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Abstract. In this paper, we present a two-step methodology to improve
existing human pose estimation methods from a single depth image. In-
stead of learning the direct mapping from the depth image to the 3D
pose, we first estimate the orientation of the standing person seen by
the camera and then use this information to dynamically select a pose
estimation model suited for this particular orientation. We evaluated our
method on a public dataset of realistic depth images with precise ground
truth joints location. Our experiments show that our method decreases
the error of a state-of-the-art pose estimation method by 30%, or reduces
the size of the needed learning set by a factor larger than 10.

1 Introduction

Markerless human pose estimation is essential in a large range of applications
including human-computer interaction, video surveillance, video games, virtual
reality, gait analysis, rehabilitation, and intelligent houses. The vast majority
of markerless human pose estimation systems are camera-based. The preference
goes towards depth cameras rather than color cameras. Indeed, the latter are
sensitive to illumination conditions and textures, and we need more than one
color camera to avoid the problem of scale ambiguity. Since the release of the
Microsoft Kinect camera and the associated pose estimation method [21], depth
cameras have reached an affordable price and, at the same time, pose estimation
has reached a new level of accuracy and robustness using only one camera.

However, current methods require a huge set of learning samples to train
the pose estimation model. The reason is that pose estimation from a single
depth map in an unconstrained environment (i.e. where the person can take
any orientation with respect to the camera) is very complex. Indeed, a pose
estimation method has to implicitly determine the orientation of the person
while predicting the 3D location of the body joints. In previous works [14,15,21],
a single machine learning model was learned to handle this task all at once which
explains the need of an enormous amount of learning data to obtain a model
invariant to the orientation. For instance, in [21], Shotton et al. used 2 billion
data samples to learn their model. Despite this, their results showed that there
was still a significant potential for accuracy improvement but they were limited



by the size of their model. Furthermore, the noticeable difference in a depth
image of a person seen from the back or facing the camera can be very small and
the simple features used in [21] to describe the surroundings of a pixel seems
unlikely to be efficient to disambiguate the orientation. Some global features
would clearly be more appropriate for the orientation estimation task.

Following this observation, the current paper extends a previous work by
Azrour et al. [2], that introduced the idea of using an orientation estimate to
improve the accuracy of the pose estimation and validated it on synthetic data.
Here, we go further by evaluating, on the public dataset UBC3V, the complete
pipeline composed of an orientation estimation method followed by a multiple
model pose estimation method, with each model designed for a different range
of orientations. Splitting the process in two different steps allows to use adapted
features and methods for each task and our results show that it requires signifi-
cantly less samples to reach the same or better pose estimation accuracy.

2 Related work

Markerless human pose estimation systems estimate the pose of a human subject
without the need of any device or marker attached to his body. At the expense of
a loss of accuracy compared to marker-based systems, the markerless systems are
simpler and not invasive which is mandatory, for instance, in sport and medical
applications where the movement must be natural and not altered by some
markers. Indeed, there is a risk that people could be disturbed and distracted
by the markers they wear, leading to a different motion.

Markerless pose estimation systems can be classified in different categories
depending on the type (color or depth), the number of cameras used, and the
process used to recover the pose. The pose estimation process can be based on a
body model tracking method (generative method), on a more direct prediction of
the pose based on the input image (discriminative method), or on a combination
of the two (hybrid method).

The most challenging, in terms of the accuracy of the estimated pose, is to use
a unique color camera. Previous works addressing this task include poselets [4]
or mixture-of-parts model [26]. More recently, convolutional networks have also
been used to perform this task [23,24].

Thanks to a set of calibrated color cameras, we can avoid the problems of
scale ambiguity inherent to the use of a single color camera. A great contribution
was made by Corazza et al. [6,7]. In [6], they built upon the work of Anguelov
et al. [1] to design a subject-specific human body model. This model was used
to track the reconstructed 3D volume of the subject (or visual hull [16]) using
an articulated iterative closest point (ICP) algorithm [7]. Thanks to their body
model that can fit the body shape of any subject, their method is able to reach
a very high accuracy. With their work, the problem of markerless human pose
estimation using multiple color cameras is considered as mostly solved by some
experts of the domain [22].



