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ABSTRACT

Since ancient times, mankind has wondered whether other solar sys-
tems exist around other stars somewhere in the Universe. It took
many centuries to finally prove the existence of extra-solar planetary
systems. Nowadays, more than 3500 exoplanets have been discovered,
mostly thanks to indirect detection methods. Indeed, the task of di-
rectly detecting exoplanets through high-contrast imaging (HCI) is a
formidable challenge, and has only been enabled in the last decade
thanks to advances in instrumentation and dedicated image process-
ing algorithms. This last component of the exoplanet direct imaging
pipeline is what ultimately pushes the detection limits and sensitivity
of HCI instruments and survey campaigns. Unfortunately, the HCI
community has been slow in adopting the latest developments in
data management and machine learning for analyzing the increas-
ing amount of available data. This dissertation is an attempt to fill in
this very gap, and develops at the interface of computer science, ma-
chine learning, statistics, and astrophysics. This work contributes to
the field of data processing for HCI in two main ways. On one hand,
I have developed an open source Python library for taking HCI data
from the raw state up to the characterization of companions. It im-
plements state-of-the-art approaches and is positioning itself as one
of the de facto software solutions for building HCI pipelines. I have
also participated to the critical analysis of data from different first
and second generation HCI instruments. On the other hand, I have
approached the task of exoplanet detection in angular differential
imaging sequences from a computer vision and machine learning per-
spective. This interdisciplinary work has led to novel algorithmic so-
lutions, extending unsupervised learning techniques widely used in
HCI and proposing advanced supervised learning approaches based
on cutting-edge deep learning models. My novel algorithms have
been presented using a robust performance assessment framework to
produce large comparative performance studies. These studies show
the improved sensitivity vs specificity trade-off of the proposed su-
pervised detection approach. The proposed algorithms bring the pos-
sibility of re-processing existing HCI databases to maximize their sci-
entific return and potentially improve the demographics of directly
imaged exoplanets.
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RESUME

Depuis 1’Antiquité, 'Homme s’est demandé si d’autres systémes so-
laires existent autour d’autres étoiles quelque part dans 1'Univers. Il
a fallu plusieurs siecles pour enfin prouver leur existence. Plus de
3500 exoplanétes ont été découvertes a ce jour, principalement grace
a des méthodes de détection indirecte. En effet, la tiche consistant
a détecter directement des exoplanétes au moyen de l'imagerie a
haut contraste (IHC) représente un défi considérable et n’a été ren-
due possible qu’au cours de la derniere décennie grace aux progres
réalisés dans I'instrumentation astronomique et dans les algorithmes
dédiés au traitement d'image. Cette derniére composante du pipeline
d’imagerie directe d’exoplanetes est ce qui a permis de repousser
les limites de détection des instruments IHC. Malheureusement, la
communauté IHC a été lente a adopter les derniers développements
pour l'exploitation des données et 'apprentissage automatique afin
d’analyser la quantité croissante de données disponibles. Ma these
représente une tentative de combler ce fossé et se situe a l'interface
de l'informatique, de I’apprentissage automatique, des statistiques et
de l'astrophysique. Ce travail contribue au domaine du traitement
des données pour IHC principalement de deux manieres. Dune part,
j’ai développé une bibliothéque Python "open source" pour traiter des
données d’observation depuis leur état brut jusqu’a la caractérisation
des compagnons détectés. Cette bibliotheque met en ceuvre des ap-
proches situées a la pointe des technologies informatiques et se posi-
tionne comme 1'une des solutions logicielles de facto pour la construc-
tion de pipelines IHC. J'ai également participé a 1’analyse critique de
données en provenance de différents instruments IHC. D’autre part,
j’ai développé des algorithmes de détection d’exoplanétes via image-
rie différentielle angulaire a partir d’une perspective de vision par
ordinateur et d’apprentissage automatique. Ce travail interdiscipli-
naire a conduit a de nouvelles solutions algorithmiques, en étendant
les techniques d’apprentissage non supervisées au domaine IHC et
en proposant des approches avancées d’apprentissage supervisé ba-
sées sur des modéles d’apprentissage automatique profonds. Mes
nouveaux algorithmes ont été présentés dans un cadre rigoureux
d’évaluation des performances visant a mener des études compara-
tives de performance. Ces études montrent 1’amélioration du com-
promis entre sensibilité et spécificité de 1’approche de détection su-
pervisée proposée. Les nouveaux algorithmes offrent la possibilité de
réanalyser les bases de données IHC existantes afin de maximiser
leur exploitation scientifique et d’améliorer potentiellement la démo-
graphie des exoplanétes directement imagées.
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1.1 DETECTION OF EXTRA-SOLAR PLANETARY SYS-
TEMS

The idea of other worlds or planets outside our Solar System was pro-
posed in the Ancient Greece by Epicurus in the IV century b.C. Since
these ancient times, we have wondered whether other solar systems
exist around other stars somewhere in the universe. It took us many
centuries to finally prove the existence of extra-solar planetary sys-
tems empowered by recent technological developments. In only two
decades of exoplanetary science, we count about 3500 confirmed dis-
coveries’, most of which have been made possible thanks to indirect
detection methods (Pepe et al., 2014; Fischer et al., 2014). During the
same period of time, we have enriched our understanding of the for-
mation mechanisms of these planetary systems and the immense di-
versity of their architectures. However, exoplanetary science is still in
its infancy, as we are still grasping the full complexity of multi-planet
systems configurations, developing a general framework of planet for-
mation, and ultimately hunting for Earth analogues that could host
life as we know it. The task of finding exoplanets around their host

1 http://exoplanetarchive.ipac.caltech.edu/
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Figure 1.1: Bar plot showing the cumulative number of discoveries per year
for each detection method. The contribution of the direct imag-
ing detection method is hardly noticeable. Indirect methods like
radial velocity and transit method are the most prolific methods.
Credits: NASA exoplanet archive.

stars with direct observations is very challenging. Until recently, indi-
rect detection methods were the only way to study exoplanets.

1.2 INDIRECT DETECTION METHODS

Indirect detection methods account for the majority of the exoplanet
detections as clearly seen in Fig. 1.1. The distinction between direct
and indirect methods is based on the ability of obtaining photons
from the planets. Each detection method has an observational bias,
meaning that it is suited for a different region of the physical parame-
ter space. Different techniques are complementary but unfortunately
our coverage of the parameter space is still incomplete. In Fig. 1.2 we
see, for instance, how direct imaging is a successful method for de-
tecting exoplanets at large distances, larger than 10 AU, while radial
velocity and transit method are well suited for close-in companions.
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Figure 1.2: Diagram showing the mass as a function of semi-major axis
of known planets. The colors correspond to the detection tech-
nique: light blue for direct imaging, orange for transits, white
for radial velocity, pink for microlensing and green for pulsa-
tion timing. Black filled circles show solar system planets. Taken
from Milli et al. (2016)

1.2.1  Pulsar timing

This method deserves to be listed first as it enabled the discovery
of the first ever exoplanet. Pulsars are neutron stars: ultradense star
remnants of intermediate mass stars, roughly > 8M? on the main
sequence, which exploded as supernovae. They emit radiowaves reg-
ularly as they rotate. Anomalies in the regularity of these pulses were
used, back in 1992, by Wolszczan and Frail (1992) to discover the first
know exoplanets orbiting the 6.2-ms radio pulsar PSRB1257 +12. Un-
fortunately, millisecond pulsars are rare and so are the pulsar planets.
To date we count a couple of dozens of exoplanet detections via pul-
sar timing.

1.2.2 Radial velocities

The first exoplanet orbiting a Sun-like star, 51 Peg, was discovered by
Mayor and Queloz (1995) in 1995 using the radial velocity technique.
This Jupiter-mass planet in a short 4.23-day orbit, what we call today
a Hot-Jupiter, is the first exoplanet detected around a normal star,
other than the Sun. The radial velocity technique measures the re-

2 Mg - Solar Mass.
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Figure 1.3: Left: Radial velocity method representation. Credits: ESO. Right:
Radial velocity curve of 51 Peg, phased to a period of 4.23 days.
The solid line is the fit to the observational data (black dots).
Taken from Mayor and Queloz (1995).

flex velocity that an orbiting planet induces on a star via Doppler
spectroscopy. This imposes a preference for close-in planets, since
the gravitational force decreases with the square of the distance to
their parent stars. Also, these short orbital periods are easier to detect,
as they require shorter observation timescales. Besides this detection
bias, we also note the preference for massive planets and planetary
systems in edge-on configurations.

The Doppler precision improved from 10 ms™ to 1 ms™ in the ten
years after the discovery of 51 Peg (see Fig. 1.3), enabling the dis-
covery of hundreds of extra-solar planetary systems. This technique
enables the estimation of the minimum mass of the companion and
several orbital parameters, such as the orbital period, eccentricity and
inclination. The ultimate limitation of this technique, besides the in-
strumental precision, is given by the stellar activity or jitter, which
can produce stellar line profile variations that can be confused as a
velocity change in the star (Fischer et al., 2014).

1.2.3 Astrometry

This technique also exploits the gravitational perturbation of a plan-
etary companion on its parent star. Here we use precise astrometric
measurements to study the motion of the star around the mutual cen-
ter of mass. This technique has not been very fruitful so far mainly
due to the difficulty in measuring the tiny changes in stellar posi-
tion. Several confirmations of radial velocity detections, but only one
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Figure 1.4: Transit detection method. Left: Illustration of the transit method
showing how an orbiting planet can create variations in the
brightness of its parent star. Credits: Pale Red Dot project. Right:
Folded photometric time series of HD 209458 and the transit
shape that would occur for the best-fit model (solid line). In this
case the star dims by 1.7% due to the presence of the companion.
Taken from Charbonneau et al. (2000).

detection (Muterspaugh et al., 2010), have been possible thanks to
the astrometry method. This technique is most sensitive to planets
with large orbits complementing the radial velocity method. With the
launch of Gaia, a rise in the number of detected exoplanets by astro-
metric measurements is expected.

1.2.4 Transit method

The field of exoplanet detection has entered its most prolific period
thanks to the transit method. In the last ten years, the transit detection
technique has gone from nine to over 2,600 confirmed candidates.
This method relies on tracking the periodic eclipses that a star and
a planet cause to each other, in the case when the system is in a
(nearly) edge-on configuration (see left panel of Fig. 1.4). The right
panel of Fig. 1.4 shows the transit light curve of HD 209458, the first
exoplanetary transit detected by Charbonneau et al. (2000).

The transit method gives access to information that cannot be ob-
tained from radial velocity data, such as the orientation of the planet’s
orbit relative to the sky plane, and the relative dimensions of the
planet and the star. Companions that have been studied by both ra-
dial velocity and transit methods are well-characterized. The access
to the density (given the mass and the diameter) of the companion
allows to learn about the planet’s physical structure. Even though the
transit method is indirect, analysis of the spectrum of the still star
enables to study the atmosphere of the transiting planet. When the
planet transits the star, light from the star passes through the upper
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Figure 1.5: Left: Illustration of the microlensing detection method. Right:
Light curve of a distant star in a microlensing scenario. Credits:
NASA Exoplanet Science Institute.

atmosphere of the planet. This allows us to detect the absorption lines
caused by the fraction of the star’s light filtered through the planetary
atmosphere. Also, secondary eclipses (when the planet is blocked by
its star) allow to measure dayside emission by disentangling star at-
mosphere and planetary atmosphere contributions.

The NASA Kepler space observatory has been instrumental in the
great success of this exoplanet detection technique. This mission scan-
ned a hundred thousand stars in a close regions of our galaxy, and
has been able to detect Earth-size planets (370 to date), generating the
first statistics on the number of such planets around Sun-like stars.
Another notable project is the Belgian TRAPPIST (TRAnsiting Plan-
ets and PlanetesImals Small Telescope) instrument, which recently an-
nounced the discovery of seven temperate terrestrial planets around
the nearby ultracool dwarf star TRAPPIST-1 (Gillon et al., 2017). Four
of these planets belong to the list of potentially habitable exoplanets
according to the Habitable Exoplanets Catalogue’.

The biases of this method are mainly due to the inclination require-
ment, which is more likely to happen for very short separations. Also,
there is a preference for planets orbiting relatively small stars. A re-
lated detection technique is the timing variation method, which looks
for variations in the periodicity of known exoplanet transits to iden-
tify additional exoplanets with masses comparable to Earth’s.
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1.2.5 Microlensing

Gravitational microlensing is another indirect method of exoplanets
detection. This method exploits the situation when a foreground star,
with an orbiting planet, passes very close to our line of sight to a
more distant star (see left panel of Fig. 1.5). The gravitational field
of the foreground star acts as a lens, splitting in two or more lensed
images and magnifying the light from the background star (observed
as an increase in its brightness). When a planet is present, it perturbs
the lensing effect resulting in a characteristic, short-lived signature of
the planet (see Fig. right panel of 1.5). This methods only accounts
for about 50 detections to date.

Microlensing is a rare phenomenon and large surveys (OGLE, MOA)
monitoring crowded fields of the galactic bulge are actively looking
for these phenomena. Another disadvantage is the fact that the mi-
crolensing events cannot be repeated (the chance alignment never oc-
curs again). This technique is sensitive to wide orbits just beyond
the snow line (orbits comparable to Saturn and Uranus), and also
to multi-planet systems. It can also detect free-floating planets and
companions around very distant stars (most distant than any other
detection method).

1.3 DIRECT DETECTION OF EXOPLANETS

Indirect exoplanet detection methods have dominated the field for
many years due to the fact that taking a picture of a planet is ex-
tremely difficult. To date, only 44 exoplanets could be directly re-
solved through high-contrast imaging (HCI), which accounts for about
1% of the confirmed exoplanet candidates known to date.

In the last decade, direct imaging of exoplanets has been enabled
thanks to technological advances in ground-based infrared instru-
ments (installed on the largest telescopes on Earth), adaptive optics,
and coronagraphy. Direct observations of exoplanets provide a pow-
erful complement to indirect detection techniques and enable the ex-
ploration, thanks to its high sensitivity for wide orbits, of different
regions of the parameter space (see Fig. 1.2). Direct imaging also al-
lows us to put important constraints on planet formation models and
planetary system dynamics and, since we obtain the photons from
the planets themselves, we can proceed with further photometric and
spectroscopic characterization.

The first direct detection of an exoplanet was carried out by Chau-
vin et al. (2005) at VLT in 2004 (using simple adaptive optics imaging),
when they imaged the brown dwarf* 2M1207 and found a hot gas gi-

http:/ /phl.upr.edu/projects/habitable-exoplanets-catalog
Brown dwarfs are objects larger than gas giant planets and smaller than the lightest
stars. They are not massive enough to sustain nuclear fusion.
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Figure 1.6: Left: Observing a firefly close to a lighthouse 1000 miles away
as an analogy to directly observing exoplanets. Right: First exo-
planet directly imaged by Chauvin et al. (2005). Credits: ESO.

ant, 100 times dimmer than its host (see the right panel of Fig. 1.6).
This was followed by the detections of Fomalhaut b using the Hubble
Space Telescope and a coronagraphic mask, four planets around the
star HR8799 (Marois et al., 2008b, 2010b) using the Keck and Gem-
ini telescopes and 3 Pic b at VLT (with adaptive optics and special
observing techniques) (Lagrange et al., 2010). These detection were
enabled by the techniques that will be introduced in the following
sections: adaptive optics, coronagraphs, special observing techniques
and post-processing. The two later cases are representative of high-
contrast direct imaging from the ground in the infrared aided by hard-
ware and software technologies, and of the data that will be studied
throughout this dissertation.

1.3.1  Challenges of ground-based observations

High-contrast direct imaging from the ground presents three main
challenges:

1. the image degradation caused by the Earth’s turbulent atmo-
sphere and optical imperfections of the telescope and instru-
ments,

2. the small angular separation between the stars and their planets
(d’o1 to 1) and,
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Intensity

Point-Spread-Function (PSF)

Figure 1.7: Left: Point spread function by a circular aperture showing the
Airy-disk and the first Airy ring. Right: Cut on the PSF to show
the full width at half maximum. Credits: Leica mycrosystems.

3. the huge difference in brightness between them, with contrasts
typically ranging from 1073 to 10710,

These challenges are addressed with a combined effort of state-of-
the-art coronagraphy, optimized wavefront control, dedicated observ-
ing techniques, and advanced image post-processing (Guyon, 2005;
Mawet et al., 2012). These are the four corner stones enabling high-
contrast imaging.

1.3.1.1  Image degradation challenge

Even for the largest ground-based telescopes stars can generally be
considered as point-like sources of light. Due to the finite size of the
aperture of our telescopes, the image of a star is a diffraction pat-
tern called the point spread function (PSE see left panel of Fig. 1.7).
An important measure of the PSF is the full width at half maximum
(FWHM, see right panel of Fig. 1.7) which represents the resolving
power of an instrument. For an Airy pattern, it is equal to 1.028A/D
were A is the wavelength at which the observations are performed
and D the diameter of the instrument’s aperture. This means, in the-
ory, that using a larger aperture we would directly improve angular
resolution.

In practice, atmospheric turbulence and imperfections on the opti-
cal surfaces of our instrument distort the incoming wavefronts and
degrade the PSF’s sharpness (Marois et al., 2003). This creates a halo
or fuzzy blob instead of a sharp PSF core. The halo of starlight orig-
inating from wavefront errors is particularly troublesome because it
does not form a smooth background, but is broken up into a pat-
tern of speckles (Racine et al., 1999). These speckles resemble bright

9
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blobs on the A/D scale. These static and quasi-static speckles exist
on timescales of several minutes to several hours. On top of this, the
turbulence and density fluctuations in the layers of the atmosphere
produce a second speckle pattern with timescales of a few millisec-
onds.

The rapidly evolving atmospheric speckles easily average out un-
like the quasi-static component of the speckle pattern. This noise fol-
lows a modified Rician statistics (Soummer and Aime, 2004; Fitzger-
ald and Graham, 2006) instead of having a Gaussian nature. More-
over, the fact that speckles resemble the diffraction-limited PSF of
the telescope, and can therefore mimic the signature of planets (since
they are comparable in angular size and brightness), greatly affects
the detectability of such companions. This harmful effect is particu-
larly evident in the small-angle regime, where the quasi-static speckle
noise becomes dominant.

Adaptive optics (AO) was originally proposed in 1953 and was first
applied in astronomy by ESO in 1990 at La Silla Observatory (Rousset
et al., 1990). This technique makes use of deformable mirrors (DM)
to partially correct the distorted incoming wavefront coming from
astronomical objects. The DM is composed by hundreds or thousands
of piezo-electric actuators, which function in a closed-loop receiving
real-time instructions from a computer. These actuators reshape the
mirror in such a way that it cancels out the wavefront errors, to some
extent sharpening the images and restoring the energy back into the
Airy disk. For a complete review of AO in high-contrast imaging refer
to Milli et al. (2016).

Figures 1.8 and 1.9 show images from the Spectro-Polarimetric
High-contrast Exoplanet REsearch (SPHERE, Beuzit et al., 2008), a
second generation high-contrast imaging instrument installed at the
VLT ESO telescope facility. Fig. 1.8 shows the reconstructing effect of
adaptive optics at SPHERE while Fig. 1.9 shows the evolution or de-
correlation of speckles with time in a controlled experiment where a
realistic temperature gradient was induced (Martinez et al., 2013).

1.3.1.2  High-angular and high-contrast challenges

For addressing the small separation problem, we rely on small-angle
coronagraphs and observations at shorter wavelengths. For the future,
direct detection instruments have been proposed for the next genera-
tion of 20-40 m extremely large telescopes. These instruments will be
able to achieve direct imaging at smaller inner working angles and
probe the close vicinity of stars.

The left panel of Fig. 1.6 shows the best analogy for the direct imag-
ing of exoplanets high-contrast challenge. Observing a firefly located
near a lighthouse, miles away from us, is as difficult as observing
an exoplanet orbiting a distant star. The difference with this scenario
is that the light from the stars we observe never shuts down. For ad-
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Figure 1.8: Adaptive optics corrections in H band at VLT/SPHERE. Left:
Long exposure of a point source without AO correction. Right:
AO corrected image in nominal seeing conditions. Taken from
Sauvage et al. (2016).

Figure 1.9: Top: Coronagraphic images recorded with VLT /SPHERE/IRDIS
in closed-loop at three consecutive times tp, tp + 10 mn, and tg
+ 100 mn. Bottom: Pairwise subtraction of the image at to and
the images taken 10 minutes later (bottom left) and 100 minutes
later (bottom right). Taken from Martinez et al. (2013).
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Figure 1.10: Optical layout of the Lyot coronagraph (first coronagraph used
to observe the Sun’s corona) and images at different stages of
the optical path. Based on figure by M. Kenworthy.

dressing this problem of detecting companions several orders of mag-
nitude fainter than their parent stars, we rely on coronagraphy. The
role of a coronagraph is basically to reduce the contrast between the
star and its potential companions by canceling the diffracted starlight
from the on-axis star while allowing to pass that of the off-axis plan-
ets. Fig. 1.10 shows a schematic view of the Lyot coronagraph. In this
layout a circular, opaque disk, the Lyot mask, is placed at the pri-
mary focus to remove from the optical path the core of the stellar PSF.
The diffracted light outside of the mask is propagated to the pupil
plane where a second opaque mask, the Lyot stop, is used to cancel
most of the remaining diffracted starlight. The final image only con-
tains a small contribution from the initial starlight. This simple setup
has several disadvantages, such as the non-perfect cancellation of the
starlight even when the Lyot mask and the star are aligned, the large
inner working angle, and the reduced throughput due to the smaller
size of the Lyot stop.

Several different coronagraphic technologies have emerged to im-
prove the Lyot setup with the goal of improving the contrast at very
short separations (small inner working angle) while preserving the
signal from the potential companions (high throughput). Also, impor-
tant characteristics of these different coronagraphic solutions are the
sensitivity to instrumental aberrations and the spectral bandwidth at
which they operate. Among the masks that are also placed on the
focal plane we count the four quadrant phase mask (4QPM, Rouan
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et al., 2000) and the vortex phase mask, such as the annular groove
phase mask (AGPM, Mawet et al., 2005). Unlike the Lyot mask, the
4QPM and the vortex phase mask do not block the light (act on the
amplitude) but introduce a phase-shift to the on-axis starlight, reject-
ing it outside the geometric image of the pupil. The AGPM brings
great improvements in terms of inner working angle (better contrast
in the close vicinity of the star) and in throughput (Mawet et al., 2013),
at the cost of a high sensitivity to centering and tilt errors. It has been
installed in several of the largest ground-based telescopes, such as
the LBT, VLT, Subaru and Keck. Other approaches consist in the use
of amplitude or phase pupil apodization (Spergel and Kasdin, 2001;
Kenworthy et al., 2007), or combined solutions, such as the apodized
pupil Lyot coronagraph (Soummer, 2005). See Mawet et al. (2012) for a
thorough review of the coronagraphic solutions used in high-contrast
imaging.

1.3.2 Observing strategies

Unfortunately, even with optimized wavefront control and state-of-
the-art coronagraphy combined, speckle noise hinders the detectabil-
ity of faint close-in companions. Therefore, special observing strate-
gies are used to introduce various diversities with the goal of disen-
tangling the signal of potential companions from the speckle noise
tield (Mawet et al., 2012; Fischer et al., 2014). These techniques differ
on how the data is acquired at the instrumental level, which in turn
changes the final distribution of the pixel signals with respect to the
starlight. These techniques are differential by nature, as a key step
is the subtraction of a model of the remaining starlight and speckle
pattern from the science images. In this section we will focus on the
observing strategies and their motivations. The next section will de-
scribe the state-of-the-art image processing techniques that are built
on top of these observing techniques to exploit the particular struc-
tures of the data.

1.3.2.1  Angular differential imaging

The angular differential imaging observing strategy (ADI, Marois
et al., 2006) aims to decouple, on the image plane, the planetary sig-
nal from the speckle noise field. In the case of ADI, the images are ac-
quired in pupil-stabilized mode, so the image rotates with time while
the aberrations and speckle noise field remains at the same orienta-
tion. On the image sequence, this results in the rotation (this is a fake
movement caused by the pupil-stabilized observation) of the planet
around the star in a circular trajectory. Keeping the pupil orientation
constant, we obtain a more stable speckle halo around the star. This
is thanks to the fact that the main sources of quasi-static speckles are
locked to the pupil (e.g. spider structure). Owing to the field rotation,
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the residual noise (after post-processing) averages incoherently after
rotating the images to a common north. From the central limit theo-
rem, the noise in the final combined image mostly becomes Gaussian
(Marois et al., 2008a; Mawet et al., 2014).

ADI is the most commonly used technique for high-contrast imag-
ing in spite of its limitations, such as being a time-demanding pro-
cedure (using significant telescope time, usually from one to a few
hours) and the self-subtraction of close-in companions. See Subsec-
tions 1.3.3.1 and 2.5.1 for details on why signal self-subtraction oc-
curs, when differential imaging post-processing is applied, and what
are the approaches exist for mitigating this undesirable effect.

1.3.2.2  Spectral differential imaging

Another observing strategy that seeks to decouple the planetary sig-
nal from the speckles is multiple-channel spectral differential imaging
(SDJ, Sparks and Ford, 2002). The basic case, with only two images
or wavelengths, was proposed by Racine et al. (1999) aiming to ex-
ploit the presence/absence of an exoplanet’s signal in two or more
adjacent bands.

Multiple-channel SDI employs integral field spectrographs (after
pre-processing the images so as to have a frame per spectral channel)
to exploit further the wavelength diversity and the different wave-
length dependence of speckles and companions. In a multiple-channel
SDI sequence, the speckles stretch (they appear to move radially from
the center of the image) while the companion signal remains fixed as
the wavelength increases (the PSF stretches as well but remains at the
same position).

Multiple-channel SDI is usually combined with ADI on modern
high-contrast imaging instruments to exploit both rotation and wave-
length diversities. The resulting data cube has 4 dimensions in this
case: time, wavelength and spatial dimensions.

1.3.2.3 Reference differential imaging

Reference star differential imaging (RDI, Mawet et al., 2009, 2010;
Rameau et al., 2012; Mawet et al., 2012) uses observations of a differ-
ent star with the goal of using pairwise subtraction to get rid of the
speckle pattern. The motivation of this technique is to alleviate the
weakness of ADI and SDI at small angles.

Unfortunately, this technique comes with important constraints, be-
sides high stability and correlation that we expect from the next gen-
eration systems, such as short duty cycles, efficient low-order aberra-
tions correction on both stars, matching magnitudes and parallactic
angles®. The observations of the reference star can serve as a reference
PSF but the complexity of this method is the determination of the flux

5 The angles associated to each frame in an ADI sequence.
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Figure 1.11: Differential imaging typical pipeline, from raw images coming
from the telescope until the generation of a residual flux image.

scaling factor to avoid the creation of artifacts. A preferred solution
is to build a reference PSF from the reference images in a similar way
as how we proceed with ADI and multiple-channel SDI.

A special case of RDI, binary differential imaging (Rodigas et al.,
2015), relies on the advantage of observing two stars simultaneously
at the same wavelength for obtaining a highly correlated reference
PSF. This technique comes with some limitations, like the fact that it is
limited to visual binary in which only one star must have companions
and that it cannot be used with coronagraphs. Observing techniques
such as polarimetric and coherent differential imaging also seek to
overcome the limitations of ADI and SDI at short separations.

1.3.3 Image processing techniques for high-contrast imaging

Data processing constitutes a critical component of high-contrast exo-
planet imaging. Its role is almost as important as the choice of a coro-
nagraph or a wavefront control system, and it is intertwined with
the chosen observing strategy. Data-processing for HCI is a multi-
step process, represented in Fig. 1.11. Raw images coming from the
telescope are stored in FITS files (Wells et al., 1981). FITS stands for
Flexibile Image Transport System, and is the International Astronom-
ical Union recognized standard for storing astronomical data. A FITS
file consists of a header, stored in human-readable ASCII, and a data
section as a sequence of pixel values. These pixels can be integers (8-
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bit unsigned, 16-bit, 32-bit or 64-bit signed integers) or floating point
numbers (32-bit or 64-bit). In raw form, the images are usually in 32-
bit integer precision. As the images progress down the pipeline, the
data type changes to 32-bit (single) or 64-bit (double) float precision.
As a first step, the images need to be calibrated. These procedures
are common to all astronomical images: dark current (and bias offset)
subtraction, flat field correction to mitigate the nonuniformity of the
detector response, and correction of bad pixels (dead and hot detec-
tor pixels). The dark current and bias offset are negligible for most of
modern detectors. For details in astronomical image calibration, see
Berry and Burnell (2000).

Since most of the ground-based HCI observations are done in the
near- to mid-infrared (where we have better contrast for young ex-
oplanets), we often have to subtract the background radiation due
to the sky and warm surfaces in the telescope/instrument. The pur-
pose of this subtraction is to go from a frame such as the ones on
the top-left of Fig. 1.11 to the ones on the top-middle. These images
will have a smoother background with near zero values (without out-
lying pixels) revealing the central star and the speckle pattern. From
the calibrated observing sequence we discard the outlying frames,
those where the AO loop opened, the conditions worsened, or the
star was misaligned with the coronagraph. These are detected by mea-
suring the correlation of the images or based on the pixels statistics
of specific regions of the frame, and confirmed visually. The last pre-
processing procedure, frames alignment or re-centering, is carried out
to correct for small shifts of the star center and to put the star at the
center of each frame (which is critical for ADI). For instruments with
real-time coronagraphic centering capabilities like VLT /SPHERE we
usually skip the frame-to-frame re-centering. At this point, we have a
calibrated data cube or image sequence we can work with.

The ultimate goal of post-processing procedures is to combat the
speckle noise (increasing the ability to detect faint and close-in com-
panions) by improving the contrast and reducing the image dynamic
range. Fine-tuned post-processing is then the last piece in the land-
scape of HCI for exoplanet (and disk) detection. As mentioned be-
fore, there is a close connection between the observing technique and
the image processing algorithm. Throughout this dissertation, a dis-
tinction will be made between the observing technique and the post-
processing algorithm (ADI will refer only to the way the data is ac-
quired).

Algorithms of different complexities are used to build optimal ref-
erence PSFs, exploiting the diversities and the data particularities of
each observing technique. For some observing techniques like dual-
band SDI and RDI, pairwise subtraction could be enough to subtract
most of the speckle noise and leaked starlight. For ADI sequences,
we exploit the fact that the planet moves in circular trajectories with
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B = median(A)

C\ = A\ - B
Di = de-rotation(Cj)

Figure 1.12: Diagram of ADI median subtraction, where the reference PSF
is constructed by taking the median of the image sequence.

respect to the speckle field. In the case of multiple-channel SDI, we
exploit the radial movement of the planet PSF, after re-scaling the
images with respect to the longest wavelength channel. From now
on, and throughout this dissertation, we will call reference PSF the
algorithmically built image that we use with differential observing
techniques for subtracting the scattered starlight and speckle noise
pattern, to enhance the signal of disks and exoplanets.

1.3.3.1  Median subtraction

For ADI, modeling the speckle pattern with a simple median combi-
nation of the sequence is the simplest approach. This was originally
proposed by Marois et al. (2006) for obtaining a final science-ready
image with the ADI observing strategy. A schematic representation
of the ADI median subtraction is shown in Fig. 1.12. The main idea
behind this, is that the moving planet does not show up in the median
image of the sequence, which can then be used as a first approxima-
tion of the leaked starlight and speckle noise pattern. As mentioned
earlier, after subtracting the median, the residual noise averages inco-
herently once the images are rotated to a common north. From the
central limit theorem, the noise in the final combined image mostly
becomes Gaussian (Marois et al., 2008a; Mawet et al., 2014). Some im-
provement can be achieved by processing the frames in an annulus-
wise fashion and applying a rotation criterion for selecting the refer-
ences. These filtered reference frames (annuli) are used to build a PSF
for each image of the sequence.

By principle, ADI is limited in the close-in vicinity of the star, where
the planet rotation is more constrained (see Fig. 2.2 from Chapter
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2). The basic median subtraction approach fails to clean up the in-
nermost region of the images, where strong residual speckle noise
is mixed with planetary signal, weakened by self-subtraction. More
advanced techniques aim to improve this situation by constructing
in more complex ways, for each image, a reference PSF from appro-
priately selected images contained in the same sequence. These will
be introduced in the following subsections. In the case of multiple-
channel SDI the radial displacement of the planet (after re-scaling the
images with respect to the longest wavelength channel) is generally
not large enough to keep the median free from the companion signal.

