehen-
sive methodological compendium can notably be found in [68]. In general, deformable template
matching is posed as an image difference minimization, which is typically a non-linear least-
squares problem solved by numerical optimization. In particular in AAMs, given a target image
I , the image difference function E to be minimized with respect to θ and λ is defined as

E(θ,λ) = ||a(λ) − I(WS0(s(θ))) || 2, (2.13)

where a(λ) is a TDM (Eq. 2.6 and 2.12), s(θ) is a PDM (Eq. 2.1 and 2.5), and I(WS0(·)) is an
image sampling function for I involving a warping function from the normal, reference domain
to the image domain (see previous section and Eq. 2.8). It is proposed in AAMs to use a Gauss-
Newton algorithm to solve the optimization problem. Depending on the manner in which Eq. 2.13
is reparameterized to prepare the first order approximation, different Gauss-Newton algorithms
can be obtained, which offer different possible ways to trade correctness off for time-efficiency.
We are interested in particular in an “inverse compositional” reparameterization of the problem,
which leads to a rather efficient Gauss-Newton algorithm with close to no tradeoff on its analyt-
ical correctness. The resulting algorithm is called the simultaneous inverse compositional AAM
(SICAAM [21]). In SICAAMs, minimizing the function in Eq. 2.13 is reparameterized as

argmin
∆θ,∆λ

||Aλ+∆λ(WS0(s(∆θ))) − I(WS0(s(θ))) || 2, (2.14)

where λ and θ are fixed, ∆λ and ∆θ are the “increment parameter” variables upon which to
optimize, and Aλ+∆λ is a shape-normalized synthetic image formed by setting the K intensity
values generated by a(λ+ ∆λ) to their K corresponding normal locations {ui} in S0. The linear
approximation of Eq. 2.14 gives closed-form solutions for ∆λ and ∆θ, which can be efficiently
calculated, since the warp Jacobian ∂WS0/∂θ is always evaluated at the constant point 0 and
can therefore be precomputed, as well as the synthetic image gradients ∇A0,∇A1, . . . ,∇AM

corresponding to the constant texture vectors a0,τ1, . . . ,τM , respectively. At each iteration, after
the efficient calculation of ∆λ and ∆θ, the SICAAM update equations for λ and θ are

λ← λ+ ∆λ,

WS0(s(θ))←WS0(s(θ)) ◦W−1
S0 (s(∆θ)).

(2.15)

In Eq. 2.15, the texture parameters λ are updated in the conventional additive way. However
one can see why this algorithm is called “inverse compositional” by looking at the shape parameter
update part in Eq. 2.15. Indeed, W−1

S0 (s(∆θ)) is an incremental inverse warp, that is to be com-
posed with the current forward warp WS0(s(θ)) for updating the shape parameters θ. To the first
order in ∆θ, we have W−1

S0 (s(∆θ)) ≈ WS0(s(−∆θ)), which is a good approximation for the
usually small shape parameter increments calculated within the iterative optimization procedure.
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The “simultaneous” part of the SICAAM appellation comes from the fact that both the shape and
texture parameters are optimized by the Gauss-Newton algorithm. In contrast, an inverse composi-
tional AAM formulation that avoids including the texture parameters in the optimization problem
has been proposed, which “projects out” the texture part from the problem (project-out inverse
compositional AAM, or POICAAM, [65]). A POICAAM is typically very time-efficient, but its
“projecting out” of the texture part is a somewhat abusive approximation which impacts the ro-
bustness of the alignment procedure in terms of generalization capabilities to new faces [21]. We
therefore decided to use a SICAAM for face alignment in our application.

Algorithmically, face alignment is considered to be achieved in AAMs when the iterative op-
timization procedure implemented by the Gauss-Newton algorithm meets a convergence criterion.
For example, convergence can be declared when the residual error coming from the minimization
of the objective function in Eq. 2.13 goes below some threshold, or when, for some iterations, the
difference becomes little enough between, e.g., consecutive residual errors, shape parameters, or
landmark point locations. The exact form and threshold(s) set for the convergence criterion are
typically chosen empirically.

Adding robustness to face alignment

In videos made to be used in sign language recognition, signers are compliant to clearly display
their hands and face to the camera, and a good control of the illumination conditions can be
expected. However, several difficulties remain, which are inherently bound to the production of a
natural and good-quality communication in sign language. Indeed, a signer’s face is oftentimes (1)
very expressive, (2) non-frontal, and (3) occluded by the hands, as some signs are required to be
performed by touching the face or wave the hands in front of it. In order to add robustness against
these cases in our application, we equip the AAM alignment procedure with some refinements
proposed in the literature.

Controlling the alignment procedure with shape regularization is particularly helpful in the
case of extreme facial expressions, because strong local shape deformations emphasize warping
inaccuracies, which deteriorate the quality of the shape-normalized face texture used in AAMs.
Shape regularization can be performed by adding a shape deformation penalty to the objective
function in Eq. 2.13, on the basis of the variances {σ2

i }, i ∈ {1, . . . , N}, observed for the lo-
cal shape parameters θ(l) when building the PDM from example face shapes by PCA. Indeed,
with a zero-mean Gaussian distribution assumed for θ(l), it is customary to minimize E(θ,λ) +

C ||θ(l) || 2
Σ−1 , where the square of the Mahalanobis distance from 0 to θ(l) is used with the

covariance matrix Σ = diag{[σ2
1; . . . ;σ2

N ]}, and C is a factor balancing the effect of the soft
constraint. This regularization however has the disadvantage that it encourages the local shape
parameters θ(l) to tend to 0, and thus the face shape to be close to the reference shape s0, up to
a similarity transformation. In our application, it is better to allow more flexibility in local shape
deformation within the alignment procedure. We therefore assume that the distribution of θ(l) is
uniform within a hyperellipsoidal validity region, with zero probability elsewhere, and we express
this assumption as a hard constraint in the minimization of the objective function in Eq. 2.13, i.e.,
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we search

argmin
θ,λ

E(θ,λ) subject to (s.t.)
N∑
i=1

θ
(l)2

i

σ2
i

≤ V, (2.16)

where the validity region boundary threshold V is chosen empirically.
To robustly deal with non-frontal faces, i.e., large off-image plane head rotations, we use the

2D+3D AAM method proposed in [69]. This method adds a soft constraint term to Eq. 2.13 that
encourages the 2D face shape to be a valid projection of a 3D face shape generated by a 3D PDM.
We build a 3D PDM for the face by applying a nonrigid structure from motion technique (NRSfM,
[70]) to the set of 2D example face shapes {sj}, j ∈ {1, . . . , T}. The model obtained by NRSfM
is composed of a 3D reference face shape, denoted s̄0, and an orthogonal basis of linear modes
of 3D local shape deformation, denoted Φ̄, similar to the linear subspace model in Eq. 2.4. This
3D model can be used to produce a 3D face shape, as s̄′ = s̄0 + Φ̄θ̄

(l), for any values of the
3D local shape parameters θ̄(l) (see Fig. 2.6). Such 3D shape can also be moved and rotated
globally in 3D and projected to 2D with a transform P

θ̄
(g) , where the parameters θ̄(g) account for

the 3D rotation and 3D translation of the whole shape, and the projection parameters are fixed a

priori and therefore not mentioned. With the addition of the 2D+3D soft constraint term, the face
alignment procedure also involves minimizing over the global and local 3D face shape parameters
θ̄ = [θ̄

(g)
; θ̄

(l)
], and Eq. 2.16 thus becomes

argmin
θ,θ̄,λ

E(θ,λ) + C || s(θ)−P
θ̄
(g) (̄s0 + Φ̄θ̄

(l)
) || 2 s.t.

N∑
i=1

θ
(l)2

i

σ2
i

≤ V, (2.17)

where C is an empirical factor balancing the effect of the 2D+3D soft constraint.
Finally, to be robust against the occlusions of the face by the hands (or by any other occluding

object), we wrap with a robust M-estimator the residual intensity differences between the target
image and the synthetic image. Specifically, we replace the nonrobust L2 loss function used in
Eq. 2.13, with the robust Huber loss function [68], which acts as the L2 loss function for residuals
below a threshold (the inliers), but downweights the residuals above that threshold (the outliers).
In our case, the outliers correspond to the target image pixels that are likely to come from an
occlusion. Replacing the L2 loss function with the Huber loss function leads to an iteratively
reweighted least squares problem. The complete form of our minimization problem is

argmin
θ,θ̄,λ

Eρ(θ,λ) + C || s(θ)−P
θ̄
(g) (̄s0 + Φ̄θ̄

(l)
) || 2 s.t.

N∑
i=1

θ
(l)2

i

σ2
i

≤ V, (2.18)

whereEρ(θ,λ) is the robust image difference term which involves the Huber loss function ρ. This
term, which is to be compared by the reader to the nonrobust term in Eq. 2.13, is defined as

Eρ(θ,λ) =

K∑
i=1

ρ(ri(θ,λ)), with r(θ,λ) = a(λ)− I(WS0(s(θ))), (2.19)

where ri(θ,λ) is the ith residual of the difference vector r(θ,λ) between the synthetic image and
the warped target image, obtained with the TDM and PDM parameters λ and θ, respectively.
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FIGURE 2.6: Illustration of a 3D face PDM obtained by nonrigid structure from
motion applied to a set of 2D example face shapes. The left, middle, and right
columns show the projections on the Y Z, XY , and XZ planes, respectively. The
middle row shows the 3D reference shape s̄0. The top and bottom rows show
the action on s̄0 of adding, resp. subtracting, the first mode of 3D local shape
deformation. One can see that this deformation mode is mostly acting on the

opening of the mouth.
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Continuous face alignment in a video

To our knowledge, all effective face alignment methods, including AAMs, work by iteratively
moving the facial landmark points starting from some given, initial, and likely misplaced lo-
cations. The overall robustness of iterative face alignment methods very much depends on the
condition that such initial locations of the landmark points are in the vicinity of their optimal lo-
cations. The maximal initial misplacement of the landmark points depends on the method, and
is typically empirically studied. In the scenario of face alignment to a single image, obtaining
good initial landmark point locations is generally delegated to a face detection method, which is
assumed to have a good robustness itself (e.g., [17]). It is expected that the face detection method
accurately delimits the image region where the face is present, so that coarsely inscribing a refer-
ence face shape within this region would give good initial landmark point locations. Although it is
not always explicitly stated in the literature, most face alignment methods, including AAMs, are
designed to work on the hypothesis that a face region is given within the target image, and these
methods therefore heavily rely on the existence of robust face detection methods.

When in a tracking scenario, the temporal continuity offered by standard video frame rates
provides yet another way to initialize the face alignment procedure within a video frame. Indeed,
good initial landmark point locations for the current frame It can be obtained as the shape points
st−1 resulting from the alignment to the previous frame It−1. The face shape st aligned to the
current frame It can then be passed on to initialize face alignment for the next frame It+1, and so
on. In cases of extreme head poses and/or extreme facial expressions, such initialization strategy
based on temporal continuity may be even better suited than the one based on face detection, in
particular if the face detection method used is not very robust against non-frontal and/or non-
neutral faces. In any case, it is preferable to skip face detection whenever possible for a better
overall time-efficiency.

As advantageous as the temporal continuity-based initialization strategy may be, the face
detection-based initialization strategy is required for at least the first frame of the video. Addi-
tionally, face alignment may fail to fittingly converge for some frames, which situation (1) must
be detected, e.g., by using a convergence quality criterion involving It and st, and (2) invalidates
considering st as a good initialization for face alignment in It+1, since st is considered unfit in It.
In such case, the face detection-based strategy must be used for as many frames as it takes to find
a good fit, before resuming initialization based on temporal continuity.

Adapting a generic face model to a specific face on-the-fly

A holistic PDM such as expressed in Eq. 2.5 has the ability to capture generic face shape defor-
mations quite well. Indeed, a single PDM built from a large and heterogeneous face dataset is
capable of producing acceptable face shapes for almost all people, with many different facial ex-
pressions, and using a fairly low number of shape parameters. The low-dimensional linear form in
Eq. 2.4 has therefore a high representational power in the case of the deformable face shape, and
the validity of the generated shapes can furthermore be adequately controlled within the alignment
procedure using standard shape regularization techniques. This appealing property is the reason
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why PDMs are often met in the literature on face alignment, not only with AAMs, but with other
methods as well (e.g., constrained local models, [22]).

However, a holistic TDM (Eq. 2.12) built from a large and heterogeneous dataset for the pur-
pose of being used in generic face alignment typically grows very large in its number of texture
parameters, in order to achieve acceptable representations for all example face textures. Addi-
tionally, because the face shape to image relationship is nonlinear by nature, the linear form in
Eq. 2.11 typically leads to excessive representational power in a generic setup. This notably im-
plies that non-valid face textures cannot be easily prevented by simple assumptions on the texture
parameters, such as confining their values to a uniform validity region or considering that they fol-
low a Gaussian distribution [21]. This is overall bad news for generic face alignment with AAMs,
since AAMs are based on numerical optimization. Indeed, more texture parameters mean more
calculations per iteration, and thus poor time-efficiency. Also, without an appropriate way to apply
regularization, a model with too much representational power may settle for local minima when
used with first-order optimization techniques like the Gauss-Newton algorithm, and as such may
lead to poor convergence properties.

The properties mentioned above, which are unfavorable to AAM-based generic face align-
ment, lead to the following situation. On the one hand, a person-specific AAM, which uses a TDM
built from examples of a single person’s face, is very robust and time-efficient to accurately align
the face on new images of this same person, but not on images of other people. A person-specific
AAM can also handle difficult cases of occlusions, extreme facial expressions, and off-image plane
head rotations with the refinements expressed in Eq. 2.18. On the other hand, a generic AAM, i.e.,
an AAM that uses a TDM built from a heterogeneous dataset, where hundreds of different people
and various illumination conditions are present, will fail a significant amount of times to converge
to the correct facial landmark point locations in a face image, even when presented with faces of
the people from the heterogeneous dataset, and even with the refinements expressed in Eq. 2.18.
A generic AAM must also optimize over many texture parameters (in the SICAAM formulation,
see Eq. 2.14), and is thus slow to fittingly converge, if it does.

In a scenario where face alignment has to be performed on an isolated image (as opposed to
a series of images in a video), AAMs are obviously not the method of choice if the goal is to
be generic, i.e., robust against differences in people’s faces and varying illumination conditions.
However, in a tracking scenario, where multiple images of the same (though potentially unknown)
person are presented in a sequence to the face alignment method, a strategy can be devised to
overcome the robustness and efficiency limitations of a generic AAM, while still benefiting from
the very good performance of a person-specific AAM. Such a strategy was proposed in [62],
where the authors focused on solving the template drifting problem within a tracking scenario,
and showed how their robust template update strategy could be applied to the case where the
template is in the form of an AAM. Basically, this strategy allows to convert a slow and nonrobust
generic AAM into a fast and robust person-specific AAM, by re-building its TDM on-the-fly using
only face-aligned video frames that passed a strict convergence quality test. Using this strategy
quite quickly gives a robust and time-efficient person-specific AAM in our application, where we
align the face on consecutive frames of a sign language video. Moreover, if new signers were
aware of this strategy and would consider it as a necessary “calibration” stage for using our facial
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cue extraction system based on face alignment, we believe that the conversion of a generic AAM
to a specific AAM would only take a few seconds, at most.

2.2.2 Extraction of sign language facial cues

We originally developed our facial cue extraction system so that it could be incorporated within a
sign language recognition system chain designed during the SignSpeak project [37]. The overall
goal of SignSpeak was to create a new, end-to-end, vision-based technology for translating con-
tinuous sign language to text in a spoken language, and thus improve the communication between
deaf and hearing people. Through discussions with sign language experts who participated in the
SignSpeak project, we determined what sort of information about the signer’s face is the most
useful to consider to perform gloss recognition and, ultimately, sign language translation. Facial
communication cues in sign language should ideally convey to which extent

• the mouth is open,

• each of the eyes are open,

• each of the eyebrows are lowered or raised, and

• the head is moved and rotated with respect to the frontal pose.

The elements listed above are essentially related to local and global changes in the signer’s
face shape. We presented in Sect. 2.2.1 an effective AAM-based face alignment method that is
well-suited to robustly track the deformable face shape of a signer within a video. We make the hy-
pothesis that the facial landmark points aligned with this AAM-based tracking method hold most
of the necessary shape information we need to extract useful sign language facial cues. The image
locations of the aligned facial landmark points are however not trivially equivalent to our facial
cues of interest, and some extra modeling and calculations need to be performed. Notably, it is
desirable to decouple the landmark point-based face shape information from the signer’s identity.
Indeed, the shape information pertaining to the personal facial features of the signer is not one we
wish to capture, because it is deemed to be irrelevant to the effective glossing of sign language.
For instance, the mouth should be recognized as being widely open or totally closed regardless of
whether the signer has thin or thick lips, a small or large jaw, and so forth. In other words, we
aim at extracting sign language facial cues that are identity-independent, or, equivalently, identity-
normalized. Besides identity normalization, we also wish to maximize the exclusivity of the infor-
mation that each facial cue can provide, i.e., to avoid redundancy. For instance, the mouth opening
facial cue should be largely independent of the head rotation facial cues. By avoiding redundancy,
we aspire to provide the most useful facial cues to the automatic glossing system that follows
within the end-to-end sign language recognition system chain. Indeed, a representation of the sign
language facial cues that is not only rich but also concise should favor, in principle, the learning
of an effective automatic glossing system.

We emphasize that all material and methods presented in this section are our own. They consist
of simple, yet effective ways to extract sign language facial cues, on the basis of the face shape
information provided by the AAM-based method presented in the previous section.



Chapter 2. Facial cue extraction system for automatic sign language recognition 27

Full 3D head pose as facial cues

As a byproduct of the 2D+3D AAM refinement described in Sect. 2.2.1 (originally proposed in
[69]), we continuously extract θ̄(g), i.e., the global shape parameters of the 3D face shape that
is used to regularize the 2D face shape being aligned by the AAM, so that the alignment can be
robust against large off-image plane head rotations. If the 3D reference face shape s̄0 of the 3D
PDM is designed to be frontal-facing, then the parameters θ̄(g) directly give the amount of head
rotation around each of the X, Y, and Z axes, as well as the head translation along each of these
axes, with respect to the frontal pose. We take these six parameters as the head pose facial cues,
and provide them continuously throughout the processing of a video of a signer2. We assume in
the present work that these head pose facial cues are mostly identity-independent, which is true in
good approximation.

Normalized apertures as facial cues

In addition to the head pose facial cues, we wish to extract five more facial cues to convey (1) the
mouth opening degree, (2) the left eye opening degree, (3) the right eye opening degree, (4) the left
eyebrow raising degree, and (5) the right eyebrow raising degree, respectively. We see these facial
cues as being closely related in nature by the fact that they represent an aperture, i.e., they share
the key property of representing a visual gap, with an amplitude that varies between two extrema.
Therefore, in the following, we collectively refer to the mouth/eye opening and eyebrow raising
degrees as aperture facial cues, and we describe a general method for extracting an aperture facial
cue from the face of a signer in a video, on the basis of the modeling choices given below.

1. An aperture facial cue is adequately represented by a scalar quantity that takes its values in
the bounded interval [0, 1], where the value 0 corresponds to “closed”, or “maximally low-
ered”, and the value 1 corresponds to “maximally open”, or “maximally raised”, irrespective
of the signer’s head pose or identity.

2. Given prior normalization information about the head pose and the identity of a signer, an
accurate measurement of an aperture facial cue can be derived in closed form from the in-
stantaneous (i.e., frame-by-frame) configurations of two well-chosen local subsets of facial
landmark points, obtained with the AAM-based alignment method described in Sect. 2.2.1.

To normalize the 2D face shape with respect to the head pose, while retaining information
about the local shape changes, we again exploit the 2D+3D refinement incorporated in our AAM-
based face alignment method (see Sect. 2.2.1). Indeed, for each 2D face shape s aligned to the
signer’s face, this refinement gives us the corresponding 3D face shape s̄, which is parameterized
by the 3D global and local shape parameters θ̄(g) and θ̄(l), respectively. The 3D-normalized 2D
face shape s∗ corresponding to s̄ is then obtained by setting to 0 the 3D global shape parameters

2Note that, without the 2D+3D AAM refinement, the head pose is still recoverable. Indeed, in an early version of
our facial cue extraction system, we used the POSIT algorithm [71], which, while being less accurate than the 2D+3D
AAM refinement, allows one to recover the full head pose on the basis of the correspondences between the 2D facial
landmark points and a fixed 3D structure of the face shape, defined a priori.
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θ̄
(g), and projecting the resulting 3D shape to 2D, i.e.,

s∗ = P0(̄s0 + Φ̄θ̄
(l)

), (2.20)

where s̄0 is the frontal-facing 3D reference face shape, Φ̄ is the orthogonal basis of linear modes
of 3D local shape deformation, θ̄(l) are the 3D local shape parameters, and P0 simply applies the
projective transformation, without any 3D rotation or 3D translation being involved3.

Temporarily letting aside the matter of normalization with respect to the signer’s identity, we
now introduce a 3D-normalized distance measure between two subsets of facial landmark points,
on the basis of the 3D-normalized 2D face shape given in Eq. 2.20. Let L = {(xi, ci) : i ∈ I} be
a set of facial landmark points indexed by the set I = {1, . . . , L}. As a reminder, ci represents
an arbitrary semantic concept associated to the 2D point xi, e.g., “the left eye upper eyelid mid-
point”. Let IA ⊆ I and IB ⊆ I be two subsets of indices. The 3D-normalized distance d∗

between the landmark point subsets LA = {(xi, ci) : i ∈ IA} and LB = {(xi, ci) : i ∈ IB} is
calculated as

d∗(LA,LB) =

∥∥∥∥∥∥ 1

|LA|
∑
i∈IA

x∗i −
1

|LB|
∑
i∈IB

x∗i

∥∥∥∥∥∥ , (2.21)

i.e., it is theL2 norm of the difference between the centroids of the 3D-normalized 2D point subsets
corresponding to LA and LB . Indeed, the points {x∗i } are in correspondence with the points {xi}
used in the set L, through the 3D-normalized 2D face shape s∗ = [x∗1; . . . ; x∗L] calculated using
Eq. 2.20.

In our aperture facial cue extraction method, we use the 3D-normalized distance measure
defined in Eq. 2.21 to represent the amplitude of the gap (i.e., the aperture) between two face
regions (embodied by two facial landmark point subsets). One could therefore qualify our method
of point set distance-based. Specifically, extracting our aperture facial cues of interest with this
method first requires the definition, for each aperture facial cue, of a pair of index subsets, IA
and IB , from the set I indexing the facial landmark points used within the face alignment method
(e.g., the AAM-based method in Sect. 2.2.1). For instance, the first (resp. second) index subset
associated to the mouth opening degree may appropriately include the upper (resp. lower) lip
point indices4. As a complete illustration, Table 2.1 gives five pairs of index subsets that designate
workable point subsets for the effective extraction of our five aperture facial cues of interest from
the facial landmark points presented in Fig. 2.2.

The quantities obtained with our 3D-normalized distance measure are identity-dependent, i.e.,
3Without the 2D+3D AAM refinement, the 3D-normalized 2D face shape can still be estimated. The steps of this

alternative method, which we used in an early version of our facial cue extraction system, are as follows. (1) Form
a 3D version s̄0 of the 2D reference face shape s0, extruding it in the Z-axis according to a fixed hand-crafted 3D
face structure. (2) Rotate and translate s̄0 using the 3D rotation and 3D translation parameters obtained by POSIT.
(3) Augment s with the Z-coordinates of the rotated and translated s̄0, so as to obtain an approximate 3D face shape
s̄. Finally, (4) apply to s̄ the inverse 3D rotation, the opposite 3D translation, and the projective transform, to get the
3D-normalized shape s∗.

4It is useful to recall that the set of facial landmark points is designed arbitrarily: it is composed of an arbitrary
number of 2D points, associated with equally arbitrary semantic concepts, meant to represent the locations deemed to
be of interest within the signer’s face. For extracting our aperture facial cues of interest with our point set distance-
based method, the design of the facial landmark point set should have been made with focus on the lips, eyelids, and
eyebrows, which is actually often the case in practice.
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TABLE 2.1: This table gives, for each of our five aperture facial cues of interest,
the pairs of index subsets IA and IB used to extract these facial cues with our
point set distance-based method, for signers in the RWTH-PHOENIX-Weather
sign language recognition dataset [39]. The set of facial landmark points proposed
for this dataset counts 38 points, here indexed by the set I = {0, . . . , 37}. We

recommend that the reader consult Fig. 2.2 while examining this table.

Aperture facial cue First index subset IA ⊆ I Second index subset IB ⊆ I
mouth opening degree {19, 20, 24, 25} = upper lip {22, 23, 26, 27} = lower lip

left eye opening degree {7} = left upper eyelid {9} = left lower eyelid

right eye opening degree {11} = right upper eyelid {13} = right lower eyelid

left eyebrow raising degree {0, 1, 2} = left eyebrow {6, 8} = left eye corners

right eyebrow raising degree {3, 4, 5} = right eyebrow {10, 12} = right eye corners

they may vary significantly when different signers are presented with our facial cue extraction
system. In order to normalize these quantities with respect to identity, shape-based information
pertaining to the personal facial features has to be either given a priori, or automatically discovered
by the system. There are three cases to consider, which we list below in the order of increasing
incertitude about the signer’s identity.

1. The signer’s identity is given to the system before the extraction procedure, and the system
possesses useful normalization information about this specific signer.

2. The signer’s identity is not given to the system before the extraction procedure, yet the
system possesses useful normalization information about this specific signer.

3. The signer’s identity is totally unknown by the system. He/she is a new signer about whom
no identity normalization information is available.

The three cases listed above imply fundamentally different sub-problems. In the first case, it
suffices to equip the facial cue extraction system with a lookup mechanism in order to retrieve
the stored normalization information specific to the signer. The second case requires to solve the
problem of face recognition to retrieve the appropriate signer-specific normalization information.
The third, and most difficult case corresponds to a generic identity normalization problem, where
no signer-specific normalization information is available. In the present work, we only consider
the first and third cases. In other words, we propose solutions for the first and third cases, and treat
instances of the second case as instances of the generic identity normalization problem. Note,
however, that nothing prevents one to plug a face recognition system to our facial cue extraction
system, in order to recognize known signers in anonymous videos, and thus treat instances of the
second case with more accuracy.