Using depth instead of color cameras offers many advantages for the pose
estimation. Indeed, the use of depth images solves the scale ambiguity of the RGB
domain and they are much more invariant to the lightening condition and the
texture. Therefore, it becomes possible to create robust and sufficiently accurate
systems using only one depth camera. A major contribution was proposed by
Shotton, Girschick et al. [13,20,21] where they accurately predict in real-time
the 3D positions of body joints from a single depth image, without using any
temporal information. To achieve this, they used a random forest model learned
from a large, realistic, and highly varied synthetic set of training images.

Body model tracking methods were also used with a single depth cam-
era [9,10]. However, these methods are less robust (they are sensitive to local
minima) and they are generally slower than discriminative methods (as [21]).
Combining a body model tracking method with a discriminative method allows
to recover from local minima and to benefit from the time coherence of the
tracking which lead to robust and accurate systems [25].

In the specific domain of human pose estimation from a single depth im-
age (i.e. where no temporal information is used) two recent contributions were
proposed by Jung et al. [14,15]. These two methods can be seen as variants of
the method proposed by Girschick et al. [13]. In [14], Jung et al. estimate the
joints locations by “walking” through the depth image and predicting the direc-
tion toward a given joint at each step . The joints are recovered sequentially by
taking advantage of the human skeleton structure. In this way, they significantly
increased the speed compared to [13] (1, 000 frame per second (fps) on a single
CPU against 200 fps on a parallelized implementation) while being even more
accurate. In [15], they proposed a two-step method where they first estimate the
3D locations of the joints and then label them. They claim that this procedure
leads to a significant increase of the accuracy compared to the state-of-the-art
methods. However, the dataset used to evaluate these two methods, the EVAL
dataset [10], is only 10 cm accurate (mentioned by the authors and confirmed by
a visual inspection of the data). Moreover, this dataset contains depth images
of subjects performing the same sequence of movements where they are facing
the camera most of the time. Therefore, further experimentations with a dataset
containing more precise groundtruths and more diversified poses should be used
to assess more reliably the accuracy of these algorithms.

Recently, a new dataset (UBC3V) was released by Shafaie et al. [19]. This
dataset was built in a similar way as the one used by Shotton et al. [21]. It
can be used to design pose estimation methods using up to 3 depth cameras.
The markerless pose estimation domain was really lacking such a publicly avail-
able dataset. Therefore, it is an important contribution that allows to compare
new methods on a same reliable basis. In [19], Shafaie et al. also proposed a
multiple depth cameras pose estimation method. In each camera, they used a
convolutional network to predict a body part label for each pixel following [20].
Then, they merged the results from all the cameras in a common 3D space and
estimated the joints locations based on the 3D point cloud. Their method out-
performs state-of-the-art pose estimation methods using multiple depth cameras.



3 Our method

3.1 Leveraging an orientation estimate to improve pose estimation

The orientation θ of a subject is defined as the orientation of his pelvis. Here,
we arbitrarily selected θ = 0◦ when the subject is seen from his right side and
θ = 90◦ when the subject is seen from his back, as shown in Figure 1.
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θ

Fig. 1. Orientation convention and ranges of orientations used for the four-model
method in the experiments. Each model is learned using poses with orientations in-
cluded in a sector of 110◦ and consecutive sectors have an overlap of 20◦.

To take into account the orientation estimate in the pose estimation process,
we follow what was done in our previous work [2]. Instead of learning a single
modelM to deal with the whole range of orientation O = [0°, 360°], we learn n
modelsMi designed for different ordered ranges of orientation Oi, such that:

O1 ∪ ... ∪ On = [0°, 360°]. (1)

Consecutive ranges partly overlap to take into account the uncertainty in the
orientation estimate:

Oi ∩Oj 6= ∅, ∀i, j : i = j ± 1 (mod n), (2)

Oi ∩Oj = ∅, ∀i, j : i 6= j ± 1 (mod n). (3)

Given an overlap of l degrees between all the consecutive orientation ranges,
the appropriate pose estimation model is dynamically selected at test time based
on an orientation estimate θ̂:

M(θ̂) =Mi if θ̂ ⊆
[
lower bound(Oi) +

l

2
, upper bound(Oi)−

l

2

]
. (4)



It follows from Equation (4) that a correct pose estimation model will always be
selected if the error on the orientation estimate is bounded by l

2 degrees.
Separating the orientation estimation from the pose estimation has two main

advantages: (1) it allows to use different and more appropriate features for the
orientation estimation, and (2) it greatly facilitates the task of the pose estima-
tion model which allows to reach higher accuracy with less training data.