1.3.3.2 LOCI

The median subtraction approach can be improved significantly by
employing computationally more expensive approaches. The family
of LOCI (locally optimized combination of images, Lafreniere et al,,
2007) algorithms aims to create a reference PSF as a linear combina-
tion of reference images (in the case of ADI, these are the rest of the
frames in the sequence after applying a rotation/proximity thresh-
old) independently inside multiple subregions, in which the residual
noise is minimized in the least-squares sense. A schematic represen-
tation of the ADI-LOCI processing is shown in Fig. 1.13. The LOCI
image partition can be seen in Fig. 1.14. The optimization regions
(each annulus subsection) are larger than the subtraction zone (dark
grey regions). The coefficients used for subtraction of the speckles in
the subtraction zones are determined by a minimization of the noise
in the larger optimization subsections (Lafreniere et al., 2007). This
approach provides a significant gain in signal-to-noise but introduces
significant flux and position biases.

Throughout this dissertation, upper-case letters are used to denote
matrices. Let us consider a sequence of n images (ADI sequence with
n images) and a matrix M € R™*P whose rows are vectorized ver-
sions of patches from those images (it does not matter if the image
vectors are in column form). As this is done in local patches, p are the
number of pixels in an optimization zone. According to a proximity
(parallactic angle) threshold, we filter the reference images for each
image m. These are stored in the rows of matrix R € R**P where
k < n. Therefore the sample covariance of the reference set is:

S = LRRT (1.1)
p—1 "' ’
where S € R**¥. LOCI consists in finding the k-dimensional vector
of optimal coefficients, c, such that (Savransky, 2015):

¢ = argmin Hm— R'c|l, (1.2)
Cc
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Ai Bi = loci_approx(Ai) Ci=Ai-Bi
Di = de-rotation(Cj)

Figure 1.13: Diagram of LOCI post-processing. Loci_approx denotes the
patch-wise least-squares approximation of the input images.

where the norm is typically the ¢?. This is analogous to solving the
overdetermined linear system:

R'c = m, (1.3)

which usually has no unique solution, considering that p > k (more
pixels than independent images). However, when RRT is full rank®,
the left pseudo-inverse of RT gives the minimum least-squares error
solution satisfying 1.2:

¢ = (RRT)""Rm, (1.4)

and the residual signal res is given by the subtraction of the linear
combination of reference images from the image m:

—1

res=m—R'c=(I-RT(RR")""R)m = <1— RT S 1 R) m, (1.5)
where I is the identity matrix. S is only guaranteed to be positive
semi-definite” and it is not necessarily invertible. We then rely on the
pseudoinverses of S to get the residual signal.

Modifications of this algorithm, such as adaptive LOCI (Currie
et al., 2012a) and matched LOCI (Wahhaj et al., 2015) incorporate im-
age correlation and synthetic sources injection to maximize the signal-
to-noise of companions. Other versions of LOCI, such as damped

6 A matrix is full row rank when each of the rows of the matrix are linearly inde-
pendent and full column rank when each of the columns of the matrix are linearly
independent. For a square matrix these two concepts are equivalent and we say the
matrix is full rank if all rows and columns are linearly independent.

7 Rows of R are not linearly independent.
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Figure 1.14: Left: Diagram of LOCI image partition. The optimization re-
gions (each annulus subsection) are larger than the subtraction
zone (dark grey regions). The coefficients used for subtraction
of the speckles (in the subtraction zones) are determined by
a minimization of the noise in the larger optimization subsec-
tions. Taken from Lafreniére et al. (2007). Right: Damped LOCI
with companion masking. O is the optimization zone, P de-
notes the position of the companion, S is the subtraction zone
and R is the set of reference images. Taken from Pueyo et al.
(2012).

LOCI (Pueyo et al., 2012) and template LOCI (Marois et al., 2014), are
adapted to multiple-channel SDI (using integral field spectrographs).
Damped LOCI modifies the original cost function of LOCI that de-
termines the approximation linear coefficients (minimization of the
residuals over the optimization zone) to enforce the maximization of
the residuals in the subtraction zone. Further improvement on the
retrieved spectra can be achieved by masking the pixels of the can-
didate companion (Pueyo et al., 2012). Template LOCI uses an input
spectrum and template PSFs to optimize the reference image least-
squares coefficients to minimize the planet self-subtraction (maximiz-
ing its throughput per wavelength) while simultaneously providing
a maximum suppression of the speckle noise (Marois et al., 2014).

1.3.3.3 Frame differencing

Given an ADI sequence, one simple solution to getting a reference
PSF is to set pairs of frames I; and I; based on the minimum distance
between them, and make subtractions in both directions I; — I and
I; —I;. The distance criterion used is the sum of absolute differences
(SAD) of the pixels intensities in the quadrants of an annulus inside
the frames. These pairs are unique, and both frames are chosen tak-
ing into account a parallactic angle threshold to ensure enough field
rotation (of a given FWHM displacement) and avoid self-subtraction.
The SAD can be expressed as: SAD = Y P, [x; —yil, where p is the
number of pixels in a portion of the images, x; and y; are the val-
ues of those pixels for I; and Ij respectively. The image is partitioned
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Figure 1.15: Planet signatures generated after performing the ADI pairwise
frame differencing. Left: Signature obtained without high-pass
filtering. Right: Signature after high-pass filtering has been ap-
plied to the frame sequence. Taken from Cantalloube et al.

(2015).

in quadrants of annuli of variable size, typically ixFWHM width. A
similar frame-differencing approach is proposed by Hagelberg et al.
(2016) with their GRAPHIC ADI reduction pipeline.

133.4 ANDROMEDA

ANDROMEDA (ANgular Differential OptiMal Exoplanet Detection
Algorithm, Mugnier et al., 2009; Cantalloube et al., 2015) treats the
ADI sequence in a pairwise way and ensures that the images are
chosen close enough in time to guarantee the stability of the speckle
noise and thereby allow its suppression (the second image from every
pair is used as a reference PSF for the first). This enables the creation
of a particular signature, as shown in Fig. 1.15, that can be modeled.
ANDROMEDA uses a maximum likelihood approach with the aim
of estimating the position and the flux of any point source present in
the field of view (Cantalloube et al., 2015). This approach differs from
the rest of the differential imaging algorithms in that it characterizes
the potential companions.

1.3.3.5 PCA

The most recent ADI post-processing algorithmic approach is the fam-
ily of principal component analysis (PCA) based algorithms (Soum-
mer et al., 2012; Amara and Quanz, 2012). PCA, or Karhunen-Loeve
(KL) transform, is a widely used statistical tool developed during the
first half of the past century. PCA serves, in this case, as a subspace
projection technique for constructing a reference PSFE. This reference
PSF is constructed for each image as the projection of the image onto
a lower-dimensional orthogonal basis (the principal components) ex-
tracted from the reference images via PCA. A schematic representa-
tion of an ADI-PCA workflow is shown in Fig. 1.16.
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The principal components of our image sequence can be obtained
using eigen decomposition or singular value decomposition (SVD).
Let us consider again a matrix M € R™*P whose rows are vectorized
versions of the ADI sequence frames. p is the number of pixels in an
image. Here we focus on the full-frame PCA case, but the approach
can be extended to patch processing (for details on improvements
over the full-frame version of PCA, see Chapter 2). The frame-to-
frame covariance S, defined as before, is Hermitian and also diago-
nizable as S® = OA where ® € R™*™ is the unitary matrix whose
columns are the eigenvectors of S and A € R™*™ is a diagonal matrix
of the eigenvalues. Instead of using a pseudoinverse, we can project
the target signal onto a subset of an optimally energy-compacting
basis given by (Savransky, 2015):

Z=0"M, (1.6)

where Z is the n x p matrix of KL transform vectors. Z is truncated,
keeping only k rows to reconstruct our images:

m=2Z7]Zm, (1.7)
and obtain the residual signal:
res = (I— ZIZk)m. (1.8)

Optionally, one can use the SVD to compute a projection matrix
that preserves the desired amount of variance. SVD is a matrix factor-
ization such that:

n
M=UzV' = Z GiuiviT, (1.9)
i=1

where the vectors u; and v; are the left and right singular vectors, and
o; the singular values of M. SVD is involved in several least-squares
problems, such as finding the best low-rank approximation of M in
the least-squares sense, i.e.,

argmin |M —XH]ZE, (1.10)
X

where HH% denotes the Frobenius norm, i.e. the sum of the squared
elements of its argument. If we consider that o; are ordered by de-
creasing value (see Absil et al., 2008, chap. 2), by keeping the first
k right singular vectors, we form the orthonormal basis for the low-
dimensional subspace capturing most of the variance of M. Notice
that the right singular vectors of M are the eigen vectors of S, the
covariance of M.

Fig. 1.17 gives an example of the combined power of hardware and
software (in this case a PCA processing) HCI solutions. PCA post-
processing has become the standard in the high-contrast community.
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Bi = pca_approx(Ai) Ci=Ai-Bi

Di = de-rotation(Cj)

Figure 1.16: Diagram of PCA post-processing. Pca_approx denotes the pro-
jection of the images onto the first k principal components to
obtain the reference PSFs.

The main advantages of this approach are that it can be applied to
the full images very efficiently using SVD, the reduced number of
free parameters (basically the size of the basis) and that PCA enables
forward modeling of astrophysical sources by fitting an astrophysical
model directly to the reduced images without introducing degenera-
cies (Soummer et al., 2012; Pueyo, 2016). Unfortunately, when build-
ing this reference PSF from the science data itself, PCA comes with
companion self-subtraction biases similar to the rest of differential
imaging approaches.

Amara and Quanz (2012) propose a comparison of LOCI and full-
frame PCA using synthetic companions. The improvements of PCA
come in both signal-to-noise and in the detectability of fake compan-
ions, especially those close to the star. Recently, Pueyo (2016) has
further developed a forward modeling technique for PCA (called
KLIP-FM) that retrieves the unbiased companion photometry at the
expense of a higher computational cost. Another PCA improvement
was presented by Ruffio et al. (2017), who coupled the KLIP-FM al-
gorithm with a matched filtering approach. The KLIP-induced dis-
tortion of the astrophysical signal is included in the matched filter
template by computing a forward model of the PSF at every position
in the image.

PCA based post-processing is very versatile and can be applied
in a similar way to RDI, multiple-channel SDI, and IFS data with
wavelength and rotational diversities (mSDI+ADI). In the case of RDI
the principal components are learned from the reference star observa-
tions (different than the target) and used for modeling the reference
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a. L’ PSF (APO165, DIT=0.05s) b. L’ CORO RAW (AGPM, APO165, DIT=0.2s) c. L’ CORO PCA (AGPM, APO165, DIT=0.2s)
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Figure 1.17: Illustration of the combined effect of wavefront-sensing, coron-
agraphy and post-processing on the dynamic range of the im-
ages (and therefore on the reduced contrast close to the star).
Left: I’-band VLT/NACO adaptive optics observations with-
out a coronagraph. Middle: Image (from the ADI sequence)
where the star has been centered on the vortex coronagraph
of NACO, featuring a dynamic range 10 times smaller than
on the previous image (the dark hole at the center is caused by
the coronagraph). Right: Image after ADI-PCA post-processing
was applied, revealing a companion. The dynamic range is a
factor 100 smaller than in the left-most image. Image taken
from Mawet et al. (2013).

PSF of the target sequence. For multiple-channel SDI, the frames are
re-scaled to match the speckles and create an apparent radial move-
ment of a potential companion. Then PCA is applied model the ref-
erence PSF as a low-rank approximation of the dataset. In the case
of mSDI+AD], several options are available. Perhaps the simplest one
is to perform a two-stages PCA, the first for each SDI cube (same as
the multiple-channel SDI) and one on the cube of residuals in an ADI
fashion.

1.4 SCOPE AND OUTLINE OF THIS DISSERTATION

This dissertation describes the results obtained during my PhD re-
search program, focused on novel approaches to data processing of
HCI sequences, with a special emphasis on the detection of exoplan-
ets through angular differential imaging. My work as a graduate stu-
dent was developed at the interface of several disciplines, as illus-
trated in Fig. 1.18.

In the first part of this manuscript, I present my contribution to
the field of HCI in terms of scientific software development. In Chap-
ter 2, I describe the Vortex Image Processing library, an open-source
Python package, where I implemented state-of-the-art and novel pre-
and post-processing algorithms for the reduction and analysis of HCI
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Figure 1.18: Venn diagram showing the three main components of my PhD
thesis project.
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data. This work started from scratch, with the goal of replacing an ex-
isting data reduction pipeline written in IDL® by Dimitri Mawet and
Olivier Absil. VIP was inspired by other Python open source libraries,
and now serves the whole HCI community beyond my core team. In
Chapter 3, I showcase the versatility and capabilities of my library,
presenting examples of its use on real on-sky HR8799 datasets.

In the second part of this dissertation, I discuss novel algorithmic
approaches focused on the ADI observing technique. The HCI com-
munity consensus is that ADI and SDI are very efficient at large angu-
lar separations, but these techniques cannot be applied efficiently at
small angles (Mawet et al., 2012). My work shows that there is a lot of
room for improvement in the data processing department, and that
the limited sensibility of ADI at small separations can be mitigated
with advanced post-processing and discriminative models. In partic-
ular, I present two different approaches to ADI post-processing with
the goal of detecting exoplanets, both based on machine learning re-
cent developments: the LLSG algorithm and the SODIRF/SODINN
supervised detection framework. The first is an evolution of PCA-
based post-processing approaches for differential imaging, and the
latter is a totally new approach where the detection of companions
is formulated as a classification process. SODINN employs state-of-
the-art neural network architectures to exploit the ADI datasets in a
supervised learning framework. Finally, I compare both approaches
to their predecessors (e.g. PCA) in a robust signal detection theory
framework and comment on the use of metrics for assessing algo-
rithms performance.

8 IDL is a commercial interactive programming language widely used in Astronomy:.


http://www.harrisgeospatial.com/ProductsandTechnology/Software/IDL.aspx

Part1

STATE-OF-THE-ART DIFFERENTIAL IMAGING
POST-PROCESSING TECHNIQUES






VORTEX IMAGE PROCESSING
PACKAGE FOR HCI

Contents
2.1 Introduction. . . .. ... ... . L 0oL, 30
2.2 Packageoverview . .................. 30
2.3 Signal-to-noiseratio . . . ... ... ... ... ... 32
2.4 Pre-processing . .................... 33
2.5 ADI post-processing . . . . . ... ... L. 35

2.5.1 Median reference PSF subtraction . . . .. 35

2.5.2 PCA-based algorithms for reference PSF
subtraction . . . ... ... ... L. 35

2.5.3 Non-negative matrix factorization for ADI 44
254 LLSGfor ADI . ... ............. 45

2.6 Detection of companions on 2D residual flux images 46

2.7 Flux and position estimation for ADI . . . . .. .. 46

2.7.1  First guess estimation . .. ... ...... 47

2.7.2  Nelder-Mead optimization ... ... ... 48

2.7.3 MCMC and Bayesian parameter estimation 48

2.8 Sensitivity limits . . . ... ... Lo oL 50

29 Conclusions . . . . . ... o 52
ABSTRACT

In this chapter I present the Vortex Image Processing (VIP) library,
a Python package dedicated to astronomical high-contrast imaging.
This package relies on the extensive Python stack of scientific li-
braries and aims to provide a flexible framework for high-contrast
data and image processing. I describe the capabilities of VIP related
to processing image sequences acquired using the angular differen-
tial imaging (ADI) observing technique. VIP implements function-
alities for building high-contrast data processing pipelines, encom-
passing pre- and post-processing algorithms, potential sources posi-
tion and flux estimation, and sensitivity curves generation. Among
the reference point-spread function subtraction techniques for ADI
post-processing, VIP includes several flavors of principal component
analysis (PCA) based algorithms, such as annular PCA and incre-
mental PCA algorithm capable of processing big datacubes (of sev-
eral gigabytes) on a computer with limited memory. Also, I present
a novel ADI algorithm based on non-negative matrix factorization
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(NMEF), which comes from the same family of low-rank matrix ap-
proximations as PCA and provides fairly similar results. VIP is avail-
able at http://github.com/vortex-exoplanet/VIP and is accompa-
nied with Jupyter notebook tutorials illustrating the main function-
alities of the library. This chapter is based on previous work published in
Gomez Gonzalez et al. (2017).

21 INTRODUCTION

In this chapter we present a Python library for image processing of
high-contrast astronomical data: the Vortex Image Processing (VIP,
Gomez Gonzalez et al., 2016b, 2015) package. VIP provides a wide col-
lection of pre- and post-processing algorithms and currently supports
three high-contrast imaging observing techniques: angular, reference-
star, and multi-spectral differential imaging. The code encompasses
not only well-tested and efficient implementations of known algo-
rithms but also state-of-the-art new approaches to high-contrast imag-
ing tasks. Our library has been designed as an instrument-agnostic
toolbox featuring a flexible framework where functionalities can be
plugged in according to the needs of each particular dataset or pipe-
line. This is accomplished while keeping VIP easy-to-use and main-
taining an extensive documentation. Finally, our package is released
as open-source, hoping that it will be useful to the whole high-contrast
imaging community.

This chapter is organized as follows. Section 2.2 gives a general
overview of the design and structure of VIP. Section 2.3 introduces
the signal-to-noise (S5/N) definition used in VIP. In section 2.4 we
briefly describe the pre-processing and cosmetic functionalities imple-
mented in our package. Section 2.5 goes into the details of reference
PSF subtraction for ADI data, exploring the available post-processing
algorithmic approaches in VIP. Section 2.7 describes the photomet-
ric and astrometric extraction procedures and finally Section 2.8 de-
scribes the sensitivity limits estimation implemented in our package.

2.2 PACKAGE OVERVIEW

The design and development of VIP follow modern practices for sci-
entific software development such as code modularity, the active use
of a version control system (git) and extensive documentation (Wil-
son et al., 2014). The code is being developed in Python, and re-
lies on its vast ecosystem of scientific open-source libraries/pack-
ages including numpy (van der Walt et al., 2011), scipy (Jones et al.,,
2001), matplotlib (Hunter, 2007), astropy (Astropy Collaboration
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Table 2.1: VIP subpackages.

Subpackage | General description

conf Timing, configuration and internal utilities

exlib Code borrowed from external sources

fits Fits input/output functionality

llsg Local low-rank + sparse + Gaussian-noise decompo-
sition for ADI data

madi Standard ADI recipe (median PSF reference)

negfc Negative fake companion technique

nmf Non-negative matrix factorization for ADI data

pca PCA-based algorithms for ADI, RDI and mSDI data

phot Signal-to-noise and detection of point-like sources.
Contrast curve generation

preproc Low-level image operations. Pre-processing and cos-
metic procedures

stats Statistics from frames and cubes, correlation and
sigma clipping procedures

var Filtering, 2d-fitting, shapes extraction and other util-
ities

etal,, 2013), scikit-learn (Pedregosa et al., 2011), pandas (McKinney,
2010) and scikit-image (van der Walt et al., 2014). For low-level im-
age processing operations, VIP can optionally use, through its Python
bindings, OpenCV (Bradski, 2000), a fast and robust C/C++ library
for computer vision and image processing. The latest development
version of VIP is available on GitHub', which is also the platform
where users and/or collaborators can report bugs and make change
requests. Every function and class in VIP has its own internal docu-
mentation attached describing the aim, arguments (inputs), and out-
puts. The internal documentation is part of the VIP’s web documen-
tation®, which also provides help in installation and troubleshooting.
A tutorial dedicated to ADI, in the form of a Jupyter notebook, is
shipped in a separate repository>.

The structure of VIP, shown in Table 2.1, is modular and allows
easy extension and re-utilization of functionalities. The code is orga-
nized, as any other Python library, in subpackages (directories) encap-
sulating modules (Python files), which in turn contain the functions

1 http://github.com/vortex-exoplanet/VIP
2 http://vip.readthedocs.io/en/latest/
3 http://github.com/carlgogo/vip-tutorial
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and classes. It is important noting that VIP is not a pipeline per se
but a library, inspired in well established projects such as astropy
or scikit-learn, and does not provide a predefined linear workflow.
Instead, the user must choose which procedures to use and in which
order. The results of VIP’s calculations are kept in memory or dis-
played, e.g. in plots or figures, and can be later on saved to disk in
the form of fits files. In the following paragraphs, we briefly describe
the most relevant functionalities of each subpackage of VIP.

The subpackage fits includes functions for handling files in the
FITS format, through Astropy functionalities. It also includes a Python
class which allows controlling SAOImage DS9 windows (based on the
interface to SAOImage DS9 through XPA from the RO Python package)
and displaying numpy arrays. Thanks to these functions, VIP can be
fed from disk with any FITS file containing a high-contrast imaging
datacube.

The subpackage phot includes functionalities such as S/N estima-
tion, S/N maps generation, automatic detection of point-like sources,
fake companion injection in ADI cubes, and sensitivity limits com-
putation. The formal definition of S/N is given in Section 2.3. The
subpackage stats contains functions for computing statistics from
regions of frames or cubes, sigma filtering of pixels in frames, and for
computing distance and correlation measures between frames. The
subpackage var includes image filtering, shapes extraction from im-
ages and 2d-fitting (Gaussian, Moffat) among other functionalities.

Finally, the subpackage preproc contains low-level image opera-
tions and pre-processing functionalities as described in Section 2.4,
while the subpackages 11sg, madi, pca and negfc contain the post-
processing algorithms, which are described in Section 2.5 for the case
of ADI data.

2.3 SIGNAL-TO-NOISE RATIO

For calculating the S/N, we depart from the previously used defi-
nition in high-contrast imaging where the pixels were assumed to
be statistically independent and the S/N was basically considered as
the ratio of the flux in an aperture centered on the planet to the stan-
dard deviation of the pixels in an annulus at the same radius. We
instead adopt the definition proposed by Mawet et al. (2014), which
is based on a Student t-test (Student, 1908) and considers the prob-
lem of small sample statistics applied to small-angle high-contrast
imaging. The number of resolution elements (A/D) decreases rapidly
toward small angles, thereby dramatically affecting confidence lev-
els and false alarm probabilities. In this small sample regime, a two-
sample t-test is used to see whether the intensity of a given resolution
element is statistically different from the flux of similar A/D circular
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Figure 2.1: Circular apertures used for the S/N calculation. The test aper-
ture is marked with a blue dot. The noise estimation takes into
account the information at the same radial distance.

apertures at the same radius r from the star. When one of the sam-
ples contains the single test resolution element, the two-sample t-test
brings a better definition of S/N and is given by:

S/N = &, (2.1)
s/ T+ an

where X is the intensity of the single test resolution element, n, the
number of background resolution elements at the same radius (n, =
round(27r) — 1, where 1 is given in A/D units), and X, and s, are the
mean intensity and the empirical standard deviation computed over
the n, resolution elements. In Fig. 2.1 the background apertures are
marked with red dots while the test aperture is marked with a blue

dot.

2.4 PRE-PROCESSING

VIP accepts datacubes, or sequence of images stacked in a 3d FITS
file, that have undergone basic astronomical calibration procedures.
These procedures, such as flat fielding and dark subtraction, in spite
of their simplicity, are not included in VIP due to the heterogeneity
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of data coming from different observatories. This is a sacrifice that
we made in order to maintain VIP as an instrument-agnostic library.
We let the users perform these procedures with their own tools or
with dedicated instrument pipelines. VIP requires frames that have
been at least successfully flat fielded and provides algorithms for any
subsequent pre-processing task.

Subpackage preproc contains the functions related to low-level im-
age operations, such as resizing, upscaling/pixel binning, shifting,
rotating and cropping frames. All these functions have a counterpart
for handling cubes or images sequences. Also, it is possible to tempo-
rally sub-sample and collapse/combine sequences in a single frame.
Combining the images can be done via a pixel-wise mean, median or
trimmed mean operation (Brandt et al., 2013).

Pre-processing steps are an important in the high-contrast imaging
processing pipeline. In the case of ADI sequences, it is critical to have
the star at the very center of the frames and have them all well aligned.
VIP (subpackage preproc), makes it possible to register the frames by
using 2d-Gaussian or Moffat fits to the data, applying Fourier cross-
correlation (DFT upsampling method, Guizar-Sicairos et al., 2008),
computing the Radon transform (Pueyo et al., 2015) for broadband
images, or by fitting the position of satellite spots specifically created
by ripples on the deformable mirror (Wertz et al., 2016). VIP includes
procedures for detecting bad pixels from images and bad frames from
datacubes. Bad pixels are replaced with the median of the nearest
neighbor pixels inside a square window of variable size. Bad frame
detection is implemented using pixel statistics (i.e. using the pixels in
a centered annulus at a given radius), frame correlation, or ellipticities
of point-like sources for detecting and discarding outliers. We suggest
to discard the bad frames from a sequence before proceeding to the
post-processing stage.

In certain scenarios, sky subtraction might be a desirable step. We
implemented in VIP an algorithm for computing optimal sky back-
ground frames, learned from the sky frames taking during the same
observing run. We apply a mask to the central core (and optionally
to the spider arms) in both the science frames and the eigenvectors
learned from the sky frames. Then we obtain the coefficients to ap-
proximate each science frame as a combination of the masked sky
eigenvectors in the least-square sense. These are the optimal sky back-
grounds for each science frame, which generally outperform the me-
dian sky subtraction common procedure. Recently, a similar approach
was independently proposed by Hunziker et al. (2017).
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2.5 ADI POST-PROCESSING

2.5.1  Median reference PSF subtraction

Subpackage madi contains the implementation of the most basic refer-
ence PSF subtraction for ADI data (Marois et al., 2006), usually called
classical ADI in the literature. In this procedure a single reference PSF
is modeled as the median of the stack, trying to capture the static and
quasi-static structures of the sequence. This algorithm can also work
in annular mode, where an optimized PSF reference can be built for
each annulus, taking into account a parallactic angle threshold w for
enforcing a given amount of field rotation in the reference frames.
The threshold w is defined as:

5 - FWHM
w = 2arctan ———, (2.2)
2r

where FWHM is the Gaussian full width at half maximum in pixels, &
a user-defined threshold parameter, and r the angular separation for
which the parallactic angle threshold w is defined (see Fig. 2.2). The
enhanced reference PSF is built for each annulus by median combin-
ing the m closest in time frames, after discarding neighboring frames
according to the threshold w. Median reference PSF subtraction has
limited performance in the small-angle regime, and it has been super-
seded by more advanced post-processing techniques.

2.5.2 PCA-based algorithms for reference PSF subtraction

PCA is an ubiquitous method in statistics and data mining for com-
puting the directions of maximal variance from data matrices. It can
also be understood as a low-rank matrix approximation (Absil et al.,
2008). PCA-based algorithms for reference PSF subtraction on ADI
data can be found in the VIP subpackage pca. For ADI-PCA, the ref-
erence PSF is constructed for each image by projecting the image
onto a lower-dimensional orthogonal basis extracted from the data it-
self via PCA. Subtracting from each frame its reference PSF produces
residual frames where the signal of the moving planets is enhanced.
The most basic implementation of ADI-PCA uses the whole images
by building a matrix M € R™*P, where n is the number of frames
and p the number of pixels in a frame.

The basic structure of the full-frame ADI-PCA algorithm is the fol-
lowing;:

1. the datacube is loaded in memory and M is built by storing on
each row a vectorized version of each frame;

2. optionally M is mean-centered or standardized (mean-centering
plus scaling to unit variance);
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Figure 2.2: Illustration of the ADI rotation thresholds at different separa-
tions in A/D. The dot-dashed lines show the rejection zone at
2A/D with 6 = 1 that ensures a rotation by at least 1 xFWHM
(A/D) of the PSE.

3. k < min(n,p) principal components (PCs) are chosen to form
the new basis B;

4. the low-rank approximation of M is obtained as MBTB, which
models the reference PSF for each frame;

5. this low-rank approximation is subtracted from M and the re-
sult is reshaped into a sequence of frames;

6. all residual frames are rotated to a common north and are me-
dian combined in a final image.

The PCs can be obtained by computing the eigen decomposition (ED)
and choosing the eigenvectors corresponding to the k largest eigen-
values of the covariance matrix MTM, or equivalently by computing
the SVD of M and extracting the k dominant right singular vectors.
Fig. 2.3 shows intermediate resulting images corresponding to some
of the steps of the frull-frame ADI-PCA algorithm.

Instead of computing the ED of MTM (which is a large square ma-
trix p x p that must fit in working memory) we can perform the ED
of MM for a cheaper PCA computation. In a similar way, taking
the SVD of M is faster and yields the same result as computing the
SVD of M. Both speed tricks are implemented in VIP. Python, as well
as other modern programming environments such as Mathematica,
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Figure 2.3: Full-frame ADI-PCA post-processing of a VLT/NACO (in
AGPM mode) including intermediary frames. Top row shows
the first five input frames. Second row, from top to bottom,
presents the first five singular vectors (when reshaped into im-
age space) of the matrix formed by vectorizing the images in the
ADI sequence. Third row shows the frames reconstructions (low-
rank approximations), when projected onto the first five princi-
pal components. These are the reference PSFs corresponding to
each frame in the top row. Bottom row shows the residuals after
subtracting the reference PSFs from the input frames, shown in
the top row.
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Figure 2.4: Top: grid optimization of the number of PCs for full-frame ADI-
PCA at the location of a known planet. In this example, the
mean S/N in a FWHM aperture was maximized with 16 PCs.
Bottom: flux of the planet in a FWHM aperture in the final, post-
processed residual image.

R, Julia and Matlab, relies on LAPACK (Linear Algebra PACKage)*,
which contains the state-of-the-art implementations of numerical dense
linear algebra algorithms. We use the Intel MKL libraries, which pro-
vide multi-core optimized high performance LAPACK functionality con-
sistent with the standard. For the SVD, LAPACK implements a “divide-
and-conquer" algorithm that splits the task of a big matrix SVD de-
composition into some smaller tasks, achieving good performance
and high accuracy when working with big matrices (at the expense
of a large memory workspace).

2.5.2.1  Optimizing k for ADI-PCA

The most critical parameter in every PCA-based algorithms is the
number of principal components (PCs) k. VIP implements an algo-
rithm to find the k that maximizes the S/N metric, described in sec-
tion 2.3, for a given location in the image, by running a grid search
varying the value of k and measuring the S/N for the given coordi-
nates. This algorithm can also define an adaptative grid refinement to
avoid computing the S/N in regions of the parameter space far from
the maximum. This algorithm does not deal with the reliability of the
candidate point-source located at the coordinates of interest. The com-
putational cost remains close to that of a single full-frame ADI-PCA

4 http://www.netlib.org/lapack/
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run thanks to the fact that we compute the PCA basis once with the
maximum k we want to explore. Having this basis, we truncate it for
each k PCs in the grid and proceed to project, subtract and produce
the final frames where the S/N is computed. An example of such op-
timization procedure is shown in Fig. 2.4 In this case we maximized
the mean S/N in a FWHM aperture. We can observe that the optimal
S/N reaches a plateau near the maximum. For true planets, the S/N
decreases slowly when increasing the number of PCs, as shown in the
top panel of Fig. 2.4, in contrast with a more abrupt S/N decay for
noise artifacts or bright speckles (which have significant S/N only for
a few PCs and quickly fade away). The maximum S/N does not corre-
spond to the maximum algorithm throughput, and in the illustrated
case occurs for a throughput of about o.1.

2.5.2.2 Optimizing the library for ADI-PCA (annular ADI-PCA)

Full-frame ADI-PCA suffers from companion self-subtraction when
the signal of interest, especially that of a close-in companion, gets
absorbed by the PCA-based low-rank approximation that models the
reference PSF (Gomez Gonzalez et al., 2016a). A natural improvement
of this algorithm for minimizing the signal loss is the inclusion of a
parallactic angle threshold for discarding rows from M when learn-
ing the reference PSF. This frame selection for full-frame ADI-PCA
is optional and can be computed for only one separation from the
star. The idea is to leave in the reference library those frames where
the planet has rotated by at least an angle w, as described in Section
2.5.1. The computational cost increases when performing the selec-
tion of library frames (for each frame according to its index in the
ADI sequence) since n singular value decompositions (SVD) need to
be computed for learning the PCs of matrices with less rows than M.
Following the same motivation of refining the PCA library, VIP im-
plements an annular ADI-PCA algorithm, which splits the frames in
annular regions (optionally in quadrants of annuli) and computes the
reference PSF for each patch taking into account a parallactic angle
rejection threshold for each annulus. This ADI-PCA algorithm pro-
cesses M X Napnyli (OF 4N X Nappyi in case quadrants are used) smaller
matrices.
The annular ADI-PCA comprises the following steps:

1. the datacube is loaded in memory, the annuli are constructed
and a parallactic angle threshold is computed for each one of
them;

2. for each annulus a matrix M nnuius € IR™*Pannules is built;
3. optionally M,ny1us is mean centered or standardized;

4. for each frame and according to the rotation threshold, a new
Mpt matrix is formed by removing adjacent rows;
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5. from Mgpt the k < min(nopt, Pannulus) principal components are
chosen to form the new basis optimized for this annulus and
this frame;

6. the low-rank approximation of the annulus patch is computed
and subtracted,;

7. the residuals of this patch are stored in a datacube of residuals
which is completed when all the annuli and frames are pro-
cessed;

8. the residual frames are rotated to a common north and median
combined in a final image.

