
First-principles study of tungsten trioxide:
Structural properties and polaron formation

Hamdi Hanen

A Thesis Submitted for the Degree of Doctor in Sciences

Doctoral School of Physics

University of Liège

Promoter: Philippe GHOSEZ

Septembre 2017



Abstract

Using �rst-principles calculations, we analyze the structural properties of tungsten trioxide

WO3. Our calculations rely on density functional theory and the use of the B1-WC hybrid

functional, which provides very good agreement with experimental data. We show that the

hypothetical high-symmetry cubic reference structure combines several ferroelectric and anti-

ferrodistortive (antipolar cation motions, rotations and tilts of oxygen octahedra) structural

instabilities. Although the ferroelectric instability is the largest, the instability related to

antipolar W motions combines with those associated to oxygen rotations and tilts to produce

the biggest energy reduction, yielding a P21/c ground state. This non-polar P21/c phase is

only di�erent from the experimentally reported Pc ground state by the absence of a very tiny

additional ferroelectric distortion. The calculations performed on a stoichiometric compound

so suggest that the low temperature phase of WO3 is not intrinsically ferroelectric and that

the experimentally observed ferroelectric character might arise from extrinsic defects such as

oxygen vacancies. Independently, we also identify never observed R3m and R3c ferroelec-

tric metastable phases with large polarizations and low energies close to the P21/c ground

state, which makes WO3 a potential antiferroelectric material. The relative stability of var-

ious phases is discussed in terms of the anharmonic couplings between di�erent structural

distortions, highlighting a very complex interplay.

On the second hand, the addition of a single electron to the largest supercell of the mono-

clinic P21/c ground state of WO3 causes the development of a medium polaron inside of this

material. We then study and characterize a medium polaron formation in WO3 from �rst-

principles calculation. We show how the medium polaron in the supercell of WO3 can change

its structural, electronic and dynamical properties.
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Résumé

L'oxyde de tungstène (WO3) est un composé qui a été énormément étudié du fait de la richesse

de ses propriétés physiques et de leurs utilisations pour des applications technologiques. En

e�et, WO3 est le matériau électrochromique le plus connu grâce à sa capacité de changer de

couleur de manière réversible lorsqu'il est soumis à des ondes électromagnétiques ou bien sous

l'application d'un champ électrique. Au niveau industriel, les matériaux électrochromiques,

dont WO3 fait partie, sont utilisés principalement dans la fabrication de fentêres à haut

rendement énergétique, de verres intelligents, de rétroviseurs anti-re�ets, de toits ouvrants,

de batteries ou de cristaux photoniques accordables. Il est intéressant de noter que toutes ces

propriétés sont liées au dopage et donc directement à la formation de polarons et de bipolarons

qui vont in�uencer les transporteurs de charges. Bien que ce composé ai été largement étudié

expérimentalement et théoriquement, il reste encore des questions pertinentes et non résolues

concernant les propriétés structurales de WO3 et la caractérisation des polarons dans WO3−x.

Cette thèse est ainsi dédiée en premier temps, à analyser et comprendre les di�érentes tran-

sitions de phase du WO3 sur base de calculs ab-initio basés sur la théorie de la fonctionnelle

de la densité (DFT) et de reproduire les mesures expérimentales. Plus particulièrement, nous

avons montré que WO3 est un matériau anti-ferroélectrique à l'état fondamental et que c'est

possible de le rendre ferroélectrique sous l'application d'un champs électrique. En second

temps, nous avons élargi nos précédentes études de WO3 à l'état pur sans defaut, en explo-

rant théoriquement les e�ets des lacunes d'oxygène sur les propriétés physiques de WO3. Nous

avons discuté le développement du polaron, qui est due à l'ajout d'un électron extèrieur dans

la supercellule de l'état fondamentale de WO3, en fonction de la taille de la supercellule en

utilisant des calculs de premier principe. Nous avons ainsi con�rmé des travaux expérimentaux

précédents reliés au polaron dans WO3.
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Chapter 1

Introduction

Functional materials play an important role in many technological development challenges. In

general, we can �nd them in all classes of materials such as ceramics, metals, semiconductors,

polymers, and organic molecules. They have particular native properties and functions on

their own such as ferroelectric, dielectric, piezoelectric, magnetism and energy storage func-

tions. In particular, the perovskite oxides which represent a very large family of composition

ABO3, where A and B are cations, form a unique class of functional materials. They pos-

sess typical functionalities that promises important applications. These include, for example,

spintronics, magnetoelectricity, multiferroicity and high-temperature superconductivity, many

of which are used in various technological applications as magnetoelectronic and spintronic

devices, high-sensitivity ac magnetic �eld sensors and data storage.

The physical and chemical properties of these materials are sensitive to precise processing

conditions. A change of environment of the perovskite oxides such as temperature, pressure,

electric �eld, magnetic �eld and optical wavelength, can e�ect their functional behaviors.

The physics of the perovskite oxides manifest many aspects which represent an area of in-

terest. The understanding of the fundamental nature of these materials needs a description

of their electronic structure and lattice dynamics based on fundamental theories and very

basic approximations. Furthermore, the details of the structure of these compounds lead to

an improved understanding of their features. Many interesting physical phenomena in the

perovskite oxides are essentially driven by the speci�c features of the corresponding atoms

and ions.

Among the large family of the perovskite oxides, tungsten trioxide, WO3, exhibits perovskite-

16



CHAPTER 1. INTRODUCTION 17

like structures based on the corner-sharing of WO6,

Fig. 1.1: Cubic structure of WO3, in which W atom (yellow) is at the center of an octahedra
and O atoms (green) are at the corners of this octahedron.

which o�er the advantage of very high structural quality growth. It has been extensively

studied due to its very attractive and rich properties for technological applications. WO3 and

its derivatives HxWO3 and WO3−x are electrochromic, [13�18] thermochromic, [19, 20] and

superconducting. [15, 20�26] It has been envisaged that WO3 may become one of the best

materials for electrochromic applications such as in energy-e�cient windows, smart glasses,

anti-glare automobile rear-view mirrors, sunroofs, displays, or even tunable photonic crystals

[27] and to reduce photocorrosion. [28].

The wide variety of the underlying electronic instabilities for these properties is mirrored by

a multitude of related structural instabilities, which were investigated since 1975 [29,30] and

re�ned later. [1�3, 31�33] All known WO3 phases are characterized by very large distortions

of the archetype perovskite structure so that even the notion of octahedra tilts is to be taken

with some caution. The WO6 octahedra are so largely distorted that the variance of W�

O distances in any observed structure is far greater than in most other known perovskite

structures. [34�38].

The structural properties of WO3 can be summarized as follows: it shows no proper melt,

surface melting of crystalline material occurs at 1746 K. Crystal growth proceeds typically
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by sublimation and gas transport at temperatures below 1400K. At the highest temperatures

the structures is tetragonal (space group P4/nmm) with strong antiferrodistortive (AFD)

cation movements so that the WO6 octahedra are strongly distorted [39] in an anti-polar pat-

tern. Additional rotational octahedral distortions condense in addition to the initial tetrag-

onal displacements when lowering the temperature. They further reduce the symmetry from

tetragonal to orthorhombic, monoclinic, triclinic, and �nally to a second monoclinic phase.

A structural sequence, which contains phases stabilized by temperature, is given in Fig. 1.2

and Fig. 1.3. A monoclinic phase (P21/n) [2] and a triclinic phase P 1̄ exist at room temper-

ature. [34,35]

Fig. 1.2: (Color online) Schematic summary of the temperature phase diagram WO3 as
reported by three main experimental sources (Vogt from Ref. [1], Locherer from Ref. [2] and
Howard from Ref. [3]

At higher temperatures, Vogt [1]et al and Locherer et al. [31] concluded a transition from

Pbcn to the P4/ncc phase and Howard [3] observed an intermediate P21/c phase. Locherer

et al. [31] and Woodward et al. [36] found an additional transition from P4/ncc to P4/nmm

near at 980 K to 1200 K. Below room temperature, Salje et al. [32] reported a transition from

the triclinic P 1̄ phase to a polar phase (Pc) with no further transitions down to 5K.

WO3 occurs (almost) always as oxygen de�cient WO3−x with a metal-insulator (MI) transition

to a metallic phase for high concentrations of oxygen vacancies or doping with alkali metals.

Superconductivity occurs in the metallic phase [21] even if the reduced regions are restricted
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Fig. 1.3: A structural sequence of WO3 which shows the octahedral distortions of each phase
transiton of this compound

to nano-scale twin boundaries. Bulk superconductivity in WO3−x was found in a tetragonal

phase with space group P 4̄21m. [22]

Despite all the experimental and theoretical investigations of the structural phase transitions

of WO3, a deep microscopic analysis of the phase diagram through the lattice dynamics of

WO3 have been missed. In particular, the ferroelectric ground state of WO3 has not yet been

clearly elucidated. Therefore, it will be important to understand the dynamics behind the

main features leading naturally to the notion of structural phase transition and then to the

ground state of WO3.

In this context, our �rst purpose, will be to present a coherent comprehensive density func-

tional theory (DFT) study of the lattice dynamics, structural and electronic properties of

various observed phases of a such technologically important oxide, WO3. We will discuss the

relative stability of these various phases using interaction terms that couple multiple lattice

modes. In view of that, we will reveal many new details concerning the structural instabilities

ofWO3, which can be derived from a careful analysis of its intrinsic cubic phonon instabilities.
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Additionally, we will include alternative low energy structures which have not been experi-

mentally observed. Furthermore, in a discussion where the antiferroelectricity appears as a

central concept, we will see that the ferroelectricity is also involved to make WO3 a potential

antiferroelectric material.

The behavior of WO3 changes when the oxygen de�ciencies are involved. The o�-stoichiometric

WO3−x exhibits a fascinating range of behaviors: from electrochromism [13�18] and ther-

mochromicity, [19,20]. to high-temperature superconductivity [20,21,23�26,40,41] and bipo-

laronic electron transport [42�45]. Hence, the ability to develop such a material requires

knowledge from many �elds of science and technology. Its potential applications arise from

the ability to control its optical properties via an external �eld or an extrinsic e�ect [46].

The optical properties of WO3 can vary signi�cantly due to the presence of oxygen vacancies

or doping [47], giving rise to a rich variety of colors, such as, yellow, green and blue [48]

and phenomena, e.g. electrochromicity [13] or thermochromicity [19], and thus having a

broad range of potential applications that are already mentioned before. Nevertheless, the

description of these properties that are due to the presence of the oxygen de�ciencies or cation

doping in WO3 are basically assigned to a polaron.

The o�-stoichiometric WO3−x plays a key role in the electrochromic phenomena and electrical

conductivity of this material. The nonstoichiometric form of WO3−x has been modeled by

removing some oxygens from the low symmetry structures of WO3 in order to elucidate

the electrochromic e�ect. In 2008, Deb [46] suggested for the �rst time, a model where he

associates di�erent charge states to the oxygen vacancy (VO) depending on the charge transfer

of the tungsten(s) pointing towards the defect. Deb associated a 0, +1, and +2 charge state

to W4+ or 2W5+, W5+ and W6+, respectively. The 0 charge state is located inside of the the

valence band (VB) (0), the +1 charge state is inside the band gap and the +2 charge state

is inside the conduction band. Deb thus showed that the energy levels variations associated

with these charge states of the oxygen vacancy are involved in the optical transition energy

levels, which create a change in the absorption properties of WO3−x and thus in its color.

Later, Wang [47] also proposed the same model to explain the electrochromic e�ect of WO3

with additional details regarding how to get the di�erent oxidation states of W. They showed,

using density functional theory calculations with the Becke-3-Lee-Yang-Parr (B3LYP) hybrid

functional (containing 20% of exact exchange), a strong dependence of the crystallographic
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direction on where the O atom is removed on the W formal oxidation states. Additionally,

they observed a semiconductor-to-metal transition by increasing the VO concentration. In

this case, there is a separation between the modi�ed charge states of the tungstens which are

located towards the oxygen vacancy and if the two excess electrons are trapped. Recently,

N. Bondarenko et al. [49] showed, using the DFT + U and the screened hybrid functional

of Heyd, Scuseria, and Ernzerhof (HSE06) (containing 25% of exact exchange), [50, 51] that

the formation of the bipolaron in the monoclinic phase WO3 has two possible con�gurations

W5+-W5+ and W6+-W4+ which are basically due to either the presence of an oxygen vacancy

or doping by lithium atoms (Li). In addition, they also showed that for the Li-doped WO3

the formation of the W5+ polaron and its mobility between di�erent neighboring W sites is

possible, whereas the appearance of the W4+ state is metastable with the presence of vacancies

or is unlikely to form in perfect Li-WO3. On the other hand, there have been several prior

experimental studies on the polaron and bipolarons e�ect of WO3, carried out at various

experimental methods. Perhaps the most relevant for our study is the work by E.K. H. Salje

on the polarons and bipolarons formation in WO3−x [4]. Salje showed the existence of the

bipolarons in the Pc phase of WO3−x, which can be photo excited to give two single medium

polarons. He then identi�ed and characterized the observed medium polaron by a dominant

electron density at the W5+ state with the presence of a large probability density away from

this speci�c tungsten. The spread of the trapped electron wavefunction is extended over a

two-dimensional layer of the structure of WO3 which explain the 2D anisotropic shape of the

polaron (see Fig. 5.2).
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Fig. 1.4: Sketch of the polaron which extends over 9 tungten sites. Shown is the (ab) plane,
the extension of the polaron along the c-axis is one unit cell, ie. the polaron is disc-shaped in
the (ab) plane. [4]

Salje also showed that the formation of polarons of small or intermediate size is speci�c only

for the low temperature ε phase and there is no indication of localized W4+ states in this

phase. In this context, our second purpose, will be to build on these earlier theoretical and

experimental studies for which a deep understanding of the underlying polaron e�ect of WO3

from the microscopic origin is still challenging. The analysis and physical notion of a polaron

are substantially easier to understand than those of the bipolaron, and they are also essential

to understand the physical behavior of the bipolaron, which is generated by an oxygen vacancy.

