Dark matter

Maxim Laletin STAR Workshop 15/09/2017

OUTLINE

- Observational evidence
- Hypotheses
- Search strategies
- What's new?

OBSERVATIONAL EVIDENCE

Galaxy rotation curves

Motion of galaxies
In clusters

Gravitational lensing of clusters

X-ray Observations Of clusters

OBSERVATIONAL EVIDENCE

Separation of matter in cluster collisions

OBSERVATIONAL EVIDENCE

https://lambda.gsfc.nasa.gov/education/cmb_plotter/

Large scale structure of the Universe

Cosmic microwave background power spectrum

What do we know about dark matter from observations?

- It gravitates;
- It is dark (doesn't radiate much, probably doesn't even interact electromagnetically);
- It makes up ~ 26% of the energy density in the Universe;
- Cosmologically stable (or long-lived);
- It is **collisionless** (or doesn't collide much)

SOME CANDIDATES

Weakly Interacting Massive Particles (WIMPs):

The most trivial and well elaborated group of models; many beyond SM physics models predict such particles (e.g. SUSY, Inert Doublet Models, sterile neutrino, etc.)

Particles with non-trivial interactions:

Various particle physics models providing some features that WIMPs don't have, such as sizable self-interaction, complicated production mechanism or thermal evolution and so on (e.g. axions, mirror DM, composite DM, FIMPs, SIMPs, PIMPs, etc.)

Primordial black holes (PBH)

A new wave of interest in PBH as DM candidate started recently due to LIGO's observation of gravitational waves from merging black holes.

SOME CANDIDATES

Weakly Interacting Massive Particles (WIMPs):

The most trivial and well elaborated group of models; many beyond SM physics models predict such particles (e.g. SUSY, Inert Doublet Models, sterile neutrino, etc.)

Particles with non-trivial interactions:

Various particle physics models providing some features that WIMPs don't have, such as sizable self-interaction, complicated production mechanism or thermal evolution and so on (e.g. axions, mirror DM, composite DM, FIMPs, SIMPs, PIMPs, etc.)

Primordial black holes (PBH)

A new wave of interest in PBH as DM candidate started recently due to LIGO's observation of gravitational waves from merging black holes.

SEARCH STRATEGIES

Direct detection

Indirect detection

Production at colliders

SEARCH STRATEGIES

In indirect searches astrophysics is really involved...

C. Kouvaris, M. Angeles Perez-Garcia,

"Can Dark Matter explain the Braking Index of Neutron Stars?", Phys.Rev. D89 (2014) no.10, 103539, 1401.3644

F. Contenta et al.,

"Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II", 1705.01820

L. Gabriel Gómez et al.,

"Dark-matter dynamical friction versus gravitational-wave emission in the evolution of compact-star binaries", Phys.Rev. D96 (2017) no.6, 063001, 1706.06801

A. Khmelnitsky, V. Rubakov,

"Pulsar timing signal from ultralight scalar dark matter", JCAP 1402 (2014) 019, 1309.5888

L. Tolos, J. Schaffner-Bielich,

"Dark Compact Planets",

Phys.Rev. D92 (2015) 123002, 1507.08197

WHAT'S NEW?

Strong relation between radial acceleration traced by rotation curves and that predicted by the observed distribution of baryons was **observed**.

(do not confuse with Tully-Fischer relation)

WHAT'S NEW?

In 2015 Massey et al. found a discrepancy between the observed mass distribution in Abell 3827 galaxy cluster and that predicted within standard cold DM model. They attributed the effect to self-interacting dark matter.

The **refined analysis** from 2017 revealed that the dynamics in this cluster **consistent** with standard cold dark matter.

D. Harvey et al., "Dark matter dynamics in Abell 3827: new data consistent with standard Cold Dark Matter", 1708.04245

CONCLUSION

- Multiple observational **evidence** indicate the presence of new physics on different scales, which can be associated with the existence of **dark matter**.
- But we still don't know the nature of DM. Direct, indirect and collider searches give null results.
- On the other hand, we know pretty much about what dark matter is not.
- We're trying hard to reveal at least a little more **properties** of dark matter. Detailed study of **astrophysical systems** (stars, clusters, pulsars, etc.) is one of the ways to do it.

Thank you for attention!

BACKUP

Direct detection results

Direct detection results

Constraints on PBH

Constraints on MACHOs

Big Bang nucleosynthesis