Let us start with the design of a solution for the first and simplest case, i.e., the case where
the signer’s identity is a given during the extraction procedure, and specific identity normalization
information about this signer is available within the system. In this situation, we only need to
have modeled the specific identity normalization information that is to be retrieved, and to use it
appropriately toward removing the specific identity component from the aperture facial cues. At
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the time when the PDM used in our AAM-based face alignment method is built (see Sect. 2.2.1),
we have access to a number of example face shapes for each specific signer, the identity of whom
may later be communicated to the extraction system in order to retrieve normalization information.
Let {sj} be a set of example face shapes specific to a signer, annotated according to a landmark
point set L indexed by a set I. For each aperture facial cue of interest, we calculate for this signer
the minimal and maximal aperture values over the set {sj}, as

d∗m = min{d∗j (LA,LB)} , d∗M = max{d∗j (LA,LB)}, (2.22)

respectively, where the aperture value for an example face shape sj is given by the 3D-normalized
distance5 d∗j (LA,LB), according to Eq. 2.21. It is assumed that, for each aperture facial cue of
interest, a pair of index subsets IA ⊆ I and IB ⊆ I have been defined to designate the face
regions involved in its calculation (which regions are embodied by the subsets LA and LB). Then,
the minimal and maximal values for each aperture facial cue are stored for the specific signer and
used at the time of extraction, so as to obtain an identity-normalized aperture facial cue, as

d∗(LA,LB)− d∗m
d∗M − d∗m

. (2.23)

For a specific signer and a particular aperture facial cue, the minimal and maximal aperture
values (d∗m and d∗M , respectively) represent all of the information needed to normalize the aperture
facial cue of interest with respect to the signer’s identity. These extremum values are constants that
need to be estimated only once, at the same time as the AAM construction procedure, thus prior
to the facial cue extraction procedure. Due to computational inaccuracies, and to the free tuning
of the shape regularization constraints applied within the AAM-based face alignment method (see
Sect. 2.2.1), it may be that the identity-normalized aperture facial cues obtained using Eq. 2.22 and
Eq. 2.23 do not always exactly lie within the interval [0, 1]. We found that this minor “overflowing”
inconvenience had no impact on the overall accuracy of the gloss recognition system based on such
aperture facial cues, and does therefore not need to be addressed.

We now consider the third, most difficult case, where the signer is totally unknown by the facial
cue extraction system, i.e., where no reliable signer-specific identity normalization information is
available. Note that in this very case where the signer is unknown, we also need to use the adaptive
AAM-based face alignment strategy introduced in Sect. 2.2.1 (see also the template update method
proposed in [62]). By design of this adaptive face alignment strategy, (1) we are using a generic
AAM, built from many different people’s faces, and (2) we adapt this generic AAM on-the-fly to a
specific AAM, by gathering the aligned faces that passed a strict convergence test within the video
being processed. To solve the generic identity normalization problem posed by the third case, we
exploit the adaptive AAM-based face alignment framework. For each of our aperture facial cues
of interest, provisional generic values for the minimal and maximal apertures are calculated using
Eq. 2.22, over the set of all of example face shapes given for the various signers at the time of the

5Since in this case we have access to the 2D shape annotation ground truth sj , a purely shape-based 3D to 2D
alignment procedure is applied to obtain the 3D-normalized face shape s∗j corresponding to sj . This 3D to 2D shape
optimization procedure does not involve the robust image difference term Eρ (Eq. 2.19), but only the 2D+3D term.
Also, in this optimization, the 2D face shape sj is considered a constant.
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generic PDM construction. Then, during the facial cue extraction procedure, we conservatively
adapt the minimal and maximal values of each aperture facial cue, using a moving average strategy
to incorporate the information from the specific face shapes that pass the strict convergence test
of the adaptive AAM-based face alignment method. After some time, the minimal and maximal
values for each aperture facial cue converge to fit the specific signer identity, and Eq. 2.23 can be
used to reliably extract the identity-normalized aperture facial cues. Once again, we believe that
this adjustement from the generic to the specific identity normalization information would be a
matter of a few seconds in a setup where new signers would be aware of, and participating to the
creation of their specific face model (considering this stage as a necessary system calibration).

2.3 Results

We begin this results section with the presentation of typical illustrations of our system output,
which should give the reader an idea of the quality of the sign language facial cues extracted with
the method proposed in Sect. 2.2.2.

Figure 2.7, which we produced for the last activity report of SignSpeak, shows the results we
obtained for a video of a signer from the RWTH-PHOENIX-Weather corpus [39], where we used
the facial landmark point set we proposed in Fig. 2.2, and the index subset pairs we proposed
in Tab. 2.1 for the aperture facial cues. Figure 2.8, which we produced with an early version of
our facial cue extraction system [38], shows the results we obtained for a video of a signer from
the Nederlandse Gebarentaal corpus (NGT corpus [72]), where we used another facial landmark
point set counting 68 points, and other index subset pairs for the aperture facial cues (not detailed
in this thesis). Both Fig. 2.7 and Fig. 2.8 depict the head pose facial cues and the aperture facial
cues, minus the eyebrow raising degrees for the NGT signer in Fig. 2.8. They also show the facial
landmark points used to calculate the facial cues, which landmark points were obtained using the
AAM-based face alignment6 method presented in Sect. 2.2.1.

Next, we present several quantitative evaluations that are indicative of the performance of our
facial cue extraction system. Except for the quantitative evaluation of the facial landmark point
tracking performance (for the face alignment part of our system), all of these evaluations (1) were
conducted by other researchers from the SignSpeak consortium, for SignSpeak activity reports or
joint publications during and after the SignSpeak project, and (2) only indirectly showcase the
usefulness of our extracted facial cues within a sign language recognition system chain proposed
during, or inspired by the SignSpeak project. In any case, all evaluations involved our facial
cue extraction system. Also, all evaluations were conducted on the RWTH-PHOENIX-Weather
corpus, which we already mentioned several times in this chapter, and to which we contributed
369 face shape-annotated images. We give below a brief description of this richly annotated sign
language recognition dataset, before giving the detail of the evaluations.

6There are actually a few minor differences in the face alignment method used for processing the videos of the
RWTH-PHOENIX-Weather and NGT signers. For the RWTH-PHOENIX-Weather signer in Fig. 2.7, the head pose
facial cues and 3D head pose normalization necessary to calculate the aperture facial cues were obtained using the
2D+3D refinement presented in Sect. 2.2.1. However, for the NGT signer in Fig. 2.8, the face alignment results are
those of an early version of our system, which did not incorporate the 2D+3D refinement (see [38]). Therefore, the
head pose facial cues and 3D head pose normalization for the NGT signer were obtained with another 3D head pose
estimation method, namely, the POSIT algorithm [71].
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FIGURE 2.7: Extraction of sign language facial cues from a video of a signer
from the RWTH-PHOENIX-Weather corpus [39]. The axis system attached to
the signer’s face gives a visual impression of the rotation around, and translation
along, the X-axis (red bar), Y-axis (white bar), and Z-axis (blue bar). The five
vertical bars in the bottom part of the images represent, from left to right, the
left eyebrow raising degree (in yellow), the left eye opening degree (in blue), the
mouth opening degree (in pink), the right eye opening degree (in blue, again),
and the right eyebrow raising degree (in yellow, again). Additionally, we show the
face shape obtained with our AAM-based face alignment method, triangulated and

superimposed on the signer’s face (in green).
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FIGURE 2.8: Extraction of sign language facial cues from a video of a signer from
the NGT corpus [72]. The axis system attached to the signer’s face gives a visual
impression of the rotation around, and translation along, the X-axis (red bar), Y-
axis (green bar), and Z-axis (blue bar). The three white vertical bars in the left part
of the images represent, from left to right, the left eye opening degree, the mouth
opening degree, and the right eye opening degree. In the central region of each
image are shown, from top to bottom, the face texture generated with our AAM-
based face alignment method, and the face shape obtained with this same method,

triangulated (in green), and non-triangulated (red points).
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2.3.1 The RWTH-PHOENIX-Weather corpus

The RWTH-PHOENIX-Weather corpus [39] consists of ~195 minutes of video data (293,077
frames at 25 FPS), at 210×260 pixel resolution, recorded over a period of two years (2009-2010),
and depicting seven different signers who signed the daily news broadcast program of the Ger-
man public TV station Phoenix. Over this period of time, the seven signers altogether performed
1980 sentences in German sign language (DGS, for Deutsche Gebärdensprache), totaling 22,822
running glosses from a vocabulary set of 911 different glosses related to the topic of weather fore-
casting. A gloss from the vocabulary set of this corpus is repeated ~25 times on average, but
glosses with far fewer repetitions exist within the corpus, including several singletons. The videos
of the corpus are exhaustively annotated with

1. The gloss-level and sentence-level time boundaries,

2. The gloss descriptions with their pronunciation variants, and

3. The sentence translations in written German.

Additionally, the approximate central points of the left and right hand palms and the nose tip are
hand-annotated in a subset of 39,691 video frames of the corpus, taken from videos of all of the
seven signers. Facial landmark points are manually annotated for a total of 369 video frames of
the corpus, evenly distributed among the seven signers. These 369 face shape annotations are our
contribution to the RWTH-PHOENIX-Weather corpus. Indeed, we annotated these face shapes
according to our landmark point set described in Fig. 2.2 (see also https://iis.uibk.ac.
at/datasets/phoenix-annotations for more details).

The RWTH-PHOENIX-Weather corpus is a challenging video-based sign language recogni-
tion dataset for several reasons. First, it features continuous sign language, performed by hearing
signers under real-time constraints. Because the signers had to translate spoken German announce-
ments to signs in real time, there are numerous occurrences of partly interrupted signs. Second,
because of the signing speed due to the live conditions, and because of the low temporal and
spatial resolution of the videos, vision-based systems designed to track and extract sign language
hand or facial cues have to be especially robust, in particular against motion blur effects due to
fast hand movements. Third, some glosses are very scarcely represented (i.e., repeated) within the
corpus, down to only one instance (i.e., the gloss singletons), which foretells some difficulties for
the learning of a gloss recognition model from this corpus.

2.3.2 Facial landmark point tracking results

Our AAM-based face alignment method described in Sect. 2.2.1 is designed to best perform in
a tracking scenario, i.e., with videos. It also incorporates refinements designed to cope with the
face alignment difficulties typically encountered in videos of signers, such as extreme facial ex-
pressions, large head movements, and occlusions by the hands. To conduct a fair and exhaustive
evaluation of this method, we would therefore need ground truth data in the form of sign language
videos annotated with tens of facial landmark points in each frame. However, although plenty of
face shape-annotated image datasets are available in the public domain, datasets of videos with

https://iis.uibk.ac.at/datasets/phoenix-annotations
https://iis.uibk.ac.at/datasets/phoenix-annotations
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such annotations in each frame are much less common, and even less so for videos of signers. We
therefore restrict the evaluation of our face alignment method to nose tip landmark point tracking
results in videos of signers, for a lack of a more detailed landmark point-based ground truth for
sign language video data.

Using the 369 images we annotated for the seven signers of the RWTH-PHOENIX-Weather
corpus, we built a face model with the AAM construction method described in Sect. 2.2.1. This
face model includes a PDM, i.e., a shape model that controls 38 facial landmark points. According
to the zero-based point indices given in Fig. 2.2, the 15th of these landmark points is associated
with the nose tip, which also corresponds to the point that has been manually annotated for a
subset of 39,691 video frames of the RWTH-PHOENIX-Weather dataset. We call this video subset
RWTH-PHOENIX-Nose, for short, and we evaluate our AAM-based face alignment method on
videos of RWTH-PHOENIX-Nose only. For each video frame, we picked out the single nose
tip landmark point from the 38 automatically aligned landmark points, and compared it to the
hand-annotated nose tip ground truth. Formally, we used a tracking error rate (TrackER) measure
defined for a landmark point (xi, ci), as

TrackER =
1

T

T∑
t=1

δτ (x
(t)
i , x̂

(t)
i ), with δτ (x

(t)
i , x̂

(t)
i ) =

{
0 if ||x(t)

i − x̂
(t)
i || < τ

1 otherwise,
(2.24)

where T is the number of samples (T = 39,691 video frames in our case), i is the index of the
considered landmark point with the semantic concept ci (in our case i = 15, and c15 represents
the nose tip), x

(t)
i is the ground truth landmark point location for the tth sample, x̂

(t)
i is the tracked

landmark point location for the tth sample, and τ is an arbitrary tolerance threshold for the Eu-
clidean distance, in pixels, between a ground truth and tracked landmark point locations. Below
the tolerance threshold, the tracking for a sample is considered to be a hit (= 1), and, above this
threshold, to be a miss (= 0). Therefore, given some tolerance threshold τ , a TrackER of 0% cor-
responds to perfect tracking results, and a TrackER of 100% corresponds to the most inaccurate
tracking results.

Table 2.2 gives the nose tip tracking results obtained with our AAM-based face alignment
method, measured in TrackER, over the ~25 minutes of video in RWTH-PHOENIX-Nose. These
results show that our method is quite robust and accurate, since a TrackER of 7.08% for τ = 5
pixels means that the tracking of the nose tip was off by more than 5 pixels for less than two
minutes out of ~25 minutes of video. Since the interpupillary distance is of about 30 pixels within
RWTH-PHOENIX-Nose, we consider that the tracking succeeded for the vast majority of the
video frames. We also observe a TrackER of 0.06% for τ = 20 pixels, which means that the
tracking of the nose tip really failed for less than one second out of ~25 minutes of video. To give
some comparison, we also include in Tab. 2.2 the TrackER results obtained with a nose tip tracker
based on the Viola & Jones method (courtesy of the Human Language Technology and Pattern
Recognition group at the university of Aachen), which our AAM-based face alignment method
very clearly outperforms.
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TABLE 2.2: Nose tip tracking results (in TrackER, see Eq. 2.24) obtained with
a nose tip tracker based on the Viola & Jones (V&J) method [17], and with our
robust AAM-based face alignment method. Both evaluations were made on the
video subset RWTH-PHOENIX-Nose, which counts 39,691 video frames. Our
method, which is better suited to robustly track facial landmark points, clearly

gives better results than the V&J-based nose tip tracker.

τ = 5 px τ = 10 px τ = 15 px τ = 20 px

V&J-based nose tip tracker 66.34% 17.21% 7.45% 4.23%

AAM-based face alignment 7.08% 0.43% 0.12% 0.06%

2.3.3 Sign language recognition results

We do not present in this thesis any quantitative evaluation specific to the facial cue extraction
method described in Sect. 2.2.2 (qualitative illustrations can however be found in Fig. 2.7, 2.8,
and 2.9), and this for two reasons. First, we lack the sort of ground truth data that could be
matched appropriately to the sign language facial cues extracted with our system. It is indeed
hard and time-consuming to annotate sign language video frames with, e.g., the mouth opening
degree normalized with respect to the signer’s head pose and identity, and such ground truth data
do not exist in the public domain, to the best of our knowledge. Second, the purpose of our facial
cue extraction system does not lie in its standalone usage, as if it were a general-purpose facial
expression recognition tool, but rather in its integration within a sign language recognition system
chain. We believe that a proper insight into the usefulness of our system can be gained through
the presentation of the performance achieved with other sign language-related systems, which
somehow exploit our extracted facial cues for the purpose of sign language recognition.

Gloss recognition

In this section, we present some experimental results of automatic gloss recognition with (and
without, for the sake of comparison) the facial cues extracted with our system. We emphasize that
the results reported here were obtained by others [58], who implemented automatic gloss recog-
nition using the RWTH automatic speech recognition system (RASR) introduced in [54]. The
RASR system was originally designed to perform automatic speech transcription from vocal tract
features, using state-of-the-art statistical language modeling techniques. However, the features
fed to the RASR system in [58] consisted of various visual cues pertaining to the communication
modalities that are important in sign language. The authors, who participated in the SignSpeak
project with us [37], notably included the facial cues extracted with our system in some of their
experiments, for the facial expression modality.

All experiments in [58] were conducted on a signer-specific subset of the RWTH-PHOENIX-
Weather corpus7. This corpus subset includes video data for the anonymous signer #3 only, be-
cause this signer alone appears in more than 20% of the full RWTH-PHOENIX-Weather corpus.

7As mentioned above, the RWTH-PHOENIX-Weather corpus is a challenging sign language recognition dataset. By
the end of the SignSpeak project, it was determined by the machine translation experts of the consortium that insightful
gloss recognition results could only be obtained on this corpus with signer-specific gloss recognition models. Based
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We refer to this corpus subset, which totals ~36 minutes of video at 25 FPS, as RWTH-PHOENIX-
Signer03. RWTH-PHOENIX-Signer03 has a vocabulary size of 266 different glosses, among
which 90 occur only once as running glosses (gloss singletons). Its training set is composed of
~31 minutes of video (46,638 frames at 25 FPS), 304 distinct sentences, and 3,309 running glosses
(including the gloss singletons). Its test set is composed of ~5 minutes of video (6,751 frames at
25 FPS), 47 distinct sentences, and 487 running glosses. The measure used in [58] to evaluate au-
tomatic gloss recognition on RWTH-PHOENIX-Signer03 is the word error rate (WER, also often
used in the evaluation of speech transcription systems), which is defined as

WER =
#deletions + #insertions + #substitutions

#observations
. (2.25)

The WER is well-suited to evaluate the quality of automatically glossed sentences in continuous
sign language, because it takes into account the number of gloss deletions, insertions, and substi-
tutions that are necessary to match the ground truth glossed sentences. In the case of isolated gloss
recognition systems, the WER can still be used as is, and it simply reduces to the single-word
classification error rate.

Table 2.3 presents WER results from [58] for the automatic glossing of continuous sign lan-
guage on RWTH-PHOENIX-Signer03. For the facial expression modality, the visual features
were the facial cues automatically extracted with our method in Sect. 2.2.2. The hand gesture
modality was embodied by hand cues for the right (dominant) and left (non dominant) hands, both
separately extracted as 3D gradient-based descriptions of spatio-temporal volumes (HoG3D [73])
composed of ± 4 hand patch images cropped using the ground truth central points of the right and
left hand palms, respectively. The body posture modality was embodied by body cues extracted as
PCA-reduced spatio-temporal volumes of ± 2 video frames. The best gloss recognition result in
Tab. 2.3, giving the lowest error rate (41.9% WER), comes from the combination of the dominant
hand cues with our facial cues. It is also worth noting that, among the results obtained from a
single modality in Tab. 2.3, gloss recognition with our facial cues alone (62.6% WER) is better
than gloss recognition with either body cues alone (80.1% WER) or non dominant hand cues alone
(63.9% WER). In intself, this result showcases how much valuable information is contained in the
facial expressions when signing, and how useful our extracted facial cues are in automatic gloss
recognition.

The best (lowest) WER values in Tab. 2.3 may still seem somewhat high to the reader, but they
are actually good results considering the challenges posed by the RWTH-PHOENIX-Weather cor-
pus and the relatively small size of the RWTH-PHOENIX-Signer03 corpus subset. For reference,
on another sign language recognition dataset called the SIGNUM database [74], the RASR sys-
tem gives a WER of 11.3% for a combination of similarly extracted dominant hand cues and
body cues8. Indeed, automatic gloss recognition on SIGNUM is less challenging than on RWTH-
PHOENIX-Weather (or RWTH-PHOENIX-Signer03), as SIGNUM is composed of videos recorded

on the good facial landmark point tracking results that we obtained on a multi-signer video subset (RWTH-PHOENIX-
Nose), we are confident that evaluating gloss recognition in a signer-specific setup is still indicative of the usefulness of
our sign language facial cue extraction system in more general conditions, i.e., in multi-signer gloss recognition setups.

8We do not report more results on SIGNUM in this thesis, because we did not extract facial cues for a significant
amount of the SIGNUM videos with the method proposed in Sect. 2.2.2.
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TABLE 2.3: Excerpt from a table in [58], which shows the gloss recognition results
obtained with the RASR system [54] on RWTH-PHOENIX-Signer03, using sign
language visual cues as features. The sign language modalities consisting of hand
gestures, facial expressions (embodied by our facial cues), and body posture are
considered independently, as well as in combination. Our facial cues alone lead to
a better gloss recognition performance than the body cues alone, or the left (non
dominant) hand cues alone. The best modality combination is the one with the

right (dominant) hand cues and our facial cues.

Single modalities WER

Body cues 80.1%

Left (non dominant) hand cues 63.9%

Facial cues (with facial landmark points) 62.6%

Right (dominant) hand cues 45.2%

Combined modalities WER

Left hand cues + body cues 63.7%

Right hand cues + body cues 45.2%

Right hand cues + left hand cues 42.9%

Right hand cues + facial cues 41.9%

in a controlled laboratory environment, at 780×580 pixel resolution and 30 FPS, and with nearly
14,000 running glosses from a vocabulary set of 450 glosses.

Sign language translation

In the standard approach to automatic sign language recognition, the first step is to perform gloss
recognition from visual features, extracted from a video depicting a sentence in the source sign
language. Then, the second step is to perform machine translation from the recognized glosses,
to produce the corresponding sentence in the target spoken language. Note that the cornerstone
of this standard approach is the effective capture of the sentence meaning by a ground truth gloss
annotation, used as ideal output for gloss recognition, and as ideal input for machine translation.
This standard approach was the one chosen in the SignSpeak project [37], as it allowed to design
and assess gloss recognition and machine translation techniques mostly independently from each
other. Indeed, the working hypothesis in SignSpeak was that an optimal sign language recognition
system chain could be obtained from the parallel and independent progress made on the separate
tasks of gloss recognition and machine translation.

The tasks of gloss recognition and machine translation were particularly decoupled in Sign-
Speak, also because of the focus given to the RWTH-PHOENIX-Weather corpus, which poses
specific challenges in both tasks and encourages one to base the evaluation of machine translation
techniques on ground truth gloss annotations. Consequently, very little investigation was made
in SignSpeak to measure the exact influence of automatic gloss recognition performance on ma-
chine translation quality, and even less so to evaluate how our extracted facial cues, which are
designed to feed a gloss recognition system, may influence the results of machine translation.
However, some machine translation results, which we report in Tab. 2.4, are indicative to some
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TABLE 2.4: Machine translation results obtained (by others) in SignSpeak on the
RWTH-PHOENIX-Weather corpus, from ground truth gloss annotations, as well
as ground truth gloss annotations with different amounts of simulated, random
errors. The last row of the table shows the TransER obtained on the basis of
actual gloss recognition results with dominant hand cues only. Overall, and as
expected, the translation quality diminishes (i.e., the TransER increases) when the

gloss recognition quality diminishes (i.e., the WER increases).

WER TransER

0.0% (ground truth) 53.1%

15.0% (simulation) 68.6%

30.8% (simulation) 71.0%

48.7% (simulation) 75.8%

54.4% (recognition) 75.1%

extent of how gloss recognition performed with our facial cues may influence the performance of
machine translation. These results were obtained by other researchers who worked on the machine
translation task in SignSpeak, through translation experiments on the RWTH-PHOENIX-Weather
corpus with (1) ground truth gloss annotations (2) ground truth gloss annotations with random
errors, and (3) automatically recognized glosses (without our automatically extracted facial cues).
The translation edit rate (TransER [75]) used in Tab. 2.4 is a translation error metric similar to
the WER metric used in gloss recognition (see Eq. 2.25). In addition to the number of necessary
insertions, deletions, and substitutions of words, the TransER involves the number of necessary
shifts of words or groups of words to match the correct sentence in the target spoken language.
Lower values of the TransER indicate better translation results. For reference, state-of-the-art ma-
chine translation TransERs for free texts in spoken languages, from English to German, English
to Chinese, and English to Arabic, are of 52.34%, 63.74%, and 65.97%, respectively (machine
translation of transcribed TED talks in English [76]).

The last row of Tab. 2.4 contains the translation result obtained on the basis of automatic gloss
recognition with dominant hand cues only. Interestingly, the TransER in this last row (75.1%)
is lower than the TransER in the row just above (75.8%) corresponding to the most noisy sim-
ulated gloss recognition WER (48.7%), even though this one is lower than the automatic gloss
recognition WER (54.4%). This suggests that TransERs obtained from noisy gloss annotations
are an upper bound for TransERs that can be obtained with actual gloss recognition results. There-
fore, considering the machine translation TransERs in Tab. 2.4 and the automatic gloss recognition
WERs in Tab. 2.3, we speculate that gloss recognition performed using a combination of dominant
hand cues and our automatically extracted facial cues would lead to a TransER improvement (i.e.,
decrease) of more than 2% over a translation based on gloss recognition using dominant hand cues
only, which is quite a significant increase in the translation quality. This speculation is further sup-
ported by the translation results presented next, which were obtained with a framework integrating
gloss recognition and machine translation using facial cues extracted with our system.
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Integrated framework with visible phoneme recognition

One shortcoming of the standard approach to sign language recognition is that it strongly relies
on the hypothesis that the intermediary gloss form of a sentence in sign language is always effec-
tively capturing its precise meaning. However, effectively capturing the multimodal nature of sign
language with a comprehensive, universal annotation system actually remains an open question in
the sign language research community [52]. Indeed, in natural, continuous sign language, a single
sign (i.e., hand gesture) often has several different meanings, depending on variant executions,
other signs used in the sentence, and subtle grammatical and semantic markers present in the other
visual modalities (i.e., the facial expressions and the body posture). Additionally, in sign lan-
guages used in countries that have a strong oral education tradition, signs are often accompanied
by mouthing, i.e., silently pronouncing the surrounding spoken language words with the lips while
singing with the hands. Gloss annotations are powerful, but may require excessive efforts from
the annotators to perfectly describe a sentence in sign language, and often linguists will produce
non-exhaustive gloss annotations that suit their needs to study specific linguistic patterns.

As a consequence, sign language gloss corpora often lack the context details that would help
obtain translation results as accurate as those obtained with spoken language text corpora, for
which the annotation system, i.e., writing, is very natural and effective to capture meaning. More
specifically, it is common that sign language sentences are glossed using so-called ID-glosses [77].
An ID-gloss designates a gloss annotation that has been associated to a sign (i.e., a hand gesture)
independently of its context of execution and the other visual modalities. For instance, most of
the RWTH-PHOENIX-Weather corpus contains the time boundaries and labels for the ID-glosses
only (solely based on the signing hands yet with some pronunciation variants), because this corpus
was originally developed for the recognition of hand-based features. During the creation of this
corpus, very little emphasis was given on transcribing information coming from the other visual
modalities, e.g., the facial expressions, which means, in particular, that signs that are identical in
their hand component but differ in their facial expression component often received the same label.