This general methodology can be used with various orientation and pose
estimation methods. For the purpose of the experiments, we selected state-of-
the-art methods for these two tasks. These methods are explained below.

3.2 Orientation estimation

The orientation estimation method used in this paper is based on the one pro-
posed by Piérard et al. in [17].

To describe each depth image, 5 binary silhouettes are extracted from the
depth silhouette of the subject seen by the camera. These binary silhouettes are
obtained by thresholding the depthmap. Each of them is described using one
shape context descriptor [3] with 5 radial bins and sectors of 30 degrees. The
shape context descriptor used is centered on the gravity center of the binary
silhouette and is populated by all external and internal contours.

The machine learning algorithm used to predict the orientation is the ExtRa-
Trees [12]. As this algorithm uses an averaging to produce the outputs, we must
avoid to directly predict the orientation angle θ because the poses with θ ' 0◦

and θ ' 360◦ are very close which would lead to random orientation estimates.
Therefore, we separately estimate cos θ and sin θ to avoid this discontinuity.
Then, the orientation estimate θ̂ can be obtained as follows:

θ̂ = tan−1

(
ŝin θ

ĉos θ

)
. (5)

3.3 Pose estimation

We used our own implementation of the state-of-the-art pose estimation method
proposed by Girshick et al. [13] which was thoroughly evaluated in [21] and com-
mercially used with the Microsoft Kinect camera. This method uses regression
random forests to predict the 3D location of the body joints directly from the
raw depth image.



To accurately implement [13], we used the code library Sherwood [18] which
is a general purpose, object-oriented software framework for solving decision
forest inference problems [8]. This framework offers a great flexibility and can
be adapted to a wide range of inference problems. This is achieved thanks to
interfaces that have to be implemented by the user and that define how the
framework interacts with the data.

A forest is an ensemble of decision trees, each composed of split and leaf
nodes. In our implementation, we trained one forest for each body joint j sep-
arately. The goal of the regression forest, for a given joint j and a given pixel
p, is to estimate the offset 4p→j going from the pixel 3D location x(p) =
(x(p), y(p), z(p)) to the 3D location of the body joint j. At test time, this is
performed for all the silhouette’s pixels and the predicted offsets are added to
the pixel 3D locations to produce a set of estimates for the 3D location of the
body joint j. The final proposal is given by the first mode (obtained with the
mean shift algorithm) of the distribution of these estimates.

The learning data used to train the tree structure include a set of depth
images, the 3D locations of the body joints in these images, and a set of pix-
els S = {pi} sampled from these images. The features used to describe the
surroundings of a pixel are simple depth comparisons [20]. For a given pixel
p = (x, y) and two 2D offsets ∆ = (δ1, δ2), the feature f is defined as:

f(p,∆) = z

(
p+

δ1
z(p)

)
− z

(
p+

δ2
z(p)

)
, (6)

where z(p) is the depth at pixel p. The offsets are divided by the depth at the
pixel p to achieve depth translation invariance.

At each split node, multiple 2D offsets ∆ and thresholds τ are randomly
sampled from uniform distributions. Each pair φ = (∆j , τj) induces a partition
of the set of pixels S at the parent node into left and right subsets SL(φ) and
SR(φ) such as:

SL(φ) = {pi | f(pi,∆j) < τj} , (7)

SR(φ) = S \ SL(φ). (8)

The best φ is selected according to :

φ∗ = argmin
φ

|SL(φ)|
|S|

I(SL(φ)) +
|SR(φ)|
|S|

I(SR(φ)), (9)

where |.| denotes the cardinality, and the objective function I(S) is computed as
the variance of the offsets going from each pixel in the set S to the body joint j.

In each leaf, based on the pixels that reached this leaf during training, we
compute and store the mean offset.



4 Experiments

4.1 Dataset

To learn and test our proposed method, we used the dataset UBC3V intro-
duced by Shafaei et al. [19]. This dataset is composed of synthetic depth images
of realistic human characters with various poses for training and evaluation of
single or multiview depth-based pose estimation methods. The data generation
procedure was very close to the one used by Shotton et al. [21]. The human char-
acters were generated using the free and open source sofware MakeHuman and
the poses were taken from the CMU motion capture database [5]. Such a pub-
lic dataset with realistic and various poses and precise groundtruths was really
something missing in the markerless pose estimation community. Hopefully, this
will allow to perform a reliable evaluation of the existing and future methods
and to compare their performances on a same basis.

