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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract

Today, an increasing amount of experimental data is being released in the ORC field. This data is required to assess and compare
the performance of different machines, to point out the main sources of losses, or to calibrate and to validate models.

Experimental data is subject to different sources of disturbance and errors whose importance should be assessed. The level of
noise, the presence of outliers, or a measure of the ”explainability” of the key variables with respect to the externally imposed
operating condition are important indicators, but are not straightforward to obtain, especially if the data is sparse and multivariate.

Starting from recent experimental campaigns on two different ORC test rigs, this paper proposes a methodology and a suite of
tools implementing Gaussian Processes for quality assessment of steady-state experimental data. The aim of the proposed tool is
to (1) provide a smooth (de-noised) multivariate operating map of the measured variable with respect to the inputs; (2) determine
which inputs are relevant to predict a selected output; (3) provide a sensitivity analysis of the measured variables with respect to
the inputs; (4) provide a measure of the accuracy (confidence intervals) for the prediction of the data; (5) detect the observation
that are likely to be outliers.

In this paper, the ORC test rigs and the obtained experimental data are described. The results are then analysed with the proposed
tool, and compared with the results of traditional modelling techniques. It is demonstrated that GP regression provides insight-
ful numerical indicators for these purposes, and that the obtained performance is higher or comparable to alternative modelling
techniques. Finally, the datasets and tools developed in this work are provided within the GPexp open-source package.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the IV International Seminar on ORC Power Systems.

Keywords: Gaussian Processes; Kriging; Experimental; Outliers; Feature selection; Organic Rankine Cycle; ORC

1. Introduction

An increasing amount of experimental data is being released in the ORC field. This data is required to assess and
compare the performance of different machines, to point out the main sources of losses, or to calibrate and to validate
models.

However, this experimental data is subject to many sources of noise and errors, such as sensor malfunctions,
transient phenomena, operator misuse of the test rig, noise in the data acquisition chain, unaccounted for external
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influences, etc. It is therefore of primary importance to assess the its quality, by evaluating the level of noise, the
presence of outliers, or to measure the explainability of the acquired variables with respect to the externally imposed
operating condition. This task is far from straightforward, especially if the data is sparse and multivariate.

Gaussian Processes (GP) are an active field of research in machine learning and provide a powerful tool for the
above purposes. Their Bayesian formulation allows predicting the variable of interest for new/unseen data points and
provides coherent estimates of predictive uncertainty. The method reduces predictive confidence when extrapolating
away from the data points: if the data density is locally high, the variance is small, on the opposite, if the density is
low, the variance is larger, leading to more distant confidence boundaries. Furthermore, the method is highly flexible
and can accommodate a range of covariance structures - including non-linear relationships - and delivers state of the
art prediction performance

In this work, we use GPExp, a library developed at the University of Liege, to evaluate experimental data in a GP
framework. The main features of the tool are the following:

1. Provide a smooth (de-noised) multivariate operating map of the measured variable w.r. to the inputs.
2. Determine which inputs are relevant to predict a selected output (feature selection)
3. Provide a sensitivity analysis of the output with respect to the inputs
4. Provide the accuracy (confidence intervals) to predict the output with a given set of inputs. This interval should

be function of the data density.
5. Detect the observation that are likely to be outliers

This paper presents the development of the tool and illustrates, through examples, how it can be used to detect the
main dependencies, shortcomings and outliers in experimental data. Examples are first described for univariate or
bivariate processes, whose quality can be assessed visually, and then extended to real ORC processes with multiple
input variables. The experimental data relative to three different test rigs is compared.

The tool is developed in such a way that a qualitative interpretation of the results is provided to users who are
not specialist in machine learning. It comprises a Graphical User Interface (GUI) and can be freely downloaded and
tested.

2. Gaussian Processes as a data analysis tool

2.1. Gaussian Processes Regressions

This section provides a brief explanation of Gaussian Processes regression. The interested reader can refer to [1]
for a more detailed description.