The core idea of the integrated approach to sign language recognition (originally proposed in
[40], to which we contributed) consists in recognizing mouthing in addition to recognizing ID-
glosses, in order to provide machine translation with multimodal information that better describes
a communication in sign language than information coming from the recognition of ID-glosses
only. Indeed, recognizing mouthing consists in mapping visual facial cues to a target representa-
tion that is very close to the sentence in the target spoken language, which is why adding mouthing
recognition to (ID-)gloss recognition toward machine translation is seen as an integrated approach,
as opposed to the standard approach of (ID-)gloss recognition followed by machine translation.

The mouthing of a word can be phonetically divided into a sequence of atomic components,
which are called phonemes (e.g., the word “map” would be described by the sequence m-a-p).
Visually, however, some phonemes are indistinguishable from each other, such as p and b, which
differ only in the aspiration. Since mouthing recognition is here based on visual cues only, the
target representation of a mouthed word rather consists of a sequence of visemes, i.e., visually
distinguishable phonemes (the phonemes p and b correspond to the same viseme P). In this setup,
mouthing recognition is therefore implemented as a viseme recognition system, which seemingly
performs automatic lip reading. To prepare the training of this viseme recognition system on the
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FIGURE 2.9: The facial cues we proposed for viseme recognition in [40]. These
facial cues were obtained with a slightly different version of our sign language
facial cue extraction system, based on the method proposed in Sect. 2.2.2. The
bottom-right part of the figure shows the time evolution of the facial cue values
throughout the processed video, with the vertical red bar indicating the values for

the video frame shown in the top-left part of the figure.

RWTH-PHOENIX-Weather corpus, target viseme sequences were produced (not by us) on the
basis of the target spoken language sentences in this corpus, and were associated to the ID-gloss
labels9.

We provided the visual cues used to train and test the viseme recognition system proposed in
[40]. We used a slightly different version of our sign language facial cue extraction system, which
version is however still based on the method we proposed in Sect. 2.2.2. We discarded the head
pose facial cues, and we somewhat abused our concept of aperture facial cue, by defining new
pairs of index subsets over to the AAM-aligned (Sect. 2.2.1) facial landmark points, notably for
the calculation of new point set distance-based facial cues within the mouth region. Specifically, in
addition to the mouth opening degree, our “aperture” facial cues here further include the distance
between the mouth corners, the distance between the lower lip and the chin tip, and the distance
between the upper lip and the nose tip. We also discarded the eye opening degrees, but kept the
eyebrow raising degrees and included a new facial cue giving the distance between the eyebrows,
as it was found empirically that these eyebrow-related facial cues helped in viseme recognition.
Figure 2.9 gives an illustration of the facial cues we proposed for performing viseme recognition.

Table 2.5 shows the improvement obtained in machine translation (results from [40], using our
automatically extracted facial cues described above), when using the viseme recognition-based
integrated approach instead of the standard approach where machine translation solely uses ID-
glosses. These results were obtained on a large subset of the RWTH-PHOENIX-Weather corpus

9Since not all signs are accompanied by mouthing, the ID-glosses where no lip movement could be observed were
associated with a “silence” viseme representation, and the ones with lips movement irrelevant to mouthing with a
“garbage” viseme representation.
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TABLE 2.5: Translation results from [40], obtained on the RWTH-PHOENIX-
Weather corpus, with the standard and integrated approaches to sign language
recognition. The baseline (standard approach) machine translation results in the
first row were obtained using the ground truth ID-glosses. In the second row, “or-
acle” TransER results are given, i.e., assuming that the viseme recognition was
perfect (i.e., the target, ground truth viseme sequences were used). The third row
shows the TransER results obtained using the actual output of the viseme recogni-

tion system, based on facial cues extracted with the method in Sect. 2.2.2.

Using visemes? Viseme CER ID-gloss WER TransER

No – 0.0% (ground truth) 66.5%

Yes 0.0% (ground truth) 0.0% (ground truth) 60.1%

Yes 32.2% (recognition) 0.0% (ground truth) 64.4%

originally annotated with ID-glosses only10. Tab 2.5 also includes the character error rate (CER)
results obtained with the viseme recognition system that uses our facial cues. The CER is cal-
culated in the same way as the WER (Eq. 2.25). It takes into account the number of character
(viseme) deletions, insertions, and substitutions necessary to match the target viseme sequences.
One can observe that, as speculated in the previous section, the inclusion of facial cues extracted
with our system within the overall sign language recognition system chain gives a significant im-
provement in the translation quality, of about 2% TransER.

Note that the version of our facial cue extraction system proposed in [40] as part of an in-
novative viseme recognition system has also been used as is in follow-up work, again mostly as
a basis for developing enhanced viseme recognition systems for integrated sign language recog-
nition. This follow-up work, in which we did not directly participate, but where our facial cue
extraction system was extensively used and acknowledged, includes [78, 79, 80] (as well as [81],
to a lesser extent).

2.4 Conclusion

The idea of a cheap and noninvasive technology that effectively performs the automatic recogni-
tion of natural, continuous sign language arouses a lot of interest in the deaf and hard of hearing
communities. It is also very appealing to hearing people who cannot or hardly can sign, but have
recurrent interactions with deaf or hard of hearing people. Such a technology would not only pro-
vide unprecedented comfort and efficiency during the punctual exchanges between hearing and
deaf people, but also, and more importantly, allow to create new institutional means of communi-
cation between hearing and deaf people, to help bridging the social gap that currently marginalizes
these latter. The automatic recognition of sign language is however a complex scientific and tech-
nical problem. The multimodal nature of the communication in sign language, combined with
the absence of a natural transcription mechanism of sign language, poses specific yet intertwined

10The difference between the baseline machine translation results in the first row of Tab. 2.5 and the baseline machine
translation results in the first row of Tab. 2.4 comes from the fact that different subsets of the RWTH-PHOENIX-
Weather corpus were used, as well as different machine translation techniques, at the respective times of publication of
these results.
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challenges in the fields of linguistic modeling, machine translation, and computer vision. The
SignSpeak project, which is at the origin of most of the work presented in this chapter, was a
attempt to tackle these challenges simultaneously and efficiently, through the close collaboration
of research teams active in the above mentioned fields.

Eventually, the results obtained in SignSpeak shed light on the actual possibilities and remain-
ing difficulties toward realizing this long-awaited automatic sign language recognition technology,
laying the foundation for the development of a working end-to-end system prototype. The sign
language facial cue extraction system we presented in this chapter is but one conceptual brick of
this prototype, yet an important one. Indeed, our system offers a solution to effectively capture
visual cues from the sign language communication modality consisting of the facial expressions,
which are very present and informative in continuous sign language. Our system is robust against
the difficulties typically encountered when tracking the face of a signer in a video, i.e., large off-
image plane head rotations, extreme expressions, and occlusions of the face by the hands. Our
system also implements the normalization of the facial cues with respect to the signer’s identity,
when this identity is known and given, and quickly adapts to new signers when the identity is
unknown.

We have shown in the results section of this chapter how useful the facial cues extracted with
our sytem are in automatic gloss recognition, as well as in machine translation. In particular,
we showed their usefulness in an integrated approach to sign language recognition, via a viseme
recognition system that is based on our facial cue extraction system and seemingly performs au-
tomatic lip reading to enrich the transcription of sign language. Another piece of work, which is
not detailed in this chapter, but in which we also participated, is the design of a technique to en-
hance avatar animation of continuous sign language with facial expressions in general, and mouth
patterns in particular. We refer the reader to [41] for more details about this technique. Note that
sign language avatar animation is a problem closely related to sign language recognition, the two
consisting of dual perspectives on the problem of effective sign language understanding and mod-
eling. This is mostly why our sign language facial cue extraction system proved to be useful in
the modeling part of this technique that generates sign language-specific facial expressions for an
avatar.

Finally, it should be noted that deep learning with convolutional neural networks (CNNs) is
the current trend for effectively implementing automatic gloss recognition, either to extract sign
language communication cues from images, among which facial cues, or to directly infer the
glosses from images in an end-to-end manner. In [81], a CNN was trained to infer mouth shape
class probabilities from cropped face images. Incidentally, the cropped face images and the mouth
shape class labels used to train the CNN in [81] were obtained on the basis of our AAM-based
face alignment method and our point set distance-based facial cue extraction method, respectively.
In [82], a CNN with recurrent units was proposed for use in continuous sign language recognition,
which is able to distinguish between over a thousand glosses directly from a video of a signer
performing a sentence. The authors of [82] also emphasized that gloss recognition with their
approach gave better performance when full video frames were considered rather than cropped
hand images only, as a CNN can effectively capture information from all sign language modalities
at once.
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Chapter 3

Computer vision system for objective
visual pursuit assessment

Visual pursuit, i.e., the ability of a person to track a slowly moving stimulus, is a key clinical

marker in most of the assessment scales for post-comatose states. In this chapter, we present our

work on a computer vision-based system that helps clinicians make the bedside assessment of

visual pursuit more accurate and less subject to experimenter bias. Our system, which uses cam-

eras on a head-mounted device, is specifically designed to work with the moving handheld mirror

stimulus, so as to follow the recommended and well-established clinical setup for visual pursuit

assessment. During the clinical procedure, our system works alongside the clinician by tracking

both the patient’s pupil and the moving mirror. Our system then outputs a score indicative of the

quality of visual pursuit. We give an evaluation of our system on healthy control subjects and

actual post-comatose patients. This evaluation eventually shows the great potential of our system

toward making visual pursuit assessment in a hospital environment an objective procedure. The

content of this chapter is essentially based on two of our articles, one published in the proceedings

of the 16th IEEE Winter Conference on Applications of Computer Vision [83], and the other one

published in the Journal of Neurology [84]. All work about the computer vision-based system

presented in this chapter is our own. The development of the head-mounted device, the clinical as-

sessments, and the statistical evaluations were however made by others, and we make this explicit

within the text wherever necessary.

3.1 Introduction

Disorders of consciousness (DOC) are neurological syndromes in which the patient’s conscious-
ness has been severly affected due to important brain damage. Different DOC states have been
defined, including the state of coma, and the post-comatose states known as unresponsive wake-
fulness syndrome (UWS, previously called vegetative state) [85], and minimally conscious state
(MCS) [86]. DOC states can be transitory, as patients in coma may evolve into UWS, then into
MCS. Patients in coma show no sign of being awake, or of being aware of themselves or their
surroundings. Patients in UWS are awake, in the sense that their eyes are open and that they may
be capable of basic reflexes such as coughing and swallowing, but they do not show any sign of
self or environmental awareness. Patients in MCS, however, are characterized by the presence
of a number of reproducible, cognitively mediated behaviors, e.g., purposeful behaviors, which
are distinguishable from reflex activity. A subcategorization has been proposed for MCS: MCS
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plus (MCS+) and MCS minus (MCS-) [87]. Patients in MCS- are characterized by the fact that
they only show lower-level non-reflex behaviors, such as pain localization or object localization.
Patients in MCS+ are characterized by the specific presence of response to command. Also, when
patients are able to functionally communicate and/or to functionally use objects, they are said to
have emerged from MCS (EMCS) [86].

The appropriate clinical management and accurate diagnosis and prognosis of patients with
DOC are difficult tasks that have engaged the efforts of medical doctors and researchers in neuro-
science for many decades (going back to thehardware mid-1960s [88]). In some cases, the char-
acterization of a DOC patient’s state can be very challenging to make, especially the distinction
between MCS and UWS, even for a skilled clinician. And yet, for ethical and medical reasons,
it is of paramount importance to correctly recognize the signs of consciousness. For instance, it
has been shown that patients in MCS are able to process auditory information, and to suffer from
pain, unlike patients in UWS [89]. Furthermore, proper care of MCS patients can lead in some
cases to full recovery of consciousness [90]. In the current clinical practice, bedside assessment of
consciousness using behavioral scales is the gold standard to characterize the state of patients with
DOC. Several scales have been designed, but the most popular and widely used one is the Coma
Recovery Scale-Revised (CRS-R [91]). The CRS-R is among the few assesment scales showing
strong evidence of reliability and validity for the assessment of DOC, based on a recent systematic
review completed by the American Congress of Rehabilitation Medicine [92]. As compared to a
diagnosis achieved solely by clinical consensus of the medical staff, the CRS-R allows to avoid
41% of misdiagnosis (i.e., erroneously considering patients in MCS as being in UWS) [93].

The CRS-R is divided into several assessment subscales (auditory function, motor function,
visual function, etc.), and incorporates in its visual function subscale the assessment of visual
pursuit, i.e., pursuit eye movement in direct response to a moving stimulus. Visual pursuit is a
key response for the clinical assessment of patients with DOC. Indeed, it is one of the first signs
appearing during recovery of consciousness, and it is a strong behavioral marker that, if present,
is sufficient to diagnose MCS and discard UWS [86]. According to different studies assessing the
evolution from UWS to MCS, around 45% of patients are diagnosed in MCS by establishing the
presence of visual pursuit [94, 95]. Moreover, in the global population of MCS, the prevalence of
visual pursuit is around 70% [96, 97]. In order to create the moving visual stimulus necessary to
assess visual pursuit, the CRS-R Administration and Scoring Manual (available from the authors
of the CRS-R by request) recommends to clinicians to move a handheld mirror in multiple trials
right in front of the patient’s face so that he/she might follow his/her own reflection. Following
this recommendation, the use of this autoreferential stimulus was shown to be consistently reliable
for declaring visual pursuit in MCS patients as compared to using other stimuli, e.g., a person or
an object, with which some MCS patients showed no pursuit at all even though they were actually
able to follow a moving mirror [97]. This result was also confirmed in [96], with additional
insight being given on the influence of the mirror trajectories chosen during the clinical assessment
procedure. Studies on healthy subjects also showed that using a mirror was more efficient than
using an object, because it elicits a smoother visual pursuit. Finally, the use of a mirror was shown
to decrease the probability of erroneously considering that the patient did not follow the stimulus
[98].
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While the research on visual pursuit assessment for patients with DOC has provided clinicians
with precise and meaningful guidelines (notably with the use of the CRS-R), this assessment in
practice only relies on subjective categorical estimates made by the clinician about the eye tracking
ability of the patient. Indeed, the end result of visual pursuit assessment consists of a “follows”
or “does not follow” statement, with no further details required, and based solely on the personal
decision of the clinician doing the assessment. These estimates can obviously be biased and impact
the overall diagnosis. For such a sensitive task, objective and quantitative measures are desirable
as additional information that can be used by the clinician to refine the outcome of the assessment.
Indeed, in general, medical sciences increasingly tend to incorporate objective measurement tools
for supplementing the clinical assessment and decreasing the caveats of bedside assessment. For
example in the assessment of DOC, electrophysiology and neuroimaging are used for improving
the detection of command following [99, 100, 101], or of cerebral activity compatible with a
residual consciousness [102, 103, 104]. Following this trend, the idea of using some form of eye
tracking technology toward supplementing the assessment of visual pursuit is appealing.

Off-the-shelf eye tracking technologies cannot however be easily adapted to the requirements
of bedside assessment of visual pursuit in DOC patients. As an illustration of this, in a first
attempt to quantitatively measure visual pursuit in DOC patients, an off-the-shelf computerized
eye tracking system was used, together with visual stimuli displayed on a computer monitor [105,
106]. In this preliminary work, visual pursuit was measured by on- and off-target fixation statistics
obtained for the patient who was asked to follow the stimuli on the computer monitor. The use of
such a system exhibits the following weaknesses:

1. It requires the patients to be seated, in order to face the monitor displaying the stimuli. This
may not only introduce bias due to the lack of comfort, but also lead to the exclusion of
some patients from the assessment, e.g., those who suffer from spasticity or from a lack of
tonus.

2. The overall eye tracking system does not (and cannot, as it stands) conform to the recom-
mended practice of using a mirror [97, 96]. This system uses suboptimal stimuli instead,
e.g., a red dot or the richly colored image of a parrot.

3. Because eye tracking systems typically require a prior calibration stage, the authors of [105,
106] had to include an a posteriori correction stage of the results for each patient. Indeed,
DOC patients are by definition much less collaborative and communicative than what would
be required in a prior calibration stage of an off-the-shelf eye tracking system.

The work presented in this chapter is about the computer vision-based system we developed
to assist clinicians in their bedside assessment of visual pursuit in patients with DOC [83, 84].
Specifically, using video data from two cameras on a head-mounted device, our system tracks the
patient’s pupil, as well as the mirror held by the clinician, then performs further processing on the
obtained trajectories to give an objective and continuous measure of the visual pursuit ability of
the patient. This system, which we designed in collaboration with DOC experts, works alongside
the clinician, letting him/her perform the assessment procedure in the usual and recommended
manner, i.e., by means of the moving mirror stimulus. Indeed, no changes are required in the
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posture and behavior of either the clinician or the patient as compared to visual pursuit assessment
performed without the presence of our system. We therefore contribute in two useful ways to
the task of visual pursuit assessment for patients with DOC. First, our system helps clinicians
enhance their subjective assessment of visual pursuit by providing an informative and fine-grained
objective score relative to this assessment. Second, it does so while preserving the established
clinical procedure that was validated as optimal and is widely used in clinical practice. To our
knowledge and according to DOC experts, our system is the first to have both of these important
characteristics. In the material and methods section of this chapter, we give a complete description
of our system, notably the pupil and mirror tracking techniques used, and two different methods
used for processing the obtained tracking trajectories toward extracting an objective score. In the
results section of this chapter, we give an evaluation of our system on healthy control subjects
as well as actual DOC patients. We also include side results that are indicative of the variability
of bedside visual pursuit assessment. Specifically, these results show how reliable the bedside
clinical assessment of visual pursuit is, as compared to a consensus by DOC experts on videos of
the assessment [84].

To finish this introduction, we would like to put this chapter into the general perspective of the
present thesis, which is about the automation of tasks of facial expression interpretation. One could
wonder whether a system that measures the quality of visual pursuit is an instance of automating
a face perception task, and in particular the interpretation of a facial expression. On the basis
of our definition of facial expressions and their interpretations in Chap. 1, we argue that it is
indeed. The eye is part of the face, and smoothly moving the pupil is a shared and temporary
human behavior involving this specific face part, i.e., a facial expression which is observed by
our system through pupil tracking. The complementary context information relevant to define an
interpretation of this expression is here embodied by the expectation that there is a mirror smoothly
moving right in front of the subject’s face, and that the subject may follow this movement with
his/her eyes. This context information is gathered on the fly by our system through mirror tracking.
All in all, in the task of visual pursuit assessment, the facial behavior that is “a movement of the
pupil” is particularly interpreted as “the ability to follow a moving mirror”, or even “a marker of
consciousness”. This interpretation is made by the clinician during the procedure, and it is also
made automatically by our system, working alongside the clinician.

3.2 Material and methods

3.2.1 System overview

Figure 3.1 depicts our vision-based system within a block diagram. Specifically, our system con-
sists of all software modules within this diagram. The image acquisition part was provided by
others and consists of a lightweight device that has to be fixed on the subject’s head. We actually
used two different prototypes for this head-mounted device, which we both describe in Sect. 3.2.2.
In either one of the prototypes that we used, the head-mounted device has two cameras, which we
refer to as the eye camera and the scene camera. The eye and scene cameras are connected to a
laptop computer and provide video data to two distinct tracking modules, specific to one camera.
One tracking module extracts the position of the pupil in the image reference frame of the eye
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FIGURE 3.1: Overview of our computer vision system (“Software modules”)
within a block diagram.

camera (described in Sect. 3.2.3). The other tracking module extracts the position of the handheld
mirror in the image reference frame of the scene camera (described in Sect. 3.2.4). A third module
processes the synchronized pupil and mirror trajectories coming from the tracking modules, and
outputs a continuous measure of the ability of the subject to follow the handheld mirror moved
by the clinician. We actually propose two different methods for processing the pupil and mirror
trajectories to output a measure of the visual pursuit ability. We describe both of these methods
in Sect. 3.2.5. Finally, note that the video data acquired through visual pursuit assessment can be
recorded on the laptop hard drive. Even though our system could, with a few adaptations, process
video data at the time of the clinical assessment, we used this recording feature of our system to
create experimental datasets and evaluate our methods in batch processing mode (Sect. 3.3).

3.2.2 Head-mounted device

When we started the project that eventually led to produce the content of this chapter, we used a
cap-like prototype for the head-mounted device (Fig. 3.2), assembled at the Laboratory for Signal
and Image Exploitation at the university of Liège. The scene camera of this prototype captures
grayscale images of the scene as observed by the subject, at 752x480 pixel resolution and 30
frames per second (FPS). This scene camera uses an ultra wide angle fish eye lens with a horizontal
field of view of 185° in order to cover the normal human field of vision and to ensure that the
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FIGURE 3.2: The first prototype we used for the head-mounted device. The beam-
splitter can be raised in order to safely place the prototype on the patient’s head
(left). It is then lowered to enable the capture of close-up frontal images of the eye

(right).

handheld mirror presented by the clinician to the subject is also visible by the scene camera. The
eye camera of this prototype is sensitive to near infrared (IR) radiation and captures close-up
grayscale frontal images of the eye of interest (left or right, easily selectable when needed). This
eye camera is equipped with an IR illuminator and a sensor, and with a beam-splitter that is to
be adjusted in front of the subject’s eye. Obviously, the beam-splitter is reflective in the infrared
and transparent in the visible to not disturb the subject’s vision. Initially, the eye camera of this
prototype was configured so as to capture images at 240x160 pixel resolution and 180 FPS. With
this resolution and the adequate placement of the cap-like prototype and its beam-splitter, a pupil
diameter of at least 20 pixels can be obtained within the image provided by the eye camera.

However useful and efficient in most cases, we found an intermittent issue in the cap-like
prototype just described. With some agitated DOC patients lying in bed, this prototype could
sometimes get displaced due to the patient rubbing the back of his/her head against the pillow.
Such displacements could be large enough to remove the patient’s pupil from the field of view of
the eye camera, or even the patient’s whole eye region in the worst cases. In such occurrences, we
had to discard the recordings, readjust the cap-like prototype and its beam-splitter on the patient’s
head, and redo the assessment procedure all over again. After a few occurrences of the issue, we
realized that it needed to be addressed. Our first solution was to increase the spatial resolution of
the eye camera to 320x240 pixels, which allowed to get a larger field of view for the eye region,
while still keeping the pupil diameter at around 20 pixels in the image. Set up in this way, the eye
camera capture would not miss the pupil in case of a small displacement of the cap-like prototype.
We also set a lower frame rate of 120 FPS for the eye camera, so that the acquisition chip could
keep up with the higher eye image resolution. Care was taken in verifying that this decrease in
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the eye camera frame rate would not cause difficulties in capturing pupil movements that could be
part of a visual pursuit.

Even by increasing the pixel resolution of the eye camera, the head movements of a few DOC
patients with a large or small skull structure could still lead the cap-like prototype to be displaced
in problematic ways. Although this situation was fairly unfrequent, it led us to conclude that
another, better-designed device would be advantageous for doing the rest of our experiments,
as well as for demonstrating that a single adequate head-mounted device could be used with all
DOC patients lying in bed. The head-mounted device we used from about the two thirds of our
experimental data acquisition process onward was a glasses-like prototype (Fig. 3.3), adapted
from a Drowsimeter R100 provided by Phasya S.A. (Angleur, Belgium). The scene camera of this
prototype is exactly the same as the one used with the cap-like prototype (i.e, ultra wide angle fish
eye lens, grayscale images, 752x480 pixel resolution, 30 FPS). The eye camera of this prototype is
fairly similar to the one used with the cap-like prototype (i.e., close-up grayscale images, 320x240
pixel resolution, 120 FPS). One difference between the two prototypes is that the eye camera
viewpoint of the glasses-like prototype is not exactly frontal, by design of the Drowsimeter R100.
This difference is however mild enough to allow its systematic removal by applying a minor and
consistent homography transformation to the pupil trajectory points obtained with the glasses-like
prototype. Note that this simple post-processing step is peculiar to our change of prototype and
our wish to homogenize the results presented in this chapter. It is not a method step that would
be necessary to make our vision-based system work with new patients (cf. the calibration step
typically required by common off-the-shelf eye tracking devices). Finally, note that, unlike with
the cap-like prototype, the beam-splitter in the glasses-like prototype was fixed, increasing the
standardization of the eye position within the captured images. Most of the remaining variations
observed in the eye images of the glasses-like prototype are therefore simply due to morphological
differences.

3.2.3 Pupil detection and tracking

Due to its many real-world applications, the automatic analysis of images of the human eye is a
very prominent and thoroughly studied topic in computer vision. Various computer vision prob-
lems can be subsumed under the umbrella of automatic eye analysis, from iris recognition for
biometric personal identification, to general-purpose eye gaze tracking in space, to name a few.
As of today, some of these problems remain very challenging, especially when the envisioned ap-
plication conditions are very general, e.g., eye tracking in the wild [107]. The eye analysis problem
of interest in our application consists in detecting and tracking the center of the pupil in the image
of one eye. This problem focuses on the most salient part of the eye image that is the dark and
mostly homogeneous pupil region, and does not aim at inferring knowledge beyond the 2D realm
of the eye image (unlike, e.g., the estimation of gaze direction in the 3D world). Moreover, the
conditions defined for our specific application are quite well controlled, because of the quality
of the eye camera of the head-mounted device. Indeed, by using either the cap-like prototype or
the glasses-like prototype (Sect. 3.2.2), many of the difficulties that are usually encountered with
less controlled image acquisition conditions could be alleviated in our application. The method
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FIGURE 3.3: The second prototype we used for the head-mounted device, adapted
from a Drowsimeter R100 provided by Phasya S.A. (Angleur, Belgium).

we propose for pupil detection and tracking is therefore fairly simple, because of the advantages
offered by the acquisition system we used, which are as follows.

• The viewpoint of the eye region does not vary much, i.e., it is standardized, because the eye
camera is head-mounted.

• The pupil appears approximately circular most of the time, i.e., at its peak salience, because
the standardized viewpoint is frontal or near frontal.

• The pupil size appears relatively large, with a diameter of at least 20 pixels, because the
standardized viewpoint gives close-up images of the eye.