Before that, the EVAL dataset [10] was frequently used to evaluate pose es-
timation methods [14,15,27]. However, in the EVAL dataset, the human models
are facing the camera most of the time and performing the same sequence of
movements. Moreover, according to the author of the dataset [10,11] and con-
firmed by visual inspection, the precision of the groundtruth 3D joints locations
is about 10 cm. That is a problem to evaluate realiably the accuracy of pose
estimation methods. The new synthetic dataset UBC3V fixes these problems by
covering the whole orientation range and by providing precise groundtruths.

The UBC3V dataset consists of three sub-datasets with varying complexity.
The first one (easy-pose) contains one human character in various standing pose.
The second one (inter-pose) still contains only one human character but with a
more varied set of poses, like, for instance, upside-down poses, lying poses, etc.
Finally, the third and last dataset (hard-pose) includes several human characters
with different physical shapes. For each instance of a human character and a
pose, three cameras are randomly placed in a virtual scene and depth images are
rendered from these viewpoints. Moreover, each of the three mentioned datasets
includes train, validation, and test sets with mutually disjoint poses.

In this paper, we only used the first dataset (easy-pose) because it is the only
one that is compatible with a meaningful definition of the orientation. Indeed,
for all the poses where the human character is not in a standing position, it
is not possible to reliably define an orientation. Nonetheless, this is not a big
limitation for our method because, in most applications, the human subject is
in a standing position.

4.2 Orientation estimation

First, we learned and evaluated the orientation estimation method described in
Section 3.2 on the new dataset UBC3V. The easy-pose dataset was used both
to learn and test the two orientation estimation models predicting respectively
the cosine and the sine of the orientation angle.



The error∆θ is defined as the smallest rotation between the true orientation θ
and the estimated orientation θ̂. Hence, ∆θ can be derived from the dot product
between (cos θ, sin θ) and (cos θ̂, sin θ̂):

cos(∆θ) = (cos θ, sin θ) • (cos θ̂, sin θ̂) = cos(θ̂ − θ), (10)

and therefore

∆θ = cos−1(cos(θ̂ − θ)). (11)

We used 100k images from the train set to learn the ExtRaTrees model with
100 trees and default parameters [12]. The learned model was then evaluated
on 10k images from the test set. For each image, the orientation estimate was
obtained using Equation (5). Then, Equations (10) and (11) were used to deter-
mine the error ∆θ on each image. The mean error ∆θ on the 10k test images
was 6.2◦, which is consistent with the result reported in [17]. It is worth men-
tioning that, with the learned models, an error of more than 20◦ is made on less
than 5% of the poses in the test set. This may lead, in rare cases, to the choice
of a wrong pose estimation model if we work on single depth images with no
use of temporal information. However, in practice, as mentioned in [17], a light
temporal filtering can be used to avoid these rare bigger errors. Such a filtering
has not been implemented in this work as we aim at estimating the pose from
single images.

4.3 Pose estimation without an orientation knowledge

To have a basis of comparison for our approach, we learned and evaluated the
pose estimation method without using an estimation of the orientation of the
person seen by the camera. In this case, for each considered body joint, a single
model has to deal with the whole range of orientations [0°, 360°]. The machine
learning model has to implicitly learn the small clues related to the orientation
in the depth image while predicting the pose at the same time. It is quite a hard
task when the seen person can take any orientation. As we will see in the next
section, an orientation knowledge can substantially ease this task.

To build the learning set, given the available computational resources, 20k
images were picked from the train set of the easy-pose dataset and 1k pixels were
randomly sampled from each of them. Then, a forest of three trees (as in [21])
was learned for each body joint separately. Finally, we evaluated the learned
models on 10k test images.

We analyzed 8 body joints: head, shoulder, elbow, wrist, hip, knee, and ankle.
For each considered body joint, the accuracy of the corresponding model is given
by the mean Euclidean distance error of the predictions with respect to the
groundtruth 3D body joint locations. The results are given in the first column
of the Table 1.