In this thesis, using DFT hybrid functional calculations, we start by analyzing the medium

polaron formation process after the injection of one electron in a supercell of the P21/c

ground state structure of pure WO3 [5]. We investigate the di�erent possibilities to localize

this charge carrier in WO3, which allows for the development of a medium polaron inside of

this compound. We then study and characterize the medium polaron in WO3. We will show

that our simple model calculations including only electronic e�ects can reproduce some of the

physical aspects of the medium polaron behavior experimentally observed in WO3.
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The manuscript is organized as follows: in Chapter 2, we introduce Landau-Devonshire theory

as a simple model to describe the phase transitions without much complicated distortions. We

also introduce the concept of the soft mode which allows us to describe the structural phase

transition as well as we present the properties related to the ferroelectricity. Furthermore,

we review the aspects of the fundamental physics of antiferroelectric materials and their

properties. In Chapter 3, we describe the theoretical background that has been used to study

WO3. This includes; DFT theory with a special emphasis on the hybrid functional approach,

the generic technical details used in the calculations and the tools for symmetric mode analysis.

From these general considerations, we present in Chapter 4, the results obtained from our DFT

calculations using the hybrid functional B1WC of WO3. We elucidate the crystal structures

and lattice dynamics of WO3 and, thus, we explore the lattice mode contributions to the

phase stability of various polymorphs, and we discuss the properties of each crystal structure

of WO3. In Chapter 5, we study and characterize a polaron formation in WO3 from �rst-

principles calculation by adding a single electron in a supercell of the monoclinic P21/c ground

state structure ofWO3 and �nd a self-trapping of this electron on a few d-orbitals of W, which

distorts the crystal structure. In Chapter 6, we conclude this present thesis with a summary

of what we have been achieved, highlighting the main contributions. We will put the work

into a broader perspective and we will discuss future avenues.



Chapter 2

Crystal Properties and Physics related to

WO3

2.1 Introduction

The description ofWO3 phase transtions needs to introduce the concept of the Landau theory,

which provide an explanation of a any system's equilibrium behavior during the process

of a structural phase transition. In fact, to analyze the symmetry transformation induced

during the process of the phase transition, in 1937, Laudau proposed a phenomenological

expression for the free energy of any system as a function of an internal variable of this

system. Furthermore the Landau theory is considered as one of the basic theoretical tool for

describing and understanding the nature of the phase transitions as a function of a physical

quantity which is called the order parameter (OP). This OP should be zero in the highest

symmetry phase and non-zero at the phase transition. Therefore, we can determine the

equations of the system state by constructing a Landau free energy F as a power series of the

order parameter in the vicinity of the transition.

2.2 Landau-Devonshire theory of phase transition

The occurrence of phase transitions between equilibrium states can be driven by many pa-

rameters such as temperature, pressure, chemical composition, magnetic or electric �eld, etc.

In particular, for crystal phase transition, the space-group symmetry of the high and low-

24
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symmetry phases usually exhibits a group-subgroup relationship. The Landau-free-energy

should be invariant by all the symmetry transformations constituting the space group of the

high symmetry phase for which we have to keep only the even power of the order parameter

in the Taylor expansion of the free-energy, such as:

F (ψ, T ) = Aψ2 +Bψ4 + Cψ6 + ... (2.2.1)

in which ψ is the order parameter that can be macroscopic or microscopic quantity (that

can be a thermodynamic quantity). The coe�cients of the series-expansion terms of F(ψ,T)

can be determined from experiment or from �rst-principles calculations. From the thermody-

namic approach, the free energy is the Gibbs free energy (G) with free mechanical boundary

conditions (σ) and with an external �eld (E) such as :

G = U − TS − ησ − ED = F − ησ − ED (2.2.2)

with σ=0 and E=0, we get

F = U − TS

Where T is the temperature, S the entropy and U the internal energy. To get a thermal

equilibrium (stable phase), the order parameter must minimizes the free energy.

2.2.1 Second order phase transition

Laudau theory is an approach that describe and allow to analyze the equilibrium behavior of

a system near the phase transition. The phenomenological expression for the free energy as a

Taylor expansion in the order parameter is written as follows:

F (ψ) =
1

2
aψ2 +

1

4
bψ4 (2.2.3)
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where we have truncated the power series at fourth term. Here the coe�cient a depends on

the temperature and is given by to the Landau-Devonshire theory:

a = a0(T − T0)

T0 is the temperature where the phase transition occurs with a non-zero value of the order pa-

rameter. The other coe�cients in the free-energy expansion are independent of temperature.

Therefore, the general expression of the free-energy up to the 4th order is :

F (ψ) =
1

2
a0(T − T0)ψ2 +

1

4
bψ4 (2.2.4)

For the second order phase transition, the existence of a minimum of F for �nite values of order

parameter is ensured by the positive sign of the quadratic coe�cient b>0. The minimum of

F, above and below T0 occurs at:

ψ = 0 , for T > T0 (2.2.5)

ψ0 = [
a0

b
(T0 − T )]1/2 , for T < T0 (2.2.6)

The variations of F(ψ) and the OP around the vicinity of T0 are sketched in Fig. 2.1. Below

T0, F(ψ) is minimized at +/- ψ0 and the OP has a square-root temperature dependence as a

function of (T0 − T ) where we can see that the OP will increase with decreasing temperature

from T= T0 to T=0 K. In this case, the OP varies continuously from T0. When T> T0 or

T= T0, the free-energy is shown as a single well as a function of the OP that is the sign of a

paraelectric material.
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T =T0

Fig. 2.1: Second-order phase transition. (a) Free energy as a function of the order parameter
at T> T0, T=T0 and T< T0; (b) Order parameter ψ0 as a function of temperature
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Fig. 2.2: First-order phase transition. (a) Free energy as a function of the order parameter
at T> T0, T=T0 and T< T0; (b) Order parameter ψ0 as a function of temperature

On the other hand, we can also calculate other properties for the second-order phase transition

from the free energy:

F = U − TS ⇒ U = −1

2
aTcψ

2 +
1

4
ψ4 (2.2.7)

⇒ S = −1

2
aψ2 (2.2.8)

We assume that the internal energy U is independent of temperature. The entropy S is a

quadratic function of the order parameter, it will decrease with decreasing temperature. The

dielectric susceptibility χ is obtained from the second-order di�erential of the free-energy with

respect to the order parameter:

χ−1 =
∂2F

∂ψ2
= a(T − T0) + bψ2 (2.2.9)
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When T<T0,ψ=0 and

χ−1 =
∂2F

∂ψ2
= a(T0 − T ) (2.2.10)

For T>T0,

χ−1 = 2a(T0 − T ) (2.2.11)

The dielectric susceptibility χ diverges at the phase transition (T−→ T0) (see Fig. 2.3)

Fig. 2.3: Dielectric susceptibility χ of the second-order phase transition and its inverse as a
function of temperature.

2.2.2 First order phase transition

For the �rst order phase transition, the Landau-free-energy expansion will be up the sixth

order, such as:

F (ψ) =
1

2
aψ2 +

1

4
bψ4 +

1

6
cψ6 (2.2.12)

where the quartic coe�cient b is negative. The variations of F(ψ) are sketched in Fig. 2.2 from

which we can see that the free energy have a minimum at nonzero OP above the transition

temperature Tc. For these type of phase transition a special critical point should be found
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(the so-called Landau Curie point) that corresponds to the discontinuous jump of the order-

parameter. This temperature is not the same than the transition temperature T0 for the

second order phase transition in the sense that for any temperature between Tc and To the

free energy has a local minimum for a zero OP. Since anharmonic e�ects play a crucial role

in the softening process. In this case the critical temperature is given as folows:

Tc = T0 +
3b2

16ac
, (2.2.13)

and the internal energy at this temperature is written as :

U =
aTcψ

2

2
(2.2.14)

On the other hand, the dielectric susceptibility is di�erent from the standard Curie-Weiss law

provided by the second-order transition at the transition temperature Tc :

χ =
1

a
(T − T0) for T > Tc (2.2.15a)

χ =
16c

3b2
for T = Tc (2.2.15b)

χ =
1

a
+ 3bψ2 + 5cψ4for T < Tc (2.2.15c)

This variation is sketched in Figure 2.4.
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Fig. 2.4: Dielectric susceptibility χ of the �rst-order phase transition and its inverse as a
function of temperature

2.3 Soft modes

The concept of the soft phonon mode comes from the description of the lattice dynamical mode

with anomalously frequency at the Curie point. This particular mode, which is characterized

by its eigenvector and frequency, has an anomalous behavior around the structural phase

transition of the crystal. Such modes trigger a lattice instability, leading to a structural phase

transition either of second or �rst order. In the second-order transition, the soft frequency

actually vanishes at the transition point. However, for the �rst-order transition, the change

of phase occurs before the mode frequency is able to go to zero. When the normal vibrational

mode (phonon) of the crystal becomes unstable, that is, whose normal frequency tends to zero

as T−→ T0. On the other hand, in 1954, Born and Huang [52] established that a crystal lattice

will become unstable if one of its normal-mode frequencies becomes purely imaginary. Since

an anharmonic e�ects play a crucial role in the softening process, we can then understand the

origin of the temperature dependence of the soft mode frequency as:

ω2 = ω2
o +

kB/2∑
k
′
,ν′ α

(4)

k′ ,ν′
/ω2(k′ , ν ′)

(2.3.1)
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Where ω2
o is the harmonic value that we calculate in the lattice dynamics calculation and

α
(4)

k′ ,ν′
is the coe�cient of the fourth-order anharmonic interaction that couples the soft mode

to a phonon of wave vector mode ν
′
k
′
and angular frequency ω(k

′
,ν

′
). If α(4) is positive,

ω2 increases until it becomes positive when the temperature increases. At the transition

temperature T=Tc in which ω2=0, we can deduce from the Eq.(1.15) that:

Tc =
−2ω2/kb∑

k′ ,ν′ α
(4)

k′ ,ν′
/ω2(k′ , ν ′)

(2.3.2)

Therefore we can write the temperature dependence of the soft mode as:

ω2 =
|ω2

0|
Tc

(T − Tc) (2.3.3)

The variations of the square frequency is sketched in �gure 2.5

Fig. 2.5: Schematic representation of the temperature dependence of the square of the fre-
quency of the soft mode. Below the temperature Tc the frequency is imaginary and hence
unstable. The frequency at T=O K is the harmonic value
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2.4 Phonon instabilities

The microscopic origin of the structural instabilities of the crystal is mainly related to the

vibration of certain normal modes in the high symmetry cubic structure. In particle, the

appearance of the ferroelectric phase transition when the temperature is lowered, is mainly

due to the softening of a transverse optical (TO) polar zone-center mode during the process of

the transformation as explained by Cochan [53]. The soft mode is main characterized by its

low frequency. Therefore, we can associated the structural instability to the lattice dynamics.

Within, the harmonic approximation, the dynamical equation can be written as:

∑
D̃κα,κ′β(q)γmq(κ

′
β) = ω2

mqγ(κα), (2.4.1)

where α and β label the directions, ω2
mq is the phonon frequency of the mode m at wave

vector q, γ(κα) its associated phonon eigenvector related to the phonon eigendisplacement

ηmq =
√
Mγmq and D̃κα,κ′β the dynamical matrix. The dynamical matrix is de�ned as:

D̃κα,κ′β(q) = C̃κα,κ′β(q)/
√
MκMkappa′ , (2.4.2)

where Mκ is the mass of the atom κ and C̃κα,κ′β is the Fourier transform of the interatomic

force constant (IFC) in real space [54]:

C̃κα,κ′β(l, l
′
) =

δ2E

δτκ,α(l)δτκ′ ,β(l′)
(2.4.3)

where l and l
′
label the unit cell, κ and κ

′
label the atoms, τ their displacements, while α and

β label the directions in which the atoms are displaced.

2.5 Ferroelectricity

The connection between structural distortions and ferroelectricity in the perovskite family

of materials is basically the symmetry arguments. The polar displacements of cation and

anion sublattices against one another break the symmetry of the perfect high-temperature
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cubic structure and induces a spontaneous electric polarization. However, for ferroelectricity

it must be possible to switch the polarization under an applied an electric �eld. From the side

of the reciprocal space, the ferroelectricity is the result of a polar instability at the Brillouin-

zone center in which the cations uniformly move against the oxygen octahedron, which is

sketched in Figure 2.6.

Fig. 2.6: Schematic view of the polar mode contributing to the distortions of WO3 (left part
of the image) [5] and NaMnF3 (right part of the image) [6]. Small red and white spheres
represent the oxygens and the �uorides, respectively. The large blue, purple and green spheres
represent the tungsten, Manganese, and Sodium atoms, respectively.

2.6 Symmetry-mode analysis of the distorted phases

The study of phase transitions brings together issues of crystal structures, symmetry, bonding,

thermodynamics, and lattice dynamics. In particular, the displacive phase transitions asso-

ciated to the perovskites materials could involve ferroelectric distortions, antiferrodistortive

distortions, rotations, and tilts of oxygen octahedra. Therefore, a symmetry-mode analy-

sis of any distorted structure of displacive type leads to understand some interesting physical

properties, such as the ferroelectricity and antiferroelectricity. This analysis consists in decom-
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posing the symmetry-breaking distortion present on the distorted structure into contributions

from di�erent symmetry-adapted modes. A special software known as AMPLIMODES was

created to perform a meaning symmetry-mode analysis of a distorted structure. In fact, dur-

ing the process of the displacive phase transition the higher symmetry crystal structure of

the last phase is a distorted form of the higher symmetry crystal structure of the previous

one (parent phase), in which its symmetry is lowered by small displacement of some of the

atoms. Thus, given the high- and the low-symmetry structure, AMPLIMODES (see Ref. [55])

�nds the atomic displacements that related them, de�nes a basis of symmetry-adapted modes,

and calculates the amplitudes and polarization vectors of the distortions modes of di�erent

symmetry frozen in the structure. These distortions modes could be unstable in the par-

ent high-symmetry con�guration and are essential for justifying the stability of the distorted

structure. We call such modes primary modes because we can �nd in the same distorted

structure an other type of modes that are consider as a secondary modes, which are allowed

by symmetry and have a less importance than the primary modes. These secondary modes

appear through linear coupling with the primary modes.

The symmetry-mode analysis separates the contributions of the di�erent symmetry modes in a

structural distortion. This needs, �rst, to determine a basis of symmetry modes of the parent

phase compatible with the low-symmetry phase, then to decompose the structural distortion

as a sum of the contributions of all of them. A group-subgroup relation should exists between

the space groups of the parent and observed structures, and the structural distortion that

related them.