When performing a regression, the goal is to find a function f that maps each input x to the variable of interest,
a.k.a. target y. The type of function f is usually set a priori by the user. Furthermore, hyperparameters, such as the
order of a polynomial fit, also need to be fixed a priori. Increasing the complexity of f can in most cases lead to an
excellent fit of the data. However, too complex models also fit the noise in the data (i.e. they ”over-fit”), which is not
desirable [2].

Gaussian Processes, on the contrary, are based on the Bayesian analysis of the standard linear model:

f (x) = xT w (1)

y = f (x) + ε (2)

with w ∈ Rm, the vector of parameters (weights) of the model and ε an error term distributed according to a Gaussian
distribution with zero mean and variance σ2

n.
Let X ∈ Rn×m be the matrix concatenating all n data points and y ∈ Rn be their corresponding targets. Bayes’

rule allows computing the probability density of the observations given the model parameters p(y|X,w), a.k.a. the
likelihood and infer on the model parameters:

p(w|y, X) =
p(y|X,w)p(w)

p(y|X)
(3)
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Finally, the predictive distribution of a new/unseen sample x∗ can be estimated from p( f ∗|x∗, X, y), which is also
Gaussian, allowing to make predictions.

In the Gaussian Processes approach, the priors are defined over the function f instead of on the model parameters
w (this is referred to as the ”function space”). f is assumed to follow a Gaussian Process, i.e. a multivariate Gaussian
distribution:

f (x) ∼ N(µ(x), k(x, x′)) (4)

with µ(x), the mean latent function and k(x, x′), the covariance function, or kernel.
This formulation highlights the central role of the kernel, which defines the distribution over functions. The kernel

is chosen as an Automatic Relevance Determination [3] kernel. This kernel is a squared exponential kernel with
a distinct parameter l defined for each variable d=1...D. This hyperparameter represents the ”length-scale” of the
kernel in each direction. In the ARD kernel, if a length-scale is large, a long distance needs to be travelled before
seeing significant changes in the corresponding direction. Therefore, the corresponding variable does not have much
influence on the model.

k(xi, x j) = σ2
f · exp(−

(xi − x j)2

2 · l2i
) (5)

The hyperparameters σ f and li are optimized based on the marginal likelihood p(y|X) (Eq. 3), which takes into
account both the goodness-of-fit and the complexity of the model.

Fig. 1. Schematic view of the analysis

3. Experimental Setups

3.1. Reversible Heat Pump / ORC unit

This section presents an experimental campaign carried out on an innovative reversible heat pump (HP) / organic
Rankine cycle (ORC) unit. The concept of a reversible HP/ORC system integrated into a residential building with a
solar roof is described in [4]. The following focuses on the layout and a complete description of the components and
sensors of the test-rig.

A scheme of the test rig is provided in Figure 2 with the main elements shown; compressor, evaporator, condenser,
pump and valves. The refrigerant loop (dark blue) also includes a liquid receiver for charge variations and a sub-cooler
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used to provide a sufficient degree of sub-cooling at the inlet of the pump. This loop also includes a four-way valve that
allows for switching between ORC and HP modes and a bypass valve that is necessary to start the expander in ORC
mode. The evaporator is supplied by a water loop (red) connected to an electrical boiler (150 kW). The condenser is
cooled by tap water (light blue) to simulate the cold water flow in the storage or the ground heat exchanger, depending
on the mode of operation.

Fig. 2. Detailed scheme of the HP/ORC setup (left) and of the Sun2Power setup (right)

The compressor has been modified following the methodology proposed by Quoilin [5] to allow its operation as
an expander or as a compressor. These modifications include the opening of the casing, the removal of the check
valve and the addition of a spring below the floating seal. Plate-type heat exchangers are used for the evaporator and
condenser. They are selected for their compactness, efficiency and low cost. The pump is a volumetric plunger-type
pump whose rotational speed is controlled by an inverter. An electronic expansion valve is chosen for its controllability
compared to traditional expansion valves. Detailed characteristics of the setup can be obtained in [4].