This algorithm has been implemented with multiprocessing capa-
bilities allowing to distribute the computations on each zone sepa-
rately. According to our experience, using more than four cores for
the SVD computation (through LAPACK/MKL) of small matrices, like the
ones we produce in the annular ADI-PCA, does not lead to increased
performance due to the overhead in the multi-threading parallelism.
When used on a machine with a large number of cores, this algorithm
can be set to process each zone in parallel, coupling both parallelisms
for higher speed performance. Computing the PCA-based low-rank
approximation for smaller patches accounts for different pixel statis-
tics at different parts of the frames. This algorithm can also define
automatically the parameter k for each patch by minimizing the stan-
dard deviation in the residuals, similar to the objective of the orig-
inal LOCI algorithm (Lafreniere et al., 2007), at the expense of an
increased computation time.

2.5.2.3 Full-frame ADI-PCA for big ADI datasets

Also, VIP implements variations of the full-frame ADI-PCA tailored
to reduce the computation time and memory consumption when
processing big datacubes (tens of GB in memory) without applying
temporal frame sub-sampling. The size of an ADI dataset may vary
from case to case and depends on the observing strategy and the pre-
processing steps taken. Typically, a datacube contains several tens to
several thousands of frames, each one of typically 1000x1000 pix-
els for modern detectors used in high-contrast imaging. In selected
instruments (VLT/NACO, LBTI/LMIRCam) that are able to record
high-frame rate cubes, a typical one-hour ADI sequence can contain
up to ~20000 frames. After cropping down the frames to 400x 400 pix-
els, we get a datacube in single float values occupying more than 10
GB of disk space. Loading this dataset at once in memory, for build-
ing M, would not be possible on a typical personal computer. Even
if we manage to load the file, the PCA algorithm itself requires more
RAM memory for SVD/ED calculations, which will eventually cause
slowdowns (or system crashes) due to heavy disk swapping.
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Figure 2.5: Fake companions S/N for different angular separations as a
function of the temporal sub-sampling applied to the ADI se-
quence. The horizontal axis shows the amount of frames that
were mean combined, with zero meaning that the whole ADI
sequence (10k frames) is used. Full-frame ADI-PCA is applied
on each datacube, with 21 PCs.

The most common approach for dealing with big datasets of this
kind is to temporally and/or spatially sub-sample the frames. Reduc-
ing the size of the dataset effectively reduces the computation time of
full-frame ADI-PCA to a few seconds but at the cost of smearing out
the signal (depending on the amount of rotation). Also, depending
on the temporal window used for co-adding the frames and on the
PSF decorrelation rate, we might end up combining sections of the
sequence where the PSF has a very different structure. It has been
stated that there is an optimal window for temporal sub-sampling,
which results in increased S/N (Meshkat et al., 2014a). After running
simulations with fake companion injections at different angular sep-
arations and measuring the obtained mean S/N in a A/D aperture,
we came to the conclusion that using the whole sequence of frames
(data without temporal sub-sampling) is the best choice and delivers
the best results in terms of S/N. For this test, we used a datacube
of ~10000 frames, each with 0.5 second of integration time. In Fig.
2.5 we show the S/N of the recovered companions in datacubes sub-
sampled using different windows, for an arbitrarily fixed number of
21 PCs (even though 21 PCs do not necessarily represent the same
explained variance for datacubes with different numbers of frames).
There is an agreement with these results and those in Meshkat et al.
(2014a) for sub-sampling windows larger than 20, but unfortunately
Meshkat et al. (2014a) did not consider smaller sub-sampling win-
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Figure 2.6: Retrieved S/N on fake companions injected at different angular
separations and with a constant flux. The top panel shows the
results of varying the number of principal components of the
full-frame ADI-PCA algorithm when processing the full resolu-
tion ADI sequence. The rest of the panels show the same S/N
curves obtained on sub-sampled versions of the sequence using
different windows.
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Figure 2.7: Memory usage as a function of the processing time for differ-
ent variations of the full-frame ADI-PCA algorithm on a large
datacube (20 PCs were requested). This is valid for datacubes oc-
cupying several GB on disk (in this particular case a 10 GB FITS
file was used). It is worth noting that for short or sub-sampled
ADI sequences the full-frame ADI-PCA through LAPACK SVD is
very efficient and the difference in processing time may become
negligible.

dows, nor the full ADI sequence. More information can be found in
Fig. 2.6, which shows the dependence of the fake companions S/N
on the number of PCs for different angular separations. Our simula-
tions show very significant gain in S/N when temporal sub-sampling
of frames is avoided, especially at large separations where smearing
effects are the largest.

VIP offers two additional options when it comes to compute the
full-frame ADI-PCA through SVD, tailored to reduce the computa-
tion time and memory consumption when data sub-sampling needs
to be avoided (see Fig. 2.7). These variations rely on the machine learn-
ing library Scikit-learn. The first is ADI-PCA through randomized
SVD (Halko et al., 2011), which approximates the SVD of M by using
random projections to obtain k linearly independent vectors from the
range of M, then uses these vectors to find an orthonormal basis for it
and computes the SVD of M projected to this basis. The gain resides
in computing the deterministic SVD on a matrix smaller than M but
with strong bounds on the quality of the approximation (Halko et al.,
2011).

The second variation of the ADI-PCA uses the incremental PCA
algorithm proposed by Ross et al. (2008), as an extension of the Se-
quential Karhunen-Loeve Transform (Levy and Lindenbaum, 2000),
which operates in on-line fashion instead of processing the whole
data at once. For the ADI-PCA algorithm through incremental PCA,
the FITS file is opened in memmaping mode, which allows accessing
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small segments without reading the entire file into memory, thus re-
ducing the memory consumption of the procedure. Incremental PCA
works by loading the frames in batches of size b and initializes the
SVD internal representation of the required lower dimensional sub-
space by computing the SVD of the first batch. Then it sequentially
updates n/b times the PCs with each new batch until all the data is
processed. Once the final PCs are obtained, the same n/b batches are
loaded from disk once again and the reconstruction of each batch of
frames is obtained and subtracted for obtaining the residuals, which
are then de-rotated and median collapsed. A final frame is obtained
as the median of the n/b median collapsed frames. A similar ap-
proach to incremental PCA, focusing on covariance update, has been
proposed by Savransky (2015). In Fig. 2.7 are compared the memory
consumption and total CPU time for all the variants of full-frame
ADI-PCA previously discussed. These tests were performed using a
10GB (on disk) sequence and on a workstation with 28 cores and 128
GB of RAM. The results show how incremental PCA is the lightest on
memory usage while randomized PCA is the fastest method. With in-
cremental PCA, an appropriate batch size can be used for fitting in
memory datacubes that otherwise would not, without sacrificing the
accuracy of the results.

2.5.3 Non-negative matrix factorization for ADI

As previously discussed, the PCA-based low-rank approximation of
an ADI datacube can be used to model the reference PSF for each
one of its frames. In the fields of machine learning and computer
vision, several approaches other than PCA have been proposed to
model the low-rank approximation of a matrix (Kumar and Shneider,
2016; Udell et al., 2016). In particular, non-negative matrix factoriza-
tion (NMF) aims to find a k-dimensional approximation in terms of
non-negative factors W and H (Lee and Seung, 1999). NMF is dis-
tinguished from the other methods by its use of non-negativity con-
straints on the input matrix and on the factors obtained. For astro-
nomical images, the positivity is guaranteed since the detector pixels
store the electronic charges produced by the arriving photons. Nev-
ertheless, the sky subtraction operation can lead to negative pixels in
the background and in this case a solution is to shift all the values
on the image by the absolute value of the minimum pixel, turning
negative values into zeros.

NMF finds a decomposition of M into two factors of non-negative
values, by optimizing for the Frobenius norm:

1 2 1 2
ar%$1n§||M—WH||F =5 Z (My; —WH;;)7, (2:3)

i
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Figure 2.8: First three principal (top row) and NMF components (bottom
row) for an LBT/LMIRCam (on its AGPM coronagraphic mode)
dataset. The components of NMF are strictly positive.

where W € R™**, H € R*¥*P, and WH is a k-rank approximation
of M. Such a matrix factorization can be used to model a low-rank
matrix based on the fact that rank(WH) < min(rank(W), rank(H)),
where rank(X) denotes the rank of a matrix X. Therefore if k is small,
WH is low-rank. NMF is a non-convex problem, and has no unique
minimum. Therefore it is a harder computational task than PCA, and
no practical algorithm comes with a guarantee of optimality (Vava-
sis, 2009). It is worth noting that this Frobenius-norm formulation of
NME, as implemented in scikit-learn, provides final images very
similar to the ones from full-frame ADI-PCA. The first NMF com-
ponents along with the first PCs for a same dataset are shown in
Fig. 2.8. The NMF components are strictly positive and the NMF-
based low-rank approximation that models the reference PSF for each
frame is computed as a linear combination of these components. This
NMF-based algorithm makes a useful complement to PCA-based al-
gorithms for testing the robustness of a detection.

2.5.4 LLSG for ADI

The Local Low-rank plus Sparse plus Gaussian-noise decomposition
(LLSG, see Chapter 5) has been proposed as an approach to enhance
residual speckle noise suppression and improve the detectability of
point-like sources in the final image. LLSG builds on recent subspace
projection techniques and robust subspace models proposed in the
computer vision literature for the task of background subtraction
from natural images, such as video sequences (Bouwmans and Za-
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hzah, 2014). The subpackage 11sg contains an implementation of the
LLSG algorithm for ADI datacubes. Compared to the full-frame ADI-
PCA algorithm, the LLSG decomposition reaches a higher S/N on
point-like sources and has overall better performance in the receiver
operating characteristic (ROC) space. The boost in detectability ap-
plies mostly to the small inner working angle region, where complex
speckle noise prevents full-frame ADI-PCA from discerning true com-
panions from noise. One important advantage of LLSG is that it can
process an ADI sequence without increasing too much the computa-
tional cost compared to the fast full-frame ADI-PCA algorithm.

2.0 DETECTION OF COMPANIONS ON 2D RESID-
UAL FLUX IMAGES

VIP allows the production of a final residual image thanks to refer-
ence PSF subtraction techniques. Reference PSF subtraction enables
the further reduction of the dynamic range in the images by modeling
and subtracting the contribution from the high-flux pixels belonging
to the leaked starlight and from the quasi-static speckle pattern. This
happens at the expense of the subtraction of some part of the com-
panion signal (self-subtraction) that it fitted in the reference PSE. VIP
implements automatic detection of point-like sources relying on blob
detection techniques developed in the field of computer vision: the
Laplacian of Gaussian (LOG) and its approximation, the difference
of Gaussians. These algorithms deal with the detection of blobs or
patches of pixels sharing the same properties (such as bright or dark
regions on the images). For instance, the LOG computes the Laplacian
of Gaussian images with successively increasing standard deviation
(related to the spatial scale of the blobs) and stacks them up in a cube,
where blobs appear as local maxima. The adopted approach in the
HCI community relies on visual inspection aided by the computation
of S/N maps.

2.7 FLUX AND POSITION ESTIMATION FOR ADI

Once potential companions are identified in the final residual image,
we proceed to characterize them. The VIP library implements the neg-
ative fake companion technique (NEGFC, Marois et al., 2010a; La-
grange et al., 2010) for the determination of the position and flux
of companions. This implementation is contained in the subpackage
negfc. The NEGFC consists in injecting in the data cube a negative
PSF template with the aim of canceling out the companion as well
as possible in the final post-processed image based on a well-chosen
merit function. The PSF template is obtained from off-axis observa-



tions of the star. Injecting this negative PSF template directly in the
images, before they are processed, allows to take into account the bi-
ases in photometry and astrometry induced by the post-processing
algorithms. The best cancellation of the companion PSF is achieved
by minimizing, in an iterative process, a well-chosen figure of merit.
The intensities I; of p pixels are extracted within a circular aperture
of a radius equal to a few resolution elements (by default four reso-
lution elements or 4 x FWHM), centered on the first guess position
of the companion. Assuming that the noise affecting the j-th pixel
value is given by o; = /I; (pure photon noise), we define the merit
function as follows:

P
x> o Z |5 (2-4)

j=1

This NEGFC function of merit can be tweaked, by changing the de-
fault parameters of the VIP’'s NEGFC procedure. Optionally, one can
minimize the standard deviation of Ij, instead of the sum of absolute
values, which according to our test is better in cases when the com-
panion is located in a region heavily populated by speckles (close
to the star), or use the pixels inside a circular aperture from each
residual frame thus avoiding collapsing the datacube in a single final
frame. Using the n x p pixels from the residual cube helps getting rid
of any bias that the collapsing method, by default a median combina-
tion of the frames, may introduce.

The steps of the NEGFC technique can be described as follows. For
the chosen position/flux combination, a negative fake companion is
injected in each frame of the data cube, and annular-wise ADI-PCA
processing is performed on a single annulus passing through the con-
sidered companion. The pixel intensities I; are then extracted within
a circular region centered on a first guess position defined at the start
of the iterative process (which means that the position of the circular
aperture is fixed and does not change during the process). The esti-
mation of the position and flux (three parameters: radius r, theta 6
and flux F) is obtained by performing three consecutive procedures.

2.7.1  First guess estimation

A first guess of the flux of a companion is obtained by injecting a
NEGEC in the calibrated frames while fixing r and 6 and evaluating
the function of merit for a grid of possible fluxes. This initial position
(r and 0) is determined by visual inspection of final post-processed
frames or based on prior knowledge. Only the flux is optimized dur-
ing this stage, while the companion position is fixed to our first guess.
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2.7.2 Nelder-Mead optimization

Although the first guess estimation results in a rough determination
of the position/flux, and would constitute a valid initial set of param-
eters to start an Monte Carlo Markov Chain (MCMC) based Bayesian
inference process (as presented in the next paragraph), it may turn
out to be very time consuming due to the large number of merit
function evaluations required to reach convergence in the MCMC
and properly sample the posterior distributions. Thus, we refine the
first guess of the position/flux of the companions for the purpose
of initializing the MCMC sampling close to the highly probable so-
lution. To this aim, we use the first position/flux estimation as an
initial guess for a Nelder-Mead simplex-based optimization (Nelder
and Mead, 1965) implemented into the SciPy Python library>. The
adopted merit function is the one defined in Eq. 2.4, and the position
(r,0) of the NEGFC is now allowed to vary during the fit in addition
to its flux. As expected, this leads to a significant improvement of the
position/flux determination.

Although the randomized ADI-PCA approach is very efficient, the
random process induces random variations in the merit function that
can be significant compared to the variations of the merit function
between two steps, especially when approaching the minimum. This
can prevent the optimization process from reaching the true mini-
mum of the merit function, or even from converging. Therefore, we
strongly encourage to use the deterministic LAPACK SVD approach in
the simplex optimization, as well as for the next step. This choice is
all the more important when the companion is located in a region
dominated by residual speckle noise.

2.7.3 MCMC and Bayesian parameter estimation

Although the simplex minimization leads to a significant improve-
ment of the position/flux determination, it does not provide error
bars on the three estimated parameters. More importantly, the func-
tion of merit of the NEGFC technique is not strictly convex and find-
ing a global minimum (the exact position and flux of the candidate
planet) is not guaranteed (Morzinski et al., 2015). Our approach in
VIP is to turn our minimization function of merit into a likelihood
and to use Monte Carlo methods for sampling the posterior probabil-
ity density functions (PDF) for r, © and F. This can be achieved via
Markov Chain Monte Carlo (MCMC) which aims to sample the pos-
terior probability density function (PDF), i.e. the probability of the
position/flux parameters given the data cube and the prior knowl-
edge (see e.g. Hogg et al., 2010).

5 http://www.scipy.org
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The VIP module dedicated to NEGFC technique embeds the emcee
package (Foreman-Mackey et al., 2013), which implements an affine-
invariant ensemble sampler for MCMC proposed by Goodman and
Weare (2010). Such an ensemble is composed of walkers, which can
be considered as Metropolis-Hastings chains. The main difference be-
tween walkers and Metropolis-Hastings chains lies in the fact that
the proposal distribution for a given walker depends, at a given step,
on the position of all other walkers in the ensemble. Conversely, the
proposal distributions involved in the Metropolis-Hastings algorithm
are independent. Besides being more efficient in terms of the num-
ber of calls to the cost function, one major advantage of emcee is
that it relies on only two calibration parameters, in comparison with
the ~ N2 parameters required for a Metropolis-Hastings algorithm in
an N-dimensional parameter space to properly sample the PDF and
speed up the process (for more details, see Foreman-Mackey et al.,
2013; Goodman and Weare, 2010, and references therein). In prac-
tice, one can never be sure that a chain has actually converged, but
there exist several tests to evaluate whether the chain appears to be
close to convergence (or more precisely, far from non-convergence).
In VIP we use the Gelman-Rubin R statistical test (Gelman and Ru-
bin, 1992; Ford, 2006; Gelman et al., 2014) which compares, for each
parameter, the variance estimated from non-overlapping parts of the
chain to the variance of their estimates of the mean. A large R value
may arise from slow chain mixing or multimodality (Cowles and Car-
lin, 1996). Conversely, a R value close to 1 indicates that the Markov
chain is close to convergence. Alternatively, VIP offers functionality
for nested sampling (Feroz and Hobson, 2008) of the NEGFC param-
eters, through the nestle Python library ©. See Allison and Dunkley
(2014) for a comparison of MCMC and nested sampling for Bayesian
parameter estimation.

From the sampled parameters PDFs, we can infer error bars and un-
certainties in our estimations, at the cost of longer computation time.
This NEGFC implementation in VIP currently works with ADI-PCA-
based post-processing algorithms. We also include a procedure for es-
timating the influence of speckles in the astrometric and photometric
measurements, based on the injection of fake companions at various
positions in the field of view. More details on the NEGFC technique,
the definition of the confidence intervals, and details about the spec-
kle noise estimation can be found in Chapter 3, where this procedure
is used to derive robust astrometry for the HR8799 planets based on
VLT/SPHERE data (Wertz et al., 2016).

6 https://github.com/kbarbary/nestle
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2.8 SENSITIVITY LIMITS

Sensitivity limits (in terms of planet/star contrast), often referred to
as contrast curves, are commonly used in the literature for estimating
the performance of high-contrast direct imaging instruments. They
show the detectable contrast for point-like sources as a function of
the separation from the star. VIP follows the current practice in build-
ing sensitivity curves from Mawet et al. (2014) and thereby applies a
student-t correction to account for the effect of the small sample statis-
tics. This correction imposes a penalty at small separations and there-
fore the direct comparison with contrast curves from previous works
may seem more pessimistic close to the parent star. The function, con-
tained in the subpackage phot, requires an ADI dataset, a correspond-
ing instrumental PSF, and the stellar aperture photometry F... We sug-
gest removing any real, high-significance companions from the data
cube (for example using the NEGFC approach) before computing a
contrast curve. The first step is to measure the noise as a function
of the angular separation o, on a final post-processed frame from
the ADI datacube, by computing the standard deviation of the fluxes
integrated in FWHM apertures. Then we inject fake companions to es-
timate empirically the throughput T, of the chosen algorithm (i.e. the
signal attenuation) at each angular separation as T, = F;/Fi;,, where
F; is the recovered flux of a fake companion after the post-processing
and Fi,, is the initially injected flux of the fake companion. We define
the contrast C; as:

_ k-oy

Cr_Tr'F*,

(2.5)

where k is a factor, five in case we want the five sigma contrast curve,
corrected for the small sample statistics effect. An example of the out-
put of the contrast curve calculation produce is shown in Fig. 2.9. The
transmission of the instrument, if known, can be optionally included
in the contrast calculation. Ruane et al. (2017) improve this methodol-
ogy for computing detection limits by defining an acceptable number
of false positives per annulus and computing the 95% completeness
or true positive rate (instead of the typically reported 50% complete-
ness level). This is a planned addition to VIP.

We note that contrast curves depend on the post-processing algo-
rithm used and its tuning, as it will be shown in the panel (a) of Fig.
3.4. In signal detection theory, the performance of a detection algo-
rithm is quantified using ROC analysis, and several meaningful fig-
ures of merit can be derived from it (Barrett et al., 2006; Lawson et al.,
2012; Gomez Gonzalez et al., 2016a). These figures of merit would be
better suited than sensitivity curves for post-processing algorithms
performance comparison.



2.8 SENSITIVITY LIMITS |

091 computed N ° ? |
interpolated 0
08 7 o
2 0.7 - :
<
(@)}
3
8 06 7 [
e
|_
0.5 4
0.4 A
0.0 0.2 0.4 0.6 0.8 1.0
Angular separation [arcsec]
(@
500 4 : . e computed
noise smoothed
400 - N\
% 300 -
2 \
Z L ]
200 A
100 - .
0- T T T OIOOOOOOOOIOOOO
0.0 0.2 0.4 0.6 0.8 1.0
Angular separation [arcsec]
(b)
: \ Sensitivity (Gaussian)
. +— Sensitivity (Student-t correction)
i 1072 4 .
o “\
€ .
o .,
S .
© o
E 10_3 E b e
o -
n b
LN by vouq
-4 | > | ®eoe ° o
10 3 2= 1
0.0 0.2 0.4 0.6 0.8 1.0

Angular separation [arcsec]

©

Figure 2.9: Full output of the contrast curve procedure computed on a A
VLT/NACO dataset. Panel (a) shows the algorithm throughput
(in this case ADI-PCA). Panel (b) shows the noise (computed in
an annulus-wise fashion) as a function of the separation. Panel
(c) shows a typical 5-sigma contrast curve with and without the
small sample correction.
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2.0 CONCLUSIONS

In this chapter we presented the VIP package for data processing of as-
tronomical high-contrast imaging data. It has been successfully tested
on data coming from a variety of instruments, such as Keck/NIRC2,
VLT/NACO, VLT/VISIR, VLT /SPHERE and LBT/LMIRCam, thanks
to our effort of developing VIP as an instrument agnostic-library. VIP
implements functionalities for processing high-contrast imaging data
at every stage, from pre-processing procedures to contrast curve cal-
culations. Concerning the post-processing capabilities of VIP for the
case of ADI data, it includes several types of low-rank matrix ap-
proximations for reference PSF subtraction, such as the LLSG de-
composition, and PCA and NMF-based algorithms. We present, as
one of several PCA enhancements, an incremental ADI-PCA algo-
rithm capable of processing big, larger-than-memory ADI datasets.
VIP includes PCA-based post-processing algorithms for observing
techniques, such as RDI, multiple-channel SDI, and IFS data with
wavelength and rotational diversities (mSDI+ADI). This is considered
on-going work. Further development of VIP is planned, in order to
improve its robustness and efficiency (for supporting big datasets in
every procedure and multi-processing), and add more state-of-the-art
algorithms for high-contrast imaging data processing. We propose
VIP not as an ultimate solution to all high-contrast image processing
needs, but as an open science exercise hoping that it will attract more
users and in turn be developed by the high-contrast imaging commu-
nity as a whole.
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ABSTRACT

In this chapter I describe the application of VIP to HR8799 datasets
from two different high-contrast imaging instruments. In Section 3.2
I showcase the ADI capabilities of the VIP library using a deep se-
quence on HR8799 taken with the LBTI/LMIRCam and its recently
commissioned L-band vortex coronagraph. Using VIP I investigated
the presence of additional companions around HR8799 and did not
find any significant additional point source beyond the four known
planets. I describe each one of the image processing steps up to the
generation of sensitivity curves. In Section 3.3 I present work carried
out with Olivier Wertz and Olivier Absil to characterize the HR8799
companions, focusing in the estimation of their robust astrometry.
This chapter is based on previous work published in Gomez Gonzalez et al.
(2017) and Wertz et al. (2016).

3.1 THE HR87Q9Q SYSTEM

HR8799 is a young A5V star, located at 39 pc, hosting a multiple-
planet system and a debris disk (Marois et al., 2008b). Since its dis-
covery by Marois et al. (2008c), the HR8799 planetary system has
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been and still remains one of the most intriguing among the thou-
sands of known planetary systems. Composed of at least four gi-
ant planets in a range of angular separations of about 074 to 17
(Marois et al., 2010c), and of two dusty debris belts (Su et al., 2009;
Hughes et al., 2011; Matthews et al., 2014; Booth et al., 2016), it has
been the focus of many different studies, including spectroscopic
studies to gain insights about the physics and chemistry of the four
planets (Oppenheimer et al., 2013), and dynamical stability analyses
to constrain their global orbital motion and estimate their masses
(see e.g. Gozdziewski and Migaszewski, 2009; Reidemeister et al.,
2009; Fabrycky and Murray-Clay, 2010; Soummer et al., 2011; Cur-
rie et al.,, 2012b, 2014; GozZdziewski and Migaszewski, 2014a; Maire
et al.,, 2015a). Oppenheimer et al. (2013); Currie et al. (2014) presented
a study of the spectra of the four companions, which concluded that
they are substantially different from each other and present much red-
der colors than objects with similar spectral features (such as methane)
currently known. These spectra do not correspond to those of any
known objects, although similarities with L and T-dwarfs are present,
as well as some characteristics similar to planets such as Saturn.

This dynamical approach allows the orbits of the four planet to be
simultaneously constrained, but requires strong assumptions, such
as coplanar (but eccentric) or circular (but not necessarily coplanar)
orbits. The individual analysis of each planet offers an alternative
method to constrain the orbital architecture. To this aim, nonlinear
least-squares fits of Keplerian elements (semi-major axis a, eccentric-
ity e, inclination 1i, longitude of ascending node Q, argument of the
periastron w, and time of periastron passage t,) have been performed
(see e.g. Lafrenieére et al., 2009; Bergfors et al., 2011; Esposito et al.,
2013; Zurlo et al., 2016). Recently, Pueyo et al. (2015) proposed an in-
depth analysis of the HR8799bcde orbital motion. The authors carried
out a Bayesian analysis based on MCMC techniques adopting both a
Metropolis Hastings algorithm (MacKay, 2003; Ford, 2005, 2006) and
an affine-invariant ensemble sampler (Foreman-Mackey et al., 2013).
This approach echoes the works published in Chauvin et al. (2012)
for B Pictoris b, in Kalas et al. (2013) for Fomalhault b and more re-
cently in Beust et al. (2016) for Fomalhault b and PZ Telescopii B.
Among other things, Pueyo et al. (2015) discussed the coplanarity
of the system, the orbital eccentricities of the planets, the possibility
for mean motion resonances, and the role of HR8799d in possible
dynamical interactions in the youth of this system. They also esti-
mated the dynamical masses of HR8799bcde by computing the frac-
tion of allowable orbits that pass the so-called close-encounter test.
As pointed out in Pueyo et al. (2015), unaccounted biases and/or sys-
tematically underestimated error bars on the planets astrometry affect
the MCMC results (see e.g. Givens and Hoeting, 2012) and may lead
to a biased estimation of the confidence intervals for the orbital pa-
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rameters. Studying the astrometric history of HR8799 reveals indeed
that the errors affecting some positions are most probably underes-
timated, as one can readily identify pairs or sets of positions that
are not consistent with each other within their error bars, or cannot
be modeled with a unique orbit. This was one of the incentives of
the study presented by Konopacky et al. (2016), who very recently
re-reduced all the Keck/NIRC2 observations of HR8799 to come up
with a self-consistent data set free from variable instrument-related
biases. This consistent data set was then used to derive updated prob-
ability distributions for the elements of the planetary orbits based on
Monte Carlo simulations.

An intriguing open question is the existence of an additional com-
panion in this system (Currie et al., 2014; Maire et al., 2015b). Dynam-
ical simulations by Gozdziewski and Migaszewski (2014b) suggested
a fifth companion could be located at smaller separations. The warm
belt truncation at ~6-10 AU is also consistent with the scenario of
a planet-mass body interior to the four known planets. Currie et al.
(2014) ruled out a more massive (12-13 Mj) companion at the inner
edge of the warm dust belt (~6 AU), failing to find the companion
predicted by Gozdziewski and Migaszewski (2014b). More recently,
Maire et al. (2015b) obtain detection limits allowing to exclude a fifth
planet slightly brighter/more massive than HR8799 b at the location
of the 2:1 resonance with HR8799 e (~9.5 AU) and about twice as
bright as HR8799 cde at the location of the 3:1 resonance with HR8799
e (~7.5 AU).

3.2 POST-PROCESSING OF HR8799 LMIRCAM DATA

3.21  Observations and image calibration

The HR8799 dataset used in this section was obtained at the Large
Binocular Telescope (LBT, Hill et al., 2014) on 2013 October 17, dur-
ing the first commissioning run of the L'-band annular groove phase
mask (AGPM) coronagraph on the LBT Interferometer (LBTI, Hinz
et al., 2014; Defrere et al.,, 2014). A deep ADI sequence on HR8799
was obtained in pupil-stabilized mode on the LBTI's L and M In-
frared Camera (LMIRCam), equipped with its AGPM coronagraph,
using only the left-side aperture. The observing sequence lasted for
approximately 3.5 hours, providing a field rotation of 120° and re-
sulting in ~17000 frames on target. The seeing was fair during the
first 30 minutes (1’2-174) and good for the remaining of the observa-
tions (079-1!0). The adaptive optics loop was locked with 200 modes
first and with 400 modes after 30 minutes. The off-axis PSF was regu-
larly calibrated during the observations by placing the star away from
the AGPM center (Defrere et al., 2014). The raw sequence of frames
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was flat fielded and background subtracted with custom routines.
The sky background subtraction was performed using the median-
combination of close in time sky frames. Using a master bad pixel
mask generated with sky frames taken at the end of the night, the
bad pixels were subsequently fixed in each frame using the median
of adjacent pixels (Defrere et al., 2014).

3.2.2 Data processing with VIP

The calibrated datacube was loaded in memory with VIP and re-
centered using as a point of reference a ghost PSF present in each
frame, product of a secondary reflection due to the LBTI trichroic
(Skemer et al., 2014; Defrere et al., 2014). The offset between the sec-
ondary reflection and the central source was measured on the non-
saturated PSF observations via a 2d Gaussian fit. VIP includes a func-
tion for aligning frames by fitting a frame region with a 2d Gaussian
profile (using Astropy functionality). We used this function for fitting
the secondary reflection on each frame and placing the star at the
center of odd-sized square images taking into account the previously
calculated offset between the reflection and the main beam.

For the bad frames rejection step, we used the VIP’s algorithm
based on the linear correlation of each frame with respect to a refer-
ence from the same sequence (30x30 centered sub-frames are used).
The reference frame was chosen by visual inspection and in agree-
ment with the observing log of the adaptive optics system. Ten per-
cent of the frames were finally discarded resulting in a datacube with
size 15254x391x391 (after cropping the frames to the region of inter-
est), occupying 9.7 GB of disk space (in single float precision).

The workflow for loading data in memory and pre-processing it
with VIP is as follows:

Listing 3.1: VIP: Importing the package and opening FITS files. Pre-
processing steps for an ADI sequence.

import vip

# loading the calibrated datacube and parallactic angles
cube = vip.fits.open_fits(’path_cube’)
pa = vip.fits.open_fits(’path_pa”)

# aligning the frames

from vip.calib import cube_recenter_gauss2d_fit as recenter

cube_rec = recenter(cube, xy=cent_subim_fit, fwhm=fwhm_1bt,
subi_size=4, offset=offset_tuple)

# identifying bad frames

from vip.calib import cube_detect_badfr_correlation as badfrcorr

gind, bind = badfrcorr(cube_rec, frame_ref=9628, dist=’pearson’,
percentile=10, plot=False)
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Figure 3.1: Ghost planet (shown with an arrow) due to the secondary re-
flection of LBTI. The left panel shows the full-frame ADI-PCA
result using six PCs on the whole ADI sequence. The middle
and right panels show the same processing but using only the
first and second halves of the sequence.