2.7 Antiferroelectricity

Some of the functional oxides exhibit a variety of interesting physical properties, such as:

ferromagnetism, ferroelectricity and multiferroic properties. The antiferroic materials can also

exhibit characteristic functional behavior in applied macroscopic �eld. The antiferroelectric

crystal are characterized by an antipolar crystal structure with related ferroelectric polar

structure at low free energy. An earlier study of antiferroelectric perovskite oxide, reported

by Shirane [7,10], shows the competition between ferroelectric and antiferroelectric phases is

an intrinsic feature of antiferroelectrics.
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Fig. 2.7: Double hysteresis loop for PbZrO3 , as redrawn in Refs. [7, 8]

The appearance of a ferroelectric phase through a �rst-order boundary in the phase diagram

is an important indication of antiferroelectricity. The main characteristic property coming

from the low-free-energy di�erence is the electronic-�eld-induced transition from the antifer-

roelectric to the ferroelectric state in a double hysteresis loop (see �gure 2.7). The application

related to this functionality of the antiferroelectric materials are: high energy storage capac-

itors, electrocaloric refrigerators, high-strain actuators and traducers.

2.7.1 De�nition and Characteristic Properties

In the standard reference book by Lines and Glass [56], an antiferroelectric is attained by

condensation of a nonpolar lattice mode that " exhibit large dielectric anomalies near to the

transition temperature and that can be transformed to an induced ferroelectric phase by the

application of an electric �eld ". In the recent overview article of Landolt and Bornstein [57],

the concept of antiferroelectricity is based not only on the crystal structure but also on the

dielectric behavior of the crystal. On the other hand a ferroelectric crystal is de�ned as a
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crystal that shows an electric polarization, whose direction can be reversed by an electric �eld.

The antiferroelectric crystal is de�ned as a crystal whose structure can be considered as being

composed of two sublattices polarized in antiparallel directions and in which a ferroelectric

phase can be induced by applying an electric �eld. These two de�nitions of ferroelectrics and

antiferroelectrics are often extended to include the possibility that the transition temperature

is above the decomposition temperature of the material, or that the critical electric �eld is

above the breakdown �eld of the material. The antiferroelectric can be described by unit cells

with oppositely directed dipoles generated by ionic displacements from a higher symmetry

reference structure as shown in �gures 2.8

Fig. 2.8: The left side represents a schematic view of the antipolar mode contributing to
the distortions of WO3. [5] Small red spheres represent the oxygens and large blue spheres
represent the tungsten atoms. The right side represents the projection of antipolar atomic
displacements associated with the

∑
2 mode at q =2πa (1/4,1/4,0) onto the ab-plane. Squares

and circles indicate Pb and oxygen atoms, respectively. Filled and open circles show atoms on
the Pb atomic layer and atoms on the Zr atomic layer. [9]
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2.7.2 Landau energy functional formulation

The Landau energy can describe the importance of both structural and energetic aspects of

the de�nition of antiferroelectrics. Kittel [58] has shown the main characteristic properties of

antiferroelectrics by introducing the free energy expression:

A(Pa, Pb, T ) = Ao + f(P 2
0 +P 2

b ) + gPaPb + h(P 4
a +P 4

b + j(P 6
a +Pb)− (Pa +Pb)E (2.7.1)

Where Pa and Pb is the polarization of the two sublattices, and E is the electric �eld, with g

> 0 favoring the antipolar alignment of the two sublattice. This can be transformed into a

Landau functional:

G1(PF , PA, T ) = (1/2)(f+g/2)P 2
F+(1/2)(f−g/2)P 2

A+(h/8)(P 4
F+6P 2

AP
2
F+P 4

A)+PFE (2.7.2)

where PF = Pa + Pb is the macroscopic polarization, and PA = Pa − Pb is the staggered

polarization. The quadratic coe�cients depend on the temperature as f(T)=g/2+λ(T − Tc),

so the quadratic coe�cient of PA vanishes at Tc, and λ > 0 correspond to a low-temperature

antiferroelectric phase. The temperature dependences of the quadratic terms in PA and

PF are linked. The transition can be �rst or second order depending on the choice of the

parameters. For the second order transition, h>0 and the sixth-order terms can be neglected.

At T=Tc there is a phase transition from the high-temperature phase to the antiferroelectric

phase, below this transition temperature Tc the spontaneous polarization of the sublattices

PA becomes nonzero. The dielectric constant depends on the temperature has its maximum

at the Curie temperature and changes slope slightly. For a �rst order transition, h< 0 and

j>0, the sublattice polarization will be discontinuous, same for the dielectric constant at the

paraelectric-antiferroelectric transition. [11]

2.7.3 Microscopic Origins of Macroscopic behavior

To connect the macroscopic behavior to microscopic aspect of the crystal structure and en-

ergetics of antiferroelectric materilas, we can start by considering simple microscopic model

in which we have re-orientable localized electric dipoles on a bipartite lattice, so that the

lattice sites can be divided into two sublattices, with each site being neighbored by sites in
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the other sublattice. The single and the next-nearest-neighbors dipole-dipole interactions fa-

voring anti-alignment and stabilize sublattice polarization give the characteristic hysteresis

loop with a jump in polarization from the antiferroelectric state to �eld-induced ferroelectric

state. On the other hand, we can also make macroscopic-microscopic connection through the

soft mode theory. On the beginning, we identify the lattice modes of de�nite symmetry in

the structure of the antiferroelectric phase relative to a high-symmetry reference structure,

and then we can write the expansion of Landau energy in symmetry invariants [59]. The

Kittel-type antiferroelectric model is characterized by a single lattice mode in which the ions

involved are divided into two groups with equal and opposite displacements. The wave vector

is expected to be at the zone boundary, doubling the unit cell. Moreover, the antiferroelectric

phase can be described by a group of coupled modes [60], with a primary unstable antipolar

mode accompanied by other distortions such as oxygen octahedron rotation to which cou-

pling is symmetry-allowed, lowering the energy of the phase. As described before, to get an

antiferroelectric phase we have to �nd a low-energy alternative ferroelectric phase, where its

distortions come from the same high-symmetry reference structure. This condition of antifer-

roelectricity provides a small energy di�erence that will be easy the make the transformation

between the two phases via the application of an electric �eld. The ferroelectric phase can be

generated by more general zone-center polar mode and may be accompanied by other modes

that are observed to be present in the low-energy alternative ferroelectric phase.

For example, lead zirconate (PbZrO3) is known as a typical antiferroelectric material because

of its antiferroelectric grounds state. Moreover, an intermediate ferroelectric phase have

been observed between the paraelectric and the antiferroelectric phase. Figure 2.9, shows

the existence of the free energy curve of the ferroelectric phase which lies above that of the

antiferroelectric phase. An other antiferroelectric phase appears with free energy also very

adjacent to that of the original antiferroelectric phase and we can see also that the free

energy of the ferroelectric phase is very close to that of the other antiferroelectric phase.

By the application of an external �eld on PbZrO3 a double hysteresis starts to appear only

above a critical Ec �eld. We can see that when the external �eld increases beyond Ec, the

ferroelectric state may become more stable than the antiferroelectric one. Such a situation

should be realized if the the free energy curves for PbZrO3 have characteristics as shown in

�gure 2.9 . Therefore, the free energy of the ferroelectric state, if we compare with those of
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the antiferroelectric and the paraelectric ones, must be lowered considerably.

Fig. 2.9: Schematic free energy curves for antiferroelectric PbZrO3 , showing the presence of
a low-free-energy alternative ferroelectric phase. (Source: From Ref [10])

2.7.4 Antiferroelectric materials: Structure and Properties

Untel recently, the most thoroughly studied antiferroelectric oxide is on PbZrO3. PbZrO3 has

a paraelectric cubic ideal perovskite at high temperature and at a temperature below Tc=505

K, the structure is antiferroelectric orthorhombic phase distorted perovskite structure Pbam

[61]. An intermediate ferroelectric rhombohedral R3m phase with electric polarization along

[111] have been observed in a very narrow temperature range separating the antiferroelectric

and ferroelectric phases [62].

The estimation of the critical electric �eld required to stabilize the polar phase is Ec ∼

∆E/Ω0Ps, where ∆E is the energy di�erence between the two phases. In the recent study

of PbZrO3 [63], depends on which approach that has been used in density functional theory

(DFT) calculation, two polars phases R3c and R3m have been found with a small energy

di�erence between them and the Pbam anitpolar phase. With the local-density approxima-

tions (LDA) approach, the R3c structure was the polar phase with small energy di�erence 7
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Table 2.1: Gain energies, polarizations, Volumes and Electric �elds for PbZrO3, ZrO2 and
WO3

Material PbZrO3 ZrO2 WO3

Approach LDA LDA Hybrid (BW1C)
FE phase R3c Pca21 R3m
AFE phase Pbam Aba2 P21/c

Gain energy (meV/f.u) 7 35 11.43
Polarization(µCcm−2) 66.01 36 69

Volume (Å3) 70.89 32.9 55
Electric �eld (kV/cm) 239 470 480

Reference [63] [63] [5]

Material PbZrO3 ZrO2 WO3

Approach GGA-WC Hybrid (BW1C)
FE phase R3m R3c
AFE phase Pbam P21/c

Gain energy (meV/f.u) 24 14.93
Polarization(µCcm−2) 75 71

Volume (Å3) 52.71
Electric �eld (kV/cm) 707 638

Reference [63] [5]

meV/f.u with respect to the Pbam antipolar phase. To stabilize the R3c phase by applying an

electric �eld from the Pbam antipolar phase, we need 239 kV/cm electric �eld. In addition,

the Generalized gradient approximation (GGA-WC) approach provides the R3m structure

as the polar phase with energy di�erence 24 mev/f.u with respect to the Pbam antipolar

phase. Therefore, the transformation between the two phases R3m and Pbam will be via the

application of an electric �eld with 707 meV/cm.

For tungsten oxide WO3, we have found also two polar phases R3c and R3m with energy

slightly above the energy of the antipolar phase P21/c, that is the ground state of this com-

pound. The lower energy di�erence is between the R3m and the P21/c phase 11.43 meV/f.u,

such as we need 480 meV/f.u electric �eld to make the transformation between the two phases.

For the R3c phase, the energy di�erence is 14.93 meV/f.u bigger than the R3m phase, then

the electric �eld is 638 meV/f.u.

For ZrO2, the antipolar phase is Aba2 structure and the polar one is Pca21 structure, the

energy di�erence between the two phases is 35 meV/f.u which required to apply 480 kV/cm

electric �eld to make the transformation between these phases.
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2.7.5 Analogy between Antiferroelectric and Ferroelectric material

A ferroelectric material is an insulating crystal characterized by a switchable macroscopic

polarization P. Indeed, at a given temperature T=Tc, an o�-center displacement of the B

(coming from ABO3 perovskite family) cation breaks the centersymmetry structure to gener-

ate, in each cell, an electric dipole that makes the spontaneous polarization P. The opposite

direction o�-center displacement of the B cation will leave the structure unchanged with an

spontaneous polarization -P, this means that the free energy of the crystal is invariant by

this inversion of the spontaneous polarization. To illustrate this characteristic behavior of

ferroelectric materials, from the DFT theoretical point view, a double well of free energy with

respect to the spontaneous polarization have been performed to emphasize the switchability

of the polarization in the ferroelectric materials (see Figure 2.10).

Fig. 2.10: Illustration of the energy double-well of the ferroelectric phase.

However, all practical measurement of ferroelectric materials exploit the switchability of the

polarization. In fact, when all of the dipole moments are aligned, the ferroelectric material

is considered saturated since an increase in applied voltage will not increase the polarization.

Furthermore, if the applied voltage is reduced from its maximum positive value to zero,

some dipole moments will remain aligned and a remanent polarization is observed which is

only the spontaneous polarization. Therefore, the application of a su�ciently strong coercive

electric �eld is still necessary to switch the polarization from P to -P. These two polarizations

that are equal in modulus and point along equivalent symmetry directions correspond to the

polarization of two enantiomorphic structures. As a practical matter, the magnitude of the

spontaneous polarization is de�ned as the half of the polarization di�erence between the two

ones of the enantiomorphic structures. The transformation between the two enantiomorphic
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structures polarization is driven by the coercive electric �eld and that �nally provides an

hysteresis cycle as experimental output. On the hand, for the antiferroelectric materials, we

can consider the Kitel model (as described in the previous subsection), in which the global

lattice of the crystal was devised between two sublattices that both have the same magnitude

of spontaneous polarization but with opposite directions. By analogy to the de�nition for

a ferroelectric phase, an antiferroelectric phase is obtained through an opposite o�-center

displacement of the B cation in each sublattices that breaks the centerosymmetry phase of

the global structure. However, the total spontaneous polarization is zero. Moreover, from

microscopic view, the antipolar lattice mode is the parameter that is involved to stabilize

to antiferroelectric phase such as the free energy curve is a double well with respect to the

variation of this parameter. In addition, to rely the calculation of the double well of the

free energy as a function of the antipolar mode to the experiment measurement, a double

hysteresis loop have been observed (see Figure 2.11).

Fig. 2.11: Tentative explanation of the anomalous hysteresis loops of PbZr03 at 30 kv/cm.
[11]

For analysis of the shape of this global hysteresis loop, we separated this loop into two

hysteresis loop as shown in �gure 2.12
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Fig. 2.12: Illustration of the hysteresis loop for a sublattice.

from which we can related each one to the measurement of the polarization as a function of

an applied electric �eld to one sublattice that has only one direction of polarization. For the

other opposite direction of the polarization, we relate this loop to the second hysteresis loop

that involve the negative values of the applied electric �eld and the polarizations. Hence this

typical hysteresis loops may be seen only above an electric �eld.

2.8 Conclusion

In this chapter, we have reviewed the main crystal properties that are related to the study

of WO3. We have then detailed the Landau theory to explain the process of any structural

phase transition from a microscopic viewpoint. Additionally, we have provide a description

of the origin of the structural instabilities, which will be used in chapter 4 to investigate

the phase diagram of WO3. In particular, we have analyzed the main characteristics of the

antiferroelectric properties, which will be helpful to de�ne any antiferroelectric matarial as

WO3.