• The pupil is one of the only few salient parts in the image, because the field of view of the
eye camera is limited to the eye region.

• The pixel intensities of the eye parts have little inter-subject variation, in particular the
intensities of the iris and pupil pixels, because the eye camera captures in the infrared.

• The pupil appears to move smoothly in most occurences, facilitating its tracking, because
the frame rate of the eye camera is high.

Pupil detection

To detect the center of the pupil in an image I , we first remove the few specular reflections by
inpainting the very bright areas in I . These bright areas are detected by adaptive thresholding, i.e.,
thresholding using the mean of each pixel’s neighborhood, followed by morphological closing.
Then, using a collection of synthetic, circular and concentric iris/pupil templates of varying iris
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radii and pupil-to-iris ratios, we calculate a series of correlation images of these templates with I .
If the largest value of a correlation image does not cross an empirical threshold value, this correla-
tion image is discarded. If all correlation images are discarded, the pupil is assumed to be absent
from I1. If there remains at least one correlation image, we define the coordinates of the detected
pupil center p to be the x and y median values of the pixel positions corresponding to the largest
values in the remaining correlation images. For further use during tracking, we also define the
template T0 as a circular region of I centered at p and with radius determined as follows. The ra-
dius r0 of T0 is set to be the median value of the iris radii in the synthetic templates corresponding
to the remaining correlation images.

Pupil tracking

To track the center of the pupil in a video frame, we use a template matching approach that is
based on the template update strategy proposed in [62]. This strategy was designed to bring a
solution to the recurrent problem of object drift in template matching-based tracking methods. It
is well-suited to robustly track near rigid objects with simple shape models – in our case, a 2D
translation model – when such objects undergo minor changes in appearance throughout a video.

Let us assume that the pupil center pk−1 was successfully extracted from the video frame Ik−1.
Let us also assume that we have two templates T0 and Tk. T0 is the original template obtained
at time 0 (i.e., at detection time, see the previous section). Tk is an updated template estimated
at time k − 1 (i.e., at the most recent tracking time2, see below). Using these two templates, we
perform two sequential searches within the frame Ik to find the current pupil center pk. The first
search is made by correlating Tk with a small region of Ik centered at the previous pupil center
pk−1. The best match found by this first search gives us the provisional pupil center pk for the
frame Ik. The second search is then made by correlating T0 with a small region of Ik centered at
the (provisional) pupil center pk found by the first search. The best match found by this second
search gives us the candidate, drift-corrected pupil center p∗k for the frame Ik. Drift correction is
applied, i.e., pk := p∗k, if ||p∗k − pk|| ≤ ε, where ε is a small empirical threshold. The template
Tk is then updated to Tk+1 according to the following rule: (1) if the drift correction was applied,
then Tk+1 := Ik(pk, r0), where the notation I(p, r0) denotes the circular region of I centered at
p with the radius r0 found at detection time; (2) if the drift correction was not applied, then no
update is made to the template, i.e., Tk+1 := Tk. The updated template Tk+1 will be used at the
time of the first search in Ik+1.

Blinking or prolonged eye closure causes a temporary absence of the pupil in the image, which
also causes our tracking method to fail. To detect such situations, we require that the best match of
the first search, i.e., the search made within the image Ik using the updated template Tk, crosses a
empirical threshold value. If it does not, the tracking procedure is stopped, and we perform pupil
center detection in subsequent frames to try re-initiating the tracking procedure. Our method for
pupil center detection and tracking performs well on our data, as can be seen in Fig. 3.4.

1As it is required to initialize pupil tracking, pupil detection that fails within a given video frame will be tried again
as early as possible, i.e., within the next video frame.

2At time 1, i.e., just after detection, the convention is to choose T1 := T0.
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FIGURE 3.4: Snapshots of a video taken with the eye camera of the first head-
mounted device (the cap-like prototype, described in Sect. 3.2.2), with superim-

posed results (as green circles) obtained with our method for pupil tracking.

3.2.4 Mirror tracking

In contrast with the problem of pupil tracking (Sect. 3.2.3), which is very frequently mentioned
and addressed in the literature, the problem of tracking a handheld mirror facing the camera is not
customary. Actually, we could not find any piece of literature or off-the-shelf technology dedicated
to solving this specific problem. Tracking the non-reflective part of a mirror, i.e., its frame, can
be recast as an instance of the general problem of tracking a 3D rigid object in a 2D image. This
general problem can be solved by calling upon different standard approaches, e.g., fiducial-based
tracking, model-based tracking, interest point-based methods, etc. [108]. However, it is a fact
that a mirror is mostly a reflective surface, and that the reflected patterns present in the image
indirectly contain information about the 3D pose of the mirror. Additionally, because a handheld
mirror frame is typically thin and not prominent with respect to its reflective part, only focusing
on tracking the mirror frame and ignoring the information coming from the mirror reflections is a
suboptimal solution at best, and a hazard for the overall tracking robustness at worst.

Also note that, in our application, it is an absolute necessity to gather as accurate and robust
information as possible about the mirror moved by the clinician, as observed by the patient, and
that not much simplification can be made about the experimental environment. Indeed, to satisfac-
torily solve the handheld mirror tracking problem in our application, we have to assume difficult
conditions inherent to a hospital environment, such as a cluttered and non-fixed scene with var-
ious moving objects, and significant variability in the spatial mirror pose. The only reasonably
expectable conditions are that the mirror is present in the image, and that its movements appear
smooth so as to comply with the visual pursuit assessment guidelines. In light of the challenges
posed by this problem and the lack of applicable solutions found for it in the literature, we think
that our solution, which is exposed next, may be innovative in itself, and not only in our appli-
cation context. Of course, this problem of tracking a handheld mirror is somewhat specific and
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seldom encountered in practice.
Our mirror tracking method is essentially 3D model-based, but it also incorporates key con-

straints relative to the mirror plane, which are estimated via a general geometric analysis of the
patterns reflected by the mirror. For its model-based part, our method consists of a 3D shape model
registration technique by 2D template matching, derived from the Lucas-Kanade algorithm [68].
The 3D shape model S = {X1, . . . ,XN} is a collection of N evenly and densely distributed 3D
points that approximately represent the frontal surface of the mirror frame. Specifically, S models
the non-reflective part of the mirror object as seen from the front, i.e., with the principal axis of
the camera being normal to the reflective surface of the mirror. Such a model can be obtained
either from a single depth image of the real mirror object in a frontal pose, or by hand-crafting,
which is easy enough if the real mirror object’s frame shape is pretty regular and its dimensions
have been measured. The frontal pose of S is considered to be the reference pose, with rotation
and translation denoted as {R0, t0}. We use the perspective camera model for projecting S onto
the image plane of the camera. This camera model transforms a 3D point Xi = [Xi;Yi;Zi] into
its 2D projection xi = [xi; yi] in the image, via

xi = K (RXi + t), K =

fx 0 cx

0 fy cy

0 0 1

 , (3.1)

where R and t represent the rotation and translation in 3D, respectively, and K is the calibration
matrix with intrinsic camera parameters fx, fy, cx, and cy. These parameters, all expressed in
pixels, represent the focal lengths in the x and y axes, and the image coordinates of the center of
camera, respectively. They were determined via a prior calibration procedure, as usually done.
Also note that, in our application, the fish eye lens of the scene camera produces strong radial
distortion, and the calibration procedure therefore also included the estimation of the distortion
coefficients (not shown in Eq. 3.1). In practice, mirror tracking was performed on images where
the distortion had been removed.

The template T used in our mirror tracking method is a 2D image of the mirror frame as seen
from the front. Similarly to the 3D shape model S, the template T can be obtained either from
a single grayscale image of the real mirror object in a frontal pose, or by hand-crafting, which
is easy enough if the real mirror object’s frame appearance has simple textural patterns (e.g., all
dark, or regularly arranged dark and light regions). The relationship between the template T and
the shape model S is so that the spatial domain of T , denoted {ui}, corresponds to the projection
of the {Xi} with the perspective model in Eq. 3.1, when S is in the reference pose {R0, t0}, i.e.,

ui = K(R0Xi + t0) ∀i ∈ {1, . . . , N}. (3.2)

For ease of explanation here, we present the template T as being constant (i.e., having fixed pixel
values). In practice, the template is actually parameterized to allow global linear variation of its
pixel values, in order to account for global camera gain and exposure bias. Using the 3D shape
model S, the perspective model in Eq. 3.1, and the 2D template T with its spatial domain as in
Eq. 3.2, we can define the first term of the objective function that will have to be minimized in
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order to retrieve the mirror pose from an image I , as

E(I,R, t) =
N∑
i=1

ρ(I(K (RXi + t))− T (ui)), (3.3)

where ρ is the Huber loss function [68], which is quadratic for small values of its argument, and
linear for large values thereof. Given a pose {R, t}, the loss term in Eq. 3.3 is a robust M-estimator
of the residuals between the image and the template. Indeed, it weights down the residuals that
are likely to come from an occlusion, e.g., the hand of the clinician, which, as such, should not
contribute too much to the minimization procedure.

To express the constraints about the reflective plane of the mirror, we use a method inspired
by the work in [109], where it was shown how the pose of a camera can be estimated provided
that the rigid motion between a number of virtual views induced by planar mirror reflections is
known. In our application, the problem is simplified by making the assumption that the mirror
pose and, therefore, its plane normal nk−1 and scalar Euclidean distance to the origin dk−1 are
known a priori at frame Ik−1. We also make two other assumptions, namely, (1) that the scene
camera is fixed in the world reference frame, and (2) that the 3D environment being reflected by
the mirror is mostly static between two consecutive frames. The differences between the projected
reflections in two consecutive frames Ik−1 and Ik can be thought of as coming from the change
of viewpoint of a virtual camera of center C∗k−1 = 2dk−1nk−1, which is symmetric to the real
camera of center C = 0 with respect to the moving mirror plane. To retrieve the virtual camera
rotation R∗k and translation t∗k, we use the essential matrix method [110]. This method exploits
the known calibration matrix K and an estimated fundamental matrix Fk embodying the epipolar
geometry that explains the correspondences, between the projected reflections in frames Ik−1 and
Ik, of the image keypoints. From the new virtual camera center, obtained by C∗k = R∗kC

∗
k−1 + t∗k,

the estimation of the new mirror plane normal is nk = C∗k / ||C∗k||, with Euclidean distance to the
origin dk = −〈nk,C∗k / 2〉.

Incorporating a regularizing term that penalizes the distance of the 3D points of the shape
model S to the reflective mirror plane {nk, dk} estimated at frame Ik, the complete minimization
problem for finding the mirror pose {Rk, tk} at frame Ik is therefore

argmin
R,t

E(Ik,R, t) + C
N∑
i=1

(〈RXi + t,nk〉+ dk)
2, (3.4)

where E(Ik,R, t) comes from Eq. 3.3, and C is an empirical constant multiplier balancing the
soft constraint. After a coarse initialization of the mirror pose at the beginning of a scene video, the
Gauss-Newton algorithm derived from the optimization problem in Eq. 3.4 continuously extracts
the 3D pose of the mirror robustly, i.e., in the presence of extreme projective deformation, clutter,
and occlusions. Figure 3.5 illustrates the effectiveness of our mirror tracking method. Note that,
as we explain in the next section, in our application, we only need to track the 2D position of the
mirror in the image of the scene camera. Tracking the full 3D mirror pose merely consists of a
means to robustly obtain this image position of the mirror. Therefore, the mirror tracking module
of our system outputs the image mirror position for each frame Ik, as mk := Ktk.
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FIGURE 3.5: Snapshots of a video taken with the scene camera of the first head-
mounted device (the cap-like prototype, described in Sect. 3.2.2), with superim-

posed results (as green lines) obtained with our method for mirror tracking.

3.2.5 Trajectory processing

Because the pupil and mirror tracking modules were designed to be robust, they do not output
strong outliers. By using Kalman filtering [111], statistical noise and inaccuracies are efficiently
removed from the extracted pupil and mirror positions. Also, in case of blinking or prolonged
eye closure3, we use the Kalman filter to smoothly predict the missing pupil positions due to the
temporary loss of tracking. Likewise we predict the missing mirror positions due to the lower
frame rate of the scene camera, as compared to the high frame rate of the eye camera. As a
result, the pupil and mirror trajectories {pi} and {mi} consist of two same-size, ordered sets
of synchronized image positions, which are faithful of the movement of the pupil and mirror
as observed by the eye and scene cameras, respectively, during the course of the visual pursuit
assessment procedure.

The viewpoints of the eye and scene cameras of the head-mounted device are approximately
symmetrical with respect to the frontal plane of the subject’s face. Therefore, in the presence of
visual pursuit, the pupil trajectory {pi} should be fairly similar to the mirror trajectory {mi}4.
The trajectory processing module of our system has the task of measuring the similarity between
these trajectories, so as to provide an objective score that is indicative of the presence or absence
of visual pursuit. We developed two different methods that can each provide an objective score
for visual pursuit assessment. The first one is based on a correlation analysis on time-matched
segments from {pi} and {mi}. The second one is base on machine learning, and involves the

3In the clinical assessment of visual pursuit, prolonged eye closure is a matter of about one second, at most. Indeed,
if the clinician detects a longer period of time for an eye closure during the assessment, he/she will systematically stop
the procedure and try awakening the patient, before redoing the assessment in case of successful awakening.

4Actually, in the presence of visual pursuit, the pupil trajectory in the image domain of the eye camera should be
similar to the reflected mirror trajectory in the image domain of the scene camera, i.e., the mirror trajectory that is
“flipped” with respect to the vertical axis of the scene image coordinate system. We therefore systematically flip the
images coming from the scene camera before they are passed to the mirror tracking module, to remove the reflection
component from the similarity.
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independent classification of time-matched segments from {pi} and {mi}. We developed the sec-
ond method to overcome some of the limitations we found about the first method, as our results
with both methods will show in Sect. 3.3. Before describing these methods further, we find it nec-
essary to give the details of the clinical procedure of visual pursuit assessment, as recommended
by the CRS-R protocol. Indeed, the detailed specification of this procedure is the ground for im-
plementing our trajectory processing module, especially with the second, machine learning-based
method.

Clinical procedure and trajectory segments of interest

The clinician must first hold a planar mirror at about 15 centimeters right in front of the subject’s
face, which is called the reference frontal pose of the mirror, and verbally encourage the subject
to fixate the mirror. The exact mirror shape and dimensions are not specified by the CRS-R, but it
should obviously be big enough for the subject to see a full reflection of his/her face when held at
the prescribed distance, and small and light enough to be effectively manipulated by the clinician.
The clinician must then move the mirror slowly from its reference frontal pose, one time back and
forth in each of the leftward, rightward, upward, and downward directions, i.e., at 45 degrees to
the right and left of the vertical midline of the subject’s face, and 45 degrees above and below the
horizontal midline of the subject’s face. This must be done while keeping the mirror at a constant
distance from the subject’s face and ensuring that the subject might see and follow his/her own
reflection. The exact order of these four movements is to be chosen by the clinician. In general
practice, the clinician tries to make them as random as possible to avoid evaluation bias. This series
of four movements is then repeated, again in a random order, so that a total of eight visual pursuit
trials, two in each of the leftward, rightward, upward, and downward directions, are performed.
The presence of visual pursuit is declared by the clinician if the subject can follow the mirror
without loss of fixation on at least two complete trials, i.e., from 0 to 45 degrees, irrespective of
the directions of the successful trials.

For each of the eight trials, it is only when the mirror is moved from 0 to 45 degrees, i.e.,
from the reference frontal pose to a shifted pose, that the clinician determines whether the trial
is successful or not by observing the patient’s eyes. The return move from 45 to 0 degrees, i.e.,
to the reference frontal pose of the mirror, only prepares the next trial and should not be part
of the overall assessment of visual pursuit. Therefore, even though the tracking modules of our
system extract the pupil and mirror positions without interruption throughout the procedure, only
time-matched segments of the trajectories {pi} and {mi} should be considered to evaluate their
similarity. These segments correspond to the eight mirror move parts going from 0 to 45 degrees,
two in each of the four directions. We did not include in our system a way to automatically find
the boundaries of the segments of interest in {pi} and {mi}. These boundaries were manually
set by visual inspection of the mirror videos, which is not very time consuming as it can be done
in one pass over a video played at normal speed. However, a fully automatic system should
ultimately include the automatic detection of such boundaries. A proper method for doing so
could be dynamic programming for sequence segmentation [112], applied to the mirror trajectory
points, with the segment homogeneity model being the constant speed of displacement over the x-
and y-axes.
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Correlation-based objective score

Because of the choice of viewpoints for the eye and scene cameras, the pupil and mirror trajectories
are given in image reference frames that share the same orientation, but have different origins and
scales in the horizontal and vertical directions. In case of smooth visual pursuit, the pupil and
mirror trajectories should therefore be approximately equivalent, up to a linear transformation. In
statistics, the Pearson correlation coefficient [113] is a method of choice to measure the linear
correlation between two variables. The calculation of our first objective score of the visual pursuit
ability is thus based on the sample Pearson correlation coefficient, and essentially quantifies the
linearity of the relationship between the pupil and mirror trajectory points.

We found empirically that it gives better results to quantify the linear relationship between the
trajectories {pi} and {mi} separately in each of the horizontal and vertical directions, and then
to average the results. We also ignore the negative correlations obtained for either one of the x-
and y-coordinate samples, by thresholding them to zero before averaging (the Pearson correlation
coefficient has values in [−1, 1]). We denote by p̂x and p̂y the samples of the x and y image
positions of the pupil, and by m̂x and m̂y the samples of the x and y image positions of the mirror.
These pupil and mirror samples are formed by concatenating the trajectory points from the time-
matched segments of interest in {pi} and {mi}, respectively. Denoting by rab the sample Pearson
correlation coefficient between two samples a and b, the correlation-based objective score of the
visual pursuit ability, which we coined the “confidence score”, or C-score for short, is calculated
as

max(rp̂xm̂x , 0) + max(rp̂ym̂y , 0)

2
. (3.5)

The values of the C-score in Eq. 3.5 are in [0, 1], with the value 0 representing perfect confidence
in the absence of visual pursuit, and the value 1 representing perfect confidence in its presence. A
precise discrimination threshold for declaring the presence of visual pursuit could be obtained by
a receiver operating characteristic (ROC) curve analysis of this score on experimental data. We
found however that arbitrarily setting the discrimination threshold to 0.25 (somehow representing
the proportion of visual pursuit needed to reach the CRS-R criteria) works well enough in practice.
As an illustration, Fig. 3.6 shows the evolution of the confidence score (C-score) as the pupil and
mirror trajectories are extracted over a visual pursuit assessment with a successful outcome, as
declared by the clinician.

Machine learning-based objective score

As it will be shown in the results section of this chapter, some difficult cases with DOC patients led
us to conclude that a linear correlation model is not sufficient to automatically assess visual pursuit
reliably in all cases. In the most difficult practical cases, the interpretation made by the clinician
has to be subtle and to account for faint purposeful movements of the patient’s eyes, for each of
the eight trials of the procedure. Figure 3.7 illustrates the variability of the trajectory patterns in
trials that are considered by DOC experts to be successful. We take a supervised machine learning
approach to design our second method for the extraction of an objective score of the visual pursuit
ability. In doing so, we wish to capture from expertly labeled data the full complexity of visual
pursuit assessment, as performed by a skilled clinician.
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FIGURE 3.6: Time-lapse image sequence of a visual pursuit assessment with a
successful outcome, illustrating the production of the pupil and mirror trajectories,
along with the derived confidence score. The trajectories are drawn with various
shades of green to visualize the progress in time (the brighter the green is, the
more recently the trajectory point was extracted). The pupil and mirror trajectories
look similar because of the presence of visual pursuit. This is corroborated by the

evolution of the confidence score, which quickly reaches a value close to 1.

Let C = {success, failure} be the classes representing the possible outcomes of any one
trial of a visual pursuit assessment, i.e., of a mirror movement in either one of the rightward,
leftward, upward, or downward directions. Let X = {{pj ,mj} | j ∈ {1, . . . , N}} be the set of
all possible time-matched trajectory segments of interest that can be obtained with the pupil and
mirror tracking modules of our system. It is assumed that every such segment corresponds to one
trial of a visual pursuit assessment, and that it has been resampled in time so as to contain exactly
N couples of a pupil position pj and a mirror position mj . Given a machine learning method
and a training set D ⊂ X × C, we can learn a classifier ĉ : X → C, i.e., a classification rule
that can notably be used to predict the success or failure of each of the eight trials of a visual
pursuit assessment. Given an effective machine learning method, the eventual performance of the
classifier, i.e., the quality of its predictions, will largely depend on the quality of the training set D
and the appropriateness of the functional form assumed for ĉ(·) within the learning method. We
leave the details of the training set to the results section, and explain here the machine learning
method we used, as well as the functional form we chose for ĉ(·) within this machine learning
method.

We chose an artificial neural network approach (ANN) to learn our trial-level visual pursuit
classifier ĉ(·). Using the ANN framework introduced in [114], we designed a sequential neural
network architecture composed of four fully connected linear layers interspersed by three rectified
linear units layers (ReLU) [115], and a log-softmax layer at its end. By incorporating the transfer
functions that are the ReLU and the log-softmax, we wish to capture the hypothesized nonlinear
nature of the subtle decisions made by the clinician at the trial level in difficult patient cases. The
log-softmax layer was also chosen so that we can append a negative log likelihood (NLL) crite-
rion to the end of the network to prepare the learning stage. The input and output sizes of the first
three linear layers is 4N . This means in particular that the input size of the network as a whole
is 4N . This size corresponds to the total number of xy coordinates in the {pj | j ∈ {1, . . . , N}}
and {mj | j ∈ {1, . . . , N}} points within a time-matched trajectory input segment. The input and
output sizes of the last linear layer are 4N and 2, respectively, to make the classifier learn over a
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FIGURE 3.7: Mirror (left) and pupil (right) trajectories extracted by the respective
tracking modules of our system, during the visual pursuit assessment of three dif-
ferent DOC patients at bedside. For each of the three assessments, only the first
four consecutive trials are depicted. The left column shows the mirror movements
in the leftward, rightward, upward, and downward directions. The right column
shows the corresponding pupil movements, which were all labeled as successful
by DOC experts, i.e., they follow the mirror movements. The first row illustrates
a simple case, where the mirror and pupil trajectories look very similar. The sec-
ond row illustrates a more difficult case, where the pupil trajectory is less regular
and more dissimilar to the mirror trajectory. The third row illustrates a difficult
case, where the pupil trajectory seems erratic. A linear similarity model may fail

to recognize the presence of visual pursuit in such a difficult case.
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2-class output space (through the log-softmax transfer function and the NLL criterion). With the
neural network architecture (and the criterion) thus designed, the parameters of the neural network
can be optimized by feeding it the inputs and targets from the training set D. The number of net-
work parameters to optimize is a function of the resampling size N of the trajectory segments. In
this work, we use a resampling size of 100 trajectory points, leading to 482,002 network param-
eters to optimize. We use the classic stochastic gradient descent optimization procedure to learn
our trial-level visual pursuit classifier ĉ(·) based on this artificial neural network architecture.

Once the trial-level classifier ĉ(·) has been learned, it is simple to use it to derive a global ob-
jective score for any new and complete visual pursuit assessment, i.e., a global score for a series of
eight successive trials not in the training setD. Indeed, provided that the eight time-matched pupil
and mirror trajectory segments of interest {{pj ,mj}i | i ∈ {1, . . . , 8}} of a particular assessment
are given, their outcome can be predicted individually by the trial-level classifier ĉ({pj ,mj}i), so
as to produce a series of eight class labels {ĉi | i ∈ {1, . . . , 8}}. By matching the class success
with the numeric value 1 and the class failure with the numeric value 0, a scalar objective score
in {0, 0.125, 0.25, 0.5, 0.625, 0.75, 0.875, 1} can be calculated by averaging the elements of {ĉi}.
To follow the recommendations of the CRS-R, if this machine learning-based score of the visual
pursuit ability, or M-score for short, reaches the value 0.25 (i.e., two successful trials), then the
presence of visual pursuit is declared by our system. We believe that the M-score may be more
faithful of the clinician’s cognitive process than the C-score, notably because the calculation of
the M-score involves summarizing trial-level decisions by means of averaging, in the same way as
the clinician does.

3.3 Experimental evaluation

3.3.1 Subject enrollment

To conduct the experimental evaluation of our system, healthy control subjects and chronic DOC
patients were enrolled (by others, notably the clinician who did the visual pursuit assessments pre-
sented in this results section). For information, age and gender were not taken into consideration
to enroll either the healthy control subjects or DOC patients.

The cohort of healthy control subjects consisted of 23 volunteers, between the age of 23 and
48 years, 13 of which were male. All of them provided written informed consent, and none of
them was ever diagnosed with visual function impairment or neurological or psychiatric disorder.

The cohort of DOC patients consisted of 31 people, 12 in UWS, 11 in MCS-, 3 in MCS+, 5
in EMCS, 13 traumatic, 20 male, mean age: 40.23 ± 13.19 years, mean time since onset: 4.55
± 4.84 years. The individual demographic and clinical data are included in Tab. 3.1. These
patients were recruited during a one-week hospitalization at the university hospital of Liège. They
were sent there by their treating physician and/or their family to be subjected to several clinical
examinations. Written informed consent was obtained from each of the DOC patients’ surrogate
decision makers, in accordance with the research protocol approved by the university hospital of
Liège. The criteria for the inclusion of a patient in our experiments were (1) to be at least 18
years old, and (2) to have suffered a severe brain injury leading to a prolonged DOC syndrome, as
diagnosed by the CRS-R. The exclusion criteria were (1) a time shorter than three months since



Chapter 3. Computer vision system for objective visual pursuit assessment 62

the occurrence of the brain injury, and (2) the presence of a premorbid neurological or psychiatric
disorder. The patients were not included on the basis of the integrity of their visual function as,
most of the time, clinicians do not know a priori the visual function state of a patient before
assessing visual pursuit.