Measurements are performed in steady-state conditions and averaged on a five minutes basis. Table 1 presents the
variation range of the main operating conditions observed in both modes for the stabilized measurement points [4].

Table 1. Experimental results for the HP/ORC unit
ORC Heat Pump

Minimum Maximum Minimum Maximum

Evaporator/condenser thermal power [kW] 30 65 9 17
Evaporation pressure [bar] 16 32 3 6.5
Condensation pressure [bar] 5.4 10.2 6 20.5
Mass flow rate [kg/s] 0.124 0.294 0.049 0.113
Expander/compressor electrical power [kW] 0.125 3.696 1.87 4.3
Overall efficiency / COP [-] 0 0.053 2.7 7.1
Expander/compressor isentropic efficiency [%] 10 63 69 79
Expander/compressor volumetric efficiency [-] 1 1.1 0.95 1.15

3.2. Low capacity solar ORC

This system is referred to as the Sun2Power ORC module and is developed at the University of Liege [6,7]. It
is a 3 kWe recuperative organic Rankine cycle using R245fa as working fluid. It is constituted of a scroll expander
with variable rotational speed and a diaphragm pump. Both the recuperator and the evaporator are brazed plate heat
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exchangers (protected with a 3 cm-thick thermal insulation), while an air-cooled fin coil heat exchanger is used for
the condenser. Variable-frequency drives are used to control both the rotational speeds of the pump and the condenser
fan. On the other hand, the expander rotational speed is controlled by means of a variable electrical load. A schematic
view of the system is proposed in Figure 2. Although not indicated, rotational speeds for the pump, the expander and
the condenser fans are also monitored.

3.3. Open-drive scroll expander

The third experimental campaign focuses on the expansion machine only (a scroll expander). The results of the
experimental campaign were published in [8], together with a comprehensive description of the test rig. In that setup
(Figure 3) the input values ”imposed” to the scroll expander were the working fluid flow rate Ṁ, the rotational speed
Nrot, the supply temperature Tsu, the exhaust pressure pex and the ambient temperature Tamb. The measured outputs
were the supply pressure psu, the exhaust temperature Tex and the output shaft power Ẇsh. It should be noted that
there is no firm causality relationship between these variables, except for Tex (which is always an output) and Tamb,
which is always an input. All the other variables can independently be inputs or outputs of the model. As an example,
if psu is imposed in the test rig instead of Ṁ, the flow rate is imposed by the expander and becomes an output. In
total, there are always 5 different inputs, the other variables being consequences of the scroll expander performance
and therefore outputs of the model.

Fig. 3. View of the tested scroll expander with the measured variables

In [5], the authors of the study developed a semi-empirical model of the machine. This kind of model accounts for
most of physical phenomena and losses in the machine, but requires experimental data for their calibration. A total of
36 data points were used to tune the 6 empirical parameters of the model. A comparison between the model prediction
and the measurement was performed, but without cross-validation. The obtained MAE was 1.94% and the R2 value
was 98.81%.

3.4. Summary

Each considered system is characterized by measured inputs variables (or features) and measured output variables.
One of the goal of this analysis is to evaluate the ”explainabilty” of each output with respect to the inputs. To that
end, one single output, the expander power. is selected for the three test rigs. The two ORC systems are seen as
black boxes, i.e. their inputs are secondary fluids (heat source and sink) and the user-defined set points (e.g. the
pump speed). In the case of the expander, the exogenous inputs are the inlet and outlet conditions and the ambient
temperature, as described in section 3.3. These different variables are summarized in Table 2.

