A tiny magic drawing board to track the penetration of magnetic flux in superconductors

Alejandro V. Silhanek

Experimental Physics of Nanostructured Materials Physics Department, University of Liège BELGIUM

LABORATORY OF PHYSICS OF NANOSTRUCTURED MATERIALS

Collaborators

J. Brisbois, G. Shaw, J. Avila, B. Vanderheyden, Ph. Vanderbemden, N.D. Nguyen (ULg)

R.B.G. Kramer, T. Devillers, N. Dempsey, K. Hasselbach (Grenoble, France)

M. Motta, L. Pinheiro, W. Ortiz (UFSCAR, Brazil)

Superconductor / normal metal

Three fold benefit,

- 1.- Quench protection
- 2.- Thermal sink
- 3.- Better stability by reducing the speed of the flux motion

Harrison et al., J. Low Temp. Phys. 18, 1 (1975) | Larbalestier et al., Nat. Mat. 13, 375 (2014)

3

Superconductor / normal metal

Increased damping due to induced eddy currents

Superconductor / normal metal

J. Brisbois et al., Phys. Rev. B 95, 94506 (2017)

Superconductor / soft ferromagnet

New emerging phenomena associated to the possible polarization of the magnetic layer,

- 1.- Additional damping mechanism
- 2.- Trail of imprinted spin polarization

Pioneer ideas Additional damping mechanism

PHYSICAL REVIEW B 89, 054516 (2014)

Magnon radiation by moving Abrikosov vortices in ferromagnetic superconductors and superconductor-ferromagnet multilayers

A. A. Bespalov,^{1,2} A. S. Mel'nikov,^{1,3} and A. I. Buzdin²

Pioneer ideas Local spin polarization

Berciu, Rappoport, Janko, *Nature* **435**, 71 (2005)

Classical analogy

J. Brisbois et al., Sci. Rep. 6, 27159 (2016)

The experimental setup

G. Shaw, J. Brisbois, L. Pinheiro, et al., unpublished

Preparation initial magnetic state

The direction of magnetization is easily controlled...

In-plane saturation field ~ 2 mT

... and easily reversed!

J. Brisbois et al., Sci. Rep. 6, 27159 (2016).

Imprinting the smooth flux penetration

The reversal of the in-plane magnetization leaves a head-tohead domain wall with out-of-plane field.

J. Brisbois et al., Sci. Rep. 6, 27159 (2016)

Imprinting flux avalanches

5 mT, 2.5 K

After, 10 K

Guiding along the direction of magnetization

Printings are stable, even up to room temperature!

Imprinting flux avalanches

The initial magnetization direction is important

J. Brisbois et al., Sci. Rep. 6, 27159 (2016)

Possible scenario

Room temperature printing

Imprinting works also at room temperature \rightarrow tune the magnetic landscape at will

J. Brisbois et al., Sci. Rep. 6, 27159 (2016).

We are not alone ...

C. Stahl et al., EPL 106, 27002 (2014)

R. F. Lopes et al., J. Appl. Phys. 121, 13905 (2017)

Conclusion

- ✓ Flux penetration (smooth and avalanches) can be imprinted in a magnetic layer.
- ✓ The printings are stable and can even be observed at room temperature.
- \checkmark Enhanced damping due to magnetic layer.

Perspectives:

- ✓ Improve the resolution of magnetic recording of flux penetration
- ✓ Tunable magnetic landscape

Acknowledgements