# discarding bad frames
pa_gf = pal[gind]; cube_gf = cube_rec[gind]

# cropping the re-centered frames
from vip.calib import cube_crop_frames
cube_gf_cr = cube_crop_frames(cube_gf, size=391)

A first exploration of the full-resolution datacube with full-frame
ADI-PCA showed a feature that resembled an instrumental PSF near
the location of planet HR8799e, when only a few principal compo-
nents were used (see left panel in Fig. 3.1). We concluded, after pro-
cessing the data in two halves, that this blob was a residual artifact of
the secondary reflection of LBTI, which left a PSF-like footprint due to
the slow rotation in the first third of the sequence. The ghost compan-
ion appeared very bright when using the first half of the sequence
and was totally absent using the second one, as shown in Fig. 3.1.
Moreover, it was located at the same separation as the secondary re-
flection, whose offset was previously measured. For this reason, and
because the adaptive optics system was locked on 200 modes during
the first 5000 frames, while it locked on 400 modes for the rest of the
sequence, we discarded this first batch of frames from the sequence
and kept the frames with the highest quality. The rotation range of
the final sequence is 100°, and the total on-source time amounts to 2.8
hours.

We processed this datacube with several ADI algorithms, and tuned
their parameters for obtaining final frames of high quality, where
we investigated the presence of a potential fifth companion. Other
than the four known planets around HR8799, we did not find any
significant detection, worth of further investigation. With the sole
purpose of saving time while showcasing the VIP functionalities, we

57



58

| VIP APPLIED TO ON-SKY DATA

then decided to sub-sample temporally our ADI sequence by mean
combining each 20 frames, and thereby obtained a datacube of 499
frames. We refrained from binning the pixels and worked with the
over-sampled LMIRCam images featuring a FWHM of nine pixels.
The code below illustrates how these steps where done with VIP.

Listing 3.2: VIP: Temporal subsampling, ADI median subtraction and full-
frame PCA.

# temporal sub-sampling of frames, average of every 20 frames

# cube_ss is a 3d numpy array with shape [499, 391, 391] and

# pa_ss a vector [499] with the corresponding paralactic angles

from vip.calib import cube_subsample

cube_ss,pa_ss = cube_subsample(cube_gf[5000:], n=20, mode="mean’,
parallactic=pa_gf[5000:1])

# ADI median subtraction using 2XFWHM annuli, 4 closest frames

# and PA threshold of 1 FWHM

fr_adi = vip.madi.adi(cube_ss, pa_ss, fwhm=fwhm_1lbt,
mode="annular’, asize=2, delta_rot=1,
nframes=4)

# post-processing using full-frame ADI-PCA
fr_pca = vip.pca.pca(cube_ss, pa_ss, ncomp=10)
# fr_adi and fr_pca are 2d numpy arrays with shape [391, 391]

Figures 3.2 and 3.3 show a non-exhaustive compilation of the ADI
post-processing options with varying parameters. All the algorithms
were set to mask the innermost 2A/D region.

We observe how more complex PSF subtraction techniques ou per-
form the classic median subtraction approach for cleaning the inner-
most part of the image (~ 2A/D). We refrain from deriving addi-
tional conclusions about the comparison of different post-processing
techniques as this is beyond the scope of the present work. Further-
more this is an exercise to be carried out using a diverse collection
of datasets (from different instruments) and with appropriate met-
rics (defined by the whole community), such as the area under the
ROC curve, in order to provide general and robust conclusions. We
envision VIP as a library that could eventually implement all the
main high-contrast imaging algorithms and become a tool suitable
for benchmarking different data processing approaches under a uni-
fied open framework.

3.2.3 Sensitivity limits and discussion

The code below shows how to compute the S/N for a given resolution
element, obtain an S/N map, call the NEGFC MCMC function and
compute a contrast curve.

Listing 3.3: VIP: S/N map, sensitivity curves, NEGFC-MCMC.
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Figure 3.2: Post-processing final frames (top row) and their corresponding
S/N maps (bottom row) for classical ADI, annular ADI, full-
frame ADI-PCA, and full-frame ADI-PCA with a parallactic an-
gle threshold. The final frames have been normalized to their
own maximum value. No normalization or scaling was applied
to the S/N maps, which feature their full range of values.
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Figure 3.3: Same as Fig.3.2 for annular ADI-PCA, full-frame ADI-NMEF,
LLSG and high-pass filtering coupled with LLSG. We note that
a high S/N does not translate in increased sensitivity to fainter
companions.
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Figure 3.4: (a) 5-sigma sensitivity (with the small sample statistics correc-
tion) for full-frame ADI-PCA with different numbers of PCs. (b)
5-sigma sensitivities for some of the ADI algorithms in VIP. The
four known companions were removed before computing these
contrast curves. The small sample statistics correction has been
applied to these sensitivities.
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from vip.phot import snr_ss, snrmap, contrast_curve
snr_value = snr_ss(fr_pca, source_xy=(54,266), fwhm=fwhm_1bt)

# S/N map generation
snr_map = snrmap(fr_pca, fwhm=fwhm_1lbt, plot=True)

# NEGFC mcmc sampling
from vip.negfc import mcmc_negfc_sampling, confidence,
cube_planet_free

ini_rad_theta_flux = np.array([r_0, th_0, f_0])

chain = mcmc_negfc_sampling(cube_ss, pa_ss, psfn=psf, ncomp=8,
plsc=pxscale_lbt, fwhm=fwhm_1lbt,
initialState=ini_rad_theta_flux,
nwalkers=100, niteration_min=100,
niteration_1imit=400, nproc=10)

# 1-sigma confidence interval calculation from the mcmc chain
val_max, conf = confidence(chain, cfd=68, gaussianFit=True,
verbose=True)
final_rad_theta_flux = [(r, theta, f)]
cube_emp = cube_planet_free(final_rad_theta_flux, cube_ss, pa_ss,
psfn=psf, plsc=pxscale_lbt)

# res_cc is a (pandas) table containing the constrast, the radii
# where it was evaluated, the algorithmic throughput and other
values
res_cc = contrast_curve(cube_emp, pa_ss, psf_template=psf,
fwhm=fwhm_1bt, pxscale=pxscale_1lbt,
starphot=starphot, sigma=5, nbranch=1,
algo=vip.pca.pca, ncomp=8)

Using the NEGFC technique, we subtracted the four known com-
panions in our datacube and computed the sensitivity curves on this
empty datacube. Panel (a) of Fig. 3.4 shows the 5-sigma sensitivity
for full-frame ADI-PCA with varying principal components to exem-
plify the dependence on the algorithm parameters. By using VIP’s
ADI-PCA algorithm in its annular mode and setting a different num-
ber of PCs for each separation, we could obtain the optimal contrast
curve, as already shown by Meshkat et al. (2014a). Panel (b) of Fig.
3.4 shows the 5-sigma sensitivities for the available ADI algorithms in
VIP. These sensitivity limits should be representative of the expected
performance of the algorithms when applied to different data, but the
result may vary, therefore preventing us from presenting more gen-
eral conclusions. As expected, in panel (b) of Fig. 3.4 we observe how
the median reference PSF subtraction achieves worse contrast than
the rest of the algorithms. Also, we see that with annular ADI-PCA,
impressive contrast is achieved at small separations (below 0’5) and
similar contrast at larger separations if it is compared to full-frame
ADI-PCA. Annular ADI-PCA presents a smaller dependence on the
number of principal components (the variance of the contrast curves,
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when varying k, is smaller compared to full-frame ADI-PCA). For
the full-frame ADI-NMF sensitivity, we used 16 components as in the
case of full-frame ADI-PCA and obtained a fairly similar performance
at all separations.

The contrast metric as defined in VIP is not well adapted to all al-
gorithms and/or datasets, therefore we refrain from presenting such
sensitivity curves for LLSG. We remind that these contrast curves
were obtained on a temporally sub-sampled datacube. However, be-
cause we do not include time-smearing when injecting fake com-
panions, we expect the results to be representative of the ultimate
sensitivity based on the full (non sub-sampled) ADI sequence. The
contrast-to-mass conversion for the HR8799 planets was obtained as-
suming an age of 40 Myr (Bowler, 2016) and using the 2014 version
of the PHOENIX BTSETTL models for substellar atmospheric mod-
els described in Baraffe et al. (2015). Based on this, we can discard
the presence of a fifth planet as bright as HR8799e down to an an-
gular separation of (0’2. Our detection limits remain in the planetary-
mass regime down to our inner working angle of 0’1, and reach a
background-limited sensitivity of 2Mj beyond about 1'/5.

Finally, it is worth mentioning that the full-frame ADI-PCA sen-
sitivity curve presented in the panel (b) of Fig. 3.4 (yellow curve) is
slightly worse than the one shown in Maire et al. (2015b) and obtained
four days later with the same instrument but without the AGPM coro-
nagraph. In order to make a fair comparison, we re-processed this
dataset with VIP and obtained the same results as Maire et al. (2015b)
at large angular separations but more pessimistic results closer in
(within 0’5). This can be explained by the student-t correction that
we apply. If we compare the contrast curves produced by VIP for
both datasets, we observe that at small angular separations, within
1”, the AGPM coronagraph provides an improvement in contrast up
to 1 magnitude.

3.3 ROBUST ASTROMETRY OF HR879Q SPHERE
DATA

With the advent of second-generation high-contrast planet imagers
like VLT/SPHERE, obtaining astrometric measurements of directly
imaged planets is now becoming routine. It is therefore more impor-
tant than ever that the methods used to derive such astrometric mea-
surements include a careful estimation of all error sources, including
systematic biases that are expected to affect even the most advanced
planet imaging instruments. Here, we propose to derive the astrom-
etry of the four HR8799 planets based on a data set obtained with
SPHERE during its science verification phase in December 2014.
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The astrometric position of the HR8799bcde planets based on the
December 2014 SPHERE/IRDIS data set has already been determined
by Zurlo et al. (2016) and Apai et al. (2016). The Zurlo et al. (2016)
final astrometry was obtained from the combination of four indepen-
dent image-processing pipelines, by the quadratic sum of the error
bar from each data reduction pipeline plus the standard deviation
associated to the individual positions. Apai et al. (2016) used their
implementation of the KLIP algorithm to derive companion positions
by injecting artificial planets with negative count rates, and used a
manual inspection of the image quality and of the subtraction resid-
uals to estimate the error bars. Here, we propose to go beyond these
approaches and to study in details the various contributions to the
astrometric error budget, in an attempt to derive more reliable error
bars. Our study is also meant to explore the ultimate astrometric accu-
racy of a state-of-the-art instrument such as SPHERE, and to identify
possible ways to improve the astrometric accuracy in future studies.

What we call robust astrometry consists in performing a proper eval-
uation of the statistical errors and systematic biases affecting the final
astrometric estimation. The whole procedure consists of four steps:
(i) the description and estimation of the instrumental calibration er-
rors, (ii) the determination of the planet position with respect to the
star and the related statistical error through Bayesian inference with
MCMC sampling, (iii) the determination of the systematic error due
to residual speckles, and (iv) the calculation of the error on the star
position.

3.3.1  Observations and data reduction

3.3.1.1  Observations

SPHERE performs high-contrast imaging by combining an extreme
adaptive optics system (Fusco et al.,, 2006), several coronagraphic
masks, and three science sub-systems including the Infra-Red Dual-
band Imager and Spectrograph (IRDIS, Dohlen et al., 2008). The ob-
servations of HR8799 were performed during five consecutive nights
from 4 to 8 December 2014, using IRDIS in the broadband H filter
(1.48 —1.77 pm) with an apodized Lyot mask (Soummer, 2005; Carbil-
let et al., 2011; Guerri et al., 2011) of diameter 185 mas together with
an undersized Lyot stop. A beam splitter located downstream of the
coronagraphic mask produces two identical parallel beams (Beuzit
et al., 2008), which results in two well separated images per acquisi-
tion, hereafter referred to as the left and right images. Each of the five
observing sequences lasted for about half an hour, and consisted of
218 frames with a detector integration time (DIT) of 8 sec per frame.
All observing sequences were obtained under fair seeing conditions
(between ('8 and 1’5), except on 7 December where the seeing was
above 1’5. The sequences were acquired in pupil-stabilized mode to
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take advantage of the ADI observing technique. Due to the low el-
evation of HR8799 as seen from Cerro Paranal (maximum altitude
of 44°), the amount of parallactic angle rotation was however quite
small, amounting to 87, 825, 8°3, 8°1 and 7°8 for the five nights,
respectively. Four elongated diffraction spots, the so-called satellite
spots, were created during the whole observing sequences by inject-
ing a waffle pattern on the deformable mirror (Langlois et al., 2012)
to help with the star centering procedure, as explained further.

3.3.1.2 Image calibration

The IRDIS raw frames were preprocessed using the SPHERE EsoRex
pipeline. As a first step, master dark and flat frames were created
from calibration data obtained for each night of observations. Then
EsoRex identified the outlying pixels in the master dark frame by
using a sigma clipping procedure and built a static bad-pixel map.
Each frame was reduced by subtracting the corresponding master
dark, dividing by the master flat and interpolating the pixels flagged
in the bad-pixel map. At this stage we obtained two calibrated data
cubes per night, one for each side of the IRDIS detector, resulting
in ten data cubes. From each data cube we discarded bad frames by
measuring the correlation of each frame with a reference frame that
was tagged as good by visual inspection. Only the 85% to 95% most
correlated frames were kept for post-processing, depending on the
night. The night of 7 December was discarded due to its poor data
quality, as already proposed by Apai et al. (2016).

We deliberately chose to skip the centering of the individual frames
proposed by EsoRex. Instead, we used VIP to precisely measure the
position of the star and the related uncertainty for each individual
frame of all data cubes by exploiting the four satellite spots. Indeed,
since the satellite spots have a high S/N and are designed to be sym-
metric with respect to the star, one can use them to infer the position
of the star. In practice, due to their wavelength-dependent elongation
and to residual atmospheric dispersion, the satellite spots are not per-
fectly symmetric with respect to the star (Pathak et al., 2016). How-
ever, the symmetry is preserved at any given wavelength, and the
spectrum-weighted astrometric position of the four satellite spots re-
mains symmetric with respect to spectrum-weighted astrometric po-
sition of the star. To make sure to avoid the astrometric bias on the de-
termination of the star position described by Pathak et al. (2016), the
following strategy was adopted. For a given frame, we carefully fitted
an asymmetric 2d Gaussian to each of the satellite spots to determine
their respective centroid. Then, opposite centroids were connected by
lines and the resulting intersection determined the estimated position
(x,y) of the star in detector coordinates. This was done for each frame
to get the offset of the star from the center of the frame. For each data
cube, a histogram of these offsets was built, and global offsets were
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Figure 3.5: Histogram of the horizontal and vertical offsets of the star with
respect to the center of the frame in the 5 December (right) data
cube. The vertical line represents the median of the histogram,
and was used to globally re-center the data cube. The horizontal
axis is in pixels, one pixel corresponding to 12.25 mas on sky.

obtained as the median of the vertical and horizontal offsets (see Fig.
3.5). All the frames were then shifted by the same amount for each
cube to cancel the global offset, and cropped to a useful field-of-view
of 511 x 511 pixels to reduce computation time in the post-processing.
Our analysis suggests that a frame-by-frame recentering of the cube
would not improve the final results, because the accuracy with which
the stellar position can be determined in an individual frame is gen-
erally not smaller than the width of the histogram shown in Fig. 3.5.
More details about the uncertainty on the position of the star are
given in Section 3.3.5.

The parallactic angles corresponding to the individual frames of
each data cube were independently calculated frame by frame. The
MJD time at the middle of each frame was derived from the informa-
tion given by the MID-0BS and HIERARCH ESO DET FRAM UTC header
cards, which respectively give the time at the start and the end of the
observing sequence, by dividing the total integration time equally
into 218 parts. The parallactic angles were calculated using the spher-
ical trigonometry formula given in Meeus (1998) based on the equa-
torial coordinates precessed to the epoch of the observations and cor-
rected for nutation, aberrations, and refraction.

3.3.1.3 Image post-processing

We carried out the data post-processing with VIP, using its ADI ca-
pabilities to obtain final images where the planets can be identified.
To optimize the determination of the astrometry, the S/N for each
planet needs to be maximized. The S/N of the planets in the final,
post-processed image depends mainly on the number of PCs used
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Figure 3.6: Illustration of a fullframe ADI-PCA post-processed
SPHERE/IRDIS image of HRS8799 acquired with broad-
band H filter, left part, during the night of 4 December 2014.
The central part was masked with a disk of radius of 20 pixels.

when building the reconstructed cube. A small number of PCs leads
to an incomplete representation of the speckle noise, while a large
number of PCs tends to capture the signal of the planet in the re-
constructed cube, which leads to a lower algorithmic throughput for
the planetary signal after subtraction. An optimum number of PCs
can generally be found to maximize the planet S/N (Meshkat et al.,
2014b). For each data cube, we thus performed a grid search on the
number of PCs to maximize the mean S/N in a region of one resolu-
tion element in diameter around each companion. The optimal npc
for each data cube is reported in Table 3.1.

Figure 3.6 illustrates a VIP post-processed image using full-frame
PCA, where all the pixels of each frame are used at once to construct
the reference images through SVD. The close region surrounding the
host star is most affected by residual speckle noise and was masked
with a disk of radius of 20 pixels to better reveal the planets in Fig. 3.6.
Throughout the present analysis, we also performed annulus-wise
PCA, which consists in performing PCA only for a thin annulus pass-
ing through a companion, with a typical width of a few resolution
elements. Although full-frame PCA and annulus-wise PCA may lead
to slightly different results, this choice does not significantly affect the
final astrometry, which is dominated by other sources of error. Fur-
thermore, annulus-wise PCA is significantly faster when performed
on a single annulus, which is useful when dealing with large data
cubes and/or when PCA is performed a large number of times (see

Sect. 3.3.3).
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3.3.2 Instrumental calibration and related errors

To derive accurate astrometric measurements from IRDIS images, var-
ious astrometric calibrations need to be performed, namely the de-
termination of the plate scale, the orientation of the north and the
optical distortion. Firstly, the plate scale, given in arcsec per pixel, de-
pends on the characteristics of all the optical elements composing the
instrument. It allows to convert positions given in pixel into arcsec.
Secondly, when observing in pupil-stabilized mode, the vertical axis
of the detector does not necessarily point towards north. Two con-
tributions need to be taken into account: (i) the pupil offset, which
accounts for the zero point position of the derotator and is assumed
to be constant between runs, and (ii) the so-called true north, which
accounts for a variation in the detector orientation with respect to
the sky due to thermal or mechanical stresses, and which needs to
be estimated during each observing run. Thirdly, the distortion in
SPHERE/IRDIS is mainly dominated by an anamorphic magnifica-
tion between the horizontal and vertical axis of the detector. This ef-
fect is due to the presence of toric mirrors in the common path of the
instrument (see e.g., Zurlo et al., 2016).

Details of the observations used to derive those astrometric cali-
brations for IRDIS are described in Zurlo et al. (2016). We refer to
that paper for the details, but we still provide the reader with the
practical information used in this study. The astrometric calibrations
were obtained from IRDIS observations of the globular cluster 47 Tuc
acquired on 15 December 2014 with the same instrument setup and
filter, and compared to the Hubble Space Telescope data of the same
field, precessed to the same epoch and corrected for the differential
proper motions of the individual stars. The values derived by Zurlo
et al. (2016) for the plate scale and true north based on this data set
have recently been revised by the SPHERE consortium, using their
improved knowledge of the instrument. This revised estimation, de-
scribed in Maire et al. (2016), leads to a plate scale of 12.251 £ 0.009
mas/pixel and a true north orientation of —1°709 £ 0°051. These val-
ues are valid for both the left and right parts of the IRDIS detec-
tor. The pupil offset, based on commissioning and guaranteed-time
data obtained on several astrometric fields, is equal to 13599 = 0°11.
Finally, the IRDIS distortion measured on sky is dominated by an
anamorphism of 0.60% % 0.02% between the horizontal and vertical
directions (Maire et al., 2016). Although the SPHERE calibration plan
includes the daily measurement of distortion maps based on pinhole
grids, we found that the quality of the astrometric estimations does
not improve by using these maps. Prior to any post-processing, we
thus simply rescaled each frame of each cube by a factor 1.006 along
the y axis. To take into account the uncertainty on this correction, an
additional error of 0.02% on the plate scale will be considered in the
following analysis.
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Figure 3.7: Illustration of the annulus-wise PCA post-processing and merit
function evaluation used in the negative fake companion tech-
nique. Left. No NEGFC was injected before annulus-wise PCA
processing. Right. A NEGFC was injected at the position and
flux minimizing the merit function. The white circle illustrates
the fixed circular aperture from which the pixel values I have
been extracted to evaluate the merit function. The same color
scale was used for both images.

3.3.3 Planet position and statistical error

The next step in the robust astrometry process consists in determining
for each data cube the position of the planets with respect to the host
star and in estimating the statistical error related purely to the photon
noise of the underlying thermal background and speckles through
Bayesian inference based on MCMC simulations. This step does not
describe the effect of the speckles themselves on the measured planet
position, which will be discussed separately in Sect. 3.3.4. Our astro-
metric measurements are based on the NEGFC technique described
in the previous chapter of this dissertation.

The resulting post-processed images, before and after injection of
a NEGFC, are represented in Fig. 3.7. Because no off-axis PSF was
acquired in December 2014 with the same observing setup as for the
HR8799 observations, the adopted PSF template corresponds to un-
saturated off-axis images of 3 Pictoris obtained with SPHERE/IRDIS
during science verification on 30 January 2015 (PI: A.-M. Lagrange)
with the same observing mode as for HR8799 (same coronagraph,
same broadband H filter, similar seeing ~ 1”). The influence of this
choice will be discussed at the end of Sect. 3.3.3, together with a dis-
cussion of the effect of PSF chromatic dispersion on the measured
planet position.

With the optimal number of PCs in hand (see Table 3.1), we derive
a first guess on the position, which is later refined with the Nelder-
Mead optimization procedure in VIP. The right panel of Fig. 3.7 il-
lustrates the result of an annulus-wise ADI-PCA post-processing per-
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Figure 3.8: Illustration of a typical corner plot obtained from the MCMC
simulations using the NEGFC technique. The target companion
is HR8799b observed during the night of 6 December 2014. The
radial distance 7 (in pixel) and azimuth 0 (in degree) are detector
coordinates with respect to the host star. The diagonal panels
illustrate the posterior PDFs while off-axis ones illustrate the
correlation between them.

formed on a single annulus passing through HR8799b, after injecting
a NEGFC characterized by a position and flux minimizing the merit
function. Finally, we use this estimation of the flux and position to
initialize the MCMC sampling to obtain the final flux and position of
the HR8799 planets.

For each data cube and each companion, we carried out MCMC
simulations to sample posterior PDFs related to the planet polar co-
ordinates (1, 0) with respect to the host star and the planet flux f. For
each MCMC simulation, we used 200 walkers firstly initialized in a
small ball around the solution obtained from the Nelder-Mead op-
timization. The chain was sufficiently close to convergence to allow
Bayesian inference after typically 200 steps. In Fig. 3.8, the so-called
corner plot illustrates the posterior PDFs and the correlation between
the parameters (r,0,f) for HR8799b observed during the night of 6
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Figure 3.9: Astrometry for HR8y99bcde observed during the nights of 4,
5, 6, and 8 December 2014. The positions obtained from the
left (resp. right) data cubes are represented with downward
(resp. upward) black triangles. The error bars on the individ-
ual data points take into account all the contributions discussed
in Sects. 3.3.2, 3.3.3, 3.3.4, and 3.3.5. The red dots correspond
to the final astrometric measurements for each planet, together
with the final error bar discussed in Sect. 3.3.6. The dashed lines
represent the best orbital solutions for each planet in terms of
reduced x2. See Wertz et al. (2016).
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December 2014. Similar results were obtained for other planets and
observing nights. Although a flux estimation for each planet is ob-
tained, we focus our analysis only on the astrometry in this section.

Taking into account the plate scale, the true north and pupil off-
set orientation (see Sect. 3.3.2), we have projected the HR8799bcde
highly probable sets of polar coordinates onto the north and east di-
rections. As a result, the eight HR8799bcde final positions for the four
nights (left and right parts) are reported in Table 3.1 and displayed
in Fig. 3.9. These positions will be used in Sect. 3.3.6 to deduce the
final HR8799 astrometry for epoch 2014.93. In addition to obtaining
the highly probable position/flux for a given companion, the MCMC
simulations give a robust estimation of the statistical error on the as-
trometry (i.e., related purely to photon noise). This error, reported in
columns 7 and 8 of Table 3.1, generally constitutes a minor contribu-
tion to the error budget, as discussed in the next sections.

3.3.3.1 Influence of the template PSF

Since a non-saturated, off-axis PSF was not obtained in the same ob-
serving mode during the nights where HR8799 was observed, we
chose as a PSF template for our NEGFC analysis the closest off-axis
PSF in time obtained with the same observing mode under similar
weather conditions, which turned out to be an off-axis PSF of beta
Pictoris obtained on 30 January 2015. The fact that both the instru-
ment and the atmospheric conditions may have changed within the
interval leads to a possible bias in our measurement of the plan-
ets position, which could vary from night to night. To evaluate this
bias, we have taken a series of twelve off-axis PSFs observed in the
same mode under good atmospheric conditions, obtained in 2015 in
the context of the SHARDDS survey (J. Milli, personal communica-
tion). For each planet and each observing night in our HR8799 data
set, we successively used the twelve off-axis PSFs as templates for
the NEGFC technique, and derived the planets astrometry using the
method described above. The dispersion of the astrometric measure-
ments gives us an estimation of the bias that can be introduced by
using a non-contemporaneous PSF. The observed dispersion does not
depend much on the planet nor on the observing night, and has an
overall standard deviation of 0.6 mas. This error bar will be added
quadratically to the other error sources in Sect. 3.3.6.

3.3.3.2 [Influence of residual dispersion

Another source of imperfection in the recovery of the planets astrom-
etry for broadband observations is the residual atmospheric disper-
sion after correction by the atmospheric dispersion correctors (ADC)
included in the SPHERE optical path. While the small angular sepa-
ration between the star and planets ensures the residual dispersion to
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Table 3.1: Final HR8799bcde astrometric measurements with respect to the
host star for nights of 4, 5, 6, and 8 December 2014, derived
from SPHERE/IRDIS broadband H measurements (left and right
parts), in terms of RA/DEC (columns 3-4) and in polar coordi-
nates (columns 5-6). In addition, we list the derived optimal num-
ber of principal components npc (column 2), as well as the sta-
tistical error bars (columns 7-8) and the speckle noise error bars
(columns 9-10), both in polar coordinates.

Date and side npc ARA["] ADEC["] Ar["] A8[°] o0statr [l Ostare [°]  Ospecr [’ Ogpeco [°]
HR8799b
2014-12-04 L 3 1.5754 0.7019 1.7247  65.985 0.0003 0.007 0.0002 0.007
2014-12-04 R 2 1.5750 0.7015 1.7242  65.994 0.0003 0.008 0.0002 0.007
2014-12-05 L 7 1.5761 0.7026 17256 65.975  0.0003 0.009 0.0002 0.009
2014-12-05 R 6 1.5760 0.7024 17254 65.977  0.0003 0.008 0.0002 0.008
2014-12-06 L 6 1.5730 0.7008 1.7221  65.985 0.0004 0.013 0.0002 0.009
2014-12-06 R 6 1.5739 0.7000  1.7225 66.023  0.0004 0.013 0.0002 0.009
2014-12-08 L 4 1.5743 0.7016 17236 65.980  0.0003 0.013 0.0003 0.011
2014-12-08 R 4 1.5736 0.7021 1.7231  65.956 0.0003 0.008 0.0003 0.010
HR8799c
2014-12-04 L 5 —05116  0.7971 0.9471 327.307  0.0002 0.014 0.0006 0.048
2014-12-04 R 6 —0.5127 0.7984 0.9488 327.293  0.0002 0.010 0.0006 0.044
2014-12-05 L 13 —0.5089 0.7992 0.9475 327512 0.0003 0.012 0.0008 0.059
2014-12-05 R~ 14 —0.5103  0.8003  0.9492 327.479  0.0004 0.015 0.0008 0.053
2014-12-06 L 15 —0.5113 0.7979 0.9477  327.351 0.0005 0.020 0.0006 0.047
2014-12-06 R 18 —0.5118 0.7986 0.9485 327.342  0.0005 0.013 0.0007 0.052
2014-12-08 L 20 —0.5104  0.7987  0.9479 327421  0.0004 0.026 0.0010 0.077
2014-12-08 R 7 —0.5128 0.7986 0.9491  327.291 0.0003 0.016 0.0012 0.088
HR8799d
2014-12-04 L 5 —0.3990 —0.5250 0.6594 217.233  0.0012 0.024 0.0012 0.093
2014-12-04 R~ 5 —0.3994 —0.5244 0.6592 217.292  0.0004 0.027 0.0011 0.092
2014-12-05 L 21 —0.4008 —0.5233 0.6592 217.448  0.0006 0.035 0.0013 0.085
2014-12-05 R~ 21 —0.3999 —0.5221 0.6576 217.454  0.0005 0.039 0.0013 0.075
2014-12-06 L 21 —0.4008 —0.5233 0.6592 217.446  0.0005 0.022 0.0010 0.077
2014-12-06 R~ 20 —0.3999  —0.5230 0.6584 217.397  0.0005 0.017 0.0010 0.080
2014-12-08 L 18 —0.3982 —0.5208 0.6556 217.405  0.0004 0.030 0.0029 0.136
2014-12-08 R 46  —0.4007 —0.5208 0.6571 217.575  0.0005 0.029 0.0027 0.123
HR8799e
2014-12-04 L 9 —0.3859 0.0117 0.3861 271.735  0.0010 0.103 0.0022 0.202
2014-12-04 R 16 —0.3852  0.0099  0.3854 271.468  0.0013 0.077 0.0039 0.292
2014-12-05L 10 —0.3829  0.0121 0.3831 271.803  0.0006 0.044 0.0029 0.196
2014-12-05 R 12 —0.3841 0.0125 0.3843 271.859  0.0005 0.055 0.0024 0.167
2014-12-06 L 8 —0.3858  0.0097 03859 271.436  0.0006 0.034 0.0022 0.182
2014-12-06 R 23 —0.3865  0.0113  0.3867 271.668  0.0006 0.048 0.0019 0.159
2014-12-08 L 15 —0.3843 0.0139 0.3846 271.072  0.0016 0.186 0.0049 0.357
2014-12-08 R 11 —0.3862  0.0159  0.3865 272.360  0.0008 0.145 0.0082 0.534
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Figure 3.10: Speckle noise estimation for HR8799b observed on 6 December
2014. The histograms illustrate the offsets between the true po-
sition/flux of a fake companion and its position/flux obtained
from the NEGFC technique. The dashed lines correspond to the
1D gaussian fit from which we determine the speckle noise.
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be almost perfectly equal for all of them, their different spectra can
result in a chromatic offset between their measured positions. The
residual dispersion after correction by the SPHERE ADC has been
shown to be smaller than 1.2 mas rms for zenith angles as large as
the maximum of 54° encountered in the present data set (Hibon et al.,
2016). Taking into account the H-band spectrum of the star and of the
four planets (Bonnefoy et al., 2016), we estimate that the maximum
astrometric offset between the star and planets due to residual disper-
sion cannot be larger than 0.25 mas in the worst case where residual
dispersion shows a linear trend across the H band. This contribution
is negligible in our final astrometric error budget.

3.3.4 Systematic error due to residual speckles

Performing ADI-PCA removes a large fraction of the quasi-static spec-
kle noise and significantly improves the S/N of the companions. Al-
though highly effective, this process is not perfect and some level of
residual speckle noise remains in the post-processed images. Such
noise has a major impact on photometric and astrometric measure-
ments (Guyon et al.,, 2012), and needs to be taken into account in
the error budget. Since speckle noise is known to have a radial depen-
dence, we estimate its impact by injecting fake companions in the data
cube at the radial distance of the real planets but for a wide range
of angular positions, and by testing the ability of the Nelder-Mead
optimization to find their position and flux through the NEGFC tech-
nique. The first step in this process is to create an “empty” data cube
by injecting four NEGFCs characterized by the highly probable po-
sitions/fluxes derived from the previous MCMC simulations. In the
empty cube, we inject a fake companion characterized by a flux firue
and a radial distance 1¢e, both corresponding to the highly probable
solution, but at an arbitrarily chosen angular coordinate e i. Us-
ing the NEGFC technique coupled with the Nelder-Mead optimiza-
tion, we determine the position/flux (r;,0;,fi) of the fake compan-
ion. We then compute the offsets Ari = Tyye — Ti, ABi = Opye,i — 64,
Afy = fiyue — fi between the known position/flux characterizing the
fake companion and the solution obtained from the optimization pro-
cess. The same process is repeated for a series of 360 azimuths equally
spaced between 0° and 360°. These 360 realizations are used to build
three normalized histograms, respectively for Ar, A® and Af. The his-
tograms for Ar and A0 are then fitted with a Gaussian function, and
the standard deviations ogpec,r and Ospec,o Of the Gaussian functions
are used as an estimation of the speckle noise affecting the radial and
azimuthal coordinates. A similar approach was already used by e.g.
Maire et al. (2015a). We illustrate in Fig. 3.10 the three histograms for
HR8799b observed on 6 December 2014. The results obtained for all
the planets and data cubes are reported in column 9 and 10 in Table
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3.1. It appears clear that the error induced by speckle noise increases
for decreasing angular separations of the companion with respect to
the host star. Indeed, the brightness of the residual speckles increases
closer to the star. We also note that speckle noise is always larger than
statistical noise, except for HR879gb.