Table 2. Inputs variables of the three considered processes

HP/ORC Sun2Power Expander

Heat source flow rate: Ṁsu,ev[kg/s] Heat source flow rate: V̇su,ev[kg/s] Inlet pressure: Psu[Pa]
Heat sink flow rate: Ṁs f ,cd[kg/s] Heat sink flow rate: V̇s f ,cd[kg/s] Outlet pressure: Pex[Pa]
Heat source temperature Th f ,su,ev[K] Heat source temperature Th f ,su,ev[K] Rotating speed: Nrot[rpm]
Heat sink temperature Tc f ,su,cd[K] Heat sink temperature Tc f ,su,cd[K] Inlet temperature: Tsu[K]
Pump speed: Npp[rpm] Expander Rotating speed: Hzpp[s−1] Ambient temperature: Tamb[K]

Expander Rotating speed: Hzexp[s−1]
Condenser fan speed: Hzcd[s−1]
Ambient temperature: Tamb[K]
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4. Gaussian Processes analysis

In this section, an ex-post evaluation of the experimental results presented above is performed. The same dataset
has been used and tested in GPExp, using the methodology described above. Examples of Gaussian Processes re-
gressions are presented in Figure 4, predicting the expander isentropic efficiency with one or two input variables. In
the univariate case, the error in cross-validation is 5.9% and the standard deviation is relatively high, whereas in the
bi-variate case, the average error is reduced to 5.3%. This new input is therefore considered as relevant.

Fig. 4. GP regression of the expander efficiency as a function of one input (left) or two inputs (right)

4.1. Outlier detection

Some data points can have target values that do not represent the underlying latent function. Such situations can
arise e.g. in case of sensor malfunction, or if the output was impacted by a phenomenon that is not accounted for in
the inputs. These points can be considered as outliers, and might have to be removed from any further analysis.

Gaussian Processes have proven to be a powerful framework to detect outliers (see e.g. [9]) since the variance of
the GP regression function varies with the data density and with the noise, as shown in the previous section. The effect
of outliers is illustrated in Figure 5 for the case of the HP/ORC test rig: two data samples clearly present a high error
compared to smooth GP response surface. They are therefore most likely outliers. In the case of a normal distribution,
a significance level lower than 5 percent corresponds to an error higher than 1.96 times the standard distribution. This
threshold is the one selected in this work.

Figure 5 shows that, according to this threshold data points 11 and 14 can be considered as outliers in the HP/ORC
experimental results. An additional unaccounted for input explaining their deviation should therefore be added to the
analysis. In case no external effect can be found, the data should be checked carefully for any mistake or malfunction,
and the two points might be removed from the analysis.

4.2. Sensitivity analysis and feature detection

In case of multivariate processes, it is important to evaluate the variables influencing significantly the output and
discard those that are not necessary to the model. This task is complex, especially in the case of high dimension non
linear systems.

The Sun2Power test rig is selected for the present analysis, because it is the process that possesses the highes
number of input variables. The goal is therefore to select the relevant variables among them (feature selection) and
evaluate their sensitivity.

Feature selection is performed by iterative block addition, as proposed in [10]: if adding a new input decreases
the MAE in cross-validation, the input is considered relevant. Otherwise, this additional variable only adds noise by
increasing the complexity of the model without contributing to the prediction of new/unseen data samples. It can
therefore be disregarded.
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Fig. 5. Distance between each data point and the GP regression for outlier detection

The results of the analysis are presented in Table 3 for a ”leave-one-out” cross-validation. As expected, the MAE
for the whole training set is higher than the MAE in cross-validation for all combinations of input, but the difference
remains limited (lower than a factor two in this case). This indicates that the model is most likely not overfitting.
It can also be noted that the MAE in cross-validation keeps decreasing when adding inputs to the model, except for
Tamb, V̇su,ev and Tc f ,su,cd. These variables should therefore not be taken into account for the prediction of the output
power since don’t have a significant impact in this dataset and would only bring random variations to the model.