3.3.2 Clinical assessments and data acquisition

The tests of our system with the healthy control subjects were all conducted in the same laboratory
environment at the Montefiore institute of the university of Liège. The tests of our system with
the DOC patients were all conducted in their respective rooms at the university hospital of Liège.
The healthy control subjects were seated casually, and the DOC patients could either sit in a chair
or lie in bed in their favorite, most comfortable position. Before proceeding to the visual pursuit
assessment with a healthy control subject or a DOC patient, the head-mounted device was placed
on the subject, and the laptop computer connected to the eye and scene cameras of the head-
mounted device was placed on a table nearby, out of view of the subject being tested. These
preparatory steps are very simple, and could be performed within a few seconds in all tests. We
participated in these preparatory steps for most tests of our system with the DOC patients and the
healthy control subjects.

After the preparatory steps were made, visual pursuit was assessed the clinician, who was the
same experienced research neuropsychologist in all tests. Also, the handheld mirror moved by the
clinician in all tests was the one shown in Fig. 3.5. The clinician followed the same procedure
with either a healthy control subject or a DOC patient, i.e., she applied the procedure described in
Sect. 3.2.5, in accordance with the CRS-R administration guidelines. Specifically, visual pursuit
was considered by the clinician to be present when a smooth pursuit eye movement was observed
on two occasions, in any of the leftward, rightward, upward, or downward directions, out of the
eight trials prescribed by the CRS-R procedure5. For each test of our system, while the clinician
applied the visual pursuit assessment procedure, eye and scene videos were recorded. These videos
were later processed offline with the pupil and mirror tracking modules of our system, as well as
the trajectory processing module, so as to output an objective score indicative of the presence of
visual pursuit in each of the tested subjects.

In order to test the sensitivity of our system to the eye behavior, we conducted additional tests
with the healthy control subjects. We used a procedure similar to the one described in the CRS-R
for visual pursuit assessment, but with fundamentally different instructions given to the subjects.
For 17 of the healthy control subjects, we organized another test where they were verbally en-
couraged by the clinician to focus their gaze on a fixed point and not to try following the moving
mirror. Also, for 10 of the healthy control subjects, we organized another test where they were
verbally encouraged to perform random eye movements and to ignore as best as possible the mov-
ing mirror. The general experimental setup remained unchanged for these additional tests, notably
the rest of the CRS-R procedure for visual pursuit assessment was applied, the same research neu-
ropsychologist performed all of the assessments, and the same handheld mirror was used. Also

5Incidentally, after a test of our system for the visual pursuit assessment of a DOC patient, the other items of the
CRS-R were almost always assessed by the clinician, with our system removed, in order to make the complete clinical
diagnosis for the patient.
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TABLE 3.1: Demographic and clinical data of the cohort of DOC patients, and
their visual pursuit (VP) assessment outcomes by human experts and by our au-
tomatic system. Gdr: patient gender; Age: patient age; TSO: time since onset
of the DOC syndrome; Diag: DOC diagnosis; Clin-VP: VP assessment outcome
by the clinician at bedside; Off-VP: VP assessment outcome by the clinician on
video; Cons-VP (GS): VP assessment outcome by a consensus by DOC experts
on video (gold standard); C-sc-VP: automatic VP assessment outcome with our
system and the C-score; M-sc-VP: automatic VP assessment outcome with our
system and the M-score. Equivalence with the gold standard is shown in green.
Difference with the gold standard is shown in red. Only M-sc-VP is perfectly

equivalent to the gold standard.

Human expert decision Automatic decision
Gdr Age TSO Diag Clin-VP Off-VP Cons-VP (GS) C-sc-VP M-sc-VP

1 F 28 4m UWS No No No No No
2 M 41 1y UWS No No No No No
3 M 73 9y UWS No No No Yes No
4 M 58 2y UWS No No No No No
5 F 50 6m UWS No No No No No
6 M 37 11m UWS No No No Yes No
7 F 41 2y UWS No No No Yes No
8 F 36 1y UWS No No No No No
9 M 33 14.5y UWS No No No No No

10 M 22 1y UWS No No No Yes No
11 M 23 1y UWS No No No Yes No
12 F 42 9m UWS No Yes No No No
13 F 40 3.5y MCS- Yes Yes Yes Yes Yes
14 M 45 13y MCS- Yes Yes Yes Yes Yes
15 M 54 6m MCS- No No No No No
16 F 25 11m MCS- Yes Yes No Yes No
17 M 26 12y MCS- Yes No No Yes No
18 M 25 1.5y MCS- Yes Yes Yes Yes Yes
19 M 34 12y MCS- Yes Yes Yes Yes Yes
20 M 34 12y MCS- No No No No No
21 F 62 2y MCS- Yes Yes Yes Yes Yes
22 F 42 7m MCS- Yes Yes Yes Yes Yes
23 M 55 7y MCS- Yes Yes No Yes No
24 F 31 13y MCS+ Yes Yes Yes Yes Yes
25 M 60 2y MCS+ No No No No No
26 M 30 4y MCS+ No No No No No
27 M 24 5m EMCS Yes Yes Yes Yes Yes
28 M 49 1y EMCS Yes Yes Yes Yes Yes
29 M 33 11y EMCS Yes Yes Yes Yes Yes
30 F 37 6y EMCS Yes Yes Yes Yes Yes
31 M 58 4y EMCS Yes Yes Yes Yes Yes
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note that the age and gender of the healthy control subjects were not taken into consideration to
conduct these additional tests.

Each one of the visual pursuit assessment tests of our system conducted with either a healthy
control subject or a DOC patient was performed exactly once, as well as the additional tests.
Our experimental dataset is composed of 81 tests in total: 23 healthy control subjects who were
encouraged to follow the moving mirror, 17 healthy control subjects who were encouraged to keep
a fixed gaze, 10 healthy control subjects who were encouraged to do random eye movements, and
31 DOC patients who were encouraged to follow the moving mirror.

3.3.3 Assessment outcomes and gold standard

Since the motivation for our work is to provide an objective score of the visual pursuit ability to
help clinicians enhance their bedside assessment of visual pursuit, it means in particular that the
clinical decisions made during the construction of our experimental dataset may be subjective and
biased. As such, these clinical decisions should not be considered as the perfect ground truth,
or gold standard, to evaluate our system on the experimental video data. Providing accurate and
non-biased ground truth about the visual pursuit assessment of a DOC patient is however a hard
task. Assessing the simultaneity and similarity of the mirror and pupil movements altogether is
a perception task for which the clinician doing the assessment is ideally located with respect to
the patient. Having more DOC experts being present as observers during the assessment is not
a suitable solution, because (1) their point of view is probably not ideal, if only because they do
not move the handheld mirror themselves, (2) their mere presence may add even more bias to the
assessment procedure, disturbing the patient and/or the clinician who moves the mirror, and (3)
such a solution requires more research/medical staff for each visual pursuit assessment.

We propose to use as a gold standard the ground truth decisions made via the offline inspection
by DOC experts of the video data acquired by our system. This solution has several advantages.
Assuming that we give an appropriate presentation of the eye and scene video data, the DOC
experts have access to accurate visual information about the degree of simultaneity and similarity
between the pupil and mirror movements. Also, since the video data are to be visually inspected
offline, the integrity of the clinical procedure at the time of visual pursuit assessment is preserved,
and as many viewings as needed of a single assessment can be made by a DOC expert for him/her
to make a decision. Finally, the overall decision-making process for producing the ground truth of
a visual pursuit assessment can be organized by consensus on the basis of the individual decisions
made by each of the DOC experts.

To implement the production of our video-based, consensus-based gold standard for our ex-
perimental dataset, we created an anonymous video dataset including all of the visual pursuit tests
performed with the cohorts of DOC patients and healthy control subjects. We composed each
video of this anonymous dataset so as to display the sequence of eye movements as recorded by
the eye camera, side-by-side with a synthetic depiction of the corresponding, synchronized se-
quence of eight mirror movements as seen by the subject. We designed this synthetic depiction
to ensure that the unnecessary details captured by the scene camera (such as the clinician’s body
movements and the subject’s face in the mirror reflection) could not perturb the visual inspec-
tion or reveal the subject group or identity. We used the 3D mirror pose tracking feature of our
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FIGURE 3.8: Time-lapse image sequence from a video of the anonymous dataset
we created to produce gold standard decisions via a consensus by DOC experts.
The synthetic depiction of the mirror movements is shown on the left side, and the
corresponding eye images acquired by the eye camera are shown on the right side.

mirror tracking module (Sect. 3.2.4) to create this synthetic depiction of the mirror movements.
Figure 3.8 shows a few images of a video of this anonymous dataset.

The videos of the anonymous dataset were presented for individual and independent visual in-
spection to three researchers with great experience in the clinical assessment of patients with DOC.
These three DOC experts were the neuropsychologist who did the original clinical assessment, an-
other neuropsychologist, and a neurologist. For each video, they could each score the eight trial
movements prescribed by the CRS-R, labeling them as successful or not. After their individual
scoring, the trials for which a unanimous decision was not obtained were discussed between the
three DOC experts until a final decision was reached by consensus. In the healthy control subject
tests, five trials out of the 400 performed had to be discussed to reach a consensus (1.25%). In the
DOC patient tests, 28 trials out of 248 had to be discussed (11%). For the other trials, the three
DOC experts had indicated the same appreciation without concerting. The gold standard for the
presence of visual pursuit in each test was determined according to the CRS-R criteria, i.e., two
or more successful trials out of the eight performed trials, as decided by the consensus. Also, the
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gold standard objective score was set to be the proportion of successful trials, as decided by the
consensus. For instance, if the test subject followed the mirror two times out of the eight trials ac-
cording to the consensus, then the gold standard score was set to 0.25 (= 2/8), i.e., the minimum
objective score to declare the presence of visual pursuit. Table 3.1 includes the gold standard,
consensus-based visual pursuit assessment decisions (Cons-VP (GS)) made for the DOC patients
in our experimental dataset. This table also includes the other human expert decisions made for
the patients, i.e., the clinical decisions made at bedside (Clin-VP), and the individual decisions
made by the clinician who performed the original assessment, after her visual inspection of the
anonymous dataset (Off-VP).

Note that we also used the consensus-based trial-level decisions to assign class labels to the
time-matched trajectory segments extracted from the video data of our experimental dataset, and
so create the training set D needed to learn the trial-level classifier used in the derivation of the
M-score (Sect. 3.2.5). We actually created as many training sets and performed as many training
stages as the number of tested subjects (healthy control subjects as well as DOC patients), so as
to perform a leave-one-subject-out cross-validation. Using some data augmentation heuristics,
the size of each of the training sets could count several thousands of labeled trajectory segments.
Each learned trial-level classifier was then used on the eight trajectory segments associated with
the left-out subject, to derive its M-score.

3.3.4 Hypotheses and statistical analyses

With the clinician who performed the visual pursuit assessment in all tests of our system, we
discussed ways to effectively evaluate the similarity between the various assessment outcomes
collected from different sources: the clinician, the consensus by DOC experts on video (gold
standard), and the C-score and M-score automatically provided by our system. All outcomes
could be compared at the global level (i.e., the presence or absence of visual pursuit, based on the
CRS-R criteria of at least two successful trials), and most outcomes could be compared at the trial
level (i.e., the success or failure in following a single mirror movement). This discussion led to
hypotheses that were formally defined by the clinician (who also performed all statistical analyses
below), as follows.

• A high congruence is expected, both at the global level and the trial level, between the
consensus by DOC experts on video (gold standard) and the clinical assessment of visual
pursuit. This hypothesis is tested using the Cohen’s kappa coefficient (measure of the inter-
rater agreement for categorical items).

• A high congruence is expected at the global level between the consensus by DOC experts
on video (gold standard) and the decisions obtained via both the C-score and the M-score.
This hypothesis is tested using the Cohen’s kappa coefficient.

• A high congruence is expected at the trial level between the consensus by DOC experts on
video (gold standard) and the M-score trial-level decisions. This hypothesis is tested using
the Cohen’s kappa coefficient.
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• A significant positive correlation is expected between the gold standard objective score (pro-
portion of successful trials, according to the consensus by DOC experts on video), and both
of the C-score and the M-score. This hypothesis is tested using the Spearman correlation.

The interpretation of the Cohen’s kappa coefficient was done according to the recommen-
dations in [116], i.e., the agreement was classified as poor (< 0), slight (∈ [0, 0.2]), fair (∈
[0.21, 0.4]), moderate (∈ [0.41, 0.6]), substantial (∈ [0.61, 0.8]), or almost perfect (∈ [0.81, 1]).

Additionally, the sensitivity and the specificity of both of the-global level C- and M-score-
based decision were calculated, again with respect to the gold standard expert consensus. In the
present study, the sensitivity of the decision based on a score consists of the reliability in using this
score to declare the absence of visual pursuit in a subject (true positive rate in a test for a disease).
Conversely, the specificity of a score-based decision consists of the reliability in using this score
to declare the presence of visual pursuit (true negative rate in a test for a disease).

All statistical analyses were performed separately for the tests with DOC patients and for the
tests with the healthy control subjects (including the additional tests with fixed and random gaze
instructions). The obtained results were considered to be significant at p < 0.05.

3.3.5 Results

Healthy control subjects

Before testing the hypotheses given in the previous section, we give here some preliminary results
that are indicative of the effectiveness of the C-score with healthy control subjects6. Figure 3.9
presents, as box plots, the distributions of the C-score obtained with our system for the test groups
defined for these subjects. For participants of the first group (CS1, 23 tests), which were instructed
to follow the mirror, the median score is 0.92, the maximum score is 0.96, and the minimum
score is 0.79, which corresponds to the only outlier of the group. For participants of the second
group (CS2, 17 tests), which were instructed to keep a fixed gaze, the median score is 0.01, the
minimum score is 0.0, and the maximum score is 0.25, which corresponds to the only outlier
of the group. For participants of the third group (CS3, 10 tests), which were instructed to do
random eye movements, the median and minimum scores are both 0.0 and the maximum score is
0.31, which corresponds to the only outlier of the group. Overall, the C-scores for the three healthy
control subject test groups are as expected, according to the instructions given by the clinician, i.e.,
close to the maximum value of 1.0 for CS1 and close to the minimum value of 0.0 for CS2 and
CS3. After visual inspection of the videos corresponding to the outliers in groups CS2 and CS3,
we observed that these subjects had difficulties to ignore the moving mirror, showing brief, self-
restrained intentions to follow it. On the other hand, the outlier subject in group CS1 performed
a visual pursuit with pronounced saccadic eye movements, for an unknown reason. We also show
in Fig. 3.10 the time evolution of the average C-score over a visual pursuit assessment, for each
of the three groups CS1, CS2, and CS3. This figure shows that the C-score quickly discriminates

6Note that these preliminary results with healthy control subjects were obtained by calculating the C-score on the
full length of the pupil and mirror trajectories extracted from the videos of the assessments, and not solely on the 0 to
45 degrees trajectory segments of interest (see Sect. 3.2.5), which explains the mild numerical discrepancies between
these preliminary results and the other results presented for the healthy control subjects in this section.
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FIGURE 3.9: Box plots of the C-score distributions obtained with our system for
the healthy control subject test groups CS1 (tracking gaze instruction), CS2 (fixed

gaze instruction), and CS3 (random gaze instruction).

between the presence and absence of visual pursuit in the tests designed with the healthy control
subjects. Indeed, the average C-score reaches above 0.9 for the CS1 group, which was instructed
to follow the mirror, and below 0.1 for the CS2 and CS3 groups, which were instructed to not
follow it, when barely half of the total assessment has been performed.

We now expose the statistical analyses performed to test the hypotheses given in Sect. 3.3.4,
on the assessment outcomes with the healthy control subjects. At the trial level, an almost perfect
agreement was observed between the decisions made by the research neuropsychologist during
the assessment and the video-based decisions made by the same neuropsychologist, according to
the kappa statistic (κ = 0.98, based on the 400 trials done with the subjects); a disagreement was
observed in four trials (1%). An almost perfect agreement was also observed between the deci-
sions made by the research neuropsychologist during the assessment and the video-based decisions
made by the consensus by DOC experts (κ = 0.98); a disagreement was also observed in four trials
(1%). At the global level, an almost perfect agreement was observed between the decisions made
by the research neuropsychologist during the assessment and the video-based decisions made by
the same neuropsychologist (κ = 0.96, based on 50 tests); a disagreement was observed in one test
(2%). An almost perfect agreement was also observed between the decisions made by the research
neuropsychologist during the assessment and the video-based decisions made by the consensus by
DOC experts (κ = 0.96); a disagreement was observed in one test (2%).

As for the objective scores automatically provided by our system, an almost perfect agree-
ment was observed between the global video-based decisions made by the consensus by DOC
experts (gold standard) and the decisions made via the C-score (κ = 0.92, based on 50 tests); a
disagreement was observed in two subjects (4%). The proportion of succeeded trials based on the
consensus by DOC experts (gold standard objective score) and the C-score correlated significantly
(Spearman r = 0.891, p < 0.001; see Fig. 3.11, part A). The sensitivity of the C-score was 96.1%,
and the specificity 95.8%. Regarding the M-score, a perfect agreement was observed with the
video-based decisions made by the consensus by DOC experts (gold standard) at the trial level (κ
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FIGURE 3.10: Time evolution, over the assessment procedure, of the average
confidence score (C-score) in each of the healthy control subject test groups. The
eight green vertical dashed lines correspond to the approximate moments when the
clinician reaches 45 degrees in a trial mirror movement, in either of the leftward,

rightward, upward, or downward directions.

= 1, 0% disagreement), as well as at the global level (κ = 1, 0% disagreement). The M-score sig-
nificantly and perfectly correlated with the proportion of succeeded trials based on the consensus
by DOC experts, i.e., the gold standard objective score (Spearman r = 1, p > 0.001; see Fig. 3.11,
part B). The sensitivity and the specificity of the M-score both reached 100%.

DOC patients

In the following, we expose the statistical analyses performed to test the hypotheses given in
Sect. 3.3.4, on the assessment outcomes with the DOC patients. At the trial level, an almost
perfect agreement was observed between the decisions made by the research neuropsychologist
during the assessment at bedside and the video-based decisions made by the same neuropsychol-
ogist, according to the kappa statistic (κ = 0.864, based on the 248 trials done with the patients);
a disagreement was observed in 14 trials (5.7%). An almost perfect agreement was also observed
between the decisions made by the research neuropsychologist during the assessment at bedside
and the video-based decisions made by the consensus by DOC experts (κ = 0.859); a disagree-
ment was observed in 14 trials (5.7%). The kappa’s relative to the different diagnostic subgroups
were also calculated (see Tab. 3.2), except in the UWS subgroup, as these patients do not show a
visual pursuit at bedside, by definition, so that no reliable statistical indices could be calculated.
Moreover, no reliable visual pursuit was detected on video by the consensus by DOC experts. At
the global level, an almost perfect agreement was observed between the decisions made by the
research neuropsychologist during the assessment at bedside and the video-based decisions made
by the same neuropsychologist (κ = 0.871, based on 31 patients); a disagreement was observed in
two patients (6.5%). A substantial agreement was observed between the decisions made by the re-
search neuropsychologist during the assessment at bedside and the video-based decisions made by
the consensus by DOC experts (κ = 0.805); a disagreement was observed in three patients (9.7%).
All global-level decisions made by human experts with DOC patients are also included in Tab. 3.1.
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Healthy control subjects

FIGURE 3.11: Scatterplots representing the correlation, for healthy control sub-
jects, between the objective scores (C- and M-) provided by our system and the
gold standard objective score based on the consensus by DOC experts. Part A:
correlation between the C-score and the consensus by DOC experts. Part B: cor-
relation between the M-score and the consensus by DOC experts. Dots represent
the tests where visual pursuit was declared, according to the consensus by DOC
experts. Squares represent the tests where the absence of visual pursuit was de-
clared. The difference in size of squares or dots represents the amount of tests with

similar results. Figure 3.12 gives the corresponding plots for DOC patients.
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TABLE 3.2: Kappa, sensitivity, and specificity related to relevant comparisons
between two measures of the visual pursuit ability, among which (1) the bedside
assessment, (2) the video scoring by the clinician who did the bedside assessment,
(3) the consensus by three DOC experts on video, and (4) the M-score provided by
our system. The consensus by DOC experts on video is here considered as the gold
standard, and therefore as our reference measure. The sensitivity and specificity
for the bedside vs. video comparison are not reported, because no reference is

available is these cases (the consensus gold standard is not involved).

Kappa MCS- MCS+ EMCS
Bedside vs. video 0.815 0.864 0.944

Bedside vs. consensus 0.789 0.864 1

M-score vs. consensus 0.902 1 0.894

Sensitivity MCS- MCS+ EMCS
Bedside vs. consensus 97% 80% 100%

M-score vs. consensus 94% 100% 92%

Specificity MCS- MCS+ EMCS
Bedside vs. consensus 85% 100% 100%

M-score vs. consensus 96% 100% 100%

As for the objective scores automatically provided by our system, a moderate agreement was
observed between the global video-based decisions made by the consensus by DOC experts (gold
standard) and the decisions made via the C-score (κ = 0.516, based on 31 patient tests); a dis-
agreement was observed in eight patients (25.8%). The proportion of succeeded trials based on
the consensus by DOC experts (gold standard objective score) and the C-score correlated signif-
icantly (Spearman r = 0.83, p < 0.001; see Fig. 3.12, part A). The sensitivity of the C-score was
100%, while the specificity was 60%. Regarding the M-score, an almost perfect agreement was
observed with the video-based decisions made by the consensus by DOC experts (gold standard)
at the trial level (κ = 0.907); a disagreement was observed in nine trials (3.6% disagreement). A
perfect agreement was observed with the consensus-based gold standard at the global, patient level
(κ = 1, 0% disagreement). The M-score significantly correlated with the proportions of successful
trials based on the consensus by DOC experts, i.e., the gold standard objective score (Spearman r
= 0.913, p < 0.001; see Fig. 3.12, part B). At the global level, the sensitivity and the specificity of
the M-score both reached 100%. Kappa, sensitivity, and specificity were also calculated for each
diagnosis subgroup (see Tab. 3.2). Again, the UWS subgroup was not included as the absence
of visual pursuit is a necessary criterion for this state, thus, no reliable statistical indices could
be calculated. Moreover, no reliable visual pursuit was detected by the M-score. All global-level
automatic decisions made via either the C-score or the M-score provided by our system with DOC
patients are also included in Tab. 3.1.
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DOC patients

FIGURE 3.12: Scatterplots representing the correlation, for DOC patients, be-
tween the objective scores (C- and M-) provided by our system and the gold stan-
dard objective score based on the consensus by DOC experts. Same types of plots

as in Fig. 3.11, but for DOC patients.
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3.4 Conclusion

Visual pursuit is one of the first signs of recovery of consciousness in patients with DOC [86],
and is actually sufficient in itself to differentiate between UWS, i.e., unconscious, and MCS, i.e.,
conscious patients. The CRS-R, which is currently the gold standard behavioral scale for the
assessment of consciousness [91, 97], provides precise guidelines for the assessment of visual
pursuit. In particular, the CRS-R recommends that a clinician move a handheld mirror in multiple
trials in front of the patient’s face. It was shown that this autoreferential stimulus was especially
effective to detect visual pursuit in DOC patients [97, 96]. However, the assessment of visual
pursuit by a single, yet experimented clinician remains a subjective process. In delicate, complex
cases of visual pursuit assessment, the sensitivity of the CRS-R procedure to subjectivity may
cause errors, as we showed in the results section of this chapter. Indeed, in the assessments of
our DOC patient cohort, around 6% of the trials were scored differently by the clinician (an expe-
rienced research neuropsychologist) as compared to when the corresponding videos were scored
afterwards by three DOC experts (including the clinician herself) who had to reach an agreement.
These trial-level errors resulted in up to 10% error in detecting overall visual pursuit in the patient
cohort, according to the consensus by three experts on video. This is of great importance, because
such errors may lead to wrongly diagnose UWS in DOC patients, therefore influencing the course
of their treatment, including the development of a rehabilitation plan, the management of pain,
and the end-of-life decisions [117, 118, 119]. Involving several observers with experience in DOC
to assess a patient is not easy to implement in the clinical practice, or even via an offline video-
based assessment procedure, notably because it is time-consuming and requires a lot of human
resources. For all these reasons, an objective and “plug-and-play” measurement tool of the visual
pursuit ability is of particular interest.

In this chapter, we presented our computer vision-based system designed to assist clinicians in
their assessment of visual pursuit in patients with DOC. The first objective score we proposed with
our system, i.e., the C-score, is based on a correlation analysis on the trajectories of the patient’s
pupil and the handheld mirror stimulus. The C-score misclassified 26% of the patients in our
cohort, according to the consensus by three DOC experts on video. The main limitation of the
C-score was its lack of specificity, i.e., the moderate reliability in using this score to declare the
presence of visual pursuit in a subject (true negative rate in a test for a disease), especially in the
patient group. In healthy control subjects, a high C-score value was observed in a subject who was
actually not following the stimulus, having been instructed to keep a fixed gaze. This suggests that
the C-score may be affected by unrelated and/or tiny eye movements, leading to an increase in the
C-score value despite the absence of visual pursuit. The second objective score we proposed with
our system, i.e., the M-score, is based on machine learning, and involves the classification of each
trial of the assessment as successful or not, on the basis of the pupil and mirror trajectories for this
trial. The M-score correctly classified all of the patients and healthy control subjects, according
to the consensus by experts on video. This suggests that our system can provide a measure of
the visual pursuit ability with the same performance as three DOC experts examining a patient.
When testing the M-score at the trial level (i.e., comparing the trial-level classifier predictions to
the trial-level decisions made by the consensus by experts), the results were very encouraging in
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all of the different diagnostic subgroups, with the Cohen’s kappa coefficient ranging from 0.815
to 1, and the sensitivity and specificity ranging from 80% to 100%. The subgroup of patients in
UWS was not included in this statistical analysis, as UWS patients did not show visual pursuit.
It is however important to note that neither the video-based scoring by experts nor the M-score
detected any sustained visual pursuit that would have changed the diagnosis from UWS to MCS
in the DOC patient cohort.

Our results suggest that the system we presented in this chapter could be of great interest
for clinicians. First, jointly used with a head-mounted device, our system is adapted for bedside
assessment without any constraint for the patient, and it also allows the clinician to assess visual
pursuit with a handheld mirror, as recommended by the CRS-R. Second, and more importantly,
the fact that we could obtain meaningful results from our DOC patient cohort suggests that our
system could be an effective tool to supplement classical bedside assessment in this population in
an objective way. Incidentally, our system also reliably detected the few trials for which healthy
control subjects did not perfectly comply with the instruction to not follow the moving mirror.
Indeed, these particular trials were detected during the video scoring by experts, as well as by the
M-score we proposed with our system.