Another possible way to evaluate speckle noise is to measure the in-
fluence of the number of PCs used in the PCA post-processing on the
position/flux determination, as proposed e.g. by Pueyo et al. (2015).
Indeed, the residual speckle pattern changes as a function of the num-
ber of PCs. To check the consistency of this method with the one pro-
posed above, we determined the position/flux of each companion in
each data cube using the NEGFC technique with the Nelder-Mead op-
timization using a number of PCs ranging from 5 to 9o (for a number
of PCs > 90, the companion self-subtraction becomes too important to
get a high S/N). We then constructed three normalized histograms,
respectively for r, 0 and f. As expected, the standard deviations of
these histograms are similar to those deduced above.

Finally, we note that the residual speckle noise estimated here is in
good agreement with the semi-empirical estimation of the astromet-
ric accuracy based on the planet S/N proposed in the case of pure
photon noise by Guyon et al. (2012, Eq. A1), if we extrapolate this
relation to the speckle-dominated regime in the following way, as al-
ready proposed by Mawet et al. (2015): o1p[A/D] = 1/(nS/N). Using
such a semi-empirical formula therefore looks like a possible way to
get a quick estimation of the astrometric error bar related to speckle
noise, although we recommend to go through the analysis presented
in this section to obtain a robust estimation.

3.3.5 Error on the star position

Inside SPHERE, a dedicated differential tip-tilt sensor is used to ob-
tain an image of the PSF just upstream of the coronagraph, and is
used as an input for closed-loop control of the star position with
respect to the coronagraph, thereby ensuring a stable star centering
(Fusco et al., 2006; Baudoz et al., 2010). Based on laboratory mea-
surements, the expected accuracy of the star centering is supposed
to be around 0.5 mas on sky (Baudoz et al., 2010). As mentioned in
Sect. 3.3.1.2, no individual frame centering was applied to the data
cubes in our analysis, but rather a global centering of all frames in
each individual cube using the same x,y offsets.

Here, we independently estimate the uncertainty on the mean star
position for each data cube. The evaluation of this uncertainty is
based on the histogram of the x and y offsets measured for all in-
dividual frames by the centroid plus intersection method described
in Sect. 3.3.1.2. The mean position of the star in a given data cube
can be obtained by a Gaussian fit of the two histograms, as illustrated
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Table 3.2: Estimation of the stellar jitter in the eight data cubes.

Date and side o, ra [”] 04 pEC [”]
2014-12-04 L~ 0.00076 0.00078
2014-12-04 R~ 0.00076 0.00078
2014-12-05 L 0.00084 0.00081
2014-12-05 R 0.00087 0.00085
2014-12-06 L 0.00077 0.00079
2014-12-06 R~ 0.00078 0.00080
2014-12-08 L 0.00143 0.00139
2014-12-08 R~ 0.00144 0.00139

in Fig. 3.5. Based on this figure, we will assume in the following dis-
cussion that the histograms follow a Gaussian distribution, so that
the accuracy on the determination of the mean stellar position in a
given cube is given by the standard deviation of the best-fit Gaus-
sian divided by the square root of the number of realizations. The
standard deviations of the best-fit Gaussians are given in Table 3.2
in terms of RA and DEC, by projecting the (o, x, 04,y )-error ellipses
expressed in detector coordinates onto the north and east directions.
We note that the derived stellar jitter estimation is slightly larger than
predicted in Baudoz et al. (2010), with values varying from 0.76 mas
to 1.44 mas depending on the night (i.e., around o.1 pixel in detec-
tor coordinates). Based on these values, and taking into account the
~ 200 frames present in each data cube, the error bar on the mean
stellar position in any given cube amounts to less than 0.1 mas, and
is therefore completely negligible in our final noise budget.

However, this contribution represents only the purely statistical er-
ror on the determination of the star position. We also need to take
into account possible systematic biases on the determination of the
star position based on the satellite spots. To this end, we have ob-
tained a data set on a relatively bright star, using the waffle mode of
the DM but without coronagraph. The star was mildly saturated at its
center to increase the S/N on the satellite spots. We determined the
center of the star based on a truncated Moffat profile, to reject the sat-
urated part of the PSF, and compared this estimation with the predic-
tion based on the satellite spots. We checked that the two estimations
match with an accuracy better than o.1 pixel, which represents our
best estimation of an upper limit on a possible bias. This also con-
firms that the method proposed in Section 3.3.1.2 to determine the
stellar position from the satellite spots does not lead to a major astro-
metric bias, even in the presence of residual atmospheric dispersion.
Here, we will conservatively assume that a bias of 0.1 pixel (1.2 mas)
affects our determination of the mean star position in all cubes.



3.3.6 Final astrometry

Particular care must be taken when combining the results and er-
ror bars of several astrometric measurements, especially in the pres-
ence of correlated errors. How the various error bars add up needs
a specific discussion. Firstly, we note that our experimental determi-
nation of the error bar related to residual speckles inherently takes
into account the contribution of photon noise. Indeed, the empirical
intensity of the speckles includes the contribution of the photon noise
associated to all sources of signal at any given location (stellar resid-
uals, planet, sky emission and thermal background). This is backed
up by the fact that the error bar associated to speckle noise generally
dominates the error bar associated to photon noise. Only in the case
of planet b are they of the same order of magnitude, which reflects
the fact that residual speckles are very faint compared to residual
background noise at that angular distance from the star.

Secondly, we make the conservative assumption that the errors re-
lated to speckle noise are fully correlated, not only between the left
and right data cubes obtained on a same night, but also between all
nights. The assumption of full correlation between the left and right
data cubes is justified by the fact that the signals recorded by the two
parts of the detector are almost identical (to within photon noise and
some minor differential aberrations that amount to a few nm rms at
most), and is backed up by the fact that the estimated error bars are
almost identical for the left and right sides for most of the nights and
planets (see Table 3.1). The assumption that speckle noise is fully cor-
related from night to night is more debatable. It is indeed expected
that speckle noise will be partly correlated between successive nights,
because residual speckles are often associated to non-common path
aberrations in the instrument that can vary on very long timescales.
To be on the conservative side, we will assume a full correlation of
speckle noise in all data sets. The error bar on the final astrometry
regarding speckle noise should then be computed as the median of
all speckle noise-related error bars. We note however that the estima-
tions of the speckle noise-related error bars significantly vary from
one night to the other (see Table 3.1), which suggests that this noise
is at least partly uncorrelated, and that our final error bars will be
pessimistic.

Thirdly, we proposed in the previous section that the final error
bar related to the determination of the star position is dominated by
a systematic bias that can amount up to 1.2 mas, and that the variabil-
ity of the PSF shape can induce a bias of up to 0.6 mas. These biases
will be added quadratically to our final astrometric error bar for all
planets. The same applies to instrumental calibration errors, which
are supposed to affect all data cubes in the exact same way. Indeed,
appropriate observations of astrometric fields were not performed on
each of the five HR8799 observing nights. We therefore had to rely

77



78

| VIP APPLIED TO ON-SKY DATA

Table 3.3: The final HR8799bcde astrometric measurements with respect to
the star for epoch 2014.93.

Planet Ar[”] A0 [°] ARA ["] ADEC ["]

HR8799b 1.7241 £0.0019 65.99+0.13  1.5748 +0.0023 0.7016 £ 0.0036
HR8799c  0.9481+0.0017 327.37+0.16 —0.5113+£0.0024  0.7985 4 0.0020
HR8799d 0.6587 £0.0019 217.40+£0.19 —0.4001+0.0021 —0.5233 £ 0.0020
HR8799e 0.3855+0.0030 271.71£0.31 —0.3853 +£0.0030  0.0115 £ 0.0021

on an astrometric calibration carried out by the SPHERE consortium
one week later (see Section 3.3.2), which was used as a reference for
all five nights. Although we could not check the stability of the cal-
ibration over a few nights, we note that the latest IRDIS astrometric
calibrations by the SPHERE consortium show that the time variations
of plate scale and true north are mostly within their estimated error
bars, based on two years of astrometric fields observations, while the
pupil offset and anamorphic factor are mostly constant (Maire et al.,
2016). This suggests that our final estimation of the astrometric error
bar should not include any unaccounted bias related to the variability
of the IRDIS astrometric calibration. That being said, we still recom-
mend that, in future observing programs dedicated to precise astro-
metric measurements, observations of standard astrometric fields be
obtained during each individual night to ensure a high astrometric
robustness.

Based on these assumptions, the computation of the final astrome-
try and related error bars proceeds as follows for each planet:

e define the final astrometry of the four planets as the weighted
mean of the eight individual positions (left and right parts of
the detector for the four nights), using as a weight the inverse
of the variance of speckle noise;

e estimate the final error bar related to speckle noise as the me-
dian of the individual error bars on the eight astrometric mea-
surements;

¢ add quadratically the contribution of speckle noise, the upper
limit on the stellar centering bias, and the contribution of instru-
mental calibration errors to obtain the final astrometric error
bars.

All these calculations are performed in polar coordinates, reflecting
the fact that error bars generally have different behaviors along the ra-
dial and azimuthal directions. The last step is based on the following
formulae:

2 202 2 2 2 2 2 2
Otot,r = PLSC (Gr,spec + 0% « + 0% PSF + 0% AFT ) + OprscT™ » (31)

2 2 2 2 2 2 2
Otot,0 = O,spec T 06« T 05,psp + 0f,AF + 00 + OTN » (3-2)
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Table 3.4: Comparison between the final error bars (o) listed in Table 3.3
and the standard deviation of the eight positions per planet dis-
played in Fig. 3.9 (see also Table 3.1).

Owot,ARA  O(ARA)  otor,apEc  0(ADEC)

Planet [mas] [mas] [mas] [mas]
HR8799b 2.3 1.1 3.6 0.8
HR8799c¢ 24 1.2 2.0 0.9
HR8799d 2.1 0.9 2.0 14
HR8799e 3.0 1.2 2.1 1.9

where 7 is the radial distance in pixels, Oy spec and g spec the final
radial (pixels) and azimuthal (degrees) error bars related to speckle
noise, oy, and og . the radial (pixels) and azimuthal (degrees) stellar
centering biases, o, psp and og psp the radial (pixels) and azimuthal
(degrees) error bars related to the imperfection of the PSF template
in the NEGFC analysis, o, ar and og ar the radial and azimuthal er-
rors on the anamorphic factor expressed in percent, and where PLSC
refers to the plate scale in " /pixel, PO to the pupil offset and TN to
the true north, both in degrees. The final astrometric positions and
related error bars are given for the four planets in Table 3.3 and are
illustrated in Fig. 3.9. Table 3.3 includes a projection of the error bars
onto the RA and DEC directions, to comply with the usage. How-
ever, we suggest that expressing the error bars in polar coordinates
is more appropriate, because polar coordinates usually correspond to
the major and minor axes of the error ellipse. Another, even more ap-
propriate way to proceed would be to specify the error ellipse by its
three parameters (two axes and position angle). In the present case,
the error bars are sufficiently symmetric to proceed with RA/DEC
error bars, even though we note that the HR8799b error bars are sig-
nificantly asymmetric, the angular error bar being twice as large as
the radial one. This is mostly due to the large uncertainty on the pupil
offset (0°11, see Section 3.3.2), which severely affects planets located
far away from the star.

To check the consistency of our error bars, we compared the sta-
tistical distribution of the eight individual data points obtained for
each planet to the individual error bars on the eight data points. Ta-
ble 3.4 shows that the final error bars are generally about twice larger
than the dispersion of the individual data points. This is related to
the fact that the major error sources (speckle noise, stellar position
bias, instrumental calibration) are supposed to be fully correlated be-
tween individual measurements, so that the final error bar has a sim-
ilar size as the individual ones. This suggests that an improvement
by up to a factor two in astrometric accuracy could be achieved by
improving the astrometric calibration. That said, the individual error
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bars are in relatively good adequacy with the dispersion of the data
points (see Fig. 3.9), although we note a significant asymmetry in the
distribution of the data points towards the NE-SW direction. This
asymmetry looks quite consistent between the four planets, and we
therefore suggest that it comes from a time variability in the bias on
the stellar position measurement (the only error source that is natu-
rally expressed in RA/DEC), which could be related to variations in
the PSF shape and/or in the diffraction pattern created by the DM on
a night-to-night timescale. This variation remains within the expected
amplitude of about o.1 pixel for the star position bias.

For planet b, the main contribution to the error budget comes from
the imperfect astrometric calibration and from the uncertainty on the
star position, while speckle noise is negligible. This is consistent with
the fact that HR879gb lies in a region that is not significantly affected
by residual speckles (see Fig. 3.6). For planet c, although speckle noise
significantly increases, the noise budget remains dominated by the
astrometric calibration and stellar position uncertainties. The dom-
inance of stellar centering noise in the astrometric error budget of
these two planets is backed up by the fact that the dispersion in the
individual astrometric measurements for planets b and c has a similar
amplitude and shape (see Fig. 3.9), as expected for a global centering
error. For the two inner most planets (d and e), speckle noise progres-
sively becomes the dominant contributor to the error budget, and
once again this is consistent with Fig. 3.9, where the dispersion of the
astrometric data points increases significantly, especially for planet
e. We finally note that our astrometric measurements are in general
agreement with the astrometric measurements derived in Zurlo et al.
(2016) and Apai et al. (2016) to within error bars, but that our error
bars are two to three times smaller, thanks to a careful evaluation of
all systematic error sources.

3.4 CONCLUSIONS

In this chapter we showcased VIP’s capabilities for processing ADI
data, using long sequences on HR8799 taken with LBTI/LMIRCam
(in its AGPM coronagraphic mode) and four shorter sequences with
VLT/SPHERE/IRDIS. In the first case, we used all of VIP’s capabili-
ties to investigate the presence of a potential fifth companion around
HR8799 but we did not find any significant additional point-like
sources. We also compared the sensitivities of coronagraphic and
non-coronagraphic modes of LBTI/LMIRCam. For the VLT /SPHERE
data, we obtained robust astrometry of the four known companions
with a detailed analysis of the various contributions to the astromet-
ric error budget. The resulting astrometric positions agree within 1o
with previous estimations based on the same data set (Zurlo et al.,
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2016; Apai et al., 2016), with error bars two to three times smaller
thanks to a careful estimation of systematic errors. The main contri-
bution to the astrometric error depends on the angular distance from
the star: the error budget is dominated by the uncertainty on the stel-
lar position (~ 1 mas) and instrumental calibration errors for planet b,
while residual speckle noise increases for smaller angular separations
and becomes dominant for planet e. We note that these revised error
bars match the early expectations of SPHERE in terms of astrometric
accuracy (~ 2 mas), and suggest that the astrometric accuracy could
even be further improved (especially for planets located outside the
speckle-noise dominated regime) by a more careful IRDIS astrometric
calibration and by improving upon our estimation of the bias on the
star center determination using dedicated calibration programs. In
practice, nothing seems to prevent SPHERE/IRDIS from reaching a
1 mas astrometric accuracy in the future based on a careful calibration
plan.

The studies described in this chapter show how powerful VIP can
be. It is also an illustration of the benefits of open-source development
in science. Nowadays, VIP is being actively used by researchers from
numerous universities and HCI research teams around the globe,
which is accompanied by a growth in the developers contributing
to the project (sending modification requests and proposals).
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ABSTRACT

In this Chapter, I introduce some machine learning fundamental con-
cepts that may not be intuitive to astronomers. The motivation of
this Chapter is to put high-contrast imaging data processing in a ma-
chine learning context and to connect previous Chapters, describing
HCI state-of-the-art algorithms, with Chapters 5 and 6. The concepts
reviewed in this Chapter will be indispensable for explaining my
novel approaches to high-contrast imaging, introduced in the next
two Chapters.

4.1 INTRODUCTION

Although machine learning only started to flourish in the 1990s, it has
quickly become the most popular and most successful subfield of ar-
tificial intelligence, driven by the availability of faster hardware and
larger datasets (benchmarks). Machine learning explores the study
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and construction of algorithms that can learn from and make predic-
tions on data. It aims to build a model from sample inputs to gen-
erate data-driven predictions. This radically differs from the classical
programming approach of static program instructions and rules. Ma-
chine learning is tightly related to mathematical statistics, but unlike
it, machine learning deals with larger and more complex datasets (e.g.
a dataset of millions of images, each consisting of tens of thousands
of pixels) for which classical statistical analysis would simply be too
impractical to be possible.

Depending on the nature of the learning "signal" available to a
learning system, we can classify machine learning tasks into three
broad categories: unsupervised, supervised, and reinforcement learn-
ing. In the coming sections, we will focus on the first two categories
of machine learning and will connect them to the tasks faced in the
context of HCI data processing.

4.2 UNSUPERVISED LEARNING

Unsupervised learning techniques deal with unlabeled data or data
of unknown structure. They are used to explore the structure of data
to extract meaningful information without the guidance of a known
outcome variable (see next Section on supervised learning) or reward
function (reinforcement learning).

4.2.1  Clustering

Clustering is a technique that allows to organize a set of objects into
meaningful subgroups (clusters) based on some similarity measure.
It is considered an exploratory data analysis technique and it does
not require having any prior knowledge of group memberships. Dif-
ferent clustering models differ in the particular definition of a cluster.
For instance, hierarchical clustering uses a measure of dissimilarity
between sets of observations, achieved by the use of a distance metric
between pairs of observations and a linkage criterion specifying the
dissimilarity of sets of data points. It can be agglomerative or divisive.
In the agglomerative case, each observation starts in its own cluster,
and pairs of clusters are merged as one moves up the hierarchy. The
results are usually presented using dendrograms. Another common
clustering approach is the k-means algorithm, which partitions the
set of observations into k pre-defined clusters, each one represented
by a prototype: the centroid (average) of similar points with contin-
uous features. The k-means algorithms works in an iterative manner
with the goal of minimizing the within-cluster sum of squared er-
rors or cluster inertia. Density-based spatial clustering of applications
with noise (DBSCAN, Ester et al., 1996) is a density-based clustering
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Figure 4.1: Comparison of k-means clustering, hierarchical clustering, and
DBSCAN on the same dataset. Taken from Raschka (2015).

model which defines clusters as connected dense regions in the data
space. DBSCAN does not require to a priori specify the number of
clusters in the data. Also, it is very effective at finding non-linearly
separable clusters, as illustrated in Fig. 4.1.

4.2.2 Dimensionality reduction

Unsupervised dimensionality reduction seeks to compress the input
data onto a smaller dimensional subspace while retaining most of the
relevant information. This is a commonly used approach for feature
pre-processing as it reduces computation time and storage require-
ments, and enables better visualization. The most common technique
in the family of dimensionality reduction algorithms is PCA. It was
invented in 1901 by Karl Pearson and later developed (re-discovered)
by Harold Hotelling in the 1930s. It is used to decompose a multivari-
ate dataset in a set of successive orthogonal components that explain
a maximum amount of the variance. PCA is closely related to the SVD
of the input matrix X and the ED of the covariance XTX, as described
in Section 1.3.3.5.

PCA is also closely related to the matrix decomposition (factor-
ization) and low-rank approximation problems. Several approaches,
other than PCA, have been proposed to model the low-rank approx-
imation of a matrix. A unified view of matrix factorization was pro-
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Figure 4.2: Visualization of 6,000 digits from the MNIST dataset produced
with t-SNE. The subplot on the bottom-right shows the same
plot, where colors represent the labels of the digits. Taken from
van der Maaten and Hinton (2008).

posed by Udell et al. (2016), with their generalized low rank mod-
els (referring to the problem of approximating a data set as a prod-
uct of two low dimensional factors by minimizing an objective func-
tion). This approach provides a common optimization formulation,
not only for plain PCA, but also for other techniques, such as non-
negative matrix factorization, matrix completion, sparse and robust
PCA, k-means, k-SVD, and maximum margin matrix factorization.
Linear dimensionality reduction methods, e.g. PCA and indepen-
dent component analysis, are powerful but fail to exploit non-linear
important structure in the data. Non-linear dimensionality reduction
or manifold learning can be thought of as an attempt to generalize
linear frameworks, like PCA, to be sensitive to non-linear structure in
the data. Among these methods, we count the t-distributed stochastic
neighbor embedding (t-SNE, van der Maaten and Hinton, 2008). This
technique is particularly well suited for embedding high-dimensional
data into a space of two or three dimensions, enabling effective visu-
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alizations. Fig. 4.2 shows a visualization of a subset of examples from
the MNIST dataset’ using the t-SNE.

4.2.3 Unsupervised learning in HCI: low-rank approximations and
dictionary learning

As we saw in Section 1.3.3.5, PCA finds a low rank matrix that mini-
mizes the approximation error, in the least-squares sense, to the orig-
inal data set. It turns out that the approach of modeling a reference
PSF (for differential imaging) using low-rank approximations can be
considered as unsupervised learning. Over the last few years, the
PCA-based approach has become the standard way to process HCI
datasets. NMF (2.5.3) is another example of such low-rank approxi-
mation methods, which I proposed as an alternative to PCA-based
reference PSF subtraction. In Chapter 5, I will explore other low-rank
modeling concepts, such as robust PCA and low-rank plus sparse ap-
proximations, and describe a new post-processing method for ADI
sequence based on low-rank plus sparse decompositions.

Another interesting approach, that I applied to HCI reference PSF
modeling (for the first time), is dictionary learning (Olshausen and
Field, 1996). This technique consists in learning to express (code) a
set of input vectors, such as image patches, as linear combinations of
a small number of vectors chosen from a large dictionary. Dictionary
learning is a matrix factorization problem that consists in finding a
(usually overcomplete) dictionary that will perform good at sparsely
encoding the fitted data (Mensch et al., 2016). It can be interpreted
as a generalization of the task of image approximation and reference
PSF modeling in terms of a "basis", sharing common ideas with PCA
(notion of basis) and LOCI (reconstruction on patches) types of HCI
algorithms.

Dictionary learning is an optimization problem solved by alterna-
tively updating the sparse code considering the dictionary fixed, and
then updating the dictionary to best fit the sparse code:

]
(U*, V*) = argmin > [ X — UV/|3 + ]| Ul|;
u,v 2 (4.1)
s.t.||[Vkl2=1, forall 0<k<mnNcomps,

where X is a matrix whose rows are vectorized overlapping patches
(from the input images), V is the dictionary and U the sparse code.

The MNIST dataset (modified National Institute of Standards and Technology
database) is a large database of handwritten digits that is commonly used for bench-
marking machine learning algorithms. It consists of 60,000 training images and
10,000 testing images, each one of 20x20 pixels (grayscale) with a corresponding
label.
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Sparse coding aims to find a representation of the data as a linear
combination of as few dictionary atoms as possible. The reconstruc-
tion of the target images can be formulated as:

min ||T—UV||3

.2)
st [Ullo <k, “4

where T is a matrix whose rows are vectorized overlapping patches
from the target images (it can be different from X or be the same)
and V is the dictionary learned with Equation 4.1 from X. The for-
mulation of Equation 4.2 corresponds to solving the sparse coding
U with orthogonal matching pursuit. k is the number of atoms used
to reconstruct our images. In a similar way, the sparse coding can be
formulated with an L; penalty on the code.

4.2.3.1  Application of dictionary learning to HCI data

For the task of RDI sequence processing we are interested in pro-
ducing a reference PSF model for a target sequence using a sepa-
rate set of reference images (observations of a different star). Here I
show the application of dictionary learning to the task of RDI post-
processing using several VLT /SPHERE datasets”. One of the datasets
(HD 206893) was chosen as the target, since it contains a newly dis-
covered companion, which appears with a high S/N after a simple
ADI-PCA processing. We concatenated four different data cubes and
obtained a reference cube of 2541 frames. We learned an overcomplete
dictionary (500 atoms) from 330,000 random 15x15 patches grabbed
from the reference cube. A subset of the atoms of this dictionary is
shown in panel (a) of Fig. 4.3.

It is interesting to notice how the dictionary captures the nature
of the signal, which is composed of blob-like structures, Gabor-like
filters and all sorts of oriented gradients. Panel (b) illustrates how
sparse coding reconstructs a patch as a sparse linear combination of
k atoms (20 in this case) from the dictionary. With more atoms used,
we obtain smaller residuals. Each frame from the target sequence is
decomposed in overlapping patches, for which we create approxima-
tions in terms of the atoms of the reference dictionary (Eq. 4.2). The
number of non zero coefficients (or the number of atoms used) is
tuned as a function of the distance from the center of the image (more
aggressive towards the center). Panel (c) shows the final ADI image
after reconstructing all the patches, from each one of the images of
the sequence, and subtracting their reconstructions.

This approach results in an aggressive least squares approxima-
tion of the images and large self-subtraction (most of the companion
signal is fitted in the reference PSF). It is also very computationally
intensive (~ 8 hours on a 56-cores server for obtaining the dictionary

2 Provided by Julien Milli from his SHARDDS survey.
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Figure 4.3: Dictionary learning and sparse coding for the task of HCI refer-
ence PSF modeling. (a) Subset of atoms from an overcomplete
dictionary. (b) Reconstruction of a patch, from one image of the
ADI sequence, using 100 atoms from the dictionary. (c) Final
ADI sequence image, after the reconstruction (using dictionary
learning and sparse coding) has been subtracted.
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described earlier) when compared to a simple full-frame ADI-PCA
post-processing (a few seconds). The reconstructive approach of dic-
tionary learning and sparse coding could be complemented with a
discriminative model to classify the patches in terms of the atoms
used or the error of the reconstructions. This line of research was
abandoned to pursue the promising field of deep learning (see Chap-
ter 6).

4.3 SUPERVISED LEARNING

Supervised learning aims to learn a model from labeled training data
in order to make predictions about unseen or future data. The term
supervised refers to the need of a ground truth or set of examples
(from now on samples) where the desired output signals (targets or la-
bels) are already known. This mapping from input data features (input
variables) to targets is done by observing many examples of inputs
and targets.

Supervised learning problems can be further grouped into regres-
sion and classification problems, depending on the nature of the la-
bels. For a classification problem, the ground truth is a category (e.g.
the corresponding digit for the MNIST samples) while for a regres-
sion problem the ground truth is a real value. An intermediate kind
of problem is the ordinal classification, which aims to predict an or-
dinal variable (a ranking). Among the most important families of su-
pervised machine learning algorithms, we count the linear methods,
support vector machines (SVM), nearest neighbor methods, and tree-
based methods.

Linear models were largely developed in the pre-computer age of
statistics. The linear methods model or approximate the relationship
between the input features and the labels as linear. Different algo-
rithms exist for estimating the coefficients involved in the linear com-
bination of the input variables (e.g. least squares). The simplicity of
these methods allows an interpretable description of how the inputs
affect the output. See Hastie et al. (2009) for a detailed review of linear
methods for regression and classification.

SVM methods (Boser et al., 1992) aim to construct a hyperplane or
set of hyperplanes in a high- or infinite-dimensional space, which can
be used for classification, regression, or outliers detection. This hyper-
plane optimally separates the classes (in the classification case) when
it has the largest distance to the nearest data point of any classes.
This extends to non-linear cases by using the so-called kernel trick,
which consists in projecting the original input space into a higher-
dimensional space where the separation is presumably easier.

Nearest neighbor methods are non-parametric, meaning that there
is no training stage. K-nearest neighbors implements a simple func-
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tion of the training data. At test time it finds a predefined number (k)
of training samples closest in distance to the new point, and predicts
the label from these. K-nearest neighbors can construct highly irreg-
ular and complex decision boundaries and achieve high accuracy at
the expense of a high computational cost.

Decision trees (Breiman et al., 1984) and tree-based methods are
also non-parametric, having the ability of modeling arbitrarily com-
plex relationships between inputs and outputs, without any prior
information or assumptions about the underlying functions. Tree-
based methods are also suited for classification and regression tasks.
Decision trees can be combined with variance reducing techniques
(see next Section) such as bagging (bootstrap aggregation) and boost-
ing, giving rise to state-of-the-art algorithms such as random forests
(Breiman, 2001) and gradient boosted trees (Friedman, 2001).

4.3.1 Bias-variance trade-off and generalization error

The generalization performance of a supervised learning algorithm
relates to its prediction capability on independent (unseen) test data.
This performance is extremely important as it guides the choice of a
learning model and the choice of its hyperparameters® (Hastie et al.,
2009). It is very important to avoid training and evaluating a learning
model on the same input data X since it would produce a very opti-
mistic error value due the model simply memorizing X. This would
not inform on how well it generalizes to new, unseen data.

Cross-validation is a well-known model validation technique used
in statistics. It allows to assess how the results of a model general-
ize to an independent dataset. The most simple case is to randomly
divide the input data X into two subsets, one for training the super-
vised learning model (training set) and the other for validating the
predictions of the trained model (fest set).

Let us suppose a target variable Y (labels of X), a relationship relat-
ing Y to X such as Y = f(X) + €, where € ~ N(0, 0¢), and a prediction
model f(X). The expected squared prediction error at a point xo is
(Hastie et al., 2009):

Err(xo) = E[(Y —f(x0))?], (4-3)
which can be decomposed into bias and variance components:

Err(xo) = 02 + [Ef(x0) — f(x0)] + E [f(x0) — Ef(x0)]”

(4.4)
= Irreducible Error + Bias? + Variance.

The first term, irreducible error, is the variance of the target around its
true mean f(xo) (noise in the true relationship that cannot be avoided).
The second term, squared bias, is the amount by which the average

3 Hyperparameters are the tuning parameters of a machine learning algorithm.
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Figure 4.4: Shape of the generalization error curve and the relationship with
the bias-variance trade-off. Taken from Goodfellow et al. (2016).

of our estimate differs from the true mean (error from erroneous as-
sumptions in the learning algorithm). The third term, variance, is the
expected squared deviation of f(x¢) around its mean (error from sen-
sitivity to small fluctuations in the training set). The bias-variance
trade-off (or dilemma) is the problem of simultaneously minimizing
the bias and variance that prevent supervised learning algorithms
from generalizing beyond their training set (see Fig. 4.4 and 4.5).

From this trade-off, we obtain the concepts of underfitting and over-
fitting. Underfitting originates when the supervised learning algo-
rithm misses the relevant relationships between features and target
outputs. In this case, the model has a high bias. Model overfitting is
caused by a high variance, which is caused when the algorithm mod-
els random noise in the training data, limiting the prediction power
on unseen new data (lack of generalization). We can control whether
a model is more likely to overfit or underfit by altering its complexity
or capacity (ability to fit a wide variety of functions). While simpler
functions are more likely to generalize, or to achieve a small gap be-
tween the training and test error, we still need to choose a sufficiently
complex hypothesis to achieve low training error.

Fig. 4.4 shows the typical U-shaped behavior of the generalization
error as a function of the model capacity. Fig. 4.5 shows the approx-
imation of a non-linear function with three models. The left most
model is a linear one and is not sufficient to fit the training data (blue
dots), which causes underfitting. The model in the middle is a lin-
ear regression with polynomial features of degree four, which fits the
data very well. The model on the right uses a polynomial of degree
15 and clearly overfits the data (it learns the noise on the training
dataset).
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Figure 4.5: The approximation of a non-linear function with models of in-
creasing complexity. The left model is underfitting while the
right model is overfitting the data points. Taken from the
scikit-learn documentation.

When evaluating the optimal hyperparameters of a learning model,
a better solution is to split X into three parts: a training set (used to fit
the models), a validation set (used for model selection based on their
prediction error), and a test set (for assessment of the generalization
error of the final model). The strategy of keeping a held-out subset of
data is sensitive to the random partition of X. This can be addressed
with k-fold cross-validation, where a test set is held out for final eval-
uation and the training set is split into k smaller sets. For each one
of the fold, a model is trained on k — 1 of the folds (as the training
set) and validated by computing a performance metric on the remain-
ing data. Fig. 4.5 shows an example of a regression model, evaluated
using a mean squared error metric using a ten-fold cross-validation
procedure. Variations or the cross-validation procedure are possible,
such as Leave-p-out or stratified k-fold cross-validation.