Table 1. Mean Euclidean distance errors on the positions of the considered body joints
for different numbers of models and learning dataset sizes. We can see that even with
ten times less training data (i.e. 500 images for each of the four models instead of
20k for a single model), the four-model method outperforms the one-model method for
almost all the body joints.

amount of models: 1 4 4
learning images per model: 20, 000 20,000/4 = 5, 000 500

range of each model: 360° 360°/4 + 2× 10° = 110° 360°/4 + 2× 10° = 110°

mean error

head 2.6 cm 2.3 cm (- 11.5 %) 2.6 cm (- 0 %)
shoulder 3.7 cm 2.9 cm (- 21.6 %) 3.2 cm (- 13.5 %)
elbow 8.9 cm 6.3 cm (- 29.2 %) 7.8 cm (- 12.4 %)
wrist 13.9 cm 10.4 cm (- 25.2 %) 13.2 cm (- 5.0 %)
hip 3.4 cm 2.5 cm (- 26.5 %) 3.1 cm (- 8.8 %)
knee 6.3 cm 4.6 cm (- 27.0 %) 6.4 cm (+ 1.6 %)
ankle 11.2 cm 8.1 cm (- 27.7 %) 10.8 cm (- 3.6 %)
mean 7.1 cm 5.3 cm (- 25.4 %) 6.7 cm (- 5.6 %)

4.4 Pose estimation with an orientation knowledge

To leverage an orientation estimate in the pose estimation process, we used
four models instead of a single one with each model designed for orientations
included in sectors of 110◦. To take into account the small uncertainty in the
orientation estimate, the sectors of two consecutive models overlap by 20◦. Fig-
ure 1 illustrates the four chosen sectors and the orientation convention used in
the experiments. The choice of four models was based on the results obtained
in [2] which showed that it was a good trade-off between, on the one side, the
accuracy improvement that is obtained from the shrinkage of the orientation
ranges when we increase the number of models and the accuracy deterioration
due to the reduction of the learning set size per model.

With the selected orientation ranges, when the orientation estimate doesn’t
fall in the overlap of two sectors, a correct pose estimation model is always
selected (using Equation (4)) if the error on the orientation estimate is smaller
than 20°. However, when the orientation estimate falls in the overlap of two
sectors, the risk of selecting a wrong pose estimation model is higher. Here,
we can ensure that a correct pose estimation model will be selected for any
orientation estimate if the error on the orientation estimate is bounded by 10◦

which is equal to half of the overlap.
To make a fair comparison with the one-model method, we used the same

total amount of data, i.e. a total of 20k images with 5k images for each of the
four models. The results on 10k test images are given in the second column of
Table 1. We can see a significant accuracy improvement for all the body joints
with respect to the one-model method.

Figure 2 illustrates the influence of the learning dataset size on the mean eu-
clidean error for the most challenging joint (wrist). The three curves correspond,
respectively from to bottom, to the one-model method, the four-model method



when we know the exact orientation, and the four-model method when we use an
orientation estimate. As noticed above, the accuracy improvement for a constant
learning dataset size is significant when we use an orientation estimate. We also
see that the accuracy obtained with the orientation estimate is a little bit worse
than the one obtained knowing the exact orientation. This means that a wrong
pose estimation model is selected for some poses in the test set. This difference
can be reduced by a using bigger overlaps between consecutive sectors at the
expense of a loss of accuracy.
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Fig. 2. Mean Euclidean error on the wrist for the one-model method (blue curve), the
four-model method using the exact orientation (red curve) and the four-model method
using the predicted orientation (green curve).

Furthermore, it is very interesting to note that the four-model method using
only 2k images (500 images per model) performs better than the one-model
method using 20k images. The last column of Table 1 gives the results obtained
for all the joints using only 500 images to learn each of the four models. We
observe that, thanks to an orientation estimate, we can reduce the learning
dataset size by a factor larger than 10 and still outperform the one-model method
for most of the joints which allows to save a precious amount of time during the
learning phase.



5 Conclusion

In this paper, we evaluated a novel two-step markerless pose estimation method
on the public pose estimation dataset UBC3V. The first step of this method
consists in estimating the orientation of the person seen by the camera. Then,
this orientation estimate is used to dynamically choose an appropriate pose es-
timation model. Our results show that this methodology significantly improves
the accuracy when a constant learning set size is used. Moreover, we show that
using an orientation estimate allows to reach a better accuracy even when the
learning set size is reduced by a factor greater than 10.
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