We believe that, overall, our system is a good first step toward objectively assessing visual
pursuit. However, it is important to note that, even though we considered in our work that a
consensus by three DOC experts best approaches the “true” objective measure for an assessment,
this consensus is still essentially based on subjective observations. Also, it is worth mentioning
that using close-up videos of the eye reduces the information that is available at bedside about
the patient. The clinician actually perceives global information about the patient’s face during
the assessment, such as a head movements and other facial expressions that may influence his/her
judgment. Yet it is unknown whether or to what extent such information, which is not used by
our system, could be beneficial to the objective assessment of visual pursuit. Finally, a possible
caveat of visual pursuit assessment with our system and a head-mounted device may be the change
of appearance of the subject’s face caused by the wearing of this head-mounted device. Indeed,
the effectiveness of the mirror stimulus is presumed to be due to its autoreferential aspect [97]. It
should be noted that, for one patient, after a test with our system where no visual pursuit could
be observed, a visual pursuit could be observed in another assessment with the head-mounted
device removed. We cannot exclude that this inconsistency may have been caused by the change
of appearance of the patient due to the wearing of the head-mounted device, even though an
alternative explanation for this might be the vigilance fluctuation, or tiredness of the patient.
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Chapter 4

Hierarchical vs. flat classification in
vision-based recognition problems

In contrast to the standard, flat classification approach, it is proposed in the hierarchical ap-

proach to incorporate a semantic class hierarchy within the learning stage of a classifier, so as to

enforce a fine-grained notion of semantic similarity between the classes. The objective in doing so

is to guide the learning process to discover an overall better classifier than one obtained with flat

classification. In this chapter, we present the empirical study we conducted on hierarchical vs. flat

classification, used in the vision-based recognition problems of facial expression recognition and

3D shape recognition. Through our experiments on these problems, we found that, unexpectedly,

there was little to no improvement in the recognition performance by using hierarchical classifica-

tion with visual features provided by off-the-shelf feature extraction methods. Through additional

experiments we conducted in a simulation, we found general conditions about feature represen-

tations and semantic class hierarchies that should be met in order to get the benefits of using

hierarchical classification. Everything presented in this chapter is our own work, but for a few,

explicitly stated exceptions. Our work was also published in its entirety in a special issue of the

journal “Machine Vision and Applications” [120], as an extended version of our early work pub-

lished in the proceedings of the “16th International Conference on Computer Analysis of Images

and Patterns” [121]. The few differences between the content of this chapter and our publications

in [120] and [121] consist of mild variations in our formulation of the concepts, and the emphasis

we give in this chapter to the problem of facial expression recognition.

4.1 Introduction

In supervised classification, an algorithmic classification rule is to be learned automatically, on
the basis of class-labeled data exemplars. The learned classification rule, i.e., classifier, can then
be used to automatically infer the class labels of new data. The learning stage of a classifier is
often referred to as training, and is preceded by the choosing of a training method suited to exploit
class-labeled data exemplars. The inference stage of a classifier may be referred to as testing, when
the goal is to evaluate the performance of the classifier on new data. Before going through these
two stages, it is of course essential to specify the classes of the particular classification problem
of interest. In the standard approach to supervised classification, the specification of the problem
classes is only focused on their number. Specifying the semantic relationships between the classes
is not part of the standard formulation of a classification problem. In fact, the standard approach
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implicitly presupposes that any two problem classes share the same degree of semantic similarity
or dissimilarity. A standard binary, resp. multiclass, problem formulation only indicates the pres-
ence of two, resp. several, possible classes that are equally dissimilar from each other. Also, a
standard multilabel problem formulation only indicates that any possible combination of several
class labels may be associated with a single data instance. Consequently, in the standard approach,
any possibly useful semantic relationship between the problem classes has to be somehow discov-
ered from the labeled data that are available for training. It is indeed assumed that any semantic
information about two problem classes, such as their similarity, or their validity of co-occurrence
to describe a data instance, is implicitly present in the labeled data. Most of the theoretical and
practical contributions in supervised classification have been dedicated to this standard classifica-
tion approach [122].

In many classification problems, however, the semantic relationships between classes can be
explicitly specified before the learning stage, often with little additional effort. For instance, a
vision-based classification problem involving the “bee”, “ant”, and “hammer” classes could be
given the explicit information that an ant and a bee are visually more similar to each other than
an ant and a hammer, or a bee and hammer. One simple way of doing so is to add an “insect”
superclass to the class specification, which superclass includes the “ant” and “bee” classes, but ex-
cludes the “hammer” class. By using a training method designed to exploit such prior hierarchical
semantic information, it is intuitive that the overall performance of the resulting classifier would
be improved, in particular if the semantic relationships between classes are not well represented
implicitly via the available training exemplars. Motivated by this intuition, a new, hierarchical
classification approach has emerged for dealing with the classification of data deemed to be in-
herently semantically hierarchical. The training methods developed following this new approach
all exploit prior hierarchical semantic information given in the form of superclasses specified at
different semantic hierarchy levels [122]. The development of hierarchical classification methods
also benefited from the advances made in the field of machine learning generalized to arbitrary
output spaces, also known as the structured output classification approach, of which the hierarchi-
cal approach is actually a special case [123]. In contrast to the hierarchical classification approach,
the standard classification approach is called “flat”, because it implicitly considers that the prob-
lem classes all belong to the same unique hierarchy level, i.e., the classes are the leaves of an
unspecified semantic class hierarchy in a standard classification problem formulation.

In several application domains, the explicit specification and use of a semantic class hierarchy
has been shown to be key to improve the classification performance, e.g., in text categorization
[124], protein function prediction [125], and music genre classification [126]. For the classifica-
tion of visual content, using prior hierarchical information intuitively seems particularly appro-
priate as it reflects the natural way in which humans organize and recognize the objects they see,
according to neurophysiological studies of the visual cortex [127, 128, 129]. In practice, some
results suggest that there is indeed a gain in performance by using hierarchical classification in
vision-based recognition problems, e.g., in 3D object shape recognition [130], and automatic an-
notation of medical images [131]. A line of research analogous to the hierarchical classification
of visual content is the automatic construction of class hierarchies from image databases, to effec-
tively organize them. The methods used in this research line exploit either the image content [132,
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133], or the image tag labels (when these happen to be available within the database) [134, 135], or
both, as proposed in [136], where a “semantivisual” hierarchy that is semantically meaningful and
close to the visual content is learned. Overall, many research results motivate to further investigate
the potential of incorporating prior hierarchical information within classification problems based
on visual content. Our motivation in this chapter is therefore to conduct such an investigation,
and we fairly compare hierarchical and flat classification performance empirically in vision-based
recognition problems typically solved using the standard, flat classification approach.

One such problem is the recognition of the facial muscle contraction patterns, which is of
particular interest in this thesis about the automation of tasks of facial expression interpretation.
Indeed, this problem is often simply called facial expression recognition, because recognizing
facial muscle contraction patterns is often considered equivalent to recognizing facial expressions
themselves objectively, without interpreting them [36]. In some applications, this problem is posed
as an upstream stage toward further automating a task of facial expression interpretation, e.g.,
typically, emotion recognition [137]. This problem is also involved in applications that seemingly
do not deal with facial expression interpretation, e.g., animated face avatars for video-conferencing
systems, with the purpose of assuring the anonymity of the user while a piori preserving facial
communication cues [59]. In our understanding, however, and regardless of our following study
on hierarchical vs. flat classification performance in vision-based recognition problems, the so-
called problem of facial expression recognition is actually already associated with a task of facial
expression interpretation. For one thing, facial expressions are not limited to the action of the
facial muscles, as head and eye movements may be part of a facial expression according to our
discussion and definition in Chap. 1. Also, recognizing a facial muscle contraction pattern is
visually ambiguous and relies to some extent on evidence that is not distinctly visible in the face.
Even among trained human experts, visually determining which exact muscles are in action in
a person’s face, and with which exact intensity, may not result in a perfect agreement, notably
because separating the muscle-based facial dynamics from the static face characteristics requires
some degree of familiarity of the observer with the people under observation. Nevertheless, we use
the conventional term of “facial expression recognition” in this chapter to refer to the vision-based
problem associated with the face perception task of recognizing the facial muscle contraction
patterns, which patterns we also call “facial expressions”, for simplicity.

To prepare our hierachical vs. flat classification experiment in the problem of facial expres-
sion recognition, we consider that the various muscle contractions composing a facial expression
can be legitimately organized in a hierarchical fashion. We therefore specify a semantic class
hierarchy for organizing these contractions, and we choose two different, sound hierarchical clas-
sification methods that can exploit our proposed class hierarchy, as well as their two respective
flat counterpart methods that cannot exploit this hierarchy. We feed all methods with the same
face features, obtained with off-the-shelf face feature extraction methods. We fairly compare the
classification performance of all methods using appropriate measures designed for evaluating both
hierarchical and flat classification performance. The results of this experiment lead us to conclude
that, contrary to our expectations, the hierarchical approach provides no performance improve-
ment in our problem of facial expression recognition [120, 121]. We then consider a second, fairly
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different, yet popular vision-based recognition problem, to continue our empirical study on hi-
erarchical vs. flat classification of visual content. This second problem is 3D shape recognition,
i.e., the classification of an object from its 3D shape data. Such data can be obtained from either
a depth image of the object, or a computer aided-design (CAD) shape model of the object. We
fairly compare hierarchical vs. flat classification performance in this problem, on the basis of the
same hierarchical and flat classification methods, and same evaluation measures as we used in
our problem of facial expression recognition. It is noteworthy that, compared to facial expression
recognition, the classes of our problem of 3D shape recognition may be more suited to be orga-
nized in a hierarchical fashion, and we use for this problem a semantic class hierarchy that was
previously proposed in the literature [138, 130]. We feed our hierarchical and flat classification
methods with features obtained using several popular 3D shape descriptors, to increase the chance
to observe a performance improvement with hierarchical classification. However, our conclusion
from the results of this second experiment is that, as in our problem of facial expression recogni-
tion, hierarchical classification unexpectedly provides no significant performance improvement in
the resolution of our problem of 3D shape recognition [120, 121]. Despite all the care taken, we
could not showcase the superiority of the hierarchical approach in either of our experiments on
the classification of visual content. We conjecture that, overall, these relatively poor hierarchical
classification results may be caused by the inadequacy of the off-the-shelf face and 3D shape fea-
tures we used in our experiments, and that richer visual feature representations may be necessary
to exploit the prior hierarchical information we provided to our hierarchical classification methods
[120, 121].

In the last part of our empirical study, we seek to explain why hierarchical classification could
not outperform flat classification in our problems of facial expression recognition and 3D shape
recognition. More generally, we wish to find the conditions in which the hierarchical classification
approach could consistently provide a better performance than the flat classification approach. We
wish in particular to test our hypothesis about the importance to use feature representations that
are rich and well-suited to hierarchical classification. We therefore design a simulation frame-
work where rich hierarchical feature representations can be constructed, and we again conduct the
comparative evaluation of our hierarchical and flat classification methods, this time in artificial
classification problems generated with our simulation framework. In more detail, we simulate
problems about which we can control aspects that are key to hierarchical classification, such as
the true, underlying hierarchical nature of the phenomenon being measured, the amount of noise
in the features extracted from the measurements, and the adequacy of the hierarchical semantic
information that the observer perceives about the phenomenon. From the results of this simula-
tion experiment, we conclude that using rich hierarchical feature representations is indeed crucial
for obtaining a performance gain with the hierarchical classification approach, and furthermore
that the specification of class hierarchies with semantic errors may seriously hinder this gain even
though proper hierarchical feature representations are used [120].
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4.2 Hierarchical classification

4.2.1 Framework and terminology

Recently, a necessary effort to unify the hierarchical classification framework was made by [122].
We follow their terminology, which is summarized next.

Formally, a semantic class hierarchy, or class taxonomy {C,≺}, consists of a finite set of
semantic concepts C = {ci | i = 1, . . . , n} and a partial order relationship ≺ organizing these
concepts either in a tree or in a directed acyclic graph (DAG). The partial order relationship can be
seen as an embodiment of the “IS-A” or “PART-OF” relationship between the semantic concepts
under consideration. A classification problem defined over such a taxonomy is called a hierarchi-

cal classification problem: its classes and superclasses correspond to the leaf nodes and interior
nodes of the tree (or DAG), respectively, and all classes and superclasses are considered in the
classification problem. In contrast, a flat classification problem only considers the leaf nodes of
such a taxonomy as its classes, and does not consider the interior nodes corresponding to the su-
perclasses. A flat classification problem therefore deals with classes that are virtually at the same
single semantic level, whence the term “flat” for such problem.

In the definition of a (supervised) hierarchical classification problem, every data instance is
labeled with a subset of the class taxonomy. Such subset must satisfy the partial order relationship
≺, which means that the inclusion of any node within the taxonomic label implies the inclusion
of its parent node—or at least one of its parent nodes, if a DAG structure is used—and the parent
node(s) of it (them), up to reaching the root node. Consequently, in addition to which structure
(between tree or DAG) is used in the problem definition, a hierarchical classification problem
can also be defined according to two more properties: (1) whether the problem uses single-path

labeling or multiple-path labeling, i.e., whether or not every data instance is labeled with no more
than one single path in the taxonomy structure, and (2) whether the problem uses full depth labeling
or partial depth labeling, i.e. whether or not every data instance is labeled with at least one leaf
node, i.e., has a label that covers all hierarchy levels of the taxonomy structure according to the
partial order relationship. In all cases, and without loss of generality, any taxonomic label y for a
data instance can be formalized using an indicator vector notation, i.e., y ∈ Y ⊂ {0, 1}n, where
the ith component of y takes value 1 if the data instance belongs to the class or superclass ci ∈ C,
and 0 otherwise, and where all elements in Y satisfy ≺. It is noteworthy that this notation is
equally convenient to deal with flat classification labels.

The real and simulation problems considered in this study are all defined using tree taxonomies
with full depth labeling. For the facial expression recognition problem, we define multiple-path
labeling (see Sect. 4.3.1), whereas for the 3D shape recognition problem and for our simulation
problems we define single-path labeling (see Sect. 4.3.2 and Sect. 4.4.2).

Because they do not penalize structural errors, evaluation measures commonly used in the
standard flat classification approach may not be appropriate when comparing hierarchical methods
to each other, or flat methods to hierarchical methods. In particular, standard evaluation measures
do usually not consider that misclassification occuring at different levels of the taxonomy should
be treated in different ways, to reflect a policy where a higher penalty is given to errors made
at higher semantic levels. In this study, we adopt the following hierarchical evaluation measures
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proposed by [139], also recommended by [122]: hierarchical precision (hP), hierarchical recall
(hR), and hierarchical F-measure (hF). They are defined as

hP =

∑
i |P̂i ∩ T̂i|∑
i |P̂i|

, hR =

∑
i |P̂i ∩ T̂i|∑

i |T̂i|
, hF =

2 hP hR

hP + hR
, (4.1)

where P̂i is the set of the most specific class(es) predicted for a test data instance i and all its
(their) ancestor classes, and T̂i is the set of the true most specific class(es) of a test data instance
i and all its (their) ancestor classes. These hierarchical evaluation measures are extensions of the
standard precision, recall and F-measure, and reduce to them as special cases for flat classification
problems.

4.2.2 Hierarchical classification methods

We present in this section the two hierarchical classification methods we use to study the possible
benefits of the hierarchical approach for facial expression recognition, as well as for one other real
and several simulated classification problems. Since we want to evaluate these possible benefits
in comparison to the standard, flat classification approach, we choose hierarchical classification
methods that have flat methods as clear counterparts. Thus, our hierarchical methods are sound
generalizations to standard, flat classification methods. Our hierarchical methods of interest are
said to be global, because for each problem they produce a single classifier that deals with com-
plete taxonomic labels. Indeed, our hierarchical methods consider the class taxonomy at once, in
both the training and testing stages. This contrasts with other strategies where multiple classifiers
are trained to deal locally with one taxonomy node or one taxonomy level, i.e., so-called local

hierarchical methods. The compounds of classifiers typically produced by such local methods
correspond to a complex classification rule that does not necessarily respect the pre-established
partial order relationship in its output [122]. Additionally, because nothing prevents fundamen-
tally different classification methods to be used at the local level, such local hierarchical methods
lack a clear flat counterpart against which to be compared. Overall, local hierarchical classifiers
are more difficult to analyze and the local approach to hierarchical classification is therefore not
examined in this study.

Structured output k-nearest neighbors

For our first hierarchical classification method of interest, we modify the standard k-nearest neigh-
bors (kNN) method to allow it to cope with outputs having general structure, e.g., taxonomic labels
defined using a pre-established class taxonomy {C,≺}. We call the resulting classification method
structured output k-nearest neighbors (SkNN).

Let D ⊂ X × Y be the training set of a hierarchical classification problem, where X is the
set of all possible data instances, and Y is the set of all possible indicator vectors corresponding
to the taxonomic labels defined by {C,≺}. The SkNN classifier is trained in the same way as
the standard kNN classifier, i.e., by projecting the training data instances into a feature space
using a feature map φ(x) |x ∈ X , and keeping the record of their corresponding structured
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labels (in the hierarchical case, their taxonomic labels). Then, given the k nearest neighbors1

N = {(xi, yi) | i ∈ {1, . . . , k}} ⊂ D to a test data instance x ∈ X , those nearest neighbors being
found according to a distance metric ρ(φ(x),φ(xi)), the SkNN classification rule that gives the
structured label (in the hierarchical case, the taxonomic label) ŷ as a prediction for the test data
instance x is

ŷ(x;N ) = argmax
y∈Y

〈
k∑
i=1

ωi
yi
||yi||

,
y

||y||

〉
, (4.2)

where ωi are weights attributed to the elements of N . In our experiments, we choose these
weights so as to reflect the distances of the nearest neighbors to the test data instance, i.e., ωi =

1/ρ(φ(x),φ(xi)). Also, we choose to use the L2 norm for our distance metric ρ.

Structured output support vector machine

Our second hierarchical classification method is a customization of the structured output support
vector machine (SSVM, proposed in [123]). SSVM extends the standard support vector machine
(SVM) in order to cope with arbitrary output spaces with non-trivial structure, and defines the
relationship between a test data instance x ∈ X and its prediction ŷ ∈ Y on the basis of a joint
score maximization,

ŷ(x; w) = argmax
y∈Y

〈
w, ψ(x,y)

〉
, (4.3)

where w ∈ Rd is a learned parameter vector, and where the user-defined joint feature map ψ :

X ×Y → Rd projects any couple (x,y) to its real-valued vectorial representation in a joint feature
space. The role of the linear function

〈
w, ψ(x,y)

〉
is to produce a joint score that reflects how

well a data instance x matches a structured label y, i.e., the higher the joint score, the better the
match.

With this formulation of the inference part in SSVM, the data and labels can virtually represent
anything, provided that an appropriate encoding of the structured output domain Y is used, e.g.,
an indicator vector formulation. It comes however at the cost that the inference part in SSVM is an
optimization problem in itself (similarly to the inference with SkNN in Eq. 4.2), which makes it a
quite complex task to learn an SSVM classifier. Learning an SSVM classifier consists of finding
the parameter vector w that separates the training joint feature representations from the origin
of the joint feature space by the largest margin. In the straightforward, naive formulation of the
learning optimization problem, it comes that the loss function ∆(yi, ŷ(xi; w)) that measures the
fit quality of w for a training example (xi,yi) is non-convex, and is composed with the argmax
inference problem in Eq. 4.3 (the second argument of this loss function). Hence, the authors of
[123] propose the use of convex surrogates for the loss. The learning problem for SSVM therefore
becomes the minimization, with respect to w, of the following convex objective function,

1

2
||w||22 +

C

n

n∑
i=1

Li(w), (4.4)

1In this chapter, the notation xi is not used to designate the ith component of some vector x, but rather the ith element
of an ordered set X . The ith component of a vector x would instead be written as xi.
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where C is a parameter which, as in the usual SVM soft-margin approach, balances the allowed
misclassification rate; where n is the number of couples in the training setD ⊂ X ×Y , and where
Li(w) ≈ ∆(yi, ŷ(xi; w)) is a convex approximation of the original loss, i.e., a surrogate loss,
which is chosen to have a bounding property: ∆(yi, ŷ(xi; w)) ≤ Li(w). Good surrogates should
be a tight upper bound of the original loss so that minimizing them has the same effect as minimiz-
ing the original loss. Standard construction methods that give good surrogates do exist, e.g., the
margin rescaling method, where Li(w) = supy∈Y ∆(yi,y) +

〈
w, ψ(xi,y)

〉
−
〈
w, ψ(xi,yi)

〉
,

which we use in this study.
For our study, we use the SVMstruct implementation provided by the authors of [123], along

with its MATLAB code wrapper [140]. This implementation is a customizable SSVM framework
which allows to define the various necessary components needed to get actually working SSVM
learning and inference algorithms. In particular, in our customized hierarchical SSVM, we define
the joint feature map that projects any couple (x,y) in the joint feature space, as

ψ : X × Y → Rd, (x,y) 7→ φ(x)⊗ y

||y||
, (4.5)

where Y is here the set of all possible indicator vectors corresponding to the taxonomic labels
defined by a pre-established taxonomy {C,≺}, and φ is a another feature map only concerned
with transforming the data in X , much like the feature map we use for SkNN.

Solving the inference problem

The inference argmax problems associated with our SkNN and SSVM hierarchical classification
methods, given in Eq. 4.2 and Eq. 4.3, respectively, can be solved by exhaustively searching the
set Y for the optimal taxonomic label. We adopt this strategy in our study, since it is time-efficient
enough in classification problems that do not involve a very large number of classes. For problems
with a very large number of classes, or when high time efficiency is a crucial matter, other strate-
gies would however be better-suited for solving these inference argmax problems, e.g., strategies
that resort to greedy approximations, but this aspect is out of the scope of the present study.

4.3 Real vision-based classification problems

4.3.1 Facial expression recognition

The problem

For this experiment, we define a facial expression as an observable pattern of facial muscle con-
traction. We use the facial action coding system (FACS, proposed by [36]), which gives a very
detailed description of a facial expression in terms of action units (AUs). AUs represent the atomic
movements that can be performed independently, though not always spontaneously, within the fa-
cial muscles. Each AU is associated with the action of one muscle, or one group of muscles. The
FACS describes more than a hundred AUs, which can be noted with an optional intensity marker
going from A (trace) to E (maximum). A valid FACS code can be for instance [1+2+5+26],
where we have in this case the presence of AU1 (inner eyebrow raiser), AU2 (outer eyebrow
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FIGURE 4.1: Our facial expression taxonomy. The leaves correspond to FACS
action units.

raiser), AU5 (upper lid raiser), and AU26 (jaw drop). FACS codes can also be used to describe
basic emotions conveyed by the facial expression. For instance, for most people with no particu-
lar mental condition, the FACS code [1+2+5B+26], as described above but with the additional
intensity marker B (slight) for AU5, can be confidently associated to the prototypical emotion of
surprise, as illustrated by the rightmost face image in the bottom row of Fig. 4.2.

In order to use the hierarchical approach in our problem of facial expression recognition, we
must specify a class taxonomy. FACS codes typically involve multiple AUs, each of which can
be taxonomized according to the area of the face where the action takes place, and the type of
local deformation the action applies on the face. We choose to focus here on only 18 specific
AUs, and to ignore the possible intensity markers. These choices are respectively motivated by the
fact that those 18 AUs are the most frequent ones within the facial expression dataset used in this
experiment (see below, the CK+ dataset, proposed by [141]), and the fact that the intensity markers
are not consistently provided within this dataset because they are optional. We therefore propose
the class taxonomy in Fig. 4.1 for a hierarchical semantic description of the facial expression
limited to our 18 AUs of interest. This tree taxonomy is inspired by how those AUs are usually
grouped when presented in the literature [36]. As their names suggest, up-down actions, horizontal
actions, and oblique actions group AUs for which the deformation movement in the frontal face
is mostly vertical (e.g., AU26: jaw drop), horizontal (e.g., AU20: lip stretcher), or oblique (e.g.,
AU12 lip corner puller), respectively. Orbital actions group AUs for which the deformation is
seemingly radial with respect to a fixed point, e.g., AU24: lip pressor, which closes the mouth and
puckers the lips, seemingly bringing them closer to the centroid point of the mouth region.

The Extended Cohn-Kanade Dataset (CK+)

The CK+ dataset proposed by [141] consists of FACS-annotated video recordings of 123 subjects
between the age of 18 to 50 years. 69% of these subjects are female, and 31% male. Also, 81%
of these subjects are Euro-American, 13% Afro-American, and 6% other groups. Every subject
was instructed to display several facial expressions from a predefined series of 23 different facial
expressions. In total, 593 videos of 10 to 60 frames were recorded and manually annotated with
a facial expression label in the form of a FACS code. All videos start with an onset neutral facial
expression and end with the peak of the facial expression that the subject was asked to display.
Figure 4.2 show some examples of peak facial expression from the CK+dataset. Additionally,
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FIGURE 4.2: Examples of facial expressions present in the CK+ dataset.

landmark point annotations are provided for all frames of all videos: 68 fiducial points have been
marked on the face, sketching the most salient parts of the face shape. For each video, these
landmark points were obtained by (1) manually annotating a few key frames with the points, and
then (2) applying an automatic face alignment method (a version of the active appearance models,
proposed by [65]) to track the points in the remaining frames. Finally, the CK+ dataset comes with
a standard evaluation strategy for comparing different facial expression recognition methods: the
authors propose to use a leave-one-subject-out strategy, therefore resulting in a cross-validation
with 123 folds partitioning the set of 593 videos.

We used the CK+ dataset in this experiment because it is one of the standard benchmark
datasets for reporting the performance of methods designed for facial expression recognition (in
a controlled environment, as opposed to “in the wild” benchmark datasets). The CK+ dataset is
well-designed in its acquisition protocol: it is composed of clean video recordings, with many
subjects and many different facial expressions. This dataset is also quite rich in the metadata it
provides, including FACS codes for each video, 68 landmark points for each video frame, and
even annotations about the prototypical emotions for some videos, not used in this experiment.
Although as much as 30 AUs are present in the FACS annotations of the CK+ dataset, we only
consider those AUs that are present in at least 30 occurrences within this dataset, totaling 18 AUs,
so that our classifiers have enough training data to capture what is relevant to the recognition of
those AUs. We emphasize that our goal in this experiment is not to propose a specific method that
would outperform all current, state-of-the-art methods for facial expression recognition. Instead,
our goal is to investigate how using the hierarchical approach compares to using the flat approach
for the classification of facial expressions, by applying general-purpose hierarchical methods and
their flat counterparts to a well-known facial expression recognition benchmark dataset.