The higher the validation error, the less likely the model general-
izes well beyond the training data. Adjusting model representational
capacity is not the only way to decrease the generalization error. We
can, for instance, give the learning algorithm a preference for one
function over another. A modification made to a learning algorithm
to reduce its generalization error, but not its training error, is called
regularization.

4.3.2 Supervised learning in HCI

It is worth noting that in the context of HCI, only one discrimina-
tive model has been proposed for the task of exoplanet detection (on
multiple-channel SDI data): the DS4 Detect algorithm, an extension
of the S4 algorithm (Fergus et al., 2014). Indeed, the task of exoplanet
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Figure 4.6: S4 and DS4 algorithms results. The first two columns (from the
left side) correspond to one location and compare the S4 algo-
rithm with damped LOCIL The remaining columns show a sec-
ond injection location and compare S4 with DS4 using a linear
SVM and a radial basis function (RBF or Gaussian) kernel SVM.
Adapted from Fergus et al. (2014) and from slides presented by
the same author at the Keck Institute for Space Studies Work-
shop on exoplanet imaging (2016).

signal detection can be formulated as a supervised learning problem.
DS4 Detect adopts a discriminative approach based on SVMs, trained
on a labeled dataset composed of negative samples taken directly
from the input data and positive samples generated by creating syn-
thetic companions. Unfortunately, there is no publication describing
the details of this algorithm or robustly assessing its performance. It
only appears in the discussion section of Fergus et al. (2014). Fig. 4.6
shows a comparison of S4, DS4 and LOCI on a few companion in-
jections. The companions are injected at 1%, 2% and 4% of relative
brightness with respect to the speckles. Judging by the final detection
maps provided by the authors, the detection capacity is similar to the
original S4 algorithm and to damped LOCI, which might explain why
it has not been extensively used by the GPI campaign (Ruffio et al,,
2017).

4.4 DEEP LEARNING

Deep learning is a specific subfield of machine learning. The "deep"
in the term refers to the use of successive layers of representations.
These layered representations are learned via models called "neural
networks", which consist in stacked layers (see Fig. 4.7) one after the
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Figure 4.7: Diagram of a three-layer deep network for digit recognition
(classification) showing its deep representations. Taken from
Chollet (2017).

other. These neural networks are loosely based on the brain’s use of
layers of neurons working together, although there is no evidence that
the brain implements anything like the learning mechanisms used in
modern deep learning models. Deep learning is merely a mathemat-
ical framework for learning representations from data. Deep neural
networks can be used for supervised or unsupervised learning tasks.
In a supervised learning context, a deep neural network creates a
mapping from inputs X to targets Y by applying a sequence of simple
data transformations.

4.4.1  Neural networks

For understanding neural networks, it is important to review the way
an artificial neuron or perceptron (Rosenblatt, 1958) works. This com-
putational model receives multiple inputs, which are multiplied by a
continuous valued weight. The perceptron then returns a single out-
put, 1 if the weighted sum of the inputs is above some threshold, or
o if otherwise. The function that determines the output of a neuron
is known as the activation function. In the case of Rosenblatt’s percep-
tron (see Fig. 4.8), it is the thresholding operation or step function (as
shown in the top-left panel of Fig. 4.9). The perceptron has a single
layer of weights and can only express linear decision surfaces. Also,
with a single output it cannot handle the task of classification into
several categories. A function with multiple outputs can be learned
by forming a layer with multiple perceptrons. Artificial neural net-
works can be thought as composition of such layers of perceptrons
(also called units).
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Figure 4.9: Common activation functions. Top-left: Step function. Top-right:
Sigmoid function. Bottom-left: Tanh function. Bottom-right:
ReLU activation function.
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Other activation functions can be used, such as the sigmoid (see
top-right panel of Fig. 4.9), hyperbolic tangent (see bottom-left panel
of Fig. 4.9) and ReLU (see bottom-right panel of Fig. 4.9) functions.
The sigmoid is a smoothed, differentiable threshold function and its
output is a continuous function of its input. ReLU is the simplest non-
linear activation function (computationally cheap), which works by
setting any negative input value to zero, and is the preferred choice
for training deep neural networks. The softmax function is commonly
used as the output’s layer activation function in the case of multiclass
classification. The output of this function is positive and sums to one,
being equivalent to a categorical probability distribution.

Deep neural networks can be seen as a composition of simple lin-
ear data transformations (matrix multiplications and summations),
specified by the layer’s weights, and non-linearities introduced by
the activation functions. Introducing non-linearity extends the kinds
of functions that neural networks can represent. The weights or pa-
rameters of the network are initialized with random values and the
process of adjusting these parameters is the whole goal of training
the deep neural network. Learning the weights (typically millions of
them) requires to define a loss function, which measures the distance
between the network output Y’ and the true labels Y. A gradient-
based optimization procedure is then used in order to minimize this
loss.

4.4.2 Optimization of neural networks

Optimization is the task of minimizing some function f(x) by altering
x. Let f(x) be the loss function (also called objective, cost or error
function). Consider a function y = f(x) and its derivative f’'(x). This
derivative gives the slope of f(x) at the point x. Gradient descent
optimization consists in reducing f(x) by moving x in small steps with
opposite sign of the derivative (see Fig. 4.10 for an example). Critical
points are those for which the derivative is zero. A local minimum
is a point where f(x) is lower than at all neighboring points, while
a global minimum is a point where f(x) obtains its absolute lowest
value. In deep learning, optimization of functions with many local
minima (not optimal) and saddle points is the rule. Usually, finding
a value of f that is very low (not necessarily minimal) is enough.
For multidimensional functions, we must use the concept of partial
derivatives. The partial derivative a%if(x) measures how f changes
as only the variable x; increases at point x. The vector containing all
of the partial derivatives of f is called the gradient (derivative with
respect to a vector), and is denoted Vf(x). In this multidimensional
context, a critical point is reached when every element of the gradient
is zero (Goodfellow et al., 2016).
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Figure 4.10: Gradient descent technique. Taken from Goodfellow et al.
(2016).

The optimization of deep networks, with a large number of pa-
rameters, is accomplished with mini-batch stochastic gradient descent.
It works by drawing a random batch from X and Y, performing a
forward pass (running it through the network) to obtain Y/, comput-
ing the loss score on this batch and the gradient of the loss with
regard to the parameters of the network (backward pass), and chang-
ing the parameters in the direction opposite to the gradient (Chollet,
2017). The aim of this process is to lower the loss on the batch by a
small step, also called learning rate. The whole process of learning the
weights (that minimize the loss) is made possible by the fact that neu-
ral networks are chains of differentiable tensor operations. Therefore
it is possible to use the backpropagation method, by applying the chain
rule of derivation to find the gradient function mapping the current
parameters and current batch of data to a gradient value. Fig. 4.11
shows a schematic view of a deep neural network with the backward
and forward passes.

The the learning rate is important, because if it is too small, the
process would take many iterations (and it could get stuck in a local
minimum), whereas, if the step is too large, it would never converge.
A way to avoid getting trapped in local minima is to use momentum,
which draws inspiration from physics, and updates the weights based
not only on the current gradient value but also based on the previous
weight updates. Other methods have been proposed to automatically



44 DEEP LEARNING |

Input X
. 1st Layer
weights (data transformation)
. 2nd Layer
weights (data transformation)
. Nt Layer
weights (data transformation)
weight Predictions Input labels
update Y Y
Optimizer Loss function

loss score

Figure 4.11: Schematic view of the deep neural network training process.
The blue and red arrows show the directions of the forward
and backward passes correspondingly. Adapted from Chollet

(2017).

tune the learning rates, such as Adagrad (Duchi et al., 2011), RM-
Sprop (Dauphin et al., 2015) and Adam (Kingma and Ba, 2014). For
an overview of gradient descent optimization algorithms, see Ruder
(2016). Training a deep network usually requires thousands of train-
ing samples and tens of epochs (passes over the training dataset). The
network is trained once the loss score is minimal and the predictions
Y’ are optimal.

Although mini-batch stochastic gradient descent works very well in
practice, it is important to keep in mind that we have little theoretical
understanding of the very general non-convex optimization problems
involved in deep learning* (Goodfellow et al., 2016).

As described in the previous Section, overfitting is a challenge for
the generalization capacity of unsupervised learning algorithms. Ef-
fective ways of regularizing deep neural networks are dropout (Sri-
vastava et al., 2014), data augmentation techniques, and early stop-
ping. Dropout consists in randomly setting half of the activations
(outputs) of a hidden layer to zeros. It acts like a form of model aver-

This is one of the topics that according to Yann LeCun, one of the founding fathers
of deep learning, are yet to be solved. See his answer on Quora.
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aging over all possible instantiations of the model prototype, and it
is shown to deliver significant gains in performance in a number of
applications. Data augmentation is the process of creating synthetic
training data to make a machine learning model generalize better.
This is well suited for classification problems, and has been very ef-
fective for object recognition tasks. Early stopping is a simple strat-
egy for training large models with optimal representational capacity,
without overfitting the task (exploiting the U-shape of the validation
loss curve). Other regularization techniques applied to deep learning
are weight decay, addition of noise to the weights, parameter sharing
and ensemble methods (see Goodfellow et al. (2016) for a complete
review of these techniques).

Deep learning has led to breakthroughs in the most challenging ar-
eas of machine learning, specially those dealing with perceptual data:
near-human image classification and speech recognition, improved
machine translation and text-to-speech conversion, autonomous driv-
ing, processing natural language queries, amongst other tasks (Chol-
let, 2017).

4.4.3 Convolutional neural networks

Convolutional neural networks (CNNs, LeCun et al., 1989; Krizhevsky
et al., 2012) are a type of deep learning model for processing data that

having a grid-like topology (e.g. images), and are almost universally

used in computer vision. CNNs can also work with time series and

3D input data. They are called convolutional because of the use of

convolutions, linear operations which do not correspond precisely to

the definition of convolution as used in other fields such as engineer-
ing or pure mathematics (cross-correlation from a signal processing

perspective). CNNs use these convolutions instead of general matrix

multiplication in at least one of their layers (Goodfellow et al., 2016).
See Dumoulin and Visin (2016) for an overview of convolution arith-
metic in deep learning. Fig. 4.12 shows an illustration of a 2D convo-
lution. These convolutional layers compose the first stage of a CNN.
In a second stage, each linear activation (output of the convolutional

layer) is run through a non-linear activation function, such as the rec-
tified linear activation function. In a final stage, a pooling function is

used to modify the output of the layer further. The pooling layers pro-
vide invariance to small translation of the input signal. Max pooling is

the most common pooling used and consists in splitting the input in

non-overlapping patches and outputting the maximum value of each

patch.
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Figure 4.12: Illustration of the convolution of a 3x3 kernel over a 4x4 input
using unit strides. Taken from Dumoulin and Visin (2016).

4.4.4 Recurrent neural networks

A powerful specialization of the neural networks framework, recur-
rent neural networks (RNN, Rumelhart et al., 1986), are designed
to process one-dimensional, sequential data. These networks can han-
dle long sequences, which would be impractical for networks with-
out sequence-based specialization. RNNs build on the idea of shar-
ing parameters across different parts of a model. These networks use
previous outputs as inputs to form a recurrence, where a time state
contains a summary of the past states. The most effective sequence
models used in practical applications are called gated RNNs. Long
short-term memory (LSTM, Hochreiter and Schmidhuber, 1997) is
a type of such recurrent network, that has proven stable and pow-
erful for modeling long-range dependencies. The major innovation
of LSTM is its memory cell, which essentially acts as an accumula-
tor of the state information. The cell is accessed, written and cleared
by several controlling gates. LSTM networks have broken records for
tasks such as improved machine translation, large-vocabulary speech
recognition and text-to-speech synthesis.

4.45 Deep learning in HCI

Although neural networks have been used in astronomy since the
early nineties (Odewahn et al., 1992; Bertin and Arnouts, 1996; Tagli-
aferri et al., 2003), the use of deep learning has started to spread only
in the last couple of years. CNNs are becoming more and more com-
mon for image-related tasks, such as galaxy morphology prediction
(Dieleman et al., 2015), astronomical image reconstruction (Flamary,
2016), photometric redshift prediction (Hoyle, 2016), and star-galaxy
classification (Kim and Brunner, 2017). Other deep neural network
architectures such as autoencoders (Frontera-Pons et al., 2017) have
been proposed for feature-learning in spectral energy distributions of
galaxies. Very recently, generative adversarial networks (Schawinski
et al., 2017) were used for image reconstruction and compared to con-
ventional deconvolution techniques. Fig. 4.13 shows an overview of
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Figure 4.13: Schematic overview of a neural network architecture for galaxy
morphology classification, exploiting galaxies rotational sym-
metry. Taken from Dieleman et al. (2015).

the CNN used by Dieleman et al. (2015) for winning the Galaxy Zoo’
competition of galaxy morphology classification.

In the context of HCI, no deep learning solutions have been pro-
posed to date. In Chapter 6, we describe a novel supervised learning
framework for exoplanet detection in ADI sequences, which applies
deep neural networks to HCI for the first time. We also evaluate its
performance and compare it to state-of-the-art differential imaging
approaches such as ADI-PCA and LLSG.

5 https://www.galaxyzoo.org/
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ABSTRACT

In this chapter I present my first proposed algorithm for post-
processing ADI sequences which builds on unsupervised learning
techniques describes previously, such as PCA. Inspired by recent ad-
vances in machine learning algorithms such as robust PCA, we pro-
pose a localized subspace projection technique that surpasses current
PCA-based post-processing algorithms in terms of the detectability
of companions at near real-time speed, a quality that will be use-
ful for future direct imaging surveys. The main idea of this novel
approach is to use randomized low-rank approximation methods
recently proposed in the machine learning literature, coupled with
entry-wise thresholding to decompose an ADI image sequence locally
into low-rank, sparse, and Gaussian noise components (LLSG). This
local three-term decomposition separates the starlight and the associ-
ated speckle noise from the planetary signal, which mostly remains in
the sparse term. The performance of LLSG was tested on a long ADI
sequence obtained on 3 Pictoris with VLT/NACO. Compared to a
standard AID-PCA approach, LLSG decomposition reaches a higher
signal-to-noise ratio and has an overall better performance in the re-
ceiver operating characteristic space. This three-term decomposition
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brings a detectability boost compared to the full-frame standard ADI-
PCA approach, especially in the small inner working angle region
where complex speckle noise prevents ADI-PCA from discerning true
companions from noise. This chapter is based on previous work published
in Gomez Gonzalez et al. (2016a).

5.1 INTRODUCTION

Plain PCA extracts a lower-dimensional basis that is optimal in the
least-squares sense. More recently, alternatives to the least-squares cri-
terion have been proposed in the field of computer vision to consider
other objectives, such as sparsity of the noise or robustness to outliers.
In this chapter, we propose one implementation of these algorithms
applied to ADI image sequences. In our approach we decompose the
images locally into low-rank, sparse, and Gaussian noise components
to enhance residual speckle noise suppression and improve the de-
tectability of point-like sources in the final combined image.

Throughout this chapter we use rank(X) to denote the rank of a
matrix X, and card(X) to denote the cardinality (lp-pseudo norm or
number of non-zero elements) of X.

5.2 SUBSPACE PROJECTION AND LOW-RANK PLUS
SPARSE DECOMPOSITIONS

The problem of matrix low-rank approximation has been studied ex-
tensively in recent years in many different fields, such as natural lan-
guage processing, bioinformatics, and computer vision. In particular
for image analysis, there are multiple tasks that can be achieved using
low-rank modeling, such as image compression, denoising, restora-
tion, alignment, face recognition, and background subtraction (or fore-
ground detection in video sequences) (Zhou et al., 2014). The applica-
bility of low-rank approximations is guided by the fact that the latent
structure of high-dimensional data usually lies in a low-dimensional
subspace. If we consider a sequence of n images and a matrix M €
R™*P whose columns are vectorized versions of those images, the
above statement can be expressed as M = L + E, where L has low
rank and E is a small perturbation matrix. An estimate of L is given
by a best low-rank approximation of M in the least-squares sense:

mLin IM — L||#, subject to rank(L) < k, (5.1)

where HXH% = \/ 2 Xizj denotes the Frobenius norm of a matrix
X, and k is the rank of the low-rank approximation L. This can be
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solved analytically through SVD (Eckart and Young, 1936; Candes
et al., 2009):

k
M=Uuzv' = Z GiuiviT, (5.2)
i=1

where the vectors u; and v; are the left and right singular vectors, and
o0 the singular values of M. Choosing the first k left singular vectors
forms an orthonormal basis for the low-dimensional subspace that
captures most of the variance of M. This procedure corresponds to
PCA (Hotelling, 1933), as it is usually called in statistics.

In computer vision, for the task of segmentation of an image se-
quence into background and foreground pixels, PCA was proposed
by Oliver et al. (2000), who modeled the background pixels using an
eigenspace model. Each image is approximated by its projection onto
the first k principal components. They noted that, because they do
not appear at the same location in the n sample images and are typ-
ically small, moving objects do not make a significant contribution
to the PCA model. The foreground pixels are found by subtracting
from each image its low-rank PCA approximation and thresholding
the pixel values in the residual images.

In astronomy PCA has proven to be effective for modeling time-
and position-dependent PSF variations of the Sloan Digital Sky Sur-
vey and later for the Advanced Camera for Surveys on the Hubble
Space Telescope (see Jee et al., 2007). In the context of reference PSF
subtraction for high-contrast imaging, a PCA-based approach has
been proposed independently by Soummer et al. (2012) and Amara
and Quanz (2012). The problem of modeling and subtracting a refer-
ence PSF with the purpose of detecting a moving planet in an ADI
image sequence has a lot in common with the segmentation of video
sequences into background and foreground pixels (e.g., for video
surveillance and detection of moving objects), since the reference PSF
and quasi-static speckles can be modeled using a low-rank PCA ap-
proximation. The orthogonal basis formed by the first principal com-
ponents (PCs) is learnt from the ADI sequence itself, which adds com-
plications to the low-rank approximation task because some part of
the foreground signal is absorbed in the background model. This re-
lates to the fact that PCA gives a suitable low-rank approximation
only when the term E (foreground signal) is small and independent
and identically distributed Gaussian (see section 1.1 in Candes et al.,
2009). This is unfortunately not the case for moving planets in ADI
images.

5.2.1  Robust PCA

In recent computer vision literature, several subspace projection al-
gorithms exploiting the low-rank structure of video sequences have
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been proposed to solve the weaknesses of the basic PCA model and
provide more versatile and robust background models (Bouwmans
and Zahzah, 2014). The most notable is the family of robust PCA
(RPCA) algorithms, which model the data as the superposition of
low-rank and sparse components, containing the background and the
foreground pixels, respectively. One of the first approaches for solv-
ing this decomposition was proposed by Candes et al. (2009), with
an algorithm called principal component pursuit (PCP). PCP aims to
decompose M into low-rank plus sparse (L + S) matrices by solving
the following problem:

ranSn ILIl, + A S|y, subject toL+S =M, (5-3)

where L is low-rank, S contains sparse signal of arbitrarily large mag-
nitude, ||S[l; = 2_j; ‘Sij| is the ly-norm of S, and ||L||, denotes the
nuclear norm of L or sum of its singular values. The nuclear norm
and the ly-norm are the convex relaxations of rank(L) and card(S)
and provide the best computationally tractable approximation to this
problem. Under rather weak assumptions, this convex optimization
recovers the low-rank and sparse components that separate the vary-
ing background and the foreground outliers. Important limitations
of this algorithm are its high computational cost and the assump-
tion that the low-rank component is exactly low-rank, and the sparse
component is exactly sparse, contrary to what we find in real data,
which is often corrupted by noise affecting a large part of the entries
of M (Bouwmans and Zahzah, 2014). In the ideal case, when apply-
ing such decomposition to an ADI image sequence, the reference PSF
would be captured by the low-rank component and the small moving
planets (realizations of the instrumental PSF) by the sparse compo-
nent. In real ADI coronagraphic images, the reference PSF, composed
of the stellar PSF and speckles, is never exactly low-rank owing to
the quasi-static component of the speckle noise. Therefore the exact
decomposition into low-rank and sparse components does not exist,
and the S component recovered by PCP becomes polluted by residual
noise from the quasi-static speckles that will produce a final image re-
sembling the results of standard PCA.

5.2.2 GoDec

Several modifications of PCP have been proposed to address its lim-
itations with real data for the problem of foreground detection (see
Bouwmans and Zahzah, 2014, for a complete review). Beyond PCP,
there are different approaches to RPCA via low-rank plus sparse ma-
trix decomposition.

Among them, GoDec (Go Decomposition, Zhou and Tao, 2011b) is
a convenient approach, in terms of computational cost, to the decom-
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position of M. It proposes a three-term decomposition (instead of the
typical low-rank plus sparse one):

M=L+S+4G,rank(L) < k,card(S) < c, (5.4)

where G is a dense noise component, and k and c the constraints
on the rank of L and the cardinality of S. GoDec produces an ap-
proximated decomposition of M, whose exact low-rank plus sparse
decomposition does not exist because of additive noise G, restrict-
ing rank(L) and card(S) in order to control model complexity. This
three-term decomposition can be expressed as the minimization of
the decomposition error:

nLliSn IM—L— SH%, subject to rank(L) < k, card(S) < c. (5.5)

The optimization problem of Eq. (5.5) is tackled by alternatively
solving the following two subproblems until convergence, when the
decomposition error reaches a small error bound (=103):

Ly = argmin |[M—L—S, 1|%;
rank(L)<k

(5-6)
S¢ = argmin ||M—Lt—SH%.
card(S)<c

In Eq. (5.6), Lt can be updated via singular value hard thresholding
of M — S (via SVD in each iteration), and S via entry-wise hard
thresholding of M — L. It must be noted that singular value hard
thresholding is equivalent to the truncation of the number of PCs in
the PCA low-rank approximation.

A randomized and improved version of GoDec was proposed by
the same authors with SSGoDec. In this approximated RPCA algo-
rithm, the cardinality constraint is modified by introducing an 1y reg-
ularization, which induces soft-thresholding when updating S (Zhou
and Tao, 2013). The soft-thresholding operator 8, with threshold y
applied to the elements of a matrix X can be expressed as

8yX = sgn(Xyj) max (|Xij| —v,0). (5.7)

The reduced computational cost of SSGoDec mostly comes from
using, on each iteration, the bilateral random projections (BRP, Zhou
and Tao, 2011a) of M instead of singular value thresholding for its
low-rank approximation. BRP is a fast randomized low-rank approx-
imation technique making use of M’s left and right random projec-
tions, Y7 = MA; and Y2 = MTA,, where A; € R"*k and A, €
R™*¥ are random matrices. The rank-k approximation of M is com-
puted as

L=Yi(AZY))71Y]. (5.8)
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Figure 5.1: LLSG decomposition of ADI data (left) into low-rank (middle
left) plus sparse (middle right) plus Gaussian noise (right) terms.
In the ideal case, this decomposition separates the reference PSF
and quasi-static speckle field from the signal of the moving plan-
ets, which stays in the sparse component.

The computation of this approximated L requires less floating-point
operations than the SVD-based approximation. The bounds of the ap-
proximation error in BRP are close to the error of the SVD approxi-
mation under mild conditions (Zhou and Tao, 2011a).

5.3 LOCAL LOW-RANK PLUS SPARSE DECOMPOSI-
TION OF ADI DATASETS

Restricting the cardinality of M — L; while operating on whole im-
ages is problematic in the presence of multiple companions, as the
dimmest one could get severely subtracted from the data (especially
for close-in companions), or bright speckles could turn into false pos-
itives. We find that applying a local three-term decomposition, which
exploits the geometrical structure of ADI image sequences, can alle-
viate the problem of a global thresholding and in addition provides a
better low-rank approximation for the given patch.

These ideas were put together to build an ADI post-processing al-
gorithm for boosting point-like source detection, the Local Low-rank
plus Sparse plus Gaussian-noise decomposition (LLSG). A schematic
illustration of this decomposition is shown in Fig. 5.1. The algorithm
follows four main steps:

1. the images of the cube are broken into patches, specifically in
quadrants of annuli of width 2A/D (see Fig. 5.2);

2. each of these quadrants is decomposed separately as in Eq. (5.6),
alternatively updating its L and S components for a fixed num-
ber of iterations;

3. for each patch, the S component of the decomposition is kept;
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Figure 5.2: Quadrants of annuli used for partitioning the images for LLSG.

4. all frames are rotated to a common north and are median com-
bined in a final image.

The soft-thresholding will enforce the sparsity of the S component
throughout the iterations. Instead of using a common threshold pa-
rameter v, we use a different one for each patch. Values of y that are
too high will remove the signal of companions too much along with
the residual speckle noise, while values that are too low will not lead
to much improvement over ADI-PCA processing, therefore hindering
the detection of potential very faint companions. Instead of leaving
this as a free parameter, our algorithm defines y for each patch as
the square root of the median absolute deviation of the entries in S;.
This thresholding can be scaled up or down safely by the user with
a tunable parameter in case it is needed. Partitioning the frames us-
ing quadrants of annuli does not increase the computational cost and
alleviates the problem of applying entry-wise soft thresholding glob-
ally (on the whole frames), thereby giving better results in the case of
several companions with different brightnesses or when very bright
speckles are present.

Among the free parameters of LLSG, the rank (low integer value)
is certainly the most important one. This parameter is equivalent to
the number of PCs in the ADI-PCA algorithm and defines the size
of the low-rank approximation of our dataset (L term). Values of the
rank that are too high cause too much planetary signal to be absorbed
by the low-rank term, whereas a low value produces a noisier sparse
term. The sweet spot depends on data. The sparsity level (for scaling
the soft-thresholding, by default is equal to one) is the second param-
eter of LLSG, which controls how sparse the S term is and how much
noise goes into the G term. It usually does not require user inter-
vention since it is internally defined for each image patch. The third
parameter of LLSG is the number of iterations. A small number of it-
erations is enough (the default is ten) to achieve good decomposition
according to our tests on several datasets, but it can be fine-tuned by
the user. The number of iterations affects the running time of LLSG
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and generally by doubling the number of iterations we double the
computation time.

As explained before, the sparse component is the main product of
this algorithm, where potential companions will have a higher signal-
to-noise ratio (S/N). The two other components in this decomposi-
tion, the low-rank and the noise, can serve as estimates of the total
noise of our data. The L component will contain the starlight and
most of the static and quasi-static structures, while G will capture the
small and dense residual noise that was not captured by the low-rank
approximation. An implementation of LLSG for ADI data is provided
in the VIP library (see Chapter 2).

This idea of a three-term decomposition with some modifications,
e.g. a different partitioning of the images, could be used as well for
spectrally dispersed data obtained with an integral field spectrograph
(IFS). After rescaling IFS data, the companions will appear to move ra-
dially through the speckle noise field. Therefore, LLSG can be a good
choice for decomposing the image sequence and capturing potential
planets in the sparse term.

5.4 APPLICATION TO REAL DATA

5.4.1 Data used

The application of the LLSG decomposition to real data gives a first
taste of its capabilities. In this Chapter, we use the data set of 3 Pic
and its planetary companion 3 Pic b (Lagrange et al., 2010) obtained
on January 2013 with VLT/NACO in its AGPM coronagraphic mode
(Absil et al., 2013). The observations made at L’ band were performed
under poor weather conditions, nevertheless (3 Pic b could be seen on
the real-time display thanks to the excellent peak starlight extinction
provided by the AGPM. The total on-source integration time was 114
min with a parallactic angle ranging from —15° to 68°. A clean cube
was obtained after basic preprocessing steps, such as flat fielding, bad
pixel removal, bad frames removal, recentering of frames, and sky
subtraction. After temporal subsampling, by averaging 40 successive
frames, a new cube of 612 individual frames with 8 sec of effective
integration time was created (for details see Absil et al., 2013). As a
final step the central 161x161 pixels were cropped on each frame.

5.4.2 Results

Figure 5.3 shows the final post-processed frames using full-frame
ADI-PCA and the three terms of the LLSG decomposition. We clearly
see how LLSG can separate the starlight and quasi-static speckles
from the planetary signal. The sparse term is where most of the sig-
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Figure 5.3: Final result of post-processing with ADI-PCA (left) and the three
terms of the LLSG decomposition (middle and right) for 3 Pic
NACO data. 38 PCs were used to maximize the S/N for (3 Pic
b in the full-frame ADI-PCA approach. For the LLSG decompo-
sition a rank of 10 gave a significant improvement on b’s S/N
(see Fig. 5.4). All the frames were normalized to the maximum
value of the LLSG sparse frame (middle panel).

nal of 3 Pic b is present. In the following discussion, we use the S/N
between the planet signal and the background pixels to compare the
performance of the two algorithms for the task of detection of point-
like sources.

For details on the S/N definition, see Section 2.3 of Chapter 2. The
use of the S/N as a metric for comparing algorithms can become
problematic when, in some cases, the noise can be almost totally sup-
pressed, making the S/N infinite. In this scenario, if a companion
is present, a clear detection through visual vetting can be claimed.
We have encountered this situation when processing other datasets
of better quality (conditions of observation and/or better wavefront
sensing). We also note that, the S/N of a point-like source depends
on the choice of the aperture sizes and on the position of the aper-
tures themselves, especially at small angular separations where the
small sample statistics effect becomes dominant (Quanz et al., 2015).
Throughout this Chapter we use an aperture size of 4.6 pixels, which
is the Gaussian FWHM measured on the off-axis PSF of 3 Pic.

The positioning of the apertures is done in an automatic way and
is the same for each realization, when measuring S/N on the final
frames of the compared algorithms. As an example, we only have 24
background apertures (n;) for the case of 3 Pic b (using the FWHM
as an approximation for the value of the A/D parameter). In spite of
these limitations, we stick to the use of the S/N for its practicality for
the task of detecting point-like sources.

Figure 5.4 shows the S/N maps corresponding to full-frame ADI-
PCA and the sparse term of the LLSG algorithm. With LLSG the S/N
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Figure 5.4: S/N maps for ADI-PCA (left) and LLSG (right) computed from
the final frames shown in Fig. 5.3 (left and middle panels).
Planet 3 Pic b has roughly three times higher S/N when pro-
cessed with our LLSG decomposition.

of B Pic b is roughly three times higher than with full-frame ADI-
PCA thanks to the small amount of residual noise in S. To maximize
the S/N with full-frame ADI-PCA, we varied the number of PCs in
the interval from 1 to 100, measuring at every step the S/N at the
location of $ Pic b. The highest S/N (=16.7) was achieved with 38
PCs. In the case of LLSG, the best compromise between residual noise
subtraction and companion signal recovery was obtained with a rank
equal to 10. The default number of iterations worked well for this ADI
sequence. To validate if the increased S/N translates in the ability to
detect fainter planets, we perform a ROC analysis comparing LLSG
to full-frame ADI-PCA (see Section 5.5.2 and Section 6.7).

As we can see in Fig. 5.3, roughly 25% of the planetary signal leaks
into the LLSG noise term. However, this is less than the amount
of companion signal absorbed in the PCA low-rank approximation,
when using the 38 PCs that maximized the S/N of 3 Pic b. In this
case, the leaking into the G term does not hinder the goal of LLSG
for improving the detectability of a point-like source. In the follow-
ing section, we test whether this holds true for more complicated
scenarios with fainter companions. Nevertheless, the ultimate goal is
to avoid any signal loss. This will be the subject of future work.
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5.5 SIMULATIONS WITH SYNTHETIC COMPANIONS

5.5.1  Single test case

The use of on-sky data with simulated companions allows us to probe
the performance of the detection algorithms with planets at different
locations on the image plane and with varying brightness. This en-
ables us to test how LLSG deals with a fainter and closer-in compan-
ion than 3 Pic b, which presented a rather easy scenario. To obtain
a data cube without any companion, 3 Pic b was subtracted using
the negative fake companion technique (Lagrange et al., 2010; Absil
et al., 2013), which uses the off-axis PSF as a template to remove the
planet from each frame by optimizing the position and flux of the
injected negative candidate (see Section 2.7). This optimization is per-
formed by minimizing the sum of the absolute values of the pixels
in a 4xFWHM aperture on the ADI-PCA processed final frame. We
used the downhill simplex minimization algorithm (as implemented
in VIP) for this purpose, which is enough to obtain a planet-free cube.