Chapter 3

First-principles background

3.1 Introduction

The aim of this chapter is to provide a detailed formalism of the Density Functional Theory

(DFT). We report the general equations and approximations, which are the basic tools to

investigate the ground-state properties of di�erent class of materials. We introcude then the

DFT with some details related to the pratical numerical implementions as they are used in

the calculations of the essential properties of WO3.

3.2 The electronic problem

To study and analyze the structure of matter, we need to solve the electronic Schrodinger

equation [64]:

ĥeΦ(R,r) = ε(R)Φ(R,r) (3.2.1)

for a system of N interacting electrons in the external Coulomb �eld coming from atomic

nuclei. Φ(R,r) represents the many-electron wave function, and the parameters R are the

nuclei coordinates. The eignenvalues ε(R) depend parametrically on R, and de�ne the energy

surfaces. The ground electronic state is the basic feature to study the structural aspects of

45
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materials. The electronic Hamiltonian is:

ĥe = − ~
2m

N∑
i=1

∇2
i − e2

P∑
I=1

N∑
i=1

ZI
|RI − ri|

+
e2

2

N∑
i=1

N∑
j 6=1

1

|Ri − rj|
(3.2.2)

where the �rst term is the kinectic energy, the second is the electron-nuclear interaction, and

the third is the electronic repulsion. The electrons are represented by a wave function .

However, the presence of an electron in a region of space in�uences the behavior of the other

electrons in other regions, so that they cannot be considered as individual entities. Therefore,

the wave function of many-electron system cannot be simply written as the product of the

wave function of individual electron. On the other hand, the fact that the wave function

cannot be factorized involves that the exact solution of Schrodinger's equation needs solving

an equation in 3N degrees of freedom. In fact, the exact solution is known only in the case of

the homogeneous electron gas, for atoms with a small number of electron, and for a few small

molecules. Therefore, the only way forward is devising approximations to solve this problem.

Thus, the knowledge of the electronic structure of the system gives access to all the physical

properties.

3.3 Quantum many-body theory: chemical approach

In 1928, Hartree proposed the �rst approach to the many-electron problem. His basic as-

sumption is that the many-electron wave function can be written as a simple product of

one-electron orbitals but this is not enough for general electronic systems. He proposed that

the electrostatic �eld felt by an electron in an atom was due to the central potential of nucleus

together with the �eld created by other electrons. this approach was called self-consistent �eld

(HSCF). In the same year, Slater recognizes that the HSCF can be written as equations from

a variational principle by postulating a total wave function as the product form

Φ(r) = ΠN
i=1ϕi(ri) (3.3.1)

The application of the variational principle leads to a calculation of the total energy for an

ansatz wave function of the form Eq.(2.3), by perform variations with respect to the one-
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electron orbitals Φi. The Hamiltonian of general many-electron system is written as:

Ĥ(R,r) =

N∑
i=1

ĥ1(i) +

N∑
i=1

N∑
j 6=i

v̂2(i, j) (3.3.2)

where

ĥ1(i) = − ~
2m
∇2
rivext(R, ri) (3.3.3)

is a one-electron operator that describes the motion of a single electron interacting with all

the nuclei in the system, and possibly also other external �eld, through vext. The second term

takes into account the interaction with the electron and other electron, which represents the

Coulomb electron-electron interaction

v̂2(i, j) =
1

|ri − rj|
(3.3.4)

Here we have not include spin-orbital coupling. The variational energy is composed of two

parts: one arising from the one-electron operator ĥ1, and the second one is a two-electron

contribution from v̂2. The energy of one-electron is

E(1) =

∫
Φ(r∗)(

N∑
i=1

ĥ1(i))Φ(r)dr, (3.3.5)

If we replace the product wave function (2.6) into (2.7) and after simpli�cation we get :

E(1) =

N∑
i=1

∫
ϕ(ri

∗)(

N∑
i=1

ĥ1(i))ϕ(ri)dri =

N∑
i=1

Eii, (3.3.6)

we assume that the one-electon orbitals are normalized to one. The two-electron terms con-

tribution to the energy is:

E(2) =

∫
Φ(r∗)

N∑
i=1

N∑
j 6=i

v̂2(i, j)Φ(r)dr, (3.3.7)
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This expression can be re-written in terms of the partial densities ρi(i)=|Φi(ri)|2 of the indi-

vidual electron:

E(2) =
1

2

N∑
i=1

N∑
j 6=i

∫ ∫
ρi(i)ρj(j)

|ri − rj |
dridrjE

(2) =
1

2

N∑
i=1

N∑
j 6=i

J i,j , (3.3.8)

where the factor 1/2 discounts for the double counting of Ji,j and Jj,i. Therefore, the total

energy of an electronic system within the HSCF approximation is:

EHSCF =
N∑
i=1

Eii +
1

2

N∑
i=1

N∑
j 6=i

J i,j (3.3.9)

The one-electron orbitals Φ∗(ri) are taken as independent from Φ∗(ri). The real and the imag-

inary parts of orbitals are consider as independent. Moreover, we have to impose appropriate

normalization constrains. The variational equation reads:

δEHSCF −
N∑
i=1

εi

∫
|Φi(ri)|dri − 1 = 0, (3.3.10)

where εi are Lagrange multipliers. The corresponding Lagrange equations lead to a set of

one-particle Schrodinger equations in an e�ective, state-dependent potential that takes into

account the interaction with the electrostatic �eld of the other electrons, as

(− ~
2m
∇2v

(i)
eff (R, r))Φi(r) = εiΦi(r) (3.3.11)

with

v
(i)
eff (R, r) = vext(R, r) +

∫ ∑N
j 6=i |Φi(r

′
)|2

|r − r
′ |

dr
′

(3.3.12)

The second term in (2.14) is the classical electrostatic potential felt by particle i, which is

due to the charge distribution of all the other electrons. The charge density does not include

the charge of the particle i, thus the Hartree approximation is, correctly, self-interaction free.

The HSCF approximation leads to write the energy with the correct expression in terms of
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the eigenvalues:

EHSCF =

N∑
i=1

εi −
1

2

N∑
i=1

N∑
j 6=i

Jij . (3.3.13)

We can solve the set of N coupled partial di�erential equations (3.3.11) by minimizing the

energy with respect to a set of variational parameters in a trial wave function or, alternatively,

by re-calculating the e�ective potential (3.3.12) using the solution of (3.3.11), and solving the

Schrodinger equation again. We have to repeat this procedure until input and ouput wave

function are the same, it is said that self-consistency has been achieved.

3.4 The Hartree-Fock approximation

In this case the electrons are treated as distinguishable particles, they have indistinguishable

spin-1/2, i.e. fermions, and Pauli's principle states that two fermions cannot occupy the same

quantum state because the many-fermion wave function has to be antisymmetric upon particle

exchange. Therefore, if two electron are exchanged, the wave function must change sign.

The Pauli's principle is done by proposing an antisymmetrized many-electron wave function

in the form of Slater determinant.

3.5 Modern density functional theory

The hopes that the energy of the system can be written exclusively in terms of the electronic

density was the big challenge during the past twenty years. In 1964, Hohenberg and Kohn

developed the DFT theory that is divided into two parts.

3.5.1 The Hohenberg-Kohn theorem

Theorem 1: The external potential is univocally determined by the electronic density, besides

a trivial additive constant.

Proof: In the beginning, we suppose that the external potential is not univocally determined

by the density. Therefore, we have to �nd two potentials v and v
′
such that their ground
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state density ρ is the same. We suppose that Φ and E0= 〈Φ|Ĥ|Φ〉 are the ground state wave

function and the ground state energy of the Hamiltonian Ĥ=T̂+V̂ext+Ûee also Φ
′
and E

′
0=

〈Φ|Ĥ|Φ〉 are the ground state wave function and the ground state energy of the Hamiltonian

Ĥ
′
=T̂+V̂

′
ext+Ûee. According to Rayleigh-Ritz's variational principle we have:

E0 < 〈Φ
′ |Ĥ|Φ′〉 = 〈Φ′ |Ĥ ′ |Φ′〉+ 〈Φ′ |Ĥ− Ĥ ′ |Φ′〉 = E

′
0 +

∫
ρ(r)[vext(r−vext(r)]dr, (3.5.1)

In this case we have used the fact that di�erent Hamiltonian necessarily correspond to di�erent

ground state. On the other hand, we can also exchange the roles of Φ and Φ
′
(Ĥ and Ĥ

′
), so

we obtain:

E
′
0 < 〈Φ|Ĥ

′ |Φ〉 = 〈Φ|Ĥ|Φ〉+ < Φ|Ĥ ′ − Ĥ|Φ〉 = E0−
∫
ρ(r)[vext(r)− vext(r)]dr, (3.5.2)

Now, if we add these two inequalities, it gives that E0+E
′
0 < E0+E

′
0, which is absurd. There-

fore, the two di�erent external potentials cannot correspond to the same electronic density

for the ground state, unless they di�er by a trivial additive constant.

Corollary: Since ρ(r) univocally determines vext, it also determines the ground state wave

function Φ, which should be obtained by solving the full many-body Schrodinger equation.

Theorem 2: Let ρ̃ be a non-negative density normalized to N. We de�ne the variational energy

Ev, which is a functional of the density because of the previous theorem, in the following way:

Ev[ρ̃] = Fv[ρ̃] +

∫
ρ̃(r)vext(r)dr, (3.5.3)

with

Fv[ρ̃] = 〈Φ[ρ̃]|T̂ + Ûee|[ρ̃]〉. (3.5.4)

Here Φ[ρ̃] is the ground state of a potential which has ρ̃ as its ground state density, so that

EO = Ev[ρ] veri�es

EO < Ev[ρ] (3.5.5)
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for any system ρ̃ 6= ρ, and thus is the ground state energy.

Proof: We have

〈Φ[ρ̃]|Ĥ|[ρ̃]〉 = Fv[ρ̃] +

∫
ρ̃(r)vext(r)dr = Ev[ρ̃] ≥ Ev[ρ] = EO = 〈Φ[ρ]|Ĥ|Φ[ρ]〉 (3.5.6)

The inequality follows from Rayleigh-Ritz's variational principle for the wave function, but

applied to electronic density. Thus, the variatinal principle states that

δEv[ρ]− µ(

∫
ρ(r)dρ(r)−N) = 0 (3.5.7)

which leads to a generalization of the Thomas-Fermi equation:

µ =
δEv[ρ]

δρ
= vext +

δFv[ρ]

δρ
(3.5.8)

If F[ρ] is known, the solution of the full many-body Schrodinger equation will be known. In

addition, F[ρ] is a universal functional, which depends only on the electronic density and does

not depend explicitly on the external potential. The Hohenberg-Kohn formulation of the F[ρ]

is :

Fv[ρ] = 〈Φ[ρ]|T̂ + Ûee|Φ[ρ]〉 (3.5.9)

where Φ[ρ] is the ground state many-body wave function. Therefore, these two theorems form

the mathematical basis of density functional theory (DFT).

3.5.2 Constrained search formulation

Within the Hohenberg-Kohn theorem, the electronic density determines the external potential.

However, the electronic density has to correspond to a ground state antisymmetric wave

function, otherwise the density ρ is not true. In 1982, Lavy reformulated DFT theory in such

way that the antisymmetric origin of the density is realized. The universal functional F[ρ]

given by the expression (3.24) thus rede�ned by Levy to be :

F [ρ] = minΦ→ρ

{
〈Φ|T̂ + Ûee|Φ〉

}
, (3.5.10)
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where ρ is any non-negative density such that

∫
ρ(r)dρ(r) = Nand

∫
|∇1/2ρ(r)|2dr <∞, (3.5.11)

Therefore, this additional constaint lets the density arises from an antisymmetric wave func-

tion.

3.5.3 Ground state in DFT

The knowledge of the universal functional F[ρ] allows us to determine the electronic ground

state density and the exact energy. This de�nes the main features of the DFT theory as

a ground state theory. However, the di�culty of solving the full many-body Schrodinger

equation is still a practical problem more than a conceptual one. In 1965, Kohn and Sham

devised a practical scheme for determining the ground state, where we will discuss in the next

subsection.

3.5.4 The Kohn-Sham Equations

The electron-electron interaction is the term that introduces many-body e�ect. We can ex-

pressed the electron-electron interaction in terms of the two-body density matrix ρ2(r − r
′
)

in the following form:

Uee = 〈Φ|Ûee|Φ〉 =
1

2

N∑
i=1

N∑
j 6=i
〈Φ| 1

|ri − rj |
|Φ〉 =

∫ ∫
ρ2(r, r

′
)

|r − r
′ |
drdr

′
(3.5.12)

ρ2(r, r
′
) =

1

2
ρ1(r, r)ρ1(r

′
, r

′
)g(r, r

′
), (3.5.13)

where ρ1(r, r ) is the one-body density matrix such that its diagonal elements are ρ(r) =

ρ1(r, r) represent the electronic density and g(r, r
′
) de�nes the two-body direct correlation

function that is di�erent from one only when r is su�ciently close to r
′
. We can separate

the energetic contributions to the electron-electron interaction into two terms. The �rst term

ignores correlation altogether, as the case ρ(r) =1 everywhere. The second term contains
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both local (on-site) and non-local contributions. The expression for Uee is then re-written as

Uee =
1

2

∫ ∫
ρ(r)ρ(r

′
)

|r − r′ |
drdr

′
+

1

2

∫ ∫
ρ(r)ρ(r

′
)

|r − r′ |
[g(r, r

′
)− 1]drdr

′
(3.5.14)

The �rst therm is the classical electrostatic interaction energy correspond to charge distribu-

tion ρ(r) that is called the Hartree term. The second term represents both the exchange and

correlation e�ects. When the system is uncorrelated, the second term in (2.29) is neglected.

In this case the two-body interaction assumes the classical electrostatic from a continous

distribution of charge ρ(r).

Now, we introduce the exchange interaction that takes into account Pauli's exclusion principle.

In fact, this principle forbids the presence of electron with the same spin in the same position.