Face features

In this experiment, we use face features that are close to the similarity normalized shape features
(SPTS) and canonical normalized appearance features (CAPP) proposed in [141]. The extraction
of these features is essentially based on the landmark point annotations provided for the video
frames of the CK+ dataset.
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Let x be a facial expression video from the set X of videos in the CK+ dataset. Our face
featuresφ(x) for this video consist of a 636-dimensional real-valued vector, i.e.,φ(x) = [fs; fa],
where fs has 136 components and encodes information about the face shape, and where fa has
500 components and encodes information about the face appearance (i.e, gray-level texture infor-
mation). We wish to avoid mixing our facial expression recognition problem with an unwanted
identity factor related to the static morphological differences between people. Therefore, the fea-
tures [fs; fa] are “identity normalized”, by the apt subtraction of all information about the onset,
neutral facial expression at the beginning of each video, from the information about the peak facial
expression displayed in the end of the video. This strategy was also used in [141].

In more detail, our shape and appearance face features fs and fa are extracted as follows.
First, we arbitrarily fix a reference face shape s0, composed of 68 landmark points in 2D, i.e., 136
real-valued coordinates. Likewise, we fix a reference grid S0 composed of 500 pixel locations
which are organized to densely span the convex hull defined by the reference shape s0. Both
s0 and S0 remain constant in the extraction of face features from any video of the CK+ dataset.
Then, for extracting the face features specific to a video, we begin by retrieving the first and last
video frames, In and Ip, respectively, as well as their corresponding annotations of 68 landmark
points, i.e., the face shapes sn and sp, respectively. In and sn thus contain information about
the onset, neutral facial expression for the video, and Ip and sp contain information about the
peak facial expression for the video. Considering the landmark points as the control points of a
geometric warping transformation, both of the {s0, sn} and {s0, sp} shape couples are used to
define warping functions that project the set of pixel locations S0 to the pixel location domains
of In and Ip, respectively. Considering the images In and Ip as two functions taking a set of 2D
pixel locations and returning their corresponding pixel values, the “shape-free” difference in facial
appearance between the last and first frames of the video can then be calculated, as

∆a = Ip(W(S0; s0, sp))− In(W(S0; s0, sn)), (4.6)

where W(S; s1, s2) is a warping function defined by the shape couple {s1, s2}, which projects the
pixel locations S from the domain of s1 into the domain of s2. Next, both the neutral sn and peak
sp face shapes are aligned to the reference shape s0, according to the 2D similarity, i.e., adjusting
their global scale, 2D rotation and 2D translation. The similarity normalized difference in the face
shape between the last and first frames of the video is therefore calculated, as

∆s = N(sp, s0)−N(sn, s0), (4.7)

where N(s1, s2) is a transform that optimally aligns s1 to s2 according to the 2D similarity. The
shape and appearance differences ∆s and ∆a are then independently normalized to have zero
mean and unit length, giving ∆s̃ and ∆ã, respectively. These normalized differences are then
combined into a single vector [∆s̃; ∆ã], which is further normalized in the same way, i.e., to have
zero mean and unit length. This normalized combined vector corresponds to the face features
[fs; fa] = φ(x) for a video x of the CK+ dataset.
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Results

Our two hierarchical classification methods, i.e., SkNN and SSVM, that deal with taxonomic
labels, are compared to their flat counterparts that deal with non-taxonomic, leaf-level labels.
These flat counterparts are the standard, multiclass, multilabel kNN, and a multiclass, multilabel
version of the standard SVM (multiclass kernel-based SVM, or MKSVM, proposed by [142]),
respectively. In our problem of facial expression recognition, a taxonomic label normally includes
several paths reaching the leaf nodes in the class taxonomy defined in Fig. 4.1. This means that
we use here multiple-path, full depth labeling for a taxonomic label. A non-taxonomic label for a
facial expression normally includes several leaf nodes of the class taxonomy, but never its interior
nodes.

For each of the hierarchical and flat methods evaluated here, we consider the variation of a core
parameter, the tuning of which can have a large influence on the results. For SkNN and kNN, this
parameter is the number of neighbors k that are considered during the testing stage. Considering
more neighbors means considering more alternatives to assign the output label. Fixed parameters
for kNN and SkNN are the distance measure ρ (which is the L2 norm) and the weights given to
the votes of the nearest neighbors (which is the inverse of the distance measure). For SSVM and
MKSVM, the core parameter we consider is the training parameter C, which, in the soft-margin
approach, balances the allowed misclassification rate during the training procedure. Large values
of C makes the optimization favor smaller-margin hyperplanes (more training data instances get
to be correctly classified). All other SSVM and MKSVM parameters are fixed, like, for SSVM,
the joint feature map ψ (see Eq. 4.5), and the way to construct the surrogate loss (which is the
margin rescaling method).

Figure 4.3 depicts the evaluation curves obtained by applying our hierarchical and flat classifi-
cation methods to our facial expression recognition problem. The curves show the evolution of the
hierarchical F-measure (hF) against the core parameters chosen for our methods, which parameters
we make vary within an appropriate range of values. Because we want to compare the hierarchical
classification approach to the flat classification approach, and not two hierarchical methods against
each other, the performance curves are grouped accordingly in pairs of a hierarchical method and
its flat counterpart, i.e., SkNN vs. kNN, and SSVM vs. MKSVM. It is noteworthy that the evalua-
tion measure hF considers all leaf and interior nodes of the class taxonomy presented in Fig. 4.1, to
characterize the performance of the hierarchical methods and the flat methods alike, even though
the existence of the interior nodes is not considered at all in the formulation of the training and
inference parts of the flat methods. In that way, we wish to determine whether there is a gain in
performance given by the hierarchical methods with respect to the flat methods in our experiment.
Such gain would necessarily come from the incorporation of the information about the full class
taxonomy within our hierarchical classification methods.

We observe that the hierarchical approach does not outperform the flat approach with either of
the hierarchical methods in our problem of facial expression recognition. Instead, the hierarchical
and flat approaches have a very similar performance. A confirmation of this is given in Tab. 4.1,
where for each hierarchical and flat method the best performance in hierarchical recall (hR), hier-
archical precision hP, and hierarchical F-measure hF are detailed. These best performance values
are associated with the highest points of the performance curves presented in Fig. 4.3. The overall
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FIGURE 4.3: Results of facial expression recognition. Blue and red curves
show hF for hierarchical and flat classification respectively, against the number
of neighbors k for SkNN vs. kNN (left), and the training parameter C for SSVM

vs. MKSVM (right).

TABLE 4.1: Best hF performance from Fig. 4.3, along with the corresponding hP
and hR performance obtained in our facial expression recognition problem.

Classifier hP hR hF

SkNN 83.63% 88.00% 85.76%
kNN 83.12% 87.98% 85.48%

SSVM 85.22% 87.87% 86.52%

MKSVM 85.68% 87.54% 86.60%

similarity of these performance results allows us to conclude that the hierarchical approach gives
no gain in performance over the flat approach in this experiment.

The results reported here are illustrative. We actually designed multiple other experimental
cases, where we changed various aspects pertaining to the evaluation of hierarchical vs. flat clas-
sification in our facial expression recognition problem, but still reached the same conclusion. As
stated in the introduction of this chapter, however, the hierarchical approach to classification has
been shown to improve the classification performance in several application domains, including
domains involving the classification of visual content. We thus consider the possibility that our
facial expression recognition problem might not be well-conditioned to showcase the superiority
of the hierarchical approach. Therefore, we decide to give a round of experimentation to another
vision-based classification problem that is more likely to benefit from the hierarchical approach,
namely 3D shape recognition. Our experiment on this problem is detailed in the next section.

4.3.2 3D shape recognition

The problem

The problem of 3D shape recognition consists in determining the category of an object on the sole
basis of its shape in the 3D world, without considering its appearance, e.g., its color or gray-level
texture, or any other kind of perceptual evidence. Most of the time in the definition of this problem,
the objects under consideration either have a rigid shape by nature, e.g., a car (bottom row of
Fig. 4.5, second image from the right), or are given a prototypical rigid shape if they are deformable
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by nature, e.g., a dog [in a normal standing posture] (bottom row of Fig. 4.5, rightmost image).
Indeed, the possible dynamic shape deformations of an object are essentially disregarded in the
problem of 3D shape recognition. Instead, the focus is given to effectively describing the static
shape similarities of objects that belong to the same category, toward effectively distinguishing
objects from different categories. The intuition behind 3D shape recognition is that an adequate
shape description of an object in space provides the most important cues toward categorizing
many of the objects one could encounter in the real world. Therefore, except for some object
categorizations (e.g., a color-based categorization), it is assumed that an adequate description of
the 3D shape carries all the necessary information relevant to the recognition of most real-world
objects. It is also assumed that the raw visual data acquired by modern depth sensing devices,
i.e., the data commonly called 3D point clouds, hold all of the information necessary to construct
adequate 3D shape descriptions, much like it is assumed that conventional digital images acquired
by modern cameras hold all of the information necessary to construct adequate image features for
solving recognition problems based on 2D images.

We think that the problem of 3D shape recognition is well-suited to continue our investigation
of hierarchical vs. flat classification of visual content. Indeed, real-world objects can be quite nat-
urally organized in class taxonomies according to an “IS-A” partial order relationship that notably
embodies shared semantic attributes about the shape, e.g., a dog and a cow are both quadrupeds,
and a human and an ostrich are both bipeds, and both quadrupeds and bipeds are animals with
legs. It is intuitive that incorporating an adequate object class taxonomy within the problem of 3D
shape recognition should yield a classification performance gain. In this second experiment, we
therefore provide our hierarchical methods with prior taxonomic information about 3D objects.
Both our hierarchical and flat methods use the same features, in the form of shape descriptions
extracted from the 3D point clouds of the objects, but only our hierarchical methods learn to infer
the full taxonomic label of a 3D object, as a single path to a leaf node in a tree-based object class
taxonomy (Fig. 4.4). Some parts of this second experiment are the work of our former colleagues
from the Intelligent and Interactive Systems group at the university of Innsbruck, namely, the very
idea to use hierarchical classification in the problem of 3D shape recognition, the choice of the
taxonomic dataset of 3D objects for this problem, the generation of the 3D point clouds from the
CAD models in this dataset, and the choice and application of the methods used to extract shape
descriptions from these point clouds.

The Princeton Shape Benchmark (PSB)

The PSB dataset proposed by [138] is one of the largest and most heterogeneous datasets of 3D
objects, and also one of the most challenging for 3D shape recognition [143]. It is composed
of 1,814 CAD models which give the surfaces of a wide variety of natural and man-made 3D
objects. These objects are categorized into 161 object classes, as the leaf nodes of a tree-based
class taxonomy with 36 interior nodes organized in up to four semantic levels above the leaf
level (Fig. 4.4). The taxonomy proposed by the authors of the PSB dataset was constructed by
considering (1) shared shape-related attributes, e.g., round tables belong to the same category,
because they are round, and (2) shared semantic attributes, e.g., “Furniture” is a superclass of both
“Table” and “Bed”, because these objects share a property about how humans use them.
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FIGURE 4.4: The “Furniture” and “Animal” sub-trees of the Princeton Shape
Benchmark, with snapshots of some of the models that belong to the leaves

(classes) of those sub-trees.

FIGURE 4.5: Examples of 3D object models present in the Princeton Shape
Benchmark.

The CAD models encode the polygonal geometry of the objects they describe, as a set of
vertices and edges. Textured depictions of some of these CAD models are shown in Fig. 4.5
(colors and shading are here added for visual comfort, but are not parts of the CAD models).
Even though the CAD models proposed in the PSB dataset are obviously not raw sensing data
acquired from the real world via depth sensing devices (e.g., a laser scanner), they represent good
approximations to their real-world equivalents. Such models are actually widely used to present
new solutions to the problem of 3D shape recognition, as the performance of such solutions in real-
world scenarios can be reliably extrapolated from their performance on CAD models. Finally, the
PSB dataset comes with an evaluation strategy proposed by the authors to perform the benchmark
of 3D shape recognition methods. The set of 1,814 CAD models is divided into two splits, one
for training the classification methods, the other for testing the obtained classifiers. This dataset
subdivision was carefully designed to best represent all object categories in both the training and
test splits, with an appropriate number of same-category CAD models in both splits.
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3D shape features

We mentioned above that adequate 3D shape descriptions should allow to effectively recognize the
category of many real-world objects. Standard methods to build such descriptions exist, and are
commonly called 3D shape descriptors. In 3D computer vision research, the design and develop-
ment of 3D shape descriptors is a very active and prolific line of work. The common objective is to
develop a general-purpose method that captures what is essential to describe a 3D point cloud, i.e.,
a method that gives, for any point cloud, a geometric description that is resistant to noise, compact
against redundancy, and invariant to specific similarity transformations. However, the effective-
ness of the various 3D shape descriptors proposed in the literature was most often demonstrated
within the specific context of experimentation in which they were designed. There is therefore no
guarantee that such 3D shape descriptors give adequate shape descriptions for our experiment of
hierarchical vs. flat classification in the problem of 3D shape recognition on the PSB dataset.

Of the many 3D shape descriptors available, the following five were chosen for this exper-
iment: ensemble of shape functions (ESF [144]), viewpoint feature histogram (VFH [145]), in-
trinsic spin images (ISI [146]), signature of histograms of orientations (SHOT [147]), and unique
shape contexts (USC [148]). We do not, in this document, describe the detail of how these meth-
ods work, but invite the reader to follow our bibliography pointers to find out more about them.
The most important aspects to remember here are the reasons why these particular 3D shape de-
scriptors were chosen: (1) they are quite different in their design, and should give quite different
3D shape descriptions to use as features in our experiment, and (2) there is an easy access to their
straightforward implementation. Indeed, each of these five 3D shape descriptors are available in
the widely used and well-documented point cloud library (PCL) [149]. By applying our hierar-
chical and flat classification methods to features coming from five different 3D shape descriptors
implemented in the sound and consistent PCL framework, we wish to multiply the variants of this
experiment, and therefore enhance the quality of our comparative study about the hierarchical and
flat approaches for the classification of visual content.

Since the PCL framework expects a 3D point cloud as input for any of our 3D shape descrip-
tors of interest (ESF, VFH, ISI, SHOT, and USC), each CAD object model of the PSB dataset
was transformed into a point cloud. To do so, the surface of each CAD model was first triangu-
lated using its vertices and edges, then a total of 5,000 3D points were randomly sampled from
its full triangulated 3D surface. The probability to sample a point from a particular triangle of
the surface was made proportional to the area of this triangle. In this way, the 5,000 3D points
obtained from each CAD model were homogeneously distributed across its 3D surface. Given
such a point cloud, our five 3D shape descriptors of interest calculate shape descriptions of dif-
ferent lengths, some with only a few dimensions, other very high-dimensional. To facilitate the
design of our experimental variants with these five descriptors of interest, five linear kernel matri-
ces were calculated, each encoding the PSB object point cloud similarities according to the shape
descriptions calculated with one of the five particular descriptors. For any experimental variant
involving a particular descriptor, we used the rows of the corresponding kernel matrix as 3D shape
features with which to feed our classification methods. More formally, the feature map φ used
in an experimental variant of our problem of 3D shape recognition is as follows. If x is a CAD
model-generated point cloud from the (orderded) set X of all PSB CAD model-generated point
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clouds, then φ(x) is the real-valued vector of the dot products between the shape description of
x and the shape descriptions of all the elements in X , such shape descriptions coming from the
application of the same particular shape descriptor to the elements in X .

Results

Using our five 3D shape descriptors of interest, i.e., ESF, VFH, ISI, SHOT, and USC, we conduct
five comparative evaluations of the hierarchical and flat classification approaches for solving the
problem of 3D shape recognition defined over the PSB dataset. Each comparative evaluation
involves the results given by our two hierarchical classification methods of interest, i.e., SkNN and
SSVM for the prediction of taxonomic labels, as well as the results given by their flat counterparts
dealing with non-taxonomic labels, i.e., standard multiclass kNN, and a version of the standard
multiclass SVM called MKSVM [142]. In our problem of 3D shape recognition, a taxonomic label
corresponds to a path from the root to a leaf node within the PSB tree taxonomy (an excerpt from
which is shown in Fig. 4.4), i.e., we use single-path, full depth labeling. In the flat classification
approach, a non-taxonomic label here corresponds to a scalar class label, i.e., it corresponds to one
of the leaf nodes of the PSB tree taxonomy (the interior nodes of the tree-based class taxonomy
are therefore not considered).

Figure 4.6 shows our results for the problem of 3D shape recognition. As in our experiment
about facial expression recognition, we plot here the hierarchical F-measure (hF) against the core
parameters for our hierarchical and flat classification methods, i.e., the number of neighbors k
for SkNN and kNN, and the C parameter for SSVM and MKSVM. We also group the evaluation
curves in pairs according to (1) the 3D shape descriptor used to obtain our 3D shape features,
i.e., either of ESF, VFH, ISI, SHOT, or USC, and (2) the interest (and fairness) of comparing the
performance of a hierarchical classification method specifically with those of its respective flat
counterpart, i.e., we compare SkNN vs. kNN, and SSVM vs. MKSVM. We also wish to remind
the reader that, regardless of whether it is a hierarchical or a flat method that is used in the testing
stage, the evaluation measure hF takes into account all leaf and interior nodes of the PSB tree-
based class taxonomy. Indeed, even though the prediction made by a flat method for some test
data instance is a scalar class label, this class label corresponds to a leaf node within the PSB class
taxonomy and implicitly defines a unique path that includes all its ancestor nodes up to the root.
In that sense, a flat method could be seen as being able to predict taxonomic labels, but what is of
interest to us is that our flat methods are oblivious to the full class taxonomy in both their training
and testing stages, whereas our hierarchical methods are given prior information about the full
class taxonomy, which should intuitively help them achieve a better classification performance.

By visual inspection of the curves in Fig. 4.6, there seems to be, with some of our descriptors
of interest, a consistent yet rather slight performance improvement by using the hierarchical ap-
proach in our problem of 3D shape recognition. Indeed, when based on the VFH, ESF, and ISI
descriptors, the classification seems to benefit a little from the incorporation of prior hierarchical
information. This is further illustrated in Table 4.2 which gives the detail about the best hF, hR,
and hP values obtained for each of our experimental variants. However, for the classification based
on the SHOT and USC descriptors, the results are mixed: either the hierarchical approach or the
flat approach performs slightly better, depending on the descriptor and method that is used. We
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TABLE 4.2: Best hF performance from Fig. 4.6, along with the corresponding hP
and hR performance obtained in our 3D shape recognition problem using the 3D

shape descriptors ESF, VFH, ISI, SHOT, and USC.

Descriptor Classifier hP hR hF

ESF

SkNN 32.23% 34.40% 33.28%
kNN 32.00% 34.22% 33.07%

SSVM 49.72% 49.92% 49.82%
MKSVM 47.78% 47.45% 47.61%

VFH

SkNN 20.38% 23.07% 21.64%
kNN 19.60% 21.42% 20.47%

SSVM 23.47% 23.62% 23.55%
MKSVM 21.84% 21.84% 21.84%

ISI

SkNN 27.24% 29.07% 28.12%
kNN 26.42% 27.79% 27.09%

SSVM 31.15% 33.58% 32.32%
MKSVM 31.01% 32.23% 31.61%

SHOT

SkNN 34.36% 34.95% 34.65%

kNN 33.99% 35.48% 34.72%
SSVM 33.43% 36.35% 34.83%

MKSVM 35.79% 36.67% 36.22%

USC

SkNN 40.26% 41.08% 40.67%

kNN 40.78% 41.18% 40.98%
SSVM 37.58% 40.88% 39.16%

MKSVM 37.56% 39.41% 38.46%
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FIGURE 4.6: Results of 3D shape recognition. Blue and red curves show hF for
hierarchical and flat classification respectively, against the number of neighbors k
for SkNN vs. kNN in the first row, and the training parameter C for SSVM vs.
MKSVM in the second row. Each column corresponds to the use of a particular

3D shape descriptor, between ESF, VFH, ISI, SHOT, and USC.

therefore conclude that the hierarchical classification approach does not give better results than
the flat classification approach in solving our 3D shape recognition problem defined over the PSB
dataset, with either of the five 3D shape descriptors, but for a few cases where this improvement
is hardly significant. It is important to note that the absolute classification performance obtained
in using this or that 3D shape descriptor is of little interest to us, because in this experiment we do
not aim at determining which 3D shape descriptor is best designed in general, or the most useful
for solving the problem of 3D shape recognition over the PSB dataset in particular. Instead, we
are interested in the relative gain in classification performance that the hierarchical approach may
offer in comparison to the flat approach. The only interest for us in considering the absolute clas-
sification performance is to empirically validate the numerous experimental variants we designed
for our problem of 3D shape recognition, this absolute performance being well above the chance
level in all variants, considering that we deal with a classification problem with 161 classes.

4.4 Simulation framework

The experimental results presented in Sect. 4.3 for our real-world vision-based problems leave us
with an uneasy, and actually unexpected conclusion about the hierarchical classification approach.
After systematically applying two different hierarchical classification methods and their flat coun-
terparts to two different vision-based classification problems, and using sound feature extraction
methods of noticeably different natures in that experimentation, we still fail to showcase the su-
periority of the hierarchical approach over the flat approach for solving classification problems
based on visual features. However, as stated in Sect. 4.1, such superiority (1) has been clearly
demonstrated in general in other research fields, such as text categorization and protein function
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prediction, and (2) can be reasonably expected as the use of a hierarchical prior for classifying
visual content echoes the findings made in neurophysiological studies of the visual cortex, which
emphasize the natural hierarchical organization made by humans to recognize the objects they see.

In order to decide what conclusions can be drawn from the the present study, we make the
hypothesis that the features extracted from the raw visual data for solving our real-world vision-
based classification problems lack the necessary information to exploit a hierarchical prior. Our
argument is that the feature extraction methods we use in this study are commonly used in 2D and
3D computer vision for general purpose, and have not been specifically designed with the idea
to be jointly used with a hierarchical prior. We have the intuition that for a hierarchical prior to
be useful, the features should somehow be able to capture hierarchical information so that it may
be matched to the hierarchical prior by sound hierarchical classification methods. Based on this
hypothesis, we ask the following three questions about the features we use, in the form of guesses
on why these features might prevent the hierarchical methods from outperforming the flat methods
in our real-world problem scenarios:

1. Do the features fail to capture any hierarchical information?

2. Do the features capture hierarchical information, but different from the hierarchical prior?

3. Do the features capture hierarchical information similar to the hierarchical prior, but with a
destructive amount of noise?

In order to answer these rather general questions, we believe that it is a good strategy to not fo-
cus on a specific vision-based classification problem but instead consider a more general approach.
To do so, we design a simulation framework that generates abstract, artificial classification prob-
lems, the complexity of which can be controlled through the manipulation of aspects that we think
are key to consider in the hierarchical classification approach. From the results obtained with
our hierarchical and flat classification methods applied to these artificial problems, we wish to
draw useful insights about the conditions in which the hierarchical approach can offer a real gain
in performance over the flat approach, for classification problems in general, and vision-based
classification problems in particular.

4.4.1 Abstraction of the classification problem

To build a meaningful simulation framework, we need to have a clear view and definition of the
concepts at work in the hierarchical and flat classification approaches (Fig. 4.7). Given some
phenomenon of interest, the repeated manifestation of this phenomenon is measured by a sensor

on the one hand, and a semantic interpretation of the possible states of the phenomenon is made
by an observer on the other hand. We are interested in phenomena that have a natural hierarchical
relationship between their states, i.e., an underlying taxonomy2. Being aware to some extent of the
hierarchical nature of the phenomenon, the observer may organize his/her semantic interpretation
in a hierarchical manner, i.e., define a perceived taxonomy. This perceived taxonomy does however
not necessarily correspond perfectly to the natural underlying taxonomy.

2It is arguable whether or not there exists such a thing as an “underlying taxonomy” for a phenomenon. Taxonomies
may be thought of as always being arbitrary, their value lying in their usefulness, not in some underlying, self-evident
truth.
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FIGURE 4.7: Our schematic view of the hierarchical and flat classification
approaches used in our simulation framework.
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The semantic classes provided by the interpretation of the observer are then used to associate
labels to a collection of measurements obtained by the sensor. This annotation procedure yields
a labeled dataset. In parallel, features are associated to the measurements via a feature extraction

method, with the primary goal of capturing the essential information present in the measurements,
in preparation of a task of supervised classification. If it is assumed that the measurements contain
information about the underlying taxonomy of the phenomenon3, then it is also assumed that a
high-level feature extraction should capture at least part of this essential information, and therefore
provide a rich, high-level feature representation, whereas a low-level feature extraction should fail
to capture any part of the underlying taxonomic information.

A set of labeled features is therefore available for training a classifier in a supervised manner,
i.e., for learning a classification rule that can associate class labels with new measurements of
the same phenomenon, on the basis of their features obtained with the same feature extraction
method as the one used to obtain the labeled features. In order to test the generalization capability
of a classifier, the set of labeled features is split into a training set and a test set. The training
of a hierarchical classifier differs from the training of a flat classifier by the fact that the method
used for training the hierarchical classifier is given the perceived taxonomy as a prior, whereas
the method used for training the flat classifier does not make use of a hierarchical prior about the
classes.

Given the hierarchical classification results and the flat classification results obtained by test-
ing the hierarchical and flat classifiers, respectively, we want to compare these results. Specifically,
we want to make a fair comparative analysis of these results in order to get a good notion about
which one of the hierarchical or flat approaches to classification performs best on our test set.
Whether or not of a hierarchical prior is used in learning, all other things remaining equal, the
classification performance of the hierarchical and flat classifiers can be fairly compared on the ba-
sis of the perceived taxonomy which, in this case, is used as a hierarchical criterion for penalizing
the misclassification of the elements of the test set (e.g., using hierarchical evaluation measures,
see Sect. 4.2.1). Indeed, regardless of the type of classifier being used, the superclass labels in the
taxonomy used as a criterion come as a byproduct of the specific class labels that are predicted
by the classifier, and these superclass labels can be used to emphasize serious hierarchical errors
(according to the given hierarchical criterion) made by either a hierarchical or a flat classifier.