In the empty cube, we injected the normalized off-axis PSF to cre-
ate four synthetic companions and compared the results of full-frame
ADI-PCA and our approach (see Figs. 5.5 and 5.6). The companions
a(285°), b(185°), c(5°), and d(85°) were injected at 2, 5, 8, and 13 A/D
from the center, respectively. The brightness of the fake companions
was scaled as a function of the local noise before injection. The noise
was measured as the standard deviation of the fluxes of the resolu-
tion elements inside the corresponding annulus in the classical ADI
processed frame (which means it has been median-subtracted, dero-
tated, and median-combined). The injected PSFs were scaled at 0.5, 5,
5, and 7 times the noise of the respective annulus.

In this particular example of processing a cube with several injected
synthetic companions, we encounter a first problem with full-frame
ADI-PCA: it is not possible to optimize the S/N for each individual
companion at the same time by adjusting the number of PCs used. For
the innermost injected planet, we need to use 13 PCs for full-frame
ADI-PCA in order to reduce the residual speckle noise and achieve
the best possible S/N. As done previously, the number of PCs was
varied from 1 to 40, each time measuring the S/N at the location
where the innermost planet was injected. This number of PCs may
not be optimal for farther companions, which could achieve higher
S/Ns with a smaller number of PCs. The optimal number of PCs
in general decreases when the planet is farther away from the star in
the photon-noise limited regime, since the planets have more rotation
and the speckle noise is not dominant.

A Dbetter strategy in this case is to use the ADI-PCA low-rank ap-
proximation annulus-wise (see middle panel in Fig. 5.5). In this case,
it is even possible to apply a frame-rejection criterion based on a par-
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allactic angle threshold (Absil et al., 2013). The motivation behind this
is that an annular ADI-PCA low-rank approximation will capture the
background and speckle noise in a better way for a given patch. Fur-
thermore, keeping only the frames where the planet has rotated by
at least TA/D in our ADI-PCA reference library, we prevent the plan-
etary signal from being captured by the low-rank approximation and
subsequently subtracted from the science images, thereby increasing
the S/N in the final frame. We provide a parallelized implementation
of this algorithm in the VIP repository. For the innermost planet, lo-
cated at 2A/D, we can obtain a maximum S/N of 3.2 after optimizing
the number of PCs (by testing from 15 to 35 PCs) and using 2A/D
wide annuli. For LLSG we kept the same rank as we used before and
slightly reduced the sparsity level to achieve the highest S/N for the
innermost fake companion.

As seen in the S/N maps shown in Fig. 5.6, our LLSG algorithm
provides a gain of a factor three in S/N at 2A/D with respect to full-
frame ADI-PCA, resulting in a clear detection instead of the false neg-
ative in the case of full-frame ADI-PCA (even after careful optimiza-
tion of the ADI-PCA truncation and knowledge of the coordinates of
the planet). For the three other synthetic companions, located farther
from the star, the S/N becomes between two and three times higher
compared to full-frame ADI-PCA. The annular version of ADI-PCA
does not provide much improvement over full-frame ADI-PCA in the
small inner working angle region, even for an ADI sequence that has
a large parallactic angle rotation range (~80°) and after adjusting the
number of PCs. In this single simulation, we show some practical
disadvantages of a full-frame ADI-PCA and the gain in S/N we ob-
tain by using local versions of ADI-PCA and the proposed three-term
decomposition.

5.5.2 Performance

Of course, based on a single realization, we cannot characterize the
detection performance of the algorithms. More exhaustive approaches
are needed, such as the use of receiver operating characteristic (ROC)
curves. The performance of a detection algorithm is quantified using
ROC analysis, and several meaningful figures of merit can be derived
from it (Barrett et al., 2006; Lawson et al., 2012). ROC and localization
ROC curves are widely used tools in statistics and machine learning
for visualizing the performance of a binary classifier system in a true
positive rate (TPR) - false positive rate (FPR) plot as a decision thresh-
old 7 varies. The ultimate goal of high-contrast imaging, as for any
signal detection application, is to maximize the TPR while minimiz-
ing the FPR, which can be achieved by maximizing the area under
the curve (AUC) in the ROC space (Mawet et al., 2014). In general
the goal of a classifier in the ROC space is to be as close as possible
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Final result of post-processing with ADI-PCA (left), annular
ADI-PCA (middle), and our LLSG decomposition (right). The
images were normalized to their own maximum value. Four
synthetic companions a(285°), b(185°), c(5°), and d(85°) were in-
jected at 2, 5, 8, and 13 A/D from the center, respectively. The
injected PSFs were scaled at 0.5, 5, 5, and 7 times the noise of the
respective annulus. We used 13 PCs when applying full-frame
ADI-PCA and 25 PCs for the annular ADI-PCA (applying the
same number of PCs in every annulus) in order to maximize the
S/N of the innermost fake companion in each case.

annular PCA LLSG

1 arcsec 1 arcsec
_— = _— =

S/N maps for full-frame ADI-PCA (left), annular ADI-PCA
(middle), and our LLSG decomposition (right) showing the val-
ues of each fake companion S/N. With our algorithm the four
injected companions are clearly revealed. The S/N of the fake
companion at 2A/D is clearly at the level of the noise (false neg-
ative) in the case of full-frame ADI-PCA and its annular version.
With LLSG we reach a peak S/N that is three times higher. For
the rest of synthetic companions, the S/N obtained with LLSG
is up to three times higher than the one obtained with full-frame
ADI-PCA.
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to the upper lefthand corner (perfect classifier, referred to as "oracle"
with FPR=0 and TPR=1) and away from the random classifier line
(TPR=FPR).

Building this plot for any exoplanet detection algorithm requires
a large number of fake companion simulations, especially if a single
planet is injected for each realization as in our case. One hundred
realizations were made per annulus, centered at 2, 4, 6, 8, 10, and 14
A/D, in a random way, meaning that there is a 50% chance that the
datacube contains a synthetic planet. In the case of an injection, the
fake companion has a random azimuthal position in the given annu-
lus and a random brightness, scaling the PSF (ranging from o.5 times
to 5 times the noise in the considered annulus) as described previ-
ously. We consider localization ROC curves for which the decision
of whether there is a planet or not is tied to a given position in the
image plane.

The detection decision is based on comparing the value of the peak
S/N of a given resolution element with a threshold t. We call the
peak S/N here the maximum S/N value obtained from shifting the
center of the test resolution element inside a A/D circular aperture
centered on the considered coordinates. This is equivalent to taking
the maximum S/N value in a A/D circular aperture, centered on the
considered coordinates, from an S/N map. We find this is in practice
better than using the S/N of a resolution element centered on some
given injection coordinates, because the maximum S/N for a point-
like source (blob) will usually be shifted by a small amount because
of post-processing. A true positive (TP) means that, in the case of
an injection, the tested resolution element has a peak S/N > 1. A
false positive (FP) arises in case of a non-injection, when a random
resolution element inside the considered annulus has a peak S/N
> 7. It is important to notice that we inspect only one resolution
element each time instead of the total number of resolution elements
in the image (even for the FP counts) to preserve the 50-50 prior we
described previously. We vary T from o to 8 in steps of 0.1 in order to
have enough points in our empirical ROC curve.

The TPR and FPR for these ROC curves are the averaged TPR and
FPR over all brightnesses and the tested annuli. The ROC curves are
shown in Fig. 5.7. It is important to emphasize that every point, for
every T, of the LLSG decomposition ROC curve is higher than the
one for ADI-PCA, which means that the LLSG detection algorithm is
closer to the perfect classifier. The full range of values of FPR (up to
one) in our ROC curves is not fully covered even when testing unre-
alistically low values of . In this case calculating the AUC becomes
problematic, and using other metrics derived from a ROC curve be-
comes more suitable for comparing algorithms (classifiers). An exam-
ple of such a metric is the Euclidean distance to the upper lefthand
corner or "oracle" (Braham et al., 2014). In the case of ADI-PCA, the
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TPR

FPR

Figure 5.7: ROC curves for our LLSG decomposition and full-frame ADI-
PCA. The S/N thresholds T are shown for integer values. Our
algorithm ROC curve is close to the oracle (perfect classifier) in
the upper left corner.
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Figure 5.8: TPR as a function of the distance from the star for an S/N thresh-
old T =5.

minimum distance to the upper lefthand corner is 0.3, while for our
algorithm it is 0.2, which again confirms its superiority.

For generating these ROC curves, we used fifteen PCs, which cor-
responds to 90% of the explained variance of M, a common approach
for choosing the number of PCs for ADI-PCA in machine learning
and statistics. The rank of the three-term decomposition was set to
fifteen, and the number of iterations was set to ten. Tuning parame-
ters instead of having them fixed for all the realizations could lead
to minor improvements in the ROC curves. Tuning the parameters
would also increase the complexity in the procedure of generating
the ROC curves and would in general be a less fair approach.

The TPR or sensitivity is generally a more relevant measure than
the FPR (which is generally fixed for a given S/N threshold), espe-
cially for surveys and for obtaining planet population constraints
(Mawet et al., 2014). Therefore it is important to evaluate the TPR
as a function of the distance from the star for an S/N threshold of 5,
which is equivalent to 5-0 under the assumption of nearly Gaussian
residuals in the final images. The TPR for both algorithms for the
tested annuli and T = 5 are shown in Fig. 5.8. The TPR for the LLSG
decomposition is higher for each one of the tested annuli compared
to ADI-PCA. It is especially interesting how at 2A/D, where the spec-
kle noise is dominant, the TPR for our algorithm reaches 83% instead
of the 55% achieved by ADI-PCA.

Another great advantage of the LLSG decomposition over more ex-
pensive algorithms is that its computational cost is comparable to that
of full-frame ADI-PCA. For instance, it can process the 612 x 161 x



161 (~ 15.8 x 10°) pixel datacube used in our simulations in about ten
seconds (when using only one process), whereas full-frame ADI-PCA
(equivalent to KLIP or pynpoint implementations) using the LAPACK
optimized multithreading library can do it in four seconds. This tim-
ing depends, as explained before, on the number of iterations for the
three-term decomposition.

It is important to clarify that LLSG is an algorithm for improving
detection of faint exoplanets, which decomposes the images, sepa-
rating the static and quasi-static structures from the moving planets.
This process penalizes the signal of the potential companions, and
in consequence the final LLSG frames cannot be used for estimating
in a robust way the position or flux of those companions. We still
need to rely on the injection of negative companion candidates, as
we described in a previous section, to calibrate the photometry and
astrometry of potential detections, as well as their uncertainties.

In the case of ADI data, the range of rotation (parallactic angles)
affects the efficiency of post-processing algorithms when searching
for potential companions. With small rotation, the signal of a planet
remains more static through the sequence of frames (this effect gets
worse in the innermost part of the frames), and a low-rank approx-
imation based algorithm will fail to retrieve it. This effect combines
with other factors, such as the number of frames and the PSF decorre-
lation rate during the sequence, and will limit different post-processing
algorithms in different ways. Better understanding of the correlation
between these various factors will be useful for choosing algorithms
and for designing optimal observing runs.

5.6 CONCLUSIONS

In this chapter we have shown, for the first time, how recent sub-
space projection techniques and robust subspace models proposed in
the computer vision literature can be applied to ADI high-contrast im-
age sequences. In particular our implementation of a randomized low
rank-approximation recently proposed in the machine learning litera-
ture coupled with entry-wise thresholding allowed us to decompose
an ADI image sequence locally into low-rank, sparse, and noise com-
ponents. LLSG brings a detectability boost compared to full-frame
ADI-PCA approach at all positions of the field of view as can be seen
in the ROC curves with averaged TPR and FPR, and in the plot of the
TPR as a function of distance. This is especially important because it
allows us to access the small inner working angle region (~ 2A/D for
this dataset), where complex speckle noise prevents ADI-PCA from
finding faint companions.

One important advantage of this algorithm is that it can process
a typical 612 x 161 x 161 pixel cube without sacrificing too much of
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the computational cost compared to the fast full-frame ADI-PCA ap-
proach. That the patches can be processed separately leads to real-
time processing if coupled with parallelism to exploit modern multi-
core architectures, making this algorithm suitable for coming survey
pipelines.

We have shown the potential of low-rank plus sparse decomposi-
tions and, in particular, the LLSG decomposition for high-contrast
imaging. More expensive formulations of these decompositions cou-
pled with a fine-tuned model of the noise could lead to even better
reference PSF subtraction for exoplanet detection than the one we pro-
posed in the present Chapter and will be the focus of future work.
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ABSTRACT

Post-processing algorithms play a key role in pushing the detec-
tion limits of high-contrast imaging (HCI) instruments. Differential
imaging post-processing approaches enable the production of science-
ready images relying on unsupervised learning techniques, such as
low-rank approximations. In this chapter we present SODIRF and
SODINN, two new approaches for detecting exoplanets in angu-
lar differential imaging sequences. Both algorithms share a novel
paradigm that enables the reformulation of HCI post-processing as
a supervised learning problem building on well-established machine
learning techniques. We show, through receiver operating charac-
teristic curves analysis, the improved performance of both SODIRF
and SODINN compared to state-of-the-art ADI post-processing algo-
rithms. In particular, from one to two A/D, SODINN improves the
TPR by a factor of ~3.5 with respect to ADI-PCA when working at
the same false positive level. SODINN brings the possibility of re-
processing existing HCI databases to maximize their scientific return
and improve the demographics of directly imaged exoplanets. This
Chapter is largely based on a paper submitted for publication in AGA.
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6.1 INTRODUCTION

In the last decade, direct imaging of exoplanets has become a real-
ity thanks to advances in optimized wavefront control, specialized
coronagraphs, innovative observing techniques and dedicated post-
processing algorithms (Bowler, 2016; Milli et al., 2016). The amount
of available archival high-contrast imaging (HCI) data has increased
rapidly with the advent of second generation instruments (e.g., VLT/-
SPHERE, GPI). However, the HCI community has slowly adopted
the latest developments in data management and machine learning,
compared to fields such as computer vision, biology, and medical sci-
ences.

The computational power and data storage increase in the last
decade has enabled the emergence of data-driven discovery methods
in sciences (Ball and Brunner, 2010), in parallel to the populariza-
tion of machine learning and data science fields of study. Data-driven
models are especially important in HCI, if we consider the sheer
amounts of data that modern high-contrast imaging instruments are
producing. Learning artificial neural networks is an algorithmic ap-
proach proposed a few decades ago in the machine learning commu-
nity, inspired by our understanding of the biology and structure of
the brain. Only recently, with graphics processing unit (GPU) com-
puting going mainstream, larger amounts of data, and the use of
deep architectures (with increased number of layers and neurons),
deep learning has produced impressive results across a wide range of
applications in computer vision and language understanding (Good-
fellow et al., 2016). Deep learning has allowed to re-examine many
computer vision tasks by removing the necessity of hand-crafted fea-
tures, beating every single performance metric (Xie et al., 2017). Deep
learning techniques are also gaining popularity for tackling a variety
of astronomical problems (Dieleman et al.,, 2015; Schawinski et al.,
2017).

6.2 STATE-OF-THE-ART IMAGE PROCESSING TECH-
NIQUES FOR HCI

The HCI planet hunter pipeline includes the generation of a science-
ready final image, where potential exoplanets are flagged by visual
inspection aided with by the computation of signal-to-noise (S5/N)
maps’. In the case of angular differential imaging (ADI, Marois et al.,
20006) data, the generation of a final image relies on differential imag-
ing techniques. The purpose of these reference PSF subtraction tech-
niques is to reduce the image dynamic range, by modeling and sub-
tracting the contribution from the high-flux pixels belonging to the

1 We use the definition of S/N by Mawet et al. (2014), as explained in Section 2.3.
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leaked starlight and from the quasi-static speckle noise. This results
in residual final images where, unfortunately, part of the compan-
ion signal is fitted in the reference PSF and subtracted (this is called
companion self-subtraction in HCI). Among the reference PSF sub-
traction techniques we count LOCI (Lafreniere et al., 2007), principal
component analysis (PCA) based algorithms (Soummer et al., 2012;
Amara and Quanz, 2012), and LLSG (Gomez Gonzalez et al., 2016a).
All these approaches use different types of low-rank approximation
to model the reference PSE. A slightly different approach is taken by
ANDROMEDA (Mugnier et al., 2009; Cantalloube et al., 2015), which
uses maximum likelihood estimation on residual images obtained by
pairwise subtraction within the ADI sequence.

The exoplanet detection problem is critical, as it triggers the sub-
sequent steps such as the characterization (determination of position
and flux) of detected companions. As we pointed out earlier, the de-
tection of potential companions lacks automation. The detectability of
companions by visual inspection is limited by human perception bi-
ases and the procedure of computing S/N maps is upper bounded by
the performance of the reference PSF subtraction techniques. More-
over, the S/N metric does not deal with the truthfulness of poten-
tial blobs. Other procedures for detection of companions such as the
Laplacian of Gaussian (see Section 2.6) or matched filtering (Ruffio
et al., 2017) suffer from the same problem. For a review of general pur-
pose source detection techniques on astronomical images, see Masias
et al. (2012). More robust approaches with higher sensitivities to dim
companions are needed. The ultimate goal is to produce a per-pixel
likelihood or probability of companion presence for each ADI se-
quence. A step in this direction is ANDROMEDA but its performance
has not been thoroughly measured (contrast curves show its perfor-
mance to be at the same level as full-frame ADI-PCA). A promising
approach is the use of discriminative models, as it has been proposed
for the case of multiple-channel SDI data by Fergus et al. (2014): the
DS4 Detect algorithm, an extension of the S4 algorithm (see Section
4.3.2). Unfortunately, there is no study describing the details of this
algorithm or assessing its performance.

In the following sections we describe a machine learning method
for detecting exoplanets in ADI datasets using a supervised learning
framework and deep neural networks. Our approach brings a great
improvement in terms of sensitivity and of false positive rate.

63 FROM UNSUPERVISED TO SUPERVISED LEARN-
ING

Differential imaging post-processing approaches rely on unsupervised
learning techniques, such as low-rank approximations, to enable the

125



126 | SUPERVISED DETECTION OF EXOPLANETS

and VY to train/test/validation sets Inputcube
Input cube, N frames @
‘/ Convolutional LSTM layer ‘
_ kernel=(3x3), filters=40 | MLAR patches
3d Max pooling
size=(2x2x2)
Trained DNN

‘/ Convolutional LSTM layer ‘
kernel=(2x2), filters=80

3d Max pooling Probability of

k SVD k residuals, size=(2x2x2) positive class

low-rank pack 19 ‘ Dense layer ‘
approximation Image e Binary map
lovels space units=128 )
= RelU activation + dropout
L p N
.h n : MLAR samples ‘ Output dense layer ‘
\ units=1
- - - - probability
(0) oo 1 : Labels Sigmoid activation threshold = 0.9

(@) (b) (©)

Figure 6.1: The three stages of SODINN's framework. Panel (a) illustrates
the labeled data generation step. The ADI sequence and off-axis
PSF template are examples of VLT/SPHERE data. Panel (b) il-
lustrates the model training step. Panel (c) concerns the evalu-
ation of the trained model on the original cube and shows the
schematic representation of SODINN’s output detection map.

production of final residual images. The detection ability of these tech-
niques, which is directly connected to the true positive rate for a given
ADI dataset, depends on a variety of factors: the number of frames in
the sequence, the total range of field rotation, the distance of a com-
panion to its parent star, and the aggressiveness of the differential
imaging subtraction approach.

Our approach consists in a reformulation of the exoplanet detection
task as a supervised learning problem. Supervised learning requires
labeled data (or ground truth) in order to train a discriminative model
that can make predictions. Depending on the model used, two algo-
rithms are proposed: SODIRF - Supervised exOplanet detection via
Direct Imaging with Random Forests — and SODINN - Supervised
exOplanet detection via Direct Imaging with deep Neural Networks.

The first stage, and challenge, is the generation of a labeled dataset
from a single ADI image sequence. As we show in Chapter 6.4 this
procedure relies on a technique called data augmentation, which is
widely used for training deep neural networks. Once the model is
trained on this labeled dataset, it can be applied to the same ADI
sequence for evaluation without risk of overfitting. Fig. 6.1 shows a
diagram of our novel framework for SODINN’s variant.
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The fact that SODIRF and SODINN can be trained on a labeled
dataset created from a given ADI sequence means that these mod-
els are fine-tuned to each ADI sequence (Braham and Van Droogen-
broeck, 2016). We have tested SODINN on ADI sequences from dif-
ferent instruments, using two very different datasets in terms of their
characteristics. The first dataset, a VLT/NACO sequence on 3 Pic
(Absil et al., 2013), consists of 612 frames with 8 sec of effective inte-
gration time, and has a total field rotation of 83 degrees. The second
dataset, a VLT/SPHERE sequence on V471 Tau (Hardy et al.,, 2015),
consists of 50 frames with 64 sec of integration time, and has a total
field rotation of 30 degrees. Throughout this Chapter and for simplic-
ity, we assume that 1 x FWHM = 1A/D = 4 pxs.

64 GENERATION OF A LABELED DATASET

In our proposed framework, the generation of a labeled dataset re-
quires a transformation of the ADI image sequence that suits better
a supervised learning problem and enables us to create two distin-
guishable classes. In order to achieve a different view of the data, we
work on patches (instead of full frames) which is motivated by the
fact that the exoplanet signal spatial scale is small compared to the
frame size, and facilitates the creation of a large labeled dataset even
from a single ADI sequence, as explained hereafter.

Our labeled dataset is generated in the form of 3D residual patches
at several Singular Value Decomposition (SVD) approximation levels,
which we will call from now on, Multi-level Low-rank Approxima-
tion Residual (MLAR) patches. These MLAR samples are built in the
following way. Consider a matrix M € R™*P whose rows contain the
pixels inside a centered annulus of a given width. n is the number of
frames in the ADI sequence. Recall that SVD is a matrix factorization
such that:

n
M=UuzVT =) o], (6.1)
i=1

where the vectors 1; and v; are the left and right singular vectors, and
o0; the singular values of M. SVD is involved in several least-squares
problems, such as finding the best low-rank approximation of M in
the least-squares sense, i.e.,

argmin |M — X2, (6.2)
X

where |- ||% denotes the Frobenius norm. As it was mentioned in Sub-
section 1.3.3.5, we form a low-dimensional subspace B, capturing
most of the variance of M, by keeping k right singular vectors. The
residuals are given by:

res = M — MBTB. (6.3)
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These residuals are later reshaped to image space, de-rotated and
median combined as the usual ADI workflow dictates. In general, the
larger the value of k the better the reconstruction, which produces
smaller residuals (with less energy or standard deviation).

Instead of choosing one k value for estimating the low-rank approx-
imation of M and obtaining a residual flux image (which is the goal
of PCA-based approaches), we choose multiple k values sampling
different levels of reconstruction. The MLAR patches are obtained by
cropping square patches, of odd size and about twice the size of the
FWHM, from the combined final residual frames obtained for each k.

These 3D samples, or MLAR patches, can be understood as com-
puting annulus-wise PCA residual patches at different numbers of
principal components. Working with these MLAR patches, we replace
the ADI temporal information with the patch evolution as a function
of the approximation level. As mentioned earlier, the SVD processing
is always computed in an annulus-wise fashion. Defining the values
of k, relies on the cumulative explained variance ratio (CEVR). Let M
be the matrix M, from which its temporal mean has been subtracted,
and 6; the singular values of M. The explained variance ratio for the

i singular vector is defined as:

/\2
0j

Zi ‘fiz,

where i goes from one to min(n,p). It measures the variance ex-
plained by each singular vector and the CEVR measures the cumula-
tive explained variance up to the k' singular vector. Sensible values
for k lie within the interval from 0.6 to 0.95 CEVR (for one exam-
ple, see Fig. 6.2), based on our experience with PCA-based methods
applied to HCI. The number of steps in this interval can be tuned, al-
though the general rule is that more steps in the MLAR patches lead
to more expressive samples that generally lead to higher classification
power of a discriminative model. In our tests, with 8 to 20 steps, we
could train accurate models. It is worth noting that our initial tests,
working with 2D raw patches, were not successful and this motivated
the constructions of the MLAR samples.

Using this data transformation, we generate labeled MLAR sam-
ples from our two classes, one containing the signature of a com-
panion (positive class ¢t) and the other representing the background
and speckle diversity (negative class c¢~). Therefore, we generate la-
bels y € {c,c™} associated to the MLAR samples. We emphasize
that generating a large labeled dataset is possible, in the task of ADI
processing, thanks to the possibility of generating synthetic compan-
ions and the exploitation of the rotation diversity of an ADI sequence.

The creation of the positive class relies on the injection of off-axis
PSF templates, a procedure accepted within the HCI community for
assessing the sensitivity limits of image processing techniques. The

(6.4)
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Figure 6.2: Generation of a labeled dataset: determination of approxima-
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Figure 6.3: Generation of a labeled dataset: determination of flux intervals.
We show the median S/N of injected companions, in a ADI-
median subtracted residual frame, as a function of the scaling
factor (from a large flux interval [5,1000]). The red star signs
denote the lower and upper bounds of the companion injections
for generating MLAR samples of the positive class.
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injection consists in the addition of the PSF template at a variable
frame location with a random brightness from a predefined interval.
This interval is carefully chosen to avoid class overlap, which occurs
when a same MLAR sample (or very similar) appears as a valid ex-
ample of both classes. This can happen when the lower bound of our
brightness interval is too low, in which case the signature of the com-
panion signal is almost indistinguishable from the one of the back-
ground polluted with quasi-static speckles. Sensible lower and upper
bounds are set with respect to the achieved S/N, usually in the in-
terval [1,3], on a final residual frame obtained through classical ADI
median subtraction (see Fig. 6.3). These flux intervals are defined in
an annulus-wise fashion and are therefore related to the radial flux
profile of the images.

The generation of the samples from negative class, representing the
background and speckles, relies on the exploitation of the rotation
associated to an ADI sequence and common machine learning data
augmentation techniques®. The generation of a large number of nega-
tive samples faces two main difficulties. First, the fact that with a sin-
gle ADI image sequence we obtain a single realization of the residual
noise (in a PCA-based differential imaging context). Second, the num-
ber of patches we can grab from a given annulus is limited, and orders
of magnitude smaller than the number of samples that are needed in
the labeled dataset. If we feed these samples to the network, it would
quickly memorize them, and that would produce strong overfitting.
Our dedicated data augmentation process addresses these issues and
can be summarized in the following steps:

1. We randomly grab up to ten percent of the MLAR patches in
the given annulus.

2. We use negative parallactic angles when derotating the residual
images (after reshaping to image space the residuals obtained
in expression 6.3) to obtain final median combined images that
preserve the noise correlation and keep the same statistical prop-
erties, while blurring any astrophysical signal. We grab all the
available MLAR patches from the given annulus.

3. We randomly pick samples from the two previous subsets and
average them to produce new samples.

4. Finally, we perform random rotations and small shifts of the
MLAR samples obtained in the previous three steps to create
even more diversity.

Optionally, a chosen area (circular aperture) of the ADI frame se-
quence can be masked to conceal a known, true companion. The cor-

2 This refers to the process of creating synthetic data and adding these to the training

set in order to make a machine learning model generalize better (see section 7.4 of
Goodfellow et al. (2016)).
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responding patches are then ignored by the generator of labeled data.
In the end, the patches of the positive class contain the injected com-
panions and the patches of the negative class contain augmented sam-
ples. Thanks to this strategy, we avoid showing the samples (MLAR
patches) from the original ADI sequence to our classifiers, thus reduc-
ing model overfitting. Note that the pixels in each slice of the MLAR
sample are normalized in the interval [o,1], bringing them to the same
value range. As a sanity test we inject fake planets in the ADI se-
quence we use to generate the labeled dataset, without masking the
injected companions. Afterwards, we check whether the trained mod-
els are able to detect these pre-existing companions or not. In our
tests, the injected companions (a proxy for the situation when we
have a new dataset with a pre-existing unknown exoplanet) can be
recovered every single time, which demonstrates that our approach
prevents overfitting at the labeled dataset generation stage. Therefore,
we conclude that our framework can be applied to new ADI datasets
and the performance assessment shown in Chapter 6.7 is fair. Note
that having access to multiple datasets taken with the same instru-
ment (survey data), would allow us to train a more general model
and depend less strongly on our data augmentation procedure.

In panels (a) and (b) of Fig. 6.4, we show a few examples of the
resulting MLAR samples composing our labeled data set. The patch
size was set to seven pixels. The MLAR positive samples shown in
panel (b) clearly illustrate the exoplanet PSF morphological distortion
introduced by differential imaging post-processing, as a function of
the aggressiveness (analogous to the number of principal components
used in a PCA-based post-processing approach). This is related to
the well-known problem in HCI of companion self-subtraction. The
PSFs of the companions clearly degrade as the CEVR increases (they
eventually vanish), which affects the positions of the PSF centroids.

We use the VIP Python library (Gomez Gonzalez et al., 2017) for
low-level image operations and the generation of labeled datasets.
The generation of the MLAR samples is done on CPU in a parallelized
way and the SVD computations use the randomized SVD algorithm
proposed by Halko et al. (2011) to speed up the computation time.
We use the above described procedure to generate a balanced labeled
dataset of up to half a million MLAR samples. Here again the gen-
eral rule is that more samples are better for the discriminative power
of our models. A thorough analysis of the influence of the labeled
dataset size on the performance of our discriminative models has yet
to be performed.
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Figure 6.4: (a) Each row corresponds to a random MLAR sample from the
negative class (background and speckles). (b) Each row corre-
sponds to a MLAR sample from the positive class (exoplanet sig-
nal). The positive samples are shown, from top to bottom, with
increasing flux. Every slice of the MLAR sample is normalized in
the interval [o,1]. The CEVR for these MLAR samples are shown
in Fig. 6.2.
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65 DISCRIMINATIVE MODEL

The role of the discriminative model is to disentangle two kinds of sig-
nal signatures. The positive class ¢ corresponds to the signal from the
exoplanets and the negative class ¢ to the speckles and background.
The goal of the classifier is to learn a mapping from the input MLAR
samples to their corresponding labels and to generate predictions on
new samples § € {c~,c"}. This is possible thanks to the fact that the
footprint of a true companion in the MLAR patches is different from
the one of a speckle or a background area. In the following Sections,
we propose two ways of exploiting the structure of our MLAR sam-
ples, one using random forests (SODIRF) and a more sophisticated
one using deep neural networks (SODINN).

6.5.1 Random forest based approach

In the case of SODIRF, we need a 2D matrix of samples versus features
suitable for training the random forest classifier. The feature matrix
is constructed by vectorizing the MLAR samples and stacking them
in a matrix. A random forest (Breiman, 2001) is an ensemble learn-
ing method that fits a multitude of decision tree classifiers on various
sub-samples of the dataset (with bootstrapping), and uses averaging
to improve the predictive accuracy. A random forest also controls
over-fitting to the training dataset, reducing the generalization error,
if compared to single decision trees (with higher variance). We im-
plemented SODIRF with the machine leaning library scikit-learn.
This implementation of a random forest combines the decision tree
classifiers by averaging their probabilistic prediction. We trained the
random forest by using 100 fully developed trees to form the ensem-
ble model. The model was trained using a simple train-test splitting
procedure and reached over 99.5% test accuracy.

Random forests can be efficiently trained on CPUs, in just a few
minutes, exploiting modern multi-processor architectures. This is dif-
ferent from deep neural networks which require last generation GPUs
and more computing time to be trained. They differ not only in terms
of the computational cost but also in terms of performance, as we
show in Section 6.7.

6.5.2 Deep neural network based approach

As we discussed in Chapter 4, a recurrent neural network (Rumel-
hart et al., 1986) is a class of neural network suited for sequence
modeling. Long-short term memory (Hochreiter and Schmidhuber,
1997) networks are a special kind of RNN, capable of learning long
term dependencies. They are widely used in machine translation,
large-vocabulary speech recognition and text-to-speech synthesis. On
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the other hand, convolutional neural networks (LeCun et al., 1989;
Krizhevsky et al., 2012) are the preferred solution for processing data
that has a grid-like topology, e.g. images, and are almost universally
used in computer vision.

Convolutional LSTM networks (Shi et al., 2015) combine convolu-
tional and LSTM architectures, which makes them very efficient for
modeling spatio-temporal dependencies and correlations. A convolu-
tional LSTM layer is similar to an LSTM layer, with the difference that
the input and recurrent transformations are both convolutional. As
we mentioned before, in our framework we replace the time axis with
the MLAR dimension. SODINN makes use of a deep neural network
model that exploits these 3D samples using convolutional LSTM cells.
The MLAR samples are directly fed to the neural network, without
sacrificing their spatio-temporal structure as in the case of SODIRF.

