

Feasibility study of a UV photometer onboard a 3U Cubesat for the study of bright massive stars

8th European Cubesat Symposium London 07/09/2016

Richard Desselle¹, Christian Kintziger¹, Gregor Rauw², Pierre Rochus¹

¹ Centre Spatial de Liège, Université de Liège

² Groupe d'Astrophysique des Hautes Energies, Université de Liège

Introduction

- PhD Research topic
 - Feasibility study of a UV photometer on-board a 3U
 Cubesat. The scientific purpose of the payload is to collect time series of photometric measurements of bright massive stars.
- Time schedule: from December 2013 to December 2017
- This research is funded through the ARC grant for Concerted Research Actions, financed by the Federation Wallonia-Brussels

Project overview: bright massive stars

- Bright massive stars of spectral type B and O:
 - Surface temperatures $\in [15\ 000, 120\ 000]K$
 - Bulk of their luminosity is radiated in the UV
 - High mass-loss rates between 10^{-7} and $10^{-3} M_{Sun}$ per year
 - Strong ionizing radiation fields
 - Death in gigantic supernova explosions

Project overview: scientific objective

- Imaging photometric observations of bright massive stars between 250 and 350 nm
- Space photometry:
 - Absence of signal perturbation by the atmosphere
 - Continuity of time-series
- Precise photometric variations measurements allows studying radial and non-radial pulsations of stars (asteroseismology)
- Coupled with observations in other wavelengths (BRITE for example), the results could improve the understanding of pulsating massive stars

UV Photometer design

- Optical performances needed:
 - Collect and focus star light from 250 to 350 nm (no wavelength dispersion)
 - Signal to noise ratio ≥ 1000 in less than 5 minutes for star magnitude $V \leq 5$
- Scientific optical requirements: FoV \geq 1°, $\Delta \theta \leq$ 15"
- Geometrical constraints:
 - Entrance pupil diameter \leq **90 mm**
 - Payload volume ≤ 1.5U (from entrance pupil to focal plane)

UV Photometer design

8th European CubeSat Symposium / Feasibility study of a UV photometer on-board a 3U Cubesat for the study of bright massive stars

6

UV Photometer design

- Optimized FoV = 1°
- Entrance pupil diameter = 90 mm
- Effective diameter = 80 mm
- Angular resolution = 11 arcsec
- Detector: back-thinned CCD with 13X13 μm pixel size working in 2X2 binning mode

8th European CubeSat Symposium / Feasibility study of a UV photometer on-board a 3U Cubesat for the study of bright massive stars

100

t_{exp} (sec)

120

140

160

180 200

System integration

Project status

- Payload design: completed
 - Photometric budget results are compliant
 - Optical quality and performances are compliant
- Sub-units identification: completed
- Mission analysis:
 - Orbit: sun synchronous LEO (launched as secondary payload)
 - Thermal analysis: detector and solar panels temperatures are in the operational ranges

Conclusion & Perspectives

- The feasibility study of the 3U Cubesat project for the study of bright massive stars is close to its end
- Documentation under writing: article will be submitted soon to a scientific journal
- Heritage from the 3U Cubesat project:
 - The 3U study is currently extended to a 6U study that will carry a UV spectropolarimeter for the study of bright massive stars
 - The polarimeter is a static system that allows measuring the entire polarimetric state of the incident light. It could be used as a technology demonstrator

Backup slides

11

8th European CubeSat Symposium / Feasibility study of a UV photometer on-board a 3U Cubesat for the study of bright massive stars

Baffling system and SL analysis

Baffling system designed according Terebizh *et al.* 2001

Photometric budget

• Signal to noise ratio computation:

$$SNR_* = \frac{S}{\sigma_{CCD}} = \frac{n N A_{eff} t_{exp} \eta}{\sqrt{n N A_{eff} t_{exp} \eta + n \# Pix D t_{exp} + n \# Pix R^2}}$$

- Worst case: integration time \approx 50 s
- Better case: saturation in 0.12 s → need to take several exposures and adapt the observation plan to every target

Solar panels configurations

Table configuration

8th European CubeSat Symposium / Feasibility study of a UV photometer on-board a 3U Cubesat for the study of bright massive stars

Orbit definition

Sun-synchronous low Earth orbit:

<u>Parameters</u>	Value
a semi-major axis	7178.14 km
<i>e</i> eccentricity	5.70681e-16
<i>i</i> inclination	98.5880°
$oldsymbol{\Omega}$ raan	190.128°
ω argument of periapsis	0°
$oldsymbol{ u}_0$ true anomaly at launch	0.1089°
<i>T</i> period	100.8735 min

Jan 2021

 β angle [°]

Jul 2021

Jan 2022

8th European CubeSat Symposium / Feasibility study of a UV photometer on-board a 3U Cubesat for the study of bright massive stars

0 Jan 2020

Jul 2020