4.4.2 Artificial datasets with taxonomies

Following on what has been discussed in Sect. 4.4.1, we are interested in simulating the existence
of labeled datasets obtained by measuring and interpreting the manifestations of phenomena hav-
ing underlying taxonomies, which we call hierarchical phenomena for short. To simulate such
underlying taxonomies, we consider perfect k-ary trees, where all leaf nodes belong to the same
semantic level L (the root node belonging to the level 1), and all interior nodes have degree k, i.e.,
have k children. For such trees, the total number of nodes is given by kL−1

k−1 , and the number of leaf
nodes is kL−1. In our view, a path from the root to a leaf node of such a taxonomy corresponds
to a state of the hierarchical phenomenon that is being measured by the sensor and interpreted

3The measurements may comply particularly well to a specific taxonomic model, that would be the best, i.e., the
most useful taxonomic approximation of the nature of the phenomenon.
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TABLE 4.3: The seven k-ary tree-based underlying taxonomies of the phenomena
under consideration in our simulation experiment.

Tree type k (children per node) L (depth) # nodes (total) # leaves (classes)

Binary trees

2 3 7 4

2 4 15 8

2 5 31 16

2 6 63 32

2 7 127 64

Ternary trees
3 3 13 9

3 4 40 27

3 5 121 81

Quadtrees
4 3 21 16

4 4 85 64

by the observer. Note that we do not consider here hierarchical phenomena for which a single
manifestation can simultaneously correspond to multiple paths in the underlying tree taxonomy.
We consider 10 different phenomena with underlying taxonomies in the form of k-ary trees (see
Table 4.3). For each hierarchical phenomenon, we assume that (1) the observer is able to establish
the existence of all the different states, and make those states correspond to semantic classes of
his/her interpretation, and that (2) exactly 200 manifestations per state are measured by the sensor
and correctly class-labeled by the observer. We therefore simulate the existence of 10 different
labeled datasets which are perfectly class-balanced, and which are obtained from measuring and
interpreting the states of 10 different phenomena having underlying taxonomies. Although only
underlying taxonomies and class labels were actually generated so far, and not the data corre-
sponding to the measurements, which remain abstract, we refer to these artificial labeled datasets
as generated datasets in the following, for simplicity.

In our view, the observer has also established a perceived taxonomy embodying his/her inter-
pretation of the hierarchical relationships between the semantic classes. For each of the 10 gener-
ated datasets, we consider a first experimental simulation condition where the perceived taxonomy
perfectly matches the actual underlying taxonomy of the phenomenon associated with the gener-
ated dataset. We then consider a second experimental simulation condition where the perceived
taxonomy does not perfectly match the underlying taxonomy, with varying degrees of dispar-
ity. The artificial classification problems resulting from the application of this second simulation
condition mimic real classification problems where the arbitrarily chosen (perceived) taxonomies
do not optimally reflect the hierarchical nature (underlying taxonomy) of the phenomenon under
consideration. In order to test this second simulation condition, we focus on just one of our 10
generated datasets, i.e., the dataset associated with the underlying binary tree taxonomy having 7
levels (127 nodes, 64 leaves).
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4.4.3 Artificial high-level features

We assume that the abstract measurements in our generated datasets somehow reliably encode the
underlying hierarchical nature of the phenomenon of interest, which we believe to be a reason-
able hypothesis that applies in most practical cases (e.g., digital images, CAD model-based point
clouds, etc.). We also assume that the ideal features extracted from these measurements should
decode and capture the hierarchical nature of the phenomenon, i.e., in our terminology they should
be high-level features. We therefore focus on simulating the varying quality of the high-level fea-
tures extracted from the measurements, by considering these features as random variables with a
Gaussian distribution, centered on their ideal value and with a variance indicative of the “noise
degree” caused by the imperfect feature extraction procedure. For each generated dataset, we
simulate the extraction of high-level features with different degrees of noise. More precisely, the
choice of a generated dataset and the specification of a noise degree for the high-level features
yields a specific couple of training and testing stages for the artificial classification problem de-
fined over the generated dataset. These training and testing stages use noisy high-level features
and the class labels in the dataset, as well as the perceived taxonomy as a prior, in the case where
a hierarchical classifier is to be trained.

More formally, let X be the collection of (abstract) measurements in a dataset generated by
measuring and annotating the manifestations of a phenomenon having an underlying taxonomy.
Let Y∗ ⊂ {0, 1}n be the set of indicator vectors, defined over this underlying taxonomy, that
represent all of the possible states of the hierarchical phenomenon of interest. The simulated
extraction of a noisy feature vector φ(x) ∈ Rn from a measurement x ∈ X is made on the basis
of the state y∗ ∈ Y∗ associated to x. Indeed, in our view, y∗ is the ideal representation of a state
of the phenomenon, therefore y∗ also corresponds to the best possible high-level features φ(x)

that can be extracted from a measurement x of the phenomenon in this state. Specifically, the
high-level feature vectorφ(x) for a measurement x ∈ X with a state y∗ ∈ Y∗ is so that

φi(x) ∼ N (y∗i , σ
2), ∀i ∈ {1, . . . , n}, (4.8)

where the variance σ2 of the Gaussian distribution represents the noise degree, shared by all fea-
tures in φ(x). For each of our 10 generated datasets (Sect. 4.4.2), we consider 51 progressive
degrees of noise (and therefore 51 experimental cases for our artificial classification problems), by
choosing σ2 in {0, 0.05, . . . , 2.5}.

With our method to simulate the feature extraction procedure, each scalar feature φi(x) is a
random variable related to one of the n nodes of the underlying taxonomy (see Fig. 4.8, left and
center). Such features are therefore high-level and capture hierarchical information with some
amount of noise. In our first simulation condition, where the perceived taxonomy is equivalent
to the underlying taxonomy, i.e., where a taxonomic label y ∈ Y is equal to y∗ ∈ Y∗, these
features are very discriminative for all classes and superclasses of the hierarchical classification
problem, disregarding the chosen noise degree. However in our second simulation condition,
where the perceived and underlying taxonomies differ, these features may be less discriminative
for the superclasses of the perceived taxonomy, since these superclasses do not ideally embody
the true hierarchical nature of the phenomenon (see Fig. 4.8, right).
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FIGURE 4.8: Left: an underlying taxonomy Y∗ and a representation y∗ of a state
in this taxonomy. Center: a feature vector φ(x) for a measurement x, generated
from its associated state y∗ with a noise degree σ2 = 0.5. Right: a label y for the
measurement x, defined over a perceived taxonomy Y obtained from Y∗ by the

elimination of the interior node 2.

4.4.4 Results

We conduct multiple evaluations of hierarchical vs. flat classification performance in our artificial
classification problems. For each artificial classification problem, we split its generated dataset
into a training set and a test set of the same size, i.e., 100 examples per class are attributed for
both the training and test sets in each problem. In our first simulation condition, where the per-
ceived taxonomy is equivalent to the underlying taxonomy, each comparative evaluation involves
the results obtained with our hierarchical classification methods, i.e., SkNN and SSVM for the
prediction of taxonomic labels, as well as the results obtained with their flat counterparts dealing
with non-taxonomic labels, i.e., kNN and MKSVM. In our second simulation condition, however,
where the perceived taxonomy differs from the underlying taxonomy, we only focus on comparing
the performance of SkNN vs. kNN in the problem related to the phenomenon with the underlying
7-level binary tree taxonomy. Indeed, we do not want to overwhelm the reader with excessive
experimentation, and, in anticipation of our analysis of the results, this single experimental case
for the second simulation condition is insightful enough to allow us to draw useful conclusions in
this study. For the same reasons, and unlike in our real vision-based problems, we do not consider
a range of values for the core parameters of our classification methods in this simulation experi-
ment, but instead fix those parameters: the number of neighbors k := 10 for SkNN and kNN, and
the training parameter C := 100 for SSVM and MKSVM. Those values are empirically found to
be near-optimal for our methods when used to solve our artificial classification problems. We con-
sider of greater interest to show the evolution of the classification performance with respect to the
varying degree of noise σ2 chosen to simulate the quality of the features. Besides, it is noteworthy
that our artificial classification problems are very similar by nature, but for some variations in their
associated underlying taxonomies. They can therefore be effectively compared as the variants of
a single meta-problem.

Figures 4.9 and 4.10 show the results obtained for all our experimental cases in the first sim-
ulation condition, for SkNN vs. kNN, and SSVM vs. MKSVM, respectively. In this simulation
condition, where the underlying taxonomy is perfectly perceived by the observer and used as a
prior for training hierarchical classifiers, we can see that the hierarchical approach to classification
outperforms the flat approach in all experimental cases where the noise degree σ2 is non-zero. The
performance gain is even more pronounced when the number of classes is larger, i.e., when deeper
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FIGURE 4.9: SkNN vs. kNN performance in the first simulation condition, using
binary (top row) and ternary/quad trees (bottom row) for the taxonomies. Blue
and red curves show hF for the hierarchical and flat classification, respectively,
against the degree of noise in the features. Dashed black lines show the chance
level for hF. Green curves show ∆hF , i.e., the performance gain in hF by using

the hierarchical approach.

trees or larger tree degrees are used, with up to 13.31% hF gain for the 7-level binary tree taxon-
omy (64 classes), 11.99% hF gain for the 5-level ternary tree taxonomy (81 classes), and 11.56%

hF gain for the 4-level quadtree taxonomy (64 classes). Table 4.4 gives quantitative results for
all of our experimental cases in the first simulation condition. It can be noticed that the median
hierarchical gain over the range of noise degrees globally increases with the number of taxonomy
levels. From these results, we conclude that, when high-level features are used, i.e., rich feature
representations that can capture the true hierarchical nature of the phenomenon, the hierarchical
approach to classification outperforms the flat approach, even in the presence of strong noise in
the high-level features.

In our second simulation condition, the true underlying taxonomy of the phenomenon is not
identical to the perceived taxonomy that is used as a prior for training the hierarchical classifiers
and as a hierarchical criterion for calculating the hierarchical F-measure. We simulate two per-
ceptual errors that the observer could make in defining a perceived taxonomy for organizing the
problem classes he/she has interpreted for the states of the phenomenon: (1) ignoring or miss-
ing some of the true hierarchical relationships between the states of the phenomenon, and (2)
creating hierarchical relationships that do not exist between the states of the phenomenon. In
practice, defining a perceived taxonomy containing the first, resp. second, error type corresponds
to removing, resp. swapping, some of the interior nodes in the true underlying taxonomy of the
phenomenon. We believe that both these perceptual error types typically coexist in practice, but
we decide to simulate them independently in this experiment.

Figures 4.11 and 4.12 show the results obtained for SkNN vs. kNN using progressive interior
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FIGURE 4.10: SSVM vs. MKSVM performance in the first simulation condition,
using binary (top row) and ternary/quad trees (bottom row) for the taxonomies.
Blue and red curves show hF for the hierarchical and flat classification, respec-
tively, against the degree of noise in the features. Dashed black lines show the
chance level for hF. Green curves show ∆hF , i.e., the performance gain in hF by

using the hierarchical approach.

TABLE 4.4: Median and maximal ∆hF , i.e. performance gains in hF with the
hierarchical approach, in our results for the first simulation condition shown in

Fig. 4.9 and 4.10, for SkNN vs. kNN, and SSVM vs. MKSVM respectively.

SkNN vs. kNN SSVM vs. MKSVM

Tree type L Med(∆hF) Max(∆hF) Med(∆hF) Max(∆hF)

Binary trees

3 0.10% 0.80% 0.40% 2.90%

4 0.73% 1.49% 2.15% 9.06%

5 2.10% 3.32% 2.98% 5.03%

6 2.48% 5.35% 5.92% 8.54%

7 3.97% 7.52% 5.70% 13.31%

Ternary trees
3 0.35% 1.39% 2.08% 7.64%

4 1.95% 4.16% 3.93% 7.50%

5 1.48% 7.36% 5.86% 11.99%

Quadtrees
3 1.12% 1.86% 3.52% 6.98%

4 2.21% 6.22% 5.08% 11.56%
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FIGURE 4.11: SkNN vs. kNN results for the second simulation condition, with the
elimination perceptual error on the underlying 7-level binary tree taxonomy. Blue
and red curves show hF for hierarchical and flat classification respectively, against
the degree of noise in the features. Green curves show ∆hF , i.e., the performance

gain in hF with the hierarchical approach.

node elimination and substitution, respectively, to define the perceived taxonomy as an altered
version of the underlying 7-level binary tree taxonomy. Table 4.5 gives quantitative results for
these experimental cases, where we can observe that the elimination of the interior nodes does
not hamper the superiority of the hierarchical classification approach over the flat one, up to 90%
of interior node removal. This can be explained by the fact that this type of misinterpretation of
the hierarchical phenomenon does not violate the underlying “IS-A” or “PART-OF” partial order
relationship present in the underlying taxonomy. Therefore, providing a prior taxonomy that is
even severely altered by this error type is still beneficial to the classification problem. However,
in the case of interior node substitution, the gain in performance with the hierarchical approach
steadily decreases with the proportion of interior nodes that are swapped. Indeed, this type of
misinterpretation violates the natural hierarchical order present in the underlying taxonomy of the
phenomenon. We therefore conclude from these results that misinterpreting the hierarchical re-
lationships in the underlying taxonomy with the second error type, i.e., violating the true partial
order relationship existing between the states of the phenomenon, is more detrimental to the hierar-
chical classification approach than a misinterpretation with the first error type, i.e., oversimplifying
the true hierarchical nature of the phenomenon.

4.5 Conclusion

Validating a general way to improve solutions to vision-based recognition problems represents a
difficult and ambitious challenge. A promising avenue is to try to better emulate the biological
way in which humans encode visual content. This can notably be approached via the design of
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FIGURE 4.12: SkNN vs. kNN results for the second simulation condition, with the
substitution perceptual error on the underlying 7-level binary tree taxonomy. Blue
and red curves show hF for the hierarchical and flat classification respectively,
against the degree of noise in the features. Green curves show ∆hF , i.e., the

performance gain in hF with the hierarchical approach.

TABLE 4.5: Median and maximal ∆hF , i.e. performance gains in hF with the
hierarchical approach, in our results for the second simulation condition shown in

Fig. 4.11 and 4.12, for interior node elimination and substitution respectively.

SkNN [with an altered perceived taxonomy] vs. kNN

Interior node elimination Interior node substitution

7-level binary tree alteration ratio Med(∆hF) Max(∆hF) Med(∆hF) Max(∆hF)

0% (no alteration, Tab. 4.4) 3.97% 7.52% 3.97% 7.52%

10% (6 interior nodes) 4.08% 7.58% 3.63% 6.80%

20% (13 interior nodes) 4.51% 6.62% 3.26% 6.90%

30% (19 interior nodes) 5.05% 7.28% 2.62% 6.79%

40% (25 interior nodes) 6.17% 6.82% 2.70% 5.19%

50% (31 interior nodes) 5.67% 7.28% 1.45% 5.11%

60% (38 interior nodes) 4.13% 5.80% 1.19% 2.95%

70% (44 interior nodes) 5.67% 6.17% 1.03% 1.63%

80% (50 interior nodes) 5.29% 6.50% 0.78% 2.77%

90% (57 interior nodes) 1.82% 2.51% 0.70% 1.53%

100% (all 63 interior nodes) 0.00% 0.00% 0.29% 1.45%
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biologically-inspired feature representations, which hold some structure that echoes the visual
encoding mechanism naturally made in the visual cortex [150, 151, 152]. The use of such richly
structured feature representations has indeed been shown to improve the classification performance
with some degree of generality [150, 153, 154]. Another intuitive path for improvement, which we
chose to study in this chapter, is to apply a hierarchical approach to classification, i.e., to specify
a taxonomy of concepts embodying the semantic and visual relationships between objects, and
to use this taxonomy as a prior for the supervised learning process. Following this path is also
encouraged by the fact that the general superiority of hierarchical classification over standard,
flat classification has been demonstrated in other fields, such as text categorization and protein
function prediction [124, 125, 122]. In these fields, we note that the feature representations used
are typically high-level and that the possible states of the observed phenomenon are connected via
well-understood hierarchical relationships. Enforcing such a hierarchical prior to the classification
of visual content has been shown to be advantageous in some cases, e.g., [130, 131], but with less
generality than in other fields [122].

Through the study presented in this chapter, we found that there was no added value in using a
straightforward hierarchical approach with general-purpose visual features, for solving our prob-
lems of facial expression recognition and 3D shape recognition. However, we also showed via
a simulation experiment that hierarchical methods can consistently outperform their flat counter-
parts, when provided with high-level features that capture the underlying hierarchical relationships
present in the data, even when strong noise is added to these high-level features. Our results also
showed that the performance gain offered by the hierarchical approach diminishes when the en-
forced prior taxonomy contains perceptual errors with respect to the underlying taxonomy of the
phenomenon from which the data were obtained. These results suggest that vision-based recog-
nition systems could generally benefit from the hierarchical classification approach provided that
the following conditions are met: (1) rich, high-level feature representations must be used, de-
signed to capture the underlying hierarchical information present in the measurements of the vi-
sual phenomenon, and (2) the underlying hierarchical nature of the visual phenomenon must be
well-understood, as some errors in the perceived taxonomy may seriously hinder the benefit of
using a hierarchical prior, even when proper hierarchical feature representations are used.

High-level hierarchical feature representations could be obtained via biologically-inspired de-
sign [150, 151, 152], or example-driven discovery, which includes information transfer [155, 156]
and visual hierarchy learning [132, 133, 136]. Interestingly, the work in [130] on 3D shape recog-
nition showed that the classification performance could be improved by using multiple flat binary
classifiers, each trained to classify objects according to their separation by a node in a prior taxon-
omy. We consider this strategy as a tailor-made way to produce and aggregate high-level features
in a hierarchical representation, which corroborates our conclusions in this chapter. In any case,
using adequate hierarchical feature representations of the visual content will not bring forth the
true potential of hierarchical classification, if the enforced prior taxonomies comprise serious per-
ceptual errors. A deep understanding of the hierarchical semantics behind a visual phenomenon
should be acquired before using hierarchical classification methods, which task could also be per-
formed jointly with the design of high-level hierarchical feature representations, e.g., by building
on a strategy similar to what was done in [136].
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Chapter 5

Conclusion

The human visual system is one of the most effective in the animal kingdom. The prowess of
humans in vision, combined with their unrivaled abilities to learn from concepts and recognize
patterns, makes computer vision a challenging and exciting research field in artificial intelligence.
Among the many vision-based cognitive processes that are tackled with computer vision, the au-
tomation of face perception tasks attracts a particular attention. Indeed, face perception, which
designates all tasks of interpretation that are carried out by mere macroscopic observation of the
face, is thoroughly used by humans in their everyday social interactions. It is actually one of the
best mastered specialties of humans, to the point that specific areas of their brain are dedicated
to face perception. Face perception tasks are also typically sensitive processes, and an automatic
face perception system may quickly lead to experimenter bias because of the discomfort or con-
fusion of the subject caused by the presence of the system. Because of both the clear benefits
and intrinsic challenges linked to the automation of face perception tasks, it remains, as of today,
a strong research focus in computer vision. Indeed, many face perception tasks have been auto-
mated by means of computer vision with remarkable success, yet often with room for significant
improvement when compared to the effectiveness of human cognition. Among them, an important
category consists of the tasks of facial expression interpretation, which range from recognizing fa-
cial muscle contraction patterns to recognizing subtle behaviors related to emotions, physiological
states, or communication cues. In this thesis, we have taken a particular interest in the automation
of specific tasks of facial expression interpretation.

In Chap. 2, we have presented our practical work on a vision-based system that extracts fa-
cial communication cues useful for the automatic recognition of sign language. We originally
developed this system as a contribution to the SignSpeak project, where the goal was to create a
new vision-based technology for translating sign language to text and improve the communica-
tion between deaf and hearing people. Our system is based on the robust AAM-based tracking
of landmark points on a signer’s face in a video, and continuously derives facial cues from the
instantaneous configurations of the tracked landmark points. We showed with several quantita-
tive evaluations that, ultimately, our facial cue extraction system can be advantageously integrated
within a sign language recognition system chain. We consider these facial cues, which were de-
fined through various discussions with linguistics and machine translation experts from the Sign-
Speak consortium, as specific facial expressions with an interpretation related to the recognition
of sign language.

In Chap. 3, we have presented our practical work on a vision-based system designed to help
clinicians in their bedside assessment of visual pursuit in post-comatose patients. Visual pursuit
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is a key clinical marker to assess post-comatose states, and it is a sensitive facial expression-based
perception task. Our system is used with a head-mounted device, and it is designed to assist
the clinician by providing objective measures of the visual pursuit ability of the patient being
tested. Combined with the use of a head-mounted device, our system conforms to the precise
clinical guidelines developed by neuroscience researchers for properly performing visual pursuit
assessment. Notably, our system is able to work with the recommended visual stimulus, which is
a handheld mirror moved by the clinican. We presented the results obtained with our system on
post-comatose patients and healthy control subjects. These results showed that our system can be
used in a hospital environment to enhance the clinical assessment of visual pursuit.

In Chap. 4, we have presented the empirical study we conducted on the hierarchical and stan-
dard, “flat” approaches to classification in the problems of muscle-based facial expression recog-
nition and 3D shape recognition. In hierarchical classification, a semantic class hierarchy is used
to enforce a fine-grained notion of semantic similarity between the classes of the problem, so as
to discover an overall better classifier than one obtained with flat classification. Our goal was
not to provide a new computer vision system for an application of facial expression recognition
or 3D shape recognition in that chapter, but to to compare the hierarchical and flat classification
approaches in these specific vision-based problems. Through our experiments, we found that,
unexpectedly, there was little to no improvement in the recognition performance by using hier-
archical classification with visual features provided by off-the-shelf feature extraction methods.
Through additional experiments we conducted in a simulation, we found useful general condi-
tions about feature representations and semantic class hierarchies that should be met in order to
get the benefits of using hierarchical classification. These conditions should in theory also apply
to hierarchical classification in muscle-based facial expression recognition.

At this point, we would like to mention another contribution we made within the application
domain of drowsiness monitoring. Drowsiness is generally defined as the intermediate physiolog-
ical state between wakefulness and sleep. It can lead to a temporary impairment of performance
that may be dangerous in various private and professional activities, including those of the trans-
portation and construction industries, to name a few. The hazards caused by drowsiness have
motivated the research in drowsiness monitoring, and the search for effective systems able to au-
tomatically, continuously, and objectively estimate the level of drowsiness of a person busy at a
task. We participated in the development of a fully automatic drowsiness monitoring system based
on the analysis of ocular parameters. This system produces a numerical level of drowsiness with
great reliability [157], and has therefore significant potential for preventing drowsiness-related ac-
cidents. To best promote the advantages of this system, a spin-off company has emerged at the
university of Liège, where this system is currently exploited through a commercial activity. Our
contribution to this drowsiness monitoring system consists of the software module that performs
the automatic extraction of the ocular parameters from images of the eye. Figure 5.1 illustrates the
effectiveness of our ocular parameter extraction module. We consider that these ocular parameters
are particular expressions with a specific interpretation, according to our definition in Chap. 1.
Specifically, we consider that our module automates a task of facial expression interpretation that
is related to the recognition of a physiological activity.
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To conclude, we would like to further discuss the concept of facial expression interpreta-
tion and its automation in a broad sense. In the present document, we started off by giving our
own definition of a facial expression and its interpretation in the introductory chapter (Chap. 1).
Specifically, we extended the usual facial muscle-based definition to include head and eye move-
ments, and we emphasized that an interpretation of a facial expression is in many cases related to
a hidden process that notably shows through the face, but is otherwise most often dependent on
context information that is not necessarily present in the face image. This latter aspect about con-
text dependency is of particular importance in practice, because it often significantly influences
the design of a computer vision solution for facial expression interpretation. As a matter of fact,
numerous computer vision solutions quite heterogeneous in their design have been proposed for
various tasks of facial expression interpretation where a fixed context is assumed, because fixing
the context helps to simplify the analysis and obtain effectiveness for specific applications. As ef-
fective as fixed-context solutions are (including the solutions we proposed in Chap. 2 and Chap. 3,
as well as our contribution to a drowsiness monitoring system illustrated in Fig. 5.1), their hetero-
geneous design makes them not obviously reusable in other applications. One could be satisfied
with this state of affairs, and consider the automation of facial expression interpretation tasks as an
umbrella term for various computer vision problems that necessarily require significantly differ-
ent solutions. It is besides not obvious how a general-purpose mechanism should be designed for
incorporating nonfacial, even nonvisual context information within a unified automation approach
for facial expression interpretation. Yet such a context integration mechanism could be the way
toward raising computer vision solutions to human-like abilities in tasks of facial expression inter-
pretation, as humans are not only remarkable for their precision in performing such tasks, but also
for their flexibility to adapt to any current situation, i.e., any particular context. With the recent
introduction of methods and hardware able to effectively leverage large amounts of semantically
annotated data of general nature, namely the machine learning approach known as deep learning,
new methodological opportunities have emerged notably to automate visual perception with un-
precedented effectiveness. Indeed, the use of the deep learning approach results in a rapid and
steady evolution of the performance standards in the automation of all tasks of visual perception.
However, the spectacular effectiveness of a deep learning approach solely based on visual data is
still only indicative of the full extent of a visual analysis made in a fixed, particular context. In
other words, one cannot hope to resolve visual ambiguities due to a variable context by the sole
yet thorough analysis of the available visual content. Perhaps that the underlying flexibility of the
deep learning approach could also be the way to design general-purpose integration mechanisms of
nonvisual context information, to dynamically adapt the vision-based analysis to variable context,
notably for face perception tasks, and especially for tasks of facial expression interpretation.
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FIGURE 5.1: Ocular parameters automatically extracted with our software module
(integrated in a drowsiness monitoring system). The blue and red horizontal lines
are indicative of the calculated vertical positions of the upper and lower eyelids
in the image, respectively. The green dot indicates the calculated position of the
center of the pupil in the image. These ocular parameters are extracted in real-
time with great robustness and accuracy among individuals, notably for new users

of the system, as it does not require any preparatory calibration procedure.
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