We have implemented SODINN’s neural network classifier with
the highly modular and minimalist Keras library (Chollet et al., 2015)
using its Tensorflow (Abadi et al., 2015) backend. The networks were
trained on a dedicated NVIDIA DGX-1 deep learning system with
eight P1oo GPUs. As shown in Fig. 6.1, the architecture consists of two
convolutional LSTM layers, each one followed by a 3D max pooling
layer with sizes 2x2x2. The first convolutional LSTM layer uses a 3x3
kernel with 4o filters, while the second features a 2x2 kernel with 8o
filters. These are followed by two fully connected dense layers, the
first with 128 hidden units (on which we apply dropout (Srivastava
et al.,, 2014)) and the last consisting of a sigmoid unit. The network
weights are initialized randomly using a Xavier uniform initializer
and are learned by back-propagation with a binary cross-entropy loss
function:

L= _Z(Un In(Gn) + (1 —yn) In(1 —=Gn)), (6.5)

n

where yn, is the true label of the n*™ MLAR sample and {, = p(c* |
MLAR sample) is the probability that the n"™ MLAR sample belongs
to the positive class.

The network is trained after splitting the labeled data in train, test
(ten percent of the initial samples), and validation sets. An Adam op-
timization strategy (Kingma and Ba, 2014) is used with a learning
rate of 0.003 and mini-batches of 64 training samples. We include an
early stopping condition monitoring the validation loss. Usually, our
model is trained with 15 epochs (passes of the stochastic gradient
descent optimizer through the whole train set) reaching 99.9% valida-
tion accuracy.
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Figure 6.5: SODINN'’s probability map (left) and binary detection map
(right), thresholded at 99%, for the VLT/NACO f Pic dataset.

6.6 PREDICTION STAGE

Once the models are trained, they are applied to the input data cube.
First, we perform the same transformations to the input ADI sequence
to obtain MLAR patches centered on each one of the pixels of the
frame. The discriminative model then classifies these MLAR patches,
assigning a probability of membership to the positive class, p(§ =
¢t | MLAR sample). The outputs of both SODIRF and SODDIN are
a probability map and a binary map, obtained after thresholding the
probabilities, as exemplified in Fig. 6.5 for the VLT/NACO dataset.
We can see how SODINN'’s binary map clearly reveals the presence
of B Pic b, without false positives, for this probability threshold.

For comparison, in a differential imaging PCA-based approach, one
would tune the number of principal components that works best for
a companion at a given radial distance, resulting in a residual flux
image (a single realization with a single value of k) where one could
visually identify companions or use a S/N metric (taking into account
the noise in a given annulus). In our framework, grabbing MLAR
patches centered on each pixel of the frame, enables the estimation of
a class probability in a detection map. We then threshold this map at
a desired level of positive class probability. This detection criterion is
evaluated independently for each pixel on the frame, contrary to the
S/N estimation approach.

6.7 PERFORMANCE ASSESSMENT

After the test on a known companion, we can proceed with testing
the performance (detection capacity) of the trained models by inject-
ing fake companions. In this section we will focus on SODINN. Using
the V471 Tau VLT /SPHERE dataset, we inject four companions (using
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Table 6.1: Parameters for the fake companions of Figs. 6.6 and 6.7.

FC | Radius | Angle | Flux (ADUs) | Contrast | ADI-PCA S/N
1 | 1.5A/D | 170° 9000 25x 1074 3.2

2 | 175 A/D | 230° 7000 1.9 x 1074 5.9

3 | 25A/D 0° 1500 42x107° 1.3

4 | 5A/D 90° 400 1.1x107° 2.7

the input off-axis PSF), from one to five A/D. The parameters of the
synthetic companions are shown in Table 6.1. The quoted S/N is the
best one obtained, at the location of each companion, after trying all
possible numbers of principal components. The first, third and fourth
companions are pretty much at the level of the speckle noise at these
separations (see Fig. 6.6). The shapes of their PSFs are hard to dis-
tinguish from surrounding noise and the S/N values (obtained in a
1xFWHM aperture centered at the injection positions) are small. Only
the second companion has a S/N over five, which is due to the fact
that it was injected on top of a bright speckle (purposely). The visual
inspection would not be definitive for such a companion. As shown
in Fig. 6.7, SODINN outperforms the full-frame ADI-PCA approach
by recovering the four companions at a high (99%) probability with-
out any false positive. Tests with known and injected companions are
a first attempt to measure performance. Unfortunately, it is not possi-
ble to judge the performance of a detection algorithm based on a few
realizations of such tests (this is discussed in detail in Appendix A).
We can adopt a more robust approach using a signal detection theory.
A receiver operating characteristic (ROC) curve is a useful tool for
assessing the performance of binary classifiers (see Section 5.5.2). In
general, ROC curves allow us to study the performance of a binary
classifier system in a true positive rate (TPR = p(J = c¢* |y = ¢™)
- false positive rate (FPR = 1—p({J = ¢~ | y = c¢7) space, as a deci-
sion threshold T varies. In other words, they can assess the TPR (also
called sensitivity) and the FPR at the same time. This, by principle,
differs from the sensitivity or contrast curves widely used in HCI.
In Fig. 6.8, we illustrate the task of a binary classifier in a signal de-
tection context and the effect of choosing a detection threshold. By
varying this threshold, we can adjust the FPR that we are willing to
accept for a specific sensitivity. The ability of separating the class is in-
herent to the model; that is what a ROC curve shows. HCI as a signal
detection problem seeks to simultaneously maximize the sensitivity
to companions and minimize the number of false detections (FPR).
In this study, we choose to build our ROC curves in a TPR (percent-
age of detected fake companions) vs mean per-frame false positives,
instead of a TPR vs FPR space. The total number of false positives
is counted on the whole detection map, and is averaged for each .
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Figure 6.6: Injection of four synthetic companions (parameters detailed in
Table 6.1) in the V471 Tau VLT/SPHERE ADI sequence. (a)
Three final residual frames with ADI-PCA with 2, 4 and 8 PCs.
(b) Cropped frames centered on the injected companions (after
optimizing the number of PCs to maximize the S/N of each
companion).
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Figure 6.7: Injection of four synthetic companions (parameters detailed in
Table 6.1) in the V471 Tau VLT/SPHERE ADI sequence. (a)
SODINN's probability and binary maps where the four plan-
ets are clearly detected (without false positives). (b) The MLAR
patches centered on each one of the fake companions.
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Figure 6.8: Behavior of a binary classifier in a signal detection theory con-
text.

This reflects better the goal of a planet hunter and facilitates interpre-
tation of the performance simulations. This strategy differs from the
one used in Chapter 5. The ROC curves are built separately for differ-
ent annuli with a tuned uniform flux distribution for the injection of
fake companions. Having ROC curves for different separations from
the star better illustrates the algorithm performance at different noise
regimes. When interpreting the results, it is important to compare
the ROC curves for different algorithms to each other, for a given
annulus, considering that the TPR depends on the brightness of the
injected companions, while the mean per-frame false positives do not.
It is also important to examine the shape of the curves. For instance,
it is preferable to have a steeper curve, which means that such classi-
fier does better in minimizing the number of FP while it increases its
sensitivity.

We compare SODINN and SODIRF to classical ADI median sub-
traction, full-frame ADI-PCA and LLSG on the VLT/SPHERE V471
Tau dataset, a challenging ADI sequence with few frames and mild
rotation. As mentioned earlier, differential imaging approaches (unsu-
pervised learning), i.e. ADI median subtraction, ADI-PCA and LLSG,
do not generate a prediction (probability) but rather a residual im-
age to look at. We obtain detection maps for these approaches by
building S/N maps and thresholding them at several values of t. For
each injection of a fake companion, a new data cube is built and pro-
cessed with each of the five algorithms. In the case of SODINN and
SODIRF, the discriminative models are not retrained for each injec-
tion of a fake companion. Two principal components, or 0.7 CEVR of
the full-frame data cube, are used for ADI-PCA, and the same value
is used as the rank parameter of LLSG (no other hyperparameters
were tuned). S/N maps were built for the resulting residual frames
and thresholded at different values of t: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,



Table 6.2: Parameters used for the ROC curves of Fig. 6.10.
Panel | Radius | Flux (ADUs) Contrast

(@) | 1-2A/D | U(3000,7000) | 8.5 x 107> to 1.9 x 1074

(b) | 2-3A/D | U(1000,5000) | 2.9 x 107> to 1.4 x 10~*

() |45A/D| U(50,350) | 14x107°to1.0x 107>

(d) | 45A/D | U(150,450) | 43x107°to1.3x 107>

5. For SODINN and SODIRF, we thresholded the probability map at
several levels: 0.1, 0.2, 0.3, 0.4, 0.5, 0.59, 0.69, 0.79, 0.89, 0.99. Fig. 6.9
illustrates one single realization of a companion injection and a sin-
gle threshold value. The ROC curves, built for three different annuli,
are shown in Fig. 6.10. Brightnesses, contrasts and distances, for all
the injected companions, are shown in Table 6.2. MLAR samples of
16 steps, in the interval 0.5-0.95 CEVR, are used for training SODINN
and SODIRE. A total of 100 injections are performed for building each
one of the ROC curves.

Reading the ROC curves in Fig. 6.10 is straightforward: panel (a),
for an annulus from one to two A/D, shows that a blob (at least one
active pixel inside a 3x3 pixels box) sticks out above the detection
threshold at the position of the fake companion injection in 12%,
16%, 18%, 5% and 44% of the cases for ADI median subtraction, ADI-
PCA, LLSG, SODIRF and SODINN respectively, when setting the de-
tection thresholds at their highest values (S/N of five for ADI me-
dian subtraction, ADI-PCA and LLSG, 99% probability for SODINN
and SODIRF). At the same time, an average of ~0.8 false positives
is present in the ADI median subtraction and ADI-PCA S/N maps,
while LLSG, SODIRF and SODINN show no spurious blobs. The ROC
curves for larger separations consistently show SODINN’s improved
performance with respect to other approaches (see panels (b), (c) and
(d) of Fig. 6.10). The performance of LLSG seems to degrade at larger
separations, most probably due to the lack of hyperparameter tun-
ing. SODIRF'’s sensitivity improves with the separation and starts to
match the performance of SODINN. In Appendix A.1 we provide
more details about the construction of the ROC curves and the as-
sessment of post-processing algorithms for exoplanet detection.

6.8 CONCLUSIONS

This study illustrates the potential of machine learning in HCI for
the task of exoplanet detection. We propose a novel paradigm for de-
tecting point-like companions by reformulating HCI post-processing
as a supervised learning problem, building on well-established ma-
chine learning techniques. Instead of relying on unsupervised learn-
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PCA S/Nmap Thresholded at 4.5

LLSG S/Nmap Thresholded at 4.5

Figure 6.9: Example of one single injection, showing the detection maps of
ADI-PCA, LLSG and SODINN. False positives are shown with
red circles while true positives are shown with blue ones, for a
given threshold value. These are the counts done per injection
and later used for building the ROC curves. Fig. A.3 is an ex-
tended version of this figure.
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Figure 6.10: ROC curves for the VLT/SPHERE V471 Tau dataset, compar-
ing ADI median subtraction, ADI-PCA, LLSG, SODIRF and
SODINN (a) for the 1-2 A/D annulus, (b) for the 2-3 A/D annu-
lus, (c) and (d) for the 4-5 A/D annulus with two different flux
distributions, as shown in Table 6.2.
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ing techniques, as most of the state-of-the-art ADI post-processing
algorithms, we generate labeled datasets (using data augmentation
techniques) and train discriminative models that classify each pixel
of the image, assigning a probability of containing planetary signal.
We present two approaches that differ in the type of discriminative
model used: SODIRF and SODINN. The former employs a random
forest classifier while the latter features a more advanced deep neu-
ral network model, which exploits better the structure of the labeled
MLAR samples.

In order to assess the detection capabilities of our approaches, we
perform a ROC analysis comparing both SODINN and SODIRF to
techniques such as ADI-PCA and LLSG. The performances of both
algorithms are beyond what ADI-PCA and ADI median subtraction
can offer. In particular, the performance of SODINN lies in a sepa-
rate zone of the ROC space: from one to two A/D, it improves the
TPR by a factor of ~3.5 with respect to ADI-PCA when working at
the same false positive level (one false positive per-image). More-
over, this is achieved in the case of a challenging ADI sequence, with
mild rotation and few frames, from a last-generation HCI instrument
- VLT/SPHERE (see Appendix A.1 for a deeper discussion of the
ROC curves performance assessment). The fact that these models are
versatile and can be fine-tuned to each specific ADI sequence opens
great possibilities of re-processing existing databases, from first- and
second-generation HCI instruments, to maximize their scientific re-
turn.

Although in this Chapter we only addressed single ADI datasets,
our framework’s true potential is in the context of surveys, where the
data from different observations could be used to generate a larger
and more diverse labeled dataset. This would allow us to train more
general, and perhaps more accurate, neural network models. The ex-
ploitation of SODINN for surveys will be the focus of a future study.
Other interesting venues of future research are the inclusion of the
companion brightness into the model, the extension to other HCI ob-
serving techniques (beyond ADI), and the use of generative neural
networks for complementing the data augmentation process.

The simultaneous increase in sensitivity, which translates in deeper
detection limits (the ability to detect companions at higher contrasts),
and reduction of the per-image false positives clearly indicate that our
supervised approach SODINN is a very promising HCI exoplanet
detection technique. Considering that ADI remains the most com-
mon HCI observing strategy and the large reservoirs of archival data,
SODINN could potentially improve the demographics of directly im-
aged exoplanets at all separations, including those in the inner vicin-
ity (1-2 A/D) of their parent stars where ADI signal self-subtraction
and speckle noise are the strongest.









CONCLUSIONS

In this dissertation, I have presented the results of my research on
the development of novel approaches to data processing in high-
contrast imaging. Data processing constitutes a critical component
of high-contrast imaging, as advanced image processing algorithms
are bound to push the detection limits of high-contrast imaging in-
struments. The consensus, after ten years of high-contrast imaging,
is that massive planets, such as those of HR8799, are rare at wide
separations. From indirect methods, we know that super-Earths and
rocky planets are much more common than giant planets. For this rea-
son, the development of new image processing techniques is of key
importance for maximizing the scientific return, specially at short sep-
arations, of existing first and second generation high-contrast instru-
ments. The ultimate goal of post-processing procedures is to improve
the planet to star contrast (increasing the ability to detect faint com-
panions), reduce the image dynamic range and combat speckle noise
(increasing the ability to detect close-in companions). Most of these
differential imaging algorithms model a reference PSF, by exploiting
the diversity introduced with a given observing technique, to produce
a residual final image. Unfortunately, part of the companion signal is
fitted in this reference PSF and subtracted together with the speckle
pattern. New detection methods must address these issues and detec-
tion biases of differential imaging. On the other hand, during the last
five years, we have witnessed the emergence of data-driven discov-
ery methods in sciences in parallel to the popularization of machine
learning and data science fields of study. The high-contrast imaging
community has slowly adopted the latest developments in data man-
agement and machine learning for analyzing the increasing amount
of available data. This dissertation attempted to fill in this gap and
developed at the interface of various fields such as computer science,
machine learning, statistics and astrophysics.

In the first part of this dissertation, I have presented my contri-
bution to the field of high-contrast imaging in terms of scientific
software development. Concretely, I have developed the Vortex Im-
age Processing (VIP) library, an open-source Python library, which
contains a large number of state-of-the-art and novel pre- and post-
processing algorithms for the analysis of high-contrast imaging data.
VIP was inspired, in the scientific context, by existing high-contrast
imaging pipelines written in commercial languages. In the software
developing context, it was inspired by the open source Python com-
munity, its ethos and practices. VIP is being actively used by several
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high-contrast research teams and has been cited more than a dozen
times to date. In the first part of this manuscript, I also showcased the
capabilities of VIP, presenting examples of its application to two real
on-sky HR8799 datasets from two high-contrast ground instruments.
In these two published studies, VIP was used for investigating the
presence of a fifth companion in this system, producing sensitivity
limits, and obtaining robust astrometry of the four known compan-
ions with high astrometric accuracy.

In the second part of this dissertation, I have presented my devel-
opments in terms of ADI image processing algorithms, with a spe-
cial emphasis on the task of exoplanet detection. These original ap-
proaches were developed drawing ideas from computer vision and
machine learning fields, and their performances were evaluated in
a robust signal detection theory framework. The first approach, the
LLSG decomposition, is a method that improves over PCA-based low-
rank approximation methods for reference PSF subtraction. It builds
on recent algorithmic developments in computer vision and decom-
poses the image sequence into three components: a low-rank, a sparse
and a Gaussian noise term. The motivation behind this is to isolate
the signal of moving companions in the sparse term, facilitating the
detection task and boosting the S/N of potential companions. A com-
parison of LLSG and ADI-PCA performances in a ROC space shows
that LLSG improves in TPR while preserving the same FPR.

The second approach takes high-contrast imaging post-processing
from an unsupervised to a supervised learning framework. This novel
data-driven supervised detection approach exploits unique character-
istics of ADI datasets, which enables the generation of large labeled
datasets to train discriminative models. Two algorithms are proposed
in this framework: SODIRF and SODINN. The former uses a well-
known random forest classifier while the latter implements cutting-
edge developments in deep learning. In particular, SODINN’s per-
formance lies in a separate zone of the ROC space when compared
to state-of-the-art techniques such as ADI-PCA. Using a challenging
VLT/SPHERE dataset, the performances of SODIRF and SODINN
were compared to ADI median subtraction, ADI-PCA and LLSG al-
gorithms. From one to two A/D, SODINN improved the TPR by a
factor of ~3.5 when working at the same false positive level. This su-
pervised detection framework offers the possibility of re-processing
existing archival databases to maximize their scientific return and po-
tentially improve the demographics of exoplanets detected through
high-contrast imaging.

There are several clear and exciting directions forward following
the results of this dissertation. Regarding VIP, it is rewarding that
more users are getting on board and that some are turning into co-
developers, implementing enhancements and fixing issues. VIP started



as an experimental playground and therefore its API" was not de-
signed or planned in advance. This is due to the fact that scientific
programming is highly nonlinear and exploratory. Besides the con-
solidation of other observing techniques and the addition of new
algorithms, the implementation of a better API would be the best
way to benefit and enlarge the user community. As I discussed in
the Appendix section of this dissertation, the high-contrast commu-
nity needs to create a database of standardized datasets. I plan to
contribute to the consolidation of such a database and to carry out
thorough performance algorithm comparisons and data challenges.
VIP will be a great asset for this project.

Another interesting research direction would be the extension of
my supervised detection framework, by embedding the flux and sub-
pixel position of exoplanets into the model (in order to character-
ize detected candidates), and its adaptation to other observing tech-
niques such as multiple-channel SDI. I plan to contribute to the in-
tegration of machine learning methods to high-contrast imaging at
different stages of the observing pipeline (beyond post-processing).
Finally, I will focus on the application of the results presented in this
dissertation to large ground-based surveys, in the near future. The
harvest of large archival databases with new powerful tools, such as
SODINN, will certainly be a thrilling enterprise.

1 Application Programming Interface.
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A ASSESSING ALGORITHM

PERFORMANCE FOR HCI
EXOPLANET DETECTION

In this Appendix I present some guidelines that, from my experience
developing HCI algorithms for exoplanet detection, should be used
for performance assessment. The steps mentioned below also build
on the practices adopted by the HCI community, but are by no means
exhaustive. This discussion focuses on the detection task, where we
are interested in evaluating the sensitivity or ability to detect planets
of varying contrast (brightness with respect to the star). In this con-
text, the ultimate goal is to maximize the TPR while minimizing the
FPR (Mawet et al., 2014; Gomez Gonzalez et al., 2016a). The proposed
approaches, ordered by increasing level of robustness and computa-
tional complexity, are the following;:

1. Tests on fully synthetic datasets employing simple metrics, e.g.
S/N.

2. Tests using on-sky data with known companions (with simple
metrics, e.g. S/N).

3. Tests using on-sky data with injected fake companions.

4. Tests on datasets from different instruments and with different
parameters, e.g. rotation/wavelength range, integration time,
number of frames, weather condition, wavefront control system
performance, coronagraphic solution.

5. Comparative studies with respect to the state-of-the-art algo-
rithms using sensitivity metrics, e.g. contrast curves.

6. Comparative studies using signal detection approaches, e.g. ROC
curves.

7. Comparative studies with ROC curves, using several datasets
(as in point 4).

Point 1 refers to using modeled image sequences with synthetic
companions, which is an approach widely used for studying the per-
formance of future instruments. This should best be avoided for com-
paring algorithms for which on-sky real data exist. Synthetic images
will be a naive approximation of real data, no matter how complex
the models of the instrument and aberrations introduced by the at-
mosphere are.
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Point 2 is an important sanity check used when building post-
processing algorithms. Regarding the S/N metric, I used the defi-
nition proposed by Mawet et al. (2014) throughout this dissertation.
This definition addresses the small sample statistic issue and could be
considered the standard S/N definition in HCI (although the recent
work of Ruffio et al. (2017) neglects its use). As it was discussed in
Chapter 5, the S/N has notable disadvantages. The S/N value for a
point-like source depends on the choice of the aperture sizes and on
the position of the apertures themselves, especially at small angular
separations where the small sample statistics effect becomes domi-
nant (Quanz et al., 2015). Also, the S/N by definition requires noise
in the images, as is the case of residual flux images. When applied to
frames where the noise has been severely suppressed (as it can hap-
pen with LLSG) or to sparse detection maps (including binary maps)
the S/N metric produces extremely high values or even becomes infi-
nite. An interesting solution, proposed by Pairet et al. (in prep.), uses
simple statistics (such as the mean and standard deviation) in the
temporal direction to produce a S/N map. This S/N map does not
suffer from the small sample statistic effect and is suited for sparse
image sequences (e.g. LLSG).

Point 3 is the most common test used in papers describing HCI al-
gorithms. The injection of fake companions at different locations and
brightnesses enables the generation of diverse planet-star-contrast
configurations. Testing with a limited number of fake injections is
a good way to showcase a new algorithmic approach. It is critical to
note that this is far from a robust approach and should be followed by
other procedures. For instance, the fact that an algorithm works well
in a single dataset (from a given instrument and with certain charac-
teristics) does not guarantee that it will have a similar performance
on data taken with another instrument or under different conditions.
This is proposed in Point 4. It helps to assess whether an algorithm
generalizes to other dataset instances.

Point 5 refers to the use of contrast curves for the task of algorithm
performance assessment. Contrast curves are a widely used tool in
HCI instrumentation design that has been also adopted to measure
performance of algorithms, detection limits for single observations
and whole planet searching campaigns. A contrast curve is not the op-
timal choice, in the case of algorithm assessment, because the contrast
definition does not address the TPR and FPR trade-off (see Section
2.8). The main problem is that the contrast curves only evaluate the
sensitivity or TPR while making strong (most of the time unverifiable)
assumptions about the nature of the noise, which is closely related to
the FPR. Nevertheless, when several algorithms are compared, using
the same contrast evaluation procedure on a single dataset, a first
approximation to HCI algorithmic performance can be obtained.
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In Point 6, I propose the use of ROC curves as the best tool for
evaluating the performance, on a TPR vs FPR space, of HCI detection
algorithms. Unfortunately, in this case of using a single dataset, there
are no guarantees that the performance of an algorithm will behave in
a similar way for different data cubes. Details about the construction
of a single ROC curve will be discussed in the following Section. Point
7 is the final step for ensuring a robust assessment of the general
performance of a detection algorithm for HCI, a ROC analysis on
several datasets (see Section A.2 of this Appendix). See Piérard et al.
(submitted) for a discussion on averaging the performance of binary
classifiers in a ROC space, from a signal detection theory point of
view.

A1 BUILDING ROC CURVES FOR HCI EXOPLANET
DETECTION ALGORITHMS

ROC curves are commonly used tools for assessing the performance
of binary classifiers. The planet detection problem can be seen as a
binary classification and therefore ROC curves can be used for our
purposes. They have been proposed in the context of HCI for compar-
ing the detection performance of post-processing algorithms (Barrett
et al., 2006; Lawson et al., 2012; Gomez Gonzalez et al., 2016a). This
is the approach I used to compare LLSG to the state-of-the-art, which
was the first time a ROC curve was built for comparing algorithm
performance in the HCI literature.

As I mentioned before, a ROC curve shows the TPR-FPR trade-
off as a function of a detection threshold. It is important to under-
stand that the relative ROC performance of two different algorithms
changes due to several factors: the dataset used (which has a set
of characteristics as mentioned in the previous Section of this Ap-
pendix), hyper-parameter tuning of each algorithm (see Fig. A.1 for
an example), noise regime or separation from the star, and contrast of
the injected companions (as shown in Fig. A.2). There is no shortcut
to avoiding the dependence on these factors, unless the metric makes
strong assumptions about the data and noise distributions (which is
undesirable). I argue that a data-driven approach, using standardized
databases (see Section A.2) and high performance computing simu-
lations, is the most fair, robust, and reliable performance assessment
approach.

In this dissertation, I presented ROC curves in Chapters 5 and 6.
The approaches used in these two Chapters are different. For instance,
the ROC curve from Chapter 5 was built by averaging the TPR and
FPR over all brightnesses and the tested annuli or distances. The re-
sulting ROC curves give a global sense of the performance but it is
difficult to pinpoint, for instance, the sensitivity as a function of the
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Figure A.1: Example of ROC curves when changing the algorithms hyper-
parameters. These were computed for the same dataset of Fig.
6.10. For the left panel, the number of PCs for ADI-PCA and the
rank for LLSG were set to 7. For the right panel, a value of 2
was used. Notice that the locations of the curves for SODINN,
SODIRF and ADI median subtraction remain the same with re-
spect to each other in both panels. On the other hand, the per-
formance of ADI-PCA and LLSG is worst when too aggressive
hyper-parameters are used (see how they move upward in the
right panel). This exemplifies the pitfalls of comparative studies
using ROC curves, and how easy it is to obtain wrong perfor-
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Figure A.2: Example of ROC curves with two different contrast intervals.
These were computed for the same dataset of Fig. 6.10. The right
panel shows ROC curves built with a higher planet to star con-
trast (fainter injected companions) with respect to the left panel.
This explains the degraded performance. Notice that the ROC
curve of SODINN is on top in every case.
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separation from the star. Also, the ROC curves in Chapter 5 evaluate
the presence of a false positive at a single random location for each
companion injection, whereas for the ROC curves of Chapter 6 the
whole frame is considered.

This has been partially addressed by Jensen-Clem et al. (submitted)
who propose a performance map that plots the TPR as a function
of separation and astrophysical flux ratio (planet to star contrast).
The authors discuss the issues related to contrast curves, and aim
to present a metric tool for representing the performance of a high
dynamic range exoplanet imaging system without any assumptions
about the distribution of the noise.

Iargue that a data-driven approach to the calculation of ROC curves
is the best method for assessing the performance of different HCI al-
gorithms. The ROC curves shown in In Chapter 6 (the case of a single
dataset) are generated in the following way:

1. An on-sky dataset is chosen. Any high S/N or known compan-
ion is removed using the NEGFC technique.

2. A separation from the star (1 xFWHM annulus) and a planet to
star contrast interval (the brightness of the injected companions)
are selected. Also a list of detection thresholds (7) is defined.

3. A large enough number of data cubes are built with a single
injected companion at the selected separation and within the
chosen contrast interval.

4. The data cubes are processed with each algorithm involved in
the performance assessment/comparison. Panel (a) of Fig. A.3
shows the resulting residual flux frames for the reference PSF
subtraction approaches. Panel (b) shows the resulting probabil-
ity maps of SODIRF and SODINN. S/N maps are produced
from the residual flux frames (see panel (b) of Fig. A.3).

5. Detection maps are obtained by thresholding the S/N and prob-
ability maps for different values of T (see panels (c), (d) and (e)
of Fig. A.3). For each detection map and for each T, a true pos-
itive is counted if a blob is recovered at the injection location.
False positives are other significant blobs at any other location
in the detection map.

6. For each 7, the true positives and the number of false positives
are averaged.

After the first step, we assume that the chosen dataset is empty or
free of astrophysical exoplanetary signal. This is done based on visual
vetting performed on a reference PSF-subtracted residual image. As
shown in Chapter 6, the PSF-subtraction methods have limited sen-
sitivity and therefore we cannot have 100% probability of having an
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Figure A.3: Example of the final frames and S/N maps of ADI median sub-

traction, ADI-PCA and LLSG. Probability and detection maps
of SODIRF and SODINN. Panel (a) groups the final residual
frames for the reference PSF subtraction approaches. Panel (b)
shows the S/N maps obtained from the previous residual flux
frames and the probability maps of SODIRF and SODINN. Pan-
els (c), (d) and (e) show the detection maps obtained from the
thresholded S/N and probability maps of panel (b). The de-
tected fake companion is shown with a blue circle on the detec-
tion maps. The detection state and the number of FPs are also
shown next to each detection map. Notice that the number of
FPs grows when the detection threshold is decreased (also that
SODINN controls the FPs). A large number of these injections
(with varying flux and position) are performed in order to build
the ROC curves.
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empty dataset. We have to work under this assumption and will flag
any potential companion as a false positive, in the next steps. In the
last step, averaging the number of false positives (instead of assum-
ing a static noise realization per T and counting once) addresses small
fluctuations in this value, caused by the interaction of an injected com-
panion with the false positives at the same separation (which biases
the S/N).

A.2 DATA CHALLENGES AND STANDARDIZED HCI
DATABASES

Citizen or crowd-sourced science initiatives are popular ways of en-
gaging a large public in science projects (see e.g. Zooniverse project’
and Scistarter *). They have also become popular in Astronomy with
projects such as GalaxyZoo?, Planet Hunters*, and Disk Detective.
For instance Disk Detective has produced a published study that in-
cludes external (non-scientific) collaborators®. Preparing such projects
is an involved process, because the problem must be well focused
(narrow) and carefully defined. These projects are suitable for large
amounts of data (surveys, where a repetitive task requires little brain-
power).

A more relevant type of data challenge for HCI are the Kaggle”
competitions. The Kaggle data science community focuses on data
challenges of all shapes and sizes, open to skilled data scientists and
machine learning experts (to anyone in fact). I proposed to create a
Kaggle competition focused on HCI exoplanet detection®. For such a
competition, the task must be defined as a supervised learning prob-
lem, and proposed along with appropriate metrics of evaluation (con-
trast vs separation, S/N, accuracy, sensitivity, ROC curves, AUC, oth-
ers). This could be a relatively easy way to get access to brainpower
from the worlds most skilled data scientists, either for free (the in-
centive is the status or ranking in the Kaggle community) or for an
offered reward. An important issue here is that the data (sequence of
calibrated images, PSE, and other related information) has to be made
public. An example of the remarkable success of such competitions is
the paper published by Dieleman et al. (2015) as a (winning) solution
to the Galaxy Zoo Kaggle competition®.

1 www.zooniverse.org

2 www.scistarter.com

3 www.galaxyzoo.org

4 www.planethunters.org

5 www.diskdetective.org

6 www.arxiv.org/abs/1610.05293

7 www.kaggle.com

8 At the KISS workshop on Exoplanet Imaging, Caltech, Pasadena, US (August 2016).
9 www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
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Another way of carrying out data challenges is by inviting the HCI
community to participate and apply home-made methods to a subset
of agreed datasets. This was proposed by Lawson et al. (2012). This
brings the issue of creating a standardized database of HCI datasets,
which I also proposed in the context of HCI'*. The creation of such
database is critical for the task of fair and robust comparison of al-
gorithmic performances. Doing so, different processing algorithms
could be tested under the same conditions. This has to be done as a
community effort and such initiative has been started by the SAG19
study group led by Dimitri Mawet. What I propose here is to learn
from the experience of the computer vision community, which has
vast experience carrying out such challenges within their own field.
Great examples of such databases for worldwide challenges are the
Detection change'’ video database and the ImageNet'* database.

Such a standardized database for HCI must consist of a set of
datasets, agreed on by experts in the community, that are representa-
tive of the wide range of conditions and scenarios possible (e.g. rota-
tion/wavelength range, integration time, number of frames, weather
conditions, wavefront control system performance, coronagraphic so-
lution). The datasets must be carefully labeled and the ground truth
or set of labels must be provided. Also, a set of metrics should be
chosen, as in the case of a Kaggle competition. With this approach,
researchers would be able to use the standardized database and the
metrics, accepted by the community, when assessing the performance
of HCI algorithms.

10 At the KISS workshop on Exoplanet Imaging, Caltech, Pasadena, US (August 2016).
11 www.changedetection.net
12 www.image-net.org
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