Therefore, the exchange-only part of the pair correlation function veri�es

gXr→r′ (r, r
′
)→ 1/2. (3.5.15)

If we neglected the correlation, the electron-electron interaction corresponds then to the many-

body wave function given by a Slater determinant, which ensures that the Pauli's principle is

veri�ed. This case correspond to Hartree-Fock theory, in which the electron-electron interac-

tion is written as:

UHFee =
1

2

∫ ∫
ρHF (r)ρHF (r

′
)

|r − r′ |
drdr

′
+

1

2

∫ ∫
ρHF (r)ρHF (r

′
)

|r − r′ |
[gX(r, r

′
)− 1]drdr

′
(3.5.16)

The exact expression for the exchange depletion, or the exhange hole, is (Parr and Yang.

1989):

gX(r, r
′
) = 1−

∑
σ |ρHF (r − r

′
)|2

ρHF (r)ρHF (r
′
)

(3.5.17)

where the sum is over the two spin projections. The density and the density matrix in (3.23)

are determined from the ground state Slater determinant. The correlation hole is calculated

as gC(r, r
′
) =g(r, r

′
)-gX(r, r

′
) , that is the remaining part of the correlation function once

exchange has been taken into account. This part of the pair correlation function represents

a major problem in many-body theory. For the homogeneous electron gas, the exact solution
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is known numerically (Ceperley and Alder, 1980), However, for the inhomogeneous electron

gas, the problem to �nd the solution is still present. On the other hand, there are many

approximations related to the inhomogeneous electron gas, that including slowly varying

densities through its spatial gradient, and also expression fort the exchange-correlation energy

that takes into account very weak, non-local interactions such as Van der Waals interaction (

Zaremba and Kohn, 1976).

Finally, the energy of a many-body electron system can be written as:

E = T + Vext +
1

2

∫
ρ(r)ρ(r

′
)

|r − r′ |
drdr

′
+ EXC (3.5.18)

where EXC is de�ned as the exchange and correlation energy.

EXC =
1

2

∫
ρ(r)ρ(r

′
)

|r − r′ |
[g(r, r

′
)− 1])drdr

′
(3.5.19)

The Hartree and the exchange (Hartree-Fock) terms can be calculated exactly. However, the

correlation term is the biggest di�culty. For that, over the last decades, a signi�cant research

improvement was produced to �nd a reasonable good approximations for a large class of

systems of interest.

For the kinectic energy T= 〈Φ|T̂ |Φ〉 is also an other problem, because its explicit expression

in terms of electronic density is not known. In 1965, Kohn and Sham suggested a more

general approach. In fact, a system of non-interacting electrons is exactly described by an

antisymmetric wave function of the Slater determinant type that is made of one-electron

orbitals. Therefore, for a such wave function the kinectic energy can be easily obtained in

terms of the one-electron orbitals. Therefore, the ground state density matrix ρ1(r, r
′
) is

given by

ρ1(r, r
′
) =

∞∑
10

fiΦi(r)Φ∗i (r
′
), (3.5.20)

where Φi(r) are the one-electron orbitals and fi are the occupation numbers corresponding to

these orbitals. Then, related to Eq(3.35), the exact expression for the kinectic energy of the
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non-interacting electrons is

T = − ~2

2m

∞∑
1

fi〈Φi|∇2|Φi〉. (3.5.21)

The idea of Kohn and Sham was to �nd a system of non-interacting electrons that produces

the same electronic density as the interaction system. As a result of this action, the kinectic

energy of the interacting system can be calculated exactly via (3.36) However, this energy is

not the exact kinectic energy the interacting system due to the fact that the true many-body

wave function is not a Slater determinant. Because of this there a correlation contribution to

the kinectic energy, which must be included in the correlation energy term.

We assume that a system of non-interacting electrons whose ground state density coincides

with that of the interacting system, does exist. We call this system, the non-interacting

reference system of density ρ(r), and the Hamiltonian associated is

ĤR =
N∑
i=1

[− ~2

2m
∇2
i + vR(ri)], (3.5.22)

with N the number of electron and vR is a reference potential that the ground state of ĤR

equals ρ(r). Then, in this case, Hohenberg-Kohn's theorem ensures that the ground state

energy equals the energy of the interacting system.

This Hamiltonian of non-interacting system has no electron-electron interaction. Then this

eigen states can be expressed in the form of Slater determinant

Φ(r) =
1√
Ns!

[Φ1(r1)Φ2(r2)...ΦNs(rNs)], (3.5.23)

where we have chosen the closed shell situation in which the occupation number are 2 < Ns

and 0 for i > Ns, with Ns is the number of doubly occupation orbitals. Therefore, withi this

hypothesis, the density can be rewritten as:

ρ(r) = 2

Ns∑
i=1

|Φ(r)|2, (3.5.24)
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while the kinectic term is

TR[ρ] = − ~2

2m

Ns∑
1

fi < Φi|∇2|Φi > . (3.5.25)

where Φ(r) are the Ns lowest-energy eigenfunctions of the one-electron Hamiltonian

ĤKS = − ~2

2m
∇2
i + vR(ri), (3.5.26)

which are attained by solving the one-electron Schrodinger equation

ĤKSΦi(r) = εiΦi(r). (3.5.27)

Therefore, if we consider the new form TR[ρ], the universal density functional can be rewritten

as

F [ρ] = TR[ρ] +
1

2

∫ ∫
ρ(r)ρ(r

′
)

|r − r′ |
g(r, r

′
)drdr

′
+ ẼXC , (3.5.28)

where the exchange correlation energy ẼXC is di�erent from the EXC given by (3.31) that

takes into account the kinetic correlation ignored in TR[ρ]. Accordingly, the total Kohn-Sham

energy functional EKS [ρ]

EKS [ρ] = TR[ρ] +

∫
ρ(r)vext(r) (3.5.29)

By this manner the energy functional is expressed in terms of the Ns orbitals that minimize

the non-interacting elecronic kinectic energy under the �xed density constraint.

3.5.5 Extension to spin-polarized system

In this part, we consider the electronic density as composed by two independent spin densities,

ρ= ρ ↑ + ρ ↓. Each one of these densities is built, with the Kohn-Sham spin orbitals, which

ful�ll the self-consistent Kohn-Sham equations

− ~2

2m
+ vR,sΦi(r) = εi,sΦi,s(r) (3.5.30)
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where the subindex s indicates the spin component (↑ or ↓). The same for the reference

potentials vR,s that are achieved as an extension of the Eqs. (3.41) and (3.42) to the spin-

dependence case

vR,s = vext(r) +

∫
ρ(r

′
)

|r − r′ |
dr′ + µXC,s[ρ ↑, ρ ↓](r), (3.5.31)

with

µXC,s[ρ ↑, ρ ↓](r) =
ẼXC,s
δρ(r)

. (3.5.32)

At once, the exchange-correlation energy and the potential depend on the spin-density, that

are built via the Kohn-Sham spin orbitals, as

ρ(r) =

Ns∑
i=

|Φi(r)|2, (3.5.33)

where Ns is the number of occupied spin orbitals with the spin projection s. The exchange-

correlation functionals are given in terms of the total electronic density ρ and the spin-

polarization (magnetization) density ζ, which are de�ned as

ρ(r) = ρ↑(r) + ρ↓(r) (3.5.34)

and

ζ(r) = ρ↑(r)− ρ↓(r) (3.5.35)

In the expression (3.49) and (3.50), the density a�ect two di�erent numbers of electrons N↑ and

N↓, such that the sum N= N↑+N↓ is the total number of electrons in the system. Therefore, if

we take into count the spin-polarization, we will be in the approach of spin density functional

theory (SDFT), otherwise if ρ↑ = ρ↓ we will go back to DFT theory with double occupancy

of single-particle orbitals. In the SDFT the total energy is written as

EKS [ρ ↑, ρ ↓] = TR[ρ ↑, ρ ↓] +

∫
ρ(r)vext(r)dr +

1

2

∫ ∫
ρ(r

′
)

|r − r′ |
dr′ (3.5.36)
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with

TR[ρ ↑, ρ ↓] = − ~2

2m

2∑
s=1

Ns∑
i=1

〈Φi,s|∇2|Φi,s〉. (3.5.37)

The solution of the Kohn-Sham equations must be obtained by an iterative procedure. There-

fore, the total energy will be written as follows:

EKS [ρ ↑, ρ ↓] =

2∑
s=1

Ns∑
i=1

εi,s −
1

2

∫ ∫
ρ(r)ρ(r

′
)

|r − r′ |
drdr

′

+ẼXC [ρ ↑, ρ ↓]−
∫
ρ(r)µXC [ρ ↑, ρ ↓](r)d(r),

(3.5.38)

which is the same expression for the unpolarized case, with the sum over spin components

is replaced by a factor of 2, and the spin-polarized expression for the exchange-correlation

potential are replaced by the unpolarized ones.

3.6 Exchange and correlation in DFT: approximations and their

performance

From the previous section, we have divided the total energy of an electronic system into

a number of di�erent contribution, E[ρ]= TR+Vext+EH+EX+ẼC which each term can be

handled separately. TR is the non-interacting kinectic energy, EH is the classical electron-

electron interaction of Hartree term, Vext is the interaction of the electrons with external �elds,

in particular that of the atomic nuclei, EX is the exchange energy and ẼC is the coupling

constant averaged correlation term. The second and the third terms are known to be explicit

functionals of the electronic density. The �rst and the fourth terms are known as functionals

of the non-interacting orbitals, which are in turn (unknown) functionals of the density. The

correlation energy is an unknown functional of the density . Wigner was the �rst who handled

this subject in the circumstance of the homogeneous electrons gas, by proposing a correlation

energy per unit volume given by Expression (2.29).
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3.6.1 The local density approximation

For a long time, the local density approximation (LDA) is the most used approximation

to the exchange-correlation energy. In 1965, Kohn and Sham proposed the LDA approach

in which the main idea was to consider a general inhomogeneous electronic system as locally

homogeneous and then to use the exchange-correlation hole corresponding to the homogeneous

electron gas. The expression for the (non-local) exchange-correlation hole ρ is de�ned in the

following way:

ρ̃LDA(r, r
′
) = ρ(r)

{
g̃h[|r − r′|, ρ(r)]− 1

}
(3.6.1)

with g̃h[|r − r′|, ρ(r)] the pair correlation function of the homogeneous gas which depends

only on the distance between r and r′ and must be evaluated for the density ρ that locally

assumes the value ρ(r). Therefore the exchange-correlation energy can be written as:

ẼLDAXC [ρ] =

∫
ρ(r)ε̃XC [r]dr, (3.6.2)

where the expression for the exchange-correlation energy density ε̃XC is written in terms of

the exhange-correlation hole as :

ε̃LDAXC [ρ] =
1

2

∫
ρ̃LDA(r, r

′
)

|r − r
′ |

dr
′
. (3.6.3)

In practice, the exchange-correlation energy density ε̃LDAXC [ρ] is can be written as ε̃LDAXC [ρ]=

εLDAX [ρ] + ε̃LDAC [ρ], where εLDAX is the exchange energy density given by Dirac's expression :

ε̃DC [ρ] = −3

4
(
3

π
)1/3ρ1/3 = −0.458

rs
a.u., (3.6.4)

where rs=(3/4πρ)1/3 is the mean interelectronic distance expressed in atomic units and

ε̃LDAC [ρ] the correlation energy density given by Perdew and Zungen in 1981 by the following

expression:

εPZC [ρ] = {Aln(rs) +B + Crsln(rs) +Drs} (3.6.5)
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Despite the wide use of the LDA approximation to the exchange-correlation energy. This ap-

proach has some limitations as the self-interaction present in the Hartree term of the energy is

not completely canceled by the LDA exchange-correlation term. Also, the inhomogeneities are

not taken into account in the density. To improve the reliability of the consistent approxima-

tions to the exchange-correlation energy over the LDA approach, an other exploited approach

was developed is called the generalized gradient approximation (GGA). In this approach,we

introduce the semi-local inhomogeneities of the density, by expanding the EXC as a series in

terms of the density and its gradient.

3.6.2 The generalized gradient approximation (GGA)

The exchange-correlation energy is written as a second order gradient expansion :

EXC [ρ] =

∫
AXC [ρ]ρ(r)4/3 + CXC [ρ]|∇ρ(r)|2/ρ(r)4/3dr (3.6.6)

which is asymptotically valid for the densities that vary slowly in the space. The GGA ap-

proach conserves the correct features of the LDA and combines them with the inhomogeneity

features that are assumed to be energetically the most important ones.

Examples of GGA approaches as : the Langreth-Mehl functional, the BLYP functional and

the PBE functional.

3.6.3 Hybrid HF-KS approaches

The Hartree-Fock approach was to develop a new approximation which combines the LDA

and GGA approaches. These combination of DFT and Hartree-Fock exchange is expressed as

follows:

EhybXC = αEHFX + (1− α)EDFTX + EDFTC (3.6.7)

where the coe�cient α is either chosen to assume a speci�c value such as 1/2, or �t to some

properties of a molecular database. In this case, the generalized Kohn-Sham equations can
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be written in the form of the usual KS equations (4.34), but with corrective terms:

{
ĤKS [ρ] + ∆µ̂X [{φi}] + ∆µ̂C

}
φ(r) = εiφi(r) (3.6.8)

which are small, but not important. The generalized Kohn-Sham schemes modi�es the func-

tional becoming:

FαHF−KS = 〈Φ|T̂ + αV̂ee|Φ〉 = FKS + αEH [Φ] + αEX [Φ] (3.6.9)

which is minimized with respect to a wave function Φ of the determinant form, and the

rest of the energy is treated within the usual approximation to the Kohn-Sham problem,

typically GGA. This scheme contains an unknown, formally exact correlation term that is

absent in standard HF. This approach is known as the Hartree-Kohn-Sham scheme (HF-KS).

An example of the hybrid approximation, is the B3LYB approach made by Becke in 1993.

(The exact exchange-correlation energy is not known explicitly and is consider as the main

limitation of the DFT theory)

3.7 Solving the electronic problem in practice

The main mathematical problem in electronic structure theory, at the single particle approxi-

mation level, is to self-consistently solve the N coupled, three-dimensional, partial di�erential

equations. In reality, the Hartee-Fock and Kohn-Sham methodologies had simpli�ed the

3N-dimensional many-body problem. In this section, we will analyze the electron-nuclear

interaction and the mathematical representation of the single-particle orbitals.

3.7.1 Kohn-Sham and Hartree-Fock equations

The density functional theory was formulated within the Kohn-Sham equation:

{− ~2

2m
∇2 + Vext(r) +

∫
ρ(r

′

|r − r
′ |
dr

′
+ µXC [ρ]}φi(r) = εiφi(r) (3.7.1)
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where the electronic density ρ is given by

ρ(r) =
N∑
i=1

fi|φi(r)|2, (3.7.2)

where N is the number of electrons, and fi are the occupation numbers corresponding to the

one-electron eigenstates. In the case spin-unpolarized insulators or closed shell molecules,

fi=2 for the N/2 lowest eigenstates and fi=0 otherwise. For the spin-polarized systems or

open-shell molecules the exchange-correlation potential, and the external potential when there

are external magnetic �eld, depends on the spin projection. The external potential vext(r)

represents the interaction between the electrons and the nuclei, this expression is as following

:

vext(r) = −e2
∑
P

ZI
|r −RI |

; (3.7.3)

For the exchange-correlation potential νXC is given by the expression(3.65) The solution of

the Kohn-Sham equation involves to know how to treat the electron-nuclear interaction �rst

and to �nd mathematical way to represent the single-particle orbitals.

3.7.2 The electron-nuclear interaction

The equation (3.65), give the expression of the electron-nuclear interaction. Nevertheless,

there is a distinction made between two classes of electrons, one for those that can participate

in the formation of a chemical bond, named the valence electron, and one other for those that

are tightly bound to the nuclei, called the core electron, which do not participate in bonding

and can be considered as frozen orbitals. The core electron are not completely insensitive to

the molecular or crystal �eld. In addition, there is a third class of electrons, called semi-core

electrons, which are treated similarly to valence electrons, but do not participate actively in

chemical bonding.

3.7.3 Pseudopotential methods

Because the di�erent characteristics of the two classes of the electrons, they are handled in a

di�erent way. In fact, the core electrons do not participate actively in the chemical bonding



CHAPTER 3. FIRST-PRINCIPLES BACKGROUND 63

then it is possible to eliminate the corresponding degrees of freedom by replacing the atomic

nuclei with an e�ective nucleus that represents the nucleus and its core electrons together.

Therefore, the number of the electron treated explicitly is much smaller. Furthermore, the

interaction between the valence electron and the ionic core is not the Coulomb interaction

because it includes that part of election-electron interaction related to the screening of the

nuclear charge by the core electron. As a consequence, the Coulomb interaction must be

replaced by a pseudo-potential or e�ective core potential. In the periodic crystal, the wave

functions for free electrons can be expanded in plane waves (PWs).

3.7.4 Classes of basis sets

In order to represent the Kohn-Sham orbitals, two main group of basis set had been developed.

(i) Extended basis sets: The basis functions are delocalized, either �oating ( independent of

the nuclear position) or centered at the nuclear positions, it cover all space. This basis are

useful for condensed phases such as solids or liquids. (ii) localized basis sets: The basis set

are localized,

3.7.5 Atomic pseudopotentials

In the periodic crystal, the wave functions for free electrons can be expanded as plane waves

(PWs). The most common pseudopotential approach consists of not allowing the relaxation of

core states according to its environment. In 1959, Philips and Kleinman constructed a smooth

valence wave function φ̃v that is not orthogonalized to the core states φc, by combining the

core and the true valence wave functions φv in the following way:

|φ̃v
〉

= |φv
〉

+
∑
c

αcv|φc
〉

(3.7.4)

where αcv =
〈
φc|φ̃v

〉
6=0. This wave function is called pseudo-wave function that satis�es the

modi�ed Schrodinger equation:

[
H̃ +

∑
c

(εv − εc)|φv
〉
〈φc|

]
|φ̃v
〉

= εv|φ̃v
〉
, (3.7.5)
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where Ĥ = T̂ + V̂ , V̂ = (Zc/r)Ĩ is the bare nuclear potential, and Ĩ is the identity operator.

In this way, it's possible to construct a pseudo-Hamiltonian

ĤPS = Ĥ +
∑
c

(εv − εc)|φv
〉
〈φc| (3.7.6)

with the same eigenvalues of original Hamiltonian but a smoother wave function. The poten-

tial associated to the pseudo-Hamiltonian is expressed in the following way:

V̂PS =
ZC
r
Ĩ +

∑
c

(εv − εc)|φv
〉
〈φc| (3.7.7)

that is called a pseudopotential.

This pseudopotential behaves di�erently on wave functions of di�erent angular momentum.

The most general form of a pseudopotential is written as:

V̂PS(r) =
∞∑
l=0

l∑
m=−l

vlPS(r)|lm
〉〈
lm| =

∞∑
l=0

vlPS(r)P̂l (3.7.8)

where
〈
r|lm

〉
= Ylm(θ, φ) are spherical harmonics, vlPS(r) is the pseudopotential correspond-

ing to the angular component l, and the operator

P̂l =

l∑
m=−l

|lm
〉〈
lm| (3.7.9)

is a projection operator onto the lth angular momentum subspace. The expression (2.71)

means that when V̂PS acts on the electronic wave function, the projection operators P̂l select

the di�erent angular momentum components of the wave function, which are then multiplied

by the corresponding pseudopotential vlPS(r).

3.7.6 Basis sets

In order, to resolve the electronic structure problem within DFT theory, it requires one to

choose a mathematical representation for the one-electron orbitals. Therefore, di�erent type

of basis sets have been proposed and adapted for electronic structure calculation. In fact, the

one-electron wave functions can be expanded on a generic basis set described by the orbitals

|φα
〉
. The representation of this orbitals in the a real-space is

〈
r|lm

〉
. The Kohn-Sham



CHAPTER 3. FIRST-PRINCIPLES BACKGROUND 65

orbitals are then written as a linear combination of these basis orbitals:

ϕj(r) =

M∑
α=1

cjαφα(r), (3.7.10)

where j labels the wave function, the sum is over all the basis functions up to the dimension

of the basis set M, and cjα are the expansion coe�cients of the wave functions j.

In the periodic systems such as solids, the combination of basis orbitals that represents a solu-

tion of Schrodinger equation contains the translational periodicity of the supercell. Therefore,

the previous expression has to be modi�ed in the following way:

ϕk
j (r) = eikr

M∑
α=1

crjαφα(r) =
M∑
α=1

crjαφ
k
α(r), (3.7.11)

where k indicates the wave vector in the Brillouin zone, and the modi�ed basis functions are:

ϕj(r) = eikrφα(r). (3.7.12)

This representation is good enough for basis functions that already respect the periodic bound-

ary conditions, such as plane waves.

An other type of basis set is the Gaussian-type orbitals (GTO). In this case, the GTO have

been used to replace the exponentials. Furthermore, the exponents of the Gaussian functions

are variationally optimized to be consistent with the corresponding atomic wave functions.

3.8 Conclusion

In this Chapter, we have proposed an overview of the DFT theory and di�erent approxima-

tions, which are proposed to give a good description of the main features of any material. We

have then paid a particular attention to the development of the approximation formulations

that are behind the success of many �rst-principles investigations of the materials.



Chapter 4

First-principles re-investigation of bulk WO3

4.1 Introduction

In this chapter, we use �rst-principles density functional calculations within hybrid-functional

method to analyze the structural properties of tungsten trioxide WO3. Our calculations rely

on density functional theory and the use of the B1-WC hybrid approach, which provides very

good agreement with experimental data. We show that the hypothetical high-symmetry cu-

bic reference structure combines several ferroelectric and antiferrodistortive (antipolar cation

motions, rotations and tilts of oxygen octahedra) structural instabilities. We then condense

various possible combinations of these unstable modes, which allow us to reproduce all exper-

imentally observed structures. We also reveal the structural properties of the ground state

of WO3 and role of a calculated polar phase, that has an energy close to that of the ground

state, to make WO3 a potential antiferroelectric material.

4.2 Computational details

Our �rst-principles calculations have been performed in the context of density functional

theory, using the B1-WC hybrid functional [65] as implemented in the CRYSTAL code. [66]

We have used the all-electron double-ζ basis sets for the oxygen atoms and small core Detlev

Figgen pseudo-potentials, [67] associated with double-ζ valence basis sets for tungsten. We

performed full structural relaxations with a convergence criteria on the root-mean-square

of the gradient and displacements smaller than 5 × 10−4 hartree/bohr and 5 × 10−4 bohr

66
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respectively. The electronic self-consistent calculations were converged until the di�erence of

the total energy was smaller than 10−9 Hartree. The phonon frequencies and Born e�ective

charges were computed using frozen phonon numerical di�erences [68, 69] and the electric

polarization through the Berry phase technique. [70] The integration in the Brillouin zone has

been performed with a 8× 8× 8 grid of k-points for the cubic unit cell and a 4× 4× 4 grid

for cells doubled in the three directions with respect to the cubic one.

Our choice of an hybrid functional is in line with the results of Wang et al. [71], who have

shown that hybrid functionals, and specially HSE06, provide good description of the structural

and electronic properties of WO3. In our study, we selected the B1-WC functional that was

specially designed for perovskite oxides [65] and was already successfully applied to a variety

of other compounds. [72�75]

4.3 Analysis of the experimental phases

Several DFT studies of WO3 have been performed previously [76�88] essentially focusing on

the main and most common phases and on the electronic structure analysis with and without

oxygen vacancies. A detailed analysis of the complex structural phase diagram of WO3 is

thus missing while a microscopic knowledge of the origin of these di�erent phases would be

extremely valuable to understand the unique properties of WO3.

In this section we start by characterizing the di�erent phases of WO3 observed experimentally

to validate our approach and we will discuss the possible origin of the Pc phase. We will

also analyze the electronic structure of these phases and we will discuss how the B1-WC

compares with the previous studies. Further analysis of these phases and other never observed

metastable phases (comparison of relative internal energies, symmetry mode analysis of the

distortions, coupling of modes) will be reported in 4.4.2.

4.3.1 Structural and crystallographic analysis

In Table 4.1 we compare our calculated crystallographic data of the P4/nmm, P4/ncc, Pbcn,

P21/n, P 1̄ and P21/c phases against the experimental measurements. Because the P21/c

phase is not observed experimentally at low temperature, we compare it with the closely
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related experimental Pc phase.

Our calculations of the P4/nmm phase are in very good agreement with the observed cell

parameters and the atomic positions. The P4/nmm phase is anti-polar and consists of highly

distorted WO3 octahedra where the W�O bonds dimerize in opposite direction along the [110]

perovskite direction. This W�O dimerization forms local dipole-moments that are aligned

along the [001] direction and anti-aligned along the [110] direction, so that the total dipole-

moment cancels. The crystallographic unit cell is elongated along the [001] direction and

compressed along the [100] and [010] directions. This antipolar distortion remains present in

all the phase discussed below in this Section.

The P4/ncc phase shows additional octahedra rotations around the z axis (a0a0c− in the

Glazer notation [89]), which induces a cell doubling along the [001] direction. The calculated

c cell parameter and the z component of the atomic positions are in good agreement with

experiments while the in-plane displacements are less well reproduced (Tab. 4.1). The calcu-

lated a and b cell parameters are smaller than in experiments by 0.1 Å and the deviation from

the tetragonal O2 position are about two times larger than observed. We clearly overestimate

the amplitude of the a0a0c− distortion (rotation angle of 13◦ instead of 7◦; see also Fig. 4.6

further discussed in 4.4.2). Although this could be partly intrinsic to the functional, [90]

it is worth noticing that our calculations ignore thermal e�ects while experiments were per-

formed at high temperatures at which distortions might be reduced. [91] Although such a

reduction does not seem to appear for the anti-polar motions in the P4/nmm and P4/ncc

phases, it might be more substantial for the rotations and we observe that the computed

amplitudes of out-of-phase rotations are in much better agreement with experimental data

for the low-temperature phases (see further discussed in 4.4.2).

The orthorhombic Pbcn phase can be characterized by an additional in-phase octahedra rota-

tion about the crystallographic y axis, yielding a rotation pattern a0b+c−. We �nd a similar

overestimate of the octahedra distortions as for the P4/ncc phase while the calculated cell

parameters are underestimated with respect to experiments. We note that the anti-polar

distortions along the z axis compares well with experiments for P4/nmm, P4/ncc and Pbcn.

The P21/n structure still contains an additional octahedra rotation around the crystallo-

graphic x axis, yielding a rotation pattern a−b+c−. The calculated cell volume is slightly too
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small (+0.7%, −0.7% and −1.9% for a, b and c cell parameters respectively) and the oxygen

motions related to the octahedra tilt are overestimated (Table 4.1).

The P 1̄ phase is similar to the P21/n phase if one replaces the in-phase rotation by an out-

of-phase rotation, yielding a rotation pattern a−b−c−. The distortions are anisotropic in all

three directions, which causes the cell to be triclinic with the angles α, β and γ close to 90◦.

The calculated a, b and c cell parameters deviate from experiments by +0.4%, −1.1% and

−0.8% respectively.

The P21/c di�ers from the P 1̄ by the fact that two out-of-phase rotations have same ampli-

tudes, yielding a rotation pattern a−a−c−. This phase was never reported at low temperatures

but is closely related to the experimental ε (Pc) phase, which only di�ers from the P21/c

phase by an additional polar distortions along the c axis. While relaxing the low temperature

Pc phase, we observed that the system always comes back in to the higher P21/c symmetry.

Wijs et al using LDA and GGA exchange-correlation functionals [85] found a similar e�ect.

To further assess the dynamical stability of the P21/c phase with respect to a potential Pc

ground state, we computed the zone-center phonons and did not observe any unstable mode

: the lowest polar mode has a frequency of 158 cm−1 and is far from being unstable. We also

checked whether a soft polar mode can be induced by increasing the cell volume but did not

observe any possibility to generate a polar instability. From our calculations, the ground-state

structure of intrinsic WO3 corresponds therefore to a P21/c phase. Following the argument

by Wijs et al. [85], we suggest that the polarity in the experimental ε (Pc) phase may be

stabilized by the presence of oxygen vacancies or by another extrinsic parameter.

In Table 4.1 we compare our calculated atomic positions and cell parameters of the P21/c

phase with the experimentally determined Pc phase. The deviations are surprisingly small for

lattice parameters (+0.2%, -0.2% and -0.5% for a, b and c) and even smaller for the atomic

positions. Comparing the structural parameters obtained with other hybrid functionals PBE0,

B3LYP and HSE06 reported by Wang et al. [78], we �nd close agreement with a typical smaller

error margin for B1-WC. B1-WC gives a much better agreement for the P21/c phase with

experimental data than using the three hybrid functionals tested by Wang et al.: HSE06,

B3LYP and PBE0 with errors of +0.6%, +1.3% and +0.2% on a, +2.1%, +2.5% and +0.6%

on b and +0.1%, +3.0%, +1.7% on the c parameter. We notice, however, that the B1-WC

often underestimates cell parameters while the three other hybrid functionals overestimate
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the cell parameters of WO3.

4.3.2 Electronic structure

In Table 4.2 we compare the calculated electronic structures for the hypothetical cubic,

P4/nmm, P4/ncc, Pbcn, P21/n, P 1̄ and P21/c phases and compare them with the ex-

periments and previous DFT calculations using PBE0, HSE06 and B3LYP hybrid functionals

and GW. For the P21/n and P 1̄ phases, experimental data coincide with the B1-WC band

gaps. The B1-WC results are similar to those obtained with the HSE06 functional while the

PBE0 gives a slightly smaller gap energy and B3LYP larger values. The B1-WC band gap is

closest to the results of GW calculations, an agreement also observed for the P21/c phase.

Comparing the trend of band gaps between the di�erent phases, we �nd that both the appear-

ance of anti-polar motions in the P4/nmm phase and out-of-phase rotations in the I4/mcm

signi�cantly open the bandgap with respect to the cubic phase. Only the in-phase rotations

in the P4/mbm phase seems to play a more minor role and slighly close the bandgap. The

calculated electronic gaps are in reasonable agreement with the experimental values for the

three low-temperature structures: Eg = 2.85 eV for the room temperature monoclinic phase

P21/n, Eg = 2.98 eV for the triclinic phase P 1̄ and Eg = 3.28 eV for the monoclinic phase

P21/c. Figure 4.1 shows the density of states (DOS) of these three phases to demonstrate

their similarity.
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Fig. 4.1: (Color online) Calculated density of states of the P 1̄, P21/n and P21/c phases
with the B1-WC functional.
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Table 4.1: Calculated lattice parameters in Å and Wycko� positions of distorted WO3 phases
fully relaxed with the B1-WC functional. For each phase, we specify the space group and the
experimental parameters are reported for comparison.
P4/nmm Present Exp. [3]

a b c a b c
5.299 5.299 3.930 5.297 5.297 3.929
x y z x y z

W1 (2c) 1/4 1/4 -0.0640 1/4 1/4 -0.0660
O1 (2c) 1/4 1/4 0.4900 1/4 1/4 0.4900
O2 (4d) 0 0 0 0 0 0

P4/ncc Present Exp. [3]
a b c a b c

5.168 5.168 7.870 5.278 5.278 7.849
x y z x y z

W1 (4c) 1/4 1/4 0.2849 1/4 1/4 0.2832
O1 (4c) 1/4 1/4 0.0057 1/4 1/4 0.0030
O2 (8f) 0.0570 -0.0570 1/4 0.0250 -0.0250 1/4

Pbcn Present Exp. [1]
a b c a b c

7.284 7.528 7.684 7.333 7.573 7.740
x y z x y z

W1 (3d) 0.2510 0.0260 0.2800 0.2520 0.0290 0.2830
O1 (3d) -0.0010 0.0430 0.2150 -0.0020 0.0320 0.2210
O2 (3d) 0.2930 0.2590 0.2590 0.2830 0.2690 0.2590
O3 (3d) 0.2870 0.0100 0.0060 0.2800 0.0130 0.0020

P 1̄ Present Exp. [34]
a b c a b c

7.334 7.446 7.612 7.309 7.522 7.678
α β γ α β γ

88.652◦ 91.022◦ 91.012◦ 88.810◦ 90.920◦ 90.930◦

x y z x y z
W1 (2i) 0.2603 0.0172 0.2826 0.2566 0.0259 0.2850
W2 (2i) 0.2540 0.5210 0.2183 0.2502 0.5280 0.2158
W3 (2i) 0.2397 0.0228 0.7793 0.2438 0.0313 0.7817
W4 (2i) 0.2456 0.5268 0.7216 0.2499 0.5338 0.7190
O1 (2i) 0.0015 0.0395 0.2074 0.0007 0.0386 0.2100
O2 (2i) 0.5022 0.5406 0.2115 0.5038 0.5361 0.2181
O3 (2i) 0.0026 0.4582 0.2897 0.0076 0.4660 0.2884
O4 (2i) 0.5012 -0.0398 0.2906 0.4972 -0.0362 0.2878
O5 (2i) 0.2892 0.2571 0.2836 0.2851 0.2574 0.2870
O6 (2i) 0.2081 0.7575 0.2174 0.2204 0.7630 0.22232
O7 (2i) 0.2098 0.2569 0.7232 0.2186 0.2627 0.7258
O8 (2i) 0.2927 0.7575 0.7772 0.2840 0.7583 0.7679
O9 (2i) 0.2911 0.0383 0.0060 0.2943 0.0422 -0.0002
O10 (2i) 0.2889 0.5389 0.4941 0.2971 0.5446 0.4982
O11 (2i) 0.2108 0.4767 -0.0061 0.2096 0.4820 -0.0072
O12 (2i) 0.2090 -0.0242 0.5063 0.2088 0.9830 0.5051

P21/n Present Exp. [3]
a b c a b c

7.359 7.486 7.544 7.303 7.538 7.692
α β γ α β γ
90◦ 91.311◦ 90◦ 90◦ 90.855◦ 90◦

x y z x y z
W1 (4e) 0.2720 0.0074 0.2790 0.2528 0.0260 0.2855
W2 (4e) 0.2270 0.0133 0.7750 0.2497 0.0344 0.7805
O1 (4e) 0.0043 0.0410 0.2165 0.0003 0.0337 0.2122
O2 (4e) -0.0056 0.4576 0.2170 -0.0011 0.4632 0.2177
O3 (4e) 0.2883 0.2534 0.2924 0.2843 0.2598 0.2852
O4 (4e) 0.2029 0.2530 0.7198 0.2080 0.2588 0.7332
O5 (4e) 0.2795 0.0385 0.0059 0.2856 0.0410 0.0041
O6 (4e) 0.2790 0.4630 -0.0047 0.2841 0.4868 -0.0056

P21/c Present Exp. (Pc) [32]
a b c a b c

5.263 5.150 7.618 5.278 5.156 7.663
α β γ α β γ
90◦ 91.787◦ 90◦ 90◦ 91.759◦ 90◦

x y z x y z
W1 (2a) -0.0093 -0.0173 0.6843 -0.0099 -0.0200 0.6743
W2 (2a) 0.5011 0.4827 0.7530 0.5000 0.4710 0.7500
O1 (2a) 0.4975 0.5769 -0.0245 0.4920 0.5780 -0.0230
O2 (2a) 0.2087 0.2891 0.1794 0.2130 0.2890 0.1830
O3 (2a) 0.2830 0.7891 0.2580 0.2830 0.7860 0.2590
O4 (2a) 0.6999 0.2090 0.1795 0.7050 0.2070 0.1820
O5 (2a) 0.7918 0.7090 0.2579 0.7960 0.7110 0.2610
O6 (2a) -0.0058 0.0769 0.4630 -0.0058 0.0730 0.4616
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Table 4.2: Electronic band gap (in eV) of di�erent phases of WO3 as calculated in the
present work with the B1-WC hybrid functional. We compare our results with previous hy-
brid functional calculations (PBE0, HSE06 and B3LYP), GW calculations and experimental
measurements.

B1-WC GW PBE0 HSE06 B3LYB Exp1 Exp2 Exp3
Ref. [92] [78] [78] [78] [93] [94] [79]
cubic 1.50 2.25 1.67 1.89
P4/mbm 1.27
I4/mcm 1.48
P4/nmm 2.12 2.28 1.71 1.85 1.75
P4/ncc 2.15
Pcnb 2.65 3.35 2.57 2.89 3.21 2.35
P21/n 2.85 2.90 3.67 2.80 3.13 2.75 3.25 2.60
P 1̄ 2.98 3.00 3.67 2.94 3.17
P21/c 3.28 3.30

4.4 Origin of the WO3 phases

The results presented so far give us con�dence that the B1-WC functional reproduces well

the experimental measurements so that we can now focus on the structural instabilities of the

hypothetical Pm3̄m cubic parent phase and explain how their condensation give rise to the

various known phases of WO3. This also allows us to identify novel ferroelectric metastable

phases. In each case, we analyze the crystallographic structure through a decomposition of

the distortions with respect to the cubic parent phase in terms of symmetry-adapted modes.

4.4.1 Unstable modes of the cubic reference

Fig. 4.2: (Color online) Phonon dispersion curves of cubic WO3 (negative frequencies refer to
imaginary frequencies, i.e. to unstable modes). The coordinates of the high symmetry points
are as follows: Γ (0,0,0), X (1

2 , 0, 0), M (1
2 ,

1
2 , 0) and R (1

2 ,
1
2 ,

1
2). Thanks to the band2eps

postprocessing script of ABINIT, [12] the color of the bands is assigned to each point through
the contribution of each atom type to the corresponding eigenvector: red for the tungsten atom
and blue for the oxygens.
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Fig. 4.2 shows the calculated phonon dispersion curves of hypothetical cubic WO3. Two

branches of instabilities (imaginary frequencies plotted as negative numbers in Fig. 4.2) coexist

in the Brillouin zone.

The �rst unstable branch has its largest imaginary value at Γ. The Γ unstable mode has the

irreducible representation (irrep) Γ−4 and corresponds to a polar mode. It suggests that the

cubic phase of WO3 is mostly unstable via this polar instability and might be ferroelectric,

which we will see later is not exactly the case. The polar instability at Γ propagates toward

the X and M points with weak dispersion while it strongly disperses towards the R point.

Aside from Γ, the modes of this branch are anti-polar. The dispersion of this unstable branch

is very similar to the one reported in BaTiO3 and corresponds to a ferroelectric instability

requiring a chain-like correlation of displacements in real space. [95]

The second branch of unstable modes appears between M and R points with smaller ampli-

tudes and a nearly absent dispersion between these two points. The label of the M and R

point unstable phonon modes are M+
3 and R+

4 and they correspond to rotations of the oxy-

gen octahedra. The dispersion of this branch is comparable to what is observed for similar

modes in SrTiO3 or PbTiO3 and linked to a planar character of the correlations of the atomic

displacements in real space. [95]

Fig. 4.3 represents a schematic view of the eigenvectors related to the main instabilities of

cubic WO3. The polar mode at Γ (Γ−4 , 373i cm
−1) shows motion of W against the O atoms,

which is the source of a large electrical polarization. The anti-polar modes at the X (X−5 , 256i

cm−1) and M points (M−3 , 147i cm
−1) are associated to opposite displacements from unit cell

to unit cell along the [100] and [110] directions respectively. 1 The M+
3 (62i cm−1) and R+

4

(69i cm−1) unstable modes correspond rotations of the oxygen octahedra about the central

W atom with consecutive octahedra along the rotation direction moving respectively in the

same or opposite directions. Using the Glazer notation, [89] the M+
3 mode corresponds to

a0a0a+ and the R+
4 mode to a0a0a−.

1In the cubic cell, the [100], [010] and [001] directions are degenerate. The same applies for the [110], [101]
and [011] directions.
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Γ4
− M 3
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X5
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M 3
+

R4
+

Fig. 4.3: (Color online) Schematic view of most important modes contributing to the distor-
tions of WO3. Small red spheres represent the oxygens and large blue spheres represent the
tungsten atoms. All the modes are unstable but the X+

5 mode, which is discussed in section
4.4.2.4.
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4.4.2 Condensation and coupling of modes

Starting from the previous unstable modes, we now investigate how their individual and

combined condensations in the hypothetical cubic structure give rise to various phases. We

then compare their energies and analyze the amplitudes of distortions.

4.4.2.1 Condensation of modes of the unstable polar branch

We �rst consider the condensation of unstable Γ−4 , X
−
5 and M−3 modes. Fig. 4.4 shows the

energy gain of the corresponding relaxed phase with respect to the cubic phase. We tested

several condensation schemes: (i) condensation of the polar Γ−4 mode along one (P4mm), two

(Amm2) and three (R3m) directions ; (ii) condensation of the X−5 along one (Pmma) and

two (P21/m) directions; (iii) condensation of the M−3 mode along one direction (P4/nmm).

We observe that the energy gain of the polar instabilities is large and that the Γ−4 polar mode

drives a larger gain of energy (red columns in Fig. 4.4) than the anti-polar X−5 and M−3 modes

(green columns in Fig. 4.4). The space group related to the condensation of the M−3 mode

corresponds to the high temperature phase observed experimentally (P4/nmm).

Condensation of the Γ−4 mode along two and three directions produce energy gains larger

than its condensation in a single direction so that Γ−4 mode alone will drive the system polar

along the [111] direction with an energy di�erence between the Amm2 and R3m phases of 6

meV. We calculated the polarization amplitude in the three P4mm, Amm2 and R3m phases

using the Berry phase technique and obtain 54, 69 and 69 µC.cm−2. These polarization

values are comparable to those observed in robust ferroelectrics such as PbTiO3. They can

be explained by the opposite motions of W and O atoms, associated with strongly anomalous

Born e�ective charges (11.73 e for W and -8.78/-1.62 e for O‖/O⊥ in good agreement with

previous calculations in Ref. [96]).

4.4.2.2 Condensation of modes of the oxygen rotation unstable branch

Fig. 4.4 (blue columns) shows the energy gain given by the condensation of the M+
3 and R+

4

modes along one direction (I4/mbm and I4/mcm), the R+
4 mode in three directions (R3̄c) and

the orthorhombic Pnma phase where the R+
4 mode is condensed in two directions and the M+

3
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Fig. 4.4: (Color online) Calculated energy gain (in meV/f.u.) with respect to the cubic phase
of di�erent phases of WO3. Red columns are the FE phases arising for the condensation
of the polar unstable mode, blue columns are the phases arising from the condensation of
the oxygens octahedral rotation unstable modes, green columns are the phases arising from
the condensation of anti-polar modes, magenta column represents a phase combining FE and
anti-polar modes and cyan columns represent phases combining oxygen octahedral rotations
and anti-polar modes. For clarity, the exact value of the energy gain is written in each case.

mode in one direction (a−a−c+ ). These distortions lower the energy much less than the polar

and antipolar motions. This observation is in line with the modest amplitude of the related

phonon instabilities : the energy curvatures at the origin are less negative for the octahedral

rotations than for the polar motion. Nevertheless the amplitude of octahedral rotations are

10.7 and 11.7 degrees in I4/mbm and I4/mcm, respectively. Such large distortions associated

to a weak instability highlight relatively small anharmonicities, which might be explained by

the absence of A cation with respect to regular ABO3 perovskites. [97]

4.4.2.3 Combinations of modes

Beside the P4/nmm phase, none of the previous single irrep mode condensations correspond to

observed phases. Thus, we now explore the condensation of combined octahedral rotations and

polar/anti-polar modes. We depict in Fig. 4.4 the energy gain given by the joint condensation

of polar and oxygen rotation modes along three directions (R3c, in purple color) and of anti-

polar and oxygen rotation modes (P4/ncc, Pbcn, P21/n, P21/c and P 1̄, in cyan color).

Combining the polar distortion of the low energy R3m phase with additional oxygen rotation
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modes does not further reduce the energy. Instead, it yields a R3c phase slightly higher in

energy but with a slightly ampli�ed polarization of 71 µC.cm−2 and a slightly reduced oxygen

rotation (with respect to the R3̄c). This emphasizes an unusual competition between these

two types of distortions in WO3 with respect to regular perovskite compounds, where in WO3

the R3c phase forms a local minimum between the R3̄c and R3m phases.

At the opposite, the mixing of the anti-polar mode M−3 with oxygen rotation modes can

drive larger energy gains so that the ferroelectric R3m phase is not the ground state. This is

in agreement with experimental observations where the observed phases at all temperatures

contain anti-polar motions. Amongst investigated phases, the P21/c phase appears as the

most stable but only marginally, as we observe that the P21/n, P21/c and P 1̄ phases are all

extremely close in energy (energy gains of 153, 155 and 155 meV respectively, see Fig. 4.4).

Consequently, within the precision of our calculations, we cannot unambiguously assess which

one is the ground state. Nevertheless, as discussed in Section 4.3.1 and further exempli�ed in

the next Section, the P21/c phase is in excellent agreement with the experimental Pc ground

state, except for a tiny polar distortion. Our calculations highlight that, in fact, the P21/n

and P 1̄ phases observed at higher temperatures are also extremely close in energy.

We further notice that the ferroelectric R3m phase, although never observed experimentally,

is also relatively close in energy to the ground state (about 11 meV/f.u.). Following Rabe, [11]

the non-polar (or eventually weakly polar in the experimental Pc phase) ground-state of WO3

combined with an alternative low-energy ferroelectric phase obtained by polar distortions of

the same high-symmetry reference structure makes it a potential antiferroelectric compound.

Indeed, applying an electric �eld, it might be possible to open a typical double hysteresis

loop from a �eld-induced �rst-order transition from the P21/c ground state to the R3m polar

phase. Estimating the critical electric �eld required to stabilize the R3m phase from Ec ∼

∆E/Ω0Ps, [63] where ∆E is the energy di�erence between the two phases (11.43 meV/f.u.),

Ps the spontaneous polarization of the polar phase (69µC.cm−2) and Ω0 its unit cell volume

(55Å), we get the relatively modest value Ec ∼ 480 kV/cm. For the polar phase R3c we need

to apply a greater electric �eld Ec ∼ 638 kV/cm to stabilize this phase. This allows us to

estimate that the critical �eld has similar value with respect to other antiferroelectric material,

Ec ∼ 470kV/cm for ZrO2 [63] and Ec ∼ 239kV/cm for PbZrO3. 2 Although this might not be

2Value calculated from the energies and polarization reported for the R3m and Pbam phase by S. Amisi
in his PhD thesis

http://hdl.handle.net/2268/158512
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easy to check experimentally on real samples that are typically oxygen de�cient and highly

conductive, the calculations reveal that stoichiometric WO3 exhibits all the features of an

antiferroelectric compound.

4.4.2.4 Symmetry adapted mode analysis of the distorted phases

To quantify the distortions that appear in the various phases we project the structural dis-

tortions onto symmetry adapted modes of the cubic phase using AMPLIMODE software. [98]

The results in Fig. 4.5 show the amplitudes of the modes in the fully relaxed phases from the

calculations but non-observed experimentally. In Fig. 4.6 we show the amplitudes of modes

in both the fully relaxed and observed phases, which can be compared.

In the following we discuss the competition/cooperation character of the mode distortions.

In perovskite oxides, it is established that the oxygen rotations are in competition with the

ferroelectric displacements but less attention has been given to the combinations of other

types of mode. Often, this cooperation or competition comes from the biquadratic energy

term in the free energy expansion with respect to two order parameters. In WO3, we observe

that the combination between the Γ−4 mode and the R+
4 mode along the [111] direction in

the R3c phase has the tendency to reduce the amplitude of the oxygen rotations with respect

to the R3̄c phase (the R+
4 mode is 13% smaller in the R3c phase than in the R3̄c phase,

see Fig. 4.5) while the polar mode is una�ected. As discussed in the previous section, the

combination of the Γ−4 and R+
4 modes forms a local minimum (R3c phase) of higher energy

than the R3m phase. This means that the polar distortions are in competition with the

oxygen rotations as reported for perovskite oxides, with the di�erence that the polar mode

amplitude is una�ected and that the R3c phase is locally stable (the system does not relax

into the lowest energy R3m phase). The strain can also play an important role,3 but when

performing the same calculations at �xed cell parameters (�xed to the cubic ones), we �nd

that the R3c phase still forms a local minimum of higher energy than the R3m phase. This

unusual energy landscape can come from the marginal gain of energy of the oxygen rotations

while large amplitudes of rotation are present.

On the other hand, the association of the oxygen rotations with the antipolar M−3 mode is

cooperative. When we compare the amplitude of the R+
4 and M−3 modes of the P4/nmm,

3The volume of the cubic, R3̄c, R3m and R3c phases are 54.01Å3, 50.89Å3, 55.35Å3, 52.71Å3



CHAPTER 4. FIRST-PRINCIPLES RE-INVESTIGATION OF BULK WO3 79

I4/mcm and P4/ncc (Fig. 4.5 and Fig. 4.6) we �nd that when both the R+
4 and M−3 modes

are present together in the P4/ncc phase, their amplitude is slightly higher (4% larger) than

when condensed alone (P4/nmm and I4/mcm phases). Their combination, however, drives

a sizeable gain of energy: the P4/ncc phase is 63 meV and 126 meV lower in energy than

the P4/nmm and the I4/mcm phases, respectively. This means that the combination of the

oxygen rotations with the antipolar M−3 mode is much more cooperative than the combination

with the polar mode Γ−4 .

The Pbcn phase can be understood as a distorted P4/ncc phase with additional M+
3 oxygen

rotations along [010]. The resulting tilt pattern is a0b+c− with a small energy gain of 2 meV

with respect to the P4/ncc phase and a reduction of mode amplitudes M−3 , R
+
4 and M+

3 (16%,

7% and 22% reduction of the M−3 , R
+
4 and M+

3 modes with respect to the phases where they

are condensed alone, i.e., P4/nmm, I4/mcm and P4/mbm, respectively). The M+
3 mode

competes with the R+
4 and M−3 modes in the sense their combination reduces their amplitude,

but they cooperate to lower the energy of the system.

In the case of the monoclinic P21/n , P21/c and triclinic P 1̄ phases, the combination of the

M−3 mode with several oxygen rotations (a−b+c− for P21/n, a−a−c− for P21/c and a−b−c−

for P 1̄) lowers the energy of the crystal and with an increase of the mode amplitude with

respect to the phases where these modes are condensed independently. For example, the

antipolar M−3 mode has his amplitude increased by 11%, 10% and 19% in the P21/n , P21/c

and P 1̄ phases respectively. This means that the dominant R+
4 oxygen rotations cooperate

with the antipolar M−3 mode to promote the ground state of WO3.

We note that in the P4/nmm, P4mm, Amm2, R3m, I4/mcm, I4/mbm, R3̄c, P4/ncc and

R3c phases the mode decomposition shows only the primary modes we have condensed. This

is di�erent with the Pnma phase in which an additional mode X+
5 appears with a small

amplitude in the mode projections while we have condensed only the primary R+
4 and M+

3

modes (see Fig. 4.5). This additional mode appears by anharmonic coupling between the R+
4

and M+
3 modes such that the symmetry of the Pnma structure allows the X+

5 mode to develop

even though the X+
5 mode is not unstable by itself. [99] Similarly, we observe the apparition

of several additional modes in the Pbcn, P21/n , P21/c and P 1̄ phases, which we discuss in

the next section.
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Fig. 4.5: (Color online) Symmetry adapted mode decomposition of distorted phases of WO3

explored in our study but not observed experimentally.

Fig. 4.6: (Color online) Symmetry adapted mode decomposition of distorted phases WO3;
Comparison between experiments and our calculations with the B1-WC functional are shown.

4.4.2.5 Energy invariants

The di�erent phases arise from the condensation of one or several unstable modes (primary

modes) of the cubic parent structure but, in some cases, also include the further condensation

of stable modes (secondary modes) with signi�cant amplitudes. Often, the appearance of

such secondary modes of large amplitude can be traced back in their linear coupling with the

primary modes. [100,101] This can be rationalized from the existence in the energy expansion

of the Pm3̄m phase of invariant terms of the form γQs
∏N
i=1Q

i
p where Qs is the amplitude of

the secondary mode s and Qip the amplitude of the primary mode i. Depending on the number

of primary mode involved, these coupling terms can be bilinear, trilinear, quadrilinear, etc.

To clarify the origin of secondary modes in several low symmetry phases of WO3, we restrict

ourself here to the search of such multi-linear invariant terms in the energy expansion around
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its cubic phase by using the INVARIANTS software. [102] In the last column of Table 4.3 we

report these linear invariants up to the fourth order obtained for the Pnma, Pbcn, P21/n

and P21/c phases. The letters represent the mode amplitudes (Qi) in the directions speci�ed

in the third column where the bold letters refer to the primary modes in the structure (Qip)

and the normal letters to secondary modes (Qis).

In the Pnma phase, we �nd that the X+
5 mode appears through a trilinear coupling with the

oxygen rotation modes R+
4 and M+

3 (abc invariant in Table 4.3). This additional X+
5 mode

is also found in Pnma of ABO3 perovskites [103, 104] where the eigenvector corresponds to

anti-polar motions of the A cation. In WO3 the A-cation is absent and X+
5 corresponds to

similar anti-polar motions but of oxygen instead of the A-site (see Fig. 4.3).

In Pbcn the primary M−3 mode condenses along z, the R+
4 mode along z and the M+

3 mode

along y and four additional secondary modes: X−5 and X+
5 with a large amplitude and M+

5

and M+
4 with a small amplitude as well as an additional component of the M−3 mode about

the x direction. If we restrict ourself to the strongest X−5 and X+
5 modes we �nd that both are

coupled with the R+
4 and M+

3 modes through a trilinear coupling (abe and abf invariants in

Table 4.3) but also through a quadrilinear coupling with the R+
4 mode and the two components

of the M−3 mode (adce and adcf invariants in Table 4.3). We can thus explain the appearance

of the X+
5 and X−5 modes through a trilinear coupling with the oxygen octahedral rotations

and the appearance of the second x component of the anti-polar M−3 mode through a coupling

with the secondary X+
5 and X−5 modes and the primary R+

4 mode. The �nal structure can thus

be seen as anti-polar through the M−3 mode along z with a canting of its direction toward the

x axis and through the X−5 mode along the y direction, the whole distortions being associated

with the a−b+c− pattern of oxygen rotation distortions.

The transition from Pbcn to P21/n can be seen as being induced by the condensation of

the R+
4 mode along the remaining direction for the oxygen rotation octahedral distortions to

a−b+c−. This means that we �nd the same mode coupling as in the Pbcn phase plus some

extra ones due to the additional mode condensation. Because we do not induce a new irrep,

the couplings are the same (i.e. trilinear and quadrilinear between the primary R+
4 , M+

3 and

M−3 modes and the secondary X−5 and X+
5 modes) but in di�erent directions from the Pbcn

phase: we observe the X−5 and X+
5 modes in two directions instead of one. Other modes also

appear in the symmetry adapted mode analysis but with smaller amplitudes (M+
4 , M

−
5 , M

+
5
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and M+
2 ), which we do not include in the invariant analysis.

P 1̄ and P21/c are very similar in the sense that for both structures we can envisage the

condensation of R+
4 modes in three directions and the M−3 mode in one direction. The di�erence

is that in the P21/c phase the R+
4 mode is primary with the same amplitude in two directions

and a di�erent amplitude in the third direction (a−a−c−where the M−3 mode is primary in the

z direction) while in the P 1̄ phase the condensation of the R+
4 mode has di�erent amplitudes

in three directions (a−b−c−). In P21/c the presence of the X−5 and M−5 secondary modes can

be explained by trilinear coupling with the R+
4 and M−3 primary modes (acd+bcd and abe

invariants in Table 4.3) in a similar way as in the P21/n phase.

This analysis shows that the low symmetry phases of WO3 are complex and involve numerous

multilinear couplings of modes if one expands the energy with respect to the cubic phase.

We note that, amongst possible couplings, the coupling with the secondary X−5 mode is most

important in all low symmetry phases.

Going further, in order to test whether symmetry arguments can lead to the the polar Pc

phase using anharmonic couplings, we have tested if there exists any bi-, tri-, quadri-linear

coupling involving a polar mode at the Γ point. We did not �nd any couplings with the R+
4

, M+
3 or M−3 modes. We thus conclude that it is not possible to generate polarity in WO3 in

the limit to these primary modes, which are the ones appearing in other experimental phases.

4.5 Conclusions

In this study, we have performed a �rst-principles study of WO3 using the B1-WC hybrid

exchange-correlation functional which appears to yield good overall agreement with experi-

ments regarding electronic and structural properties together.

Starting from the inspection of the phonon dispersion curves of an hypothetical cubic structure

taken as reference, we have identi�ed two main branches of instabilities and characterized

various phases arising from the condensation of one or