Finally, the implementation of the automatic relevance determination (ARD) kernel [3] allows evaluating the sen-
sitivity of the output to different inputs. Large lengthscales prohibit fast variations of the GP function in the direction
of the respective input. In Table 3, the optimal lengthscale for each input is provided in the case of the optimiza-
tion with all variables. It is worthwhile to note that the irrelevant variable described above are characterized by high
lengthscales, which is therefore another manner to perform feature selection. Furthermore, the lengthscales of the
relevant features provide a measure of the sensitivity of this input with respect to the output (the lower the lengthcale,
the higher the sensitivity).

Table 3. Effect of the selected input variables on the MAPE and lengthscales associated with these variables

Input variables Removed variable Lengthscale MAPE (full dataset) MAPE (cross-validation)

V̇su,ev V̇s f ,cd Th f ,su,ev Tc f ,su,cd Hzpp Hzexp Hzcd Tamb Tamb 27.3 0.0055 0.0535
V̇su,ev V̇s f ,cd Th f ,su,ev Tc f ,su,cd Hzpp Hzexp Hzcd V̇su,ev 528 0.0055 0.0492
V̇s f ,cd Th f ,su,ev Tc f ,su,cd Hzpp Hzexp Hzcd Tc f ,su,cd 27.3 0.0055 0.0491
V̇s f ,cd Th f ,su,ev Hzpp Hzexp Hzcd V̇s f ,cd 11.5 0.0051 0.0473
Th f ,su,ev Hzpp Hzexp Hzcd Th f ,su,ev 1.95 0.0051 0.0456
Hzpp Hzexp Hzcd Hzexp 1.15 0.0243 0.0557
Hzpp Hzcd Hzpp 1.31 0.0631 0.0864
Hzcd Hzcd 0.32 0.1749 0.1978

4.3. Overall quality of the datasets

The overall quality of the data can be evaluated by measuring the average distance of the measurement with the
smooth GP regression (considered to be the ideal model). This quantity provides a benchmark for other types of
models applied to this data: if their error is significantly higher it indicates a margin for improvement. If it is smaller,
the proposed model is most likely overfitting and should be corrected.

For the three experimental datasets used in this work, a physical model was previously proposed and calibrated
with the data. The results of these models can therefore be analysed ex post and compared to the outputs of the GP
regression. This is performed in Table 4.
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Table 4. Mean average percentage error obtained with the GP regression and with the physical models

Dataset GP regression Physical model

HP/ORC 1.92% 2.45%
Sun2Power 4.56% 8.12%
Expander 0.998% 1.94%

5. Conclusions

This paper presents a methodology to analyse experimental steady-state data. The method relies on Gaussian
Processes regression, which is a well known technique, but had, to our knowledge, never been applied to the critical
analysis of monitoring data.

Data quality is evaluated using numerical model performance indicators by comparing it to the GP regression
latent function. These indicators are useful, e.g. to assess the quality of the correlation between some measured
operating conditions (inputs) and some measured performance data (outputs). They also set a benchmarking standard
to compare different sets of experimental data. Furthermore, the probabilistic formulation of Gaussian Processes
provides confidence intervals to predict the output with a given set of inputs, which are a function of the noise and of
the local data density.

In addition to the evaluation of the data quality, the method also helps evaluating which variables are relevant to
the selected model. The feature selection capability allows determining the relevant inputs for the prediction of one
output variable. In this paper, this is achieved by means of two different but converging techniques: the comparison
of the cross-validation errors with recursive feature addition, and the comparison of the lengthscales relative to each
input.

It is further demonstrated, through examples, how the proposed tool can efficiently be used to detect the main
dependencies, shortcomings and outliers in experimental data. Examples are first described for the univariate case,
whose quality can be assessed visually, and then extended to processes with multiple input variables.

The method is implemented within the open-source tool GPexp to ensure a good transparency and reproducibility
of the work [11]. It is developed in such a way that a qualitative interpretation of the results is provided to users
without machine learning expertise. It comprises a Graphical User Interface (GUI) and can be freely downloaded and
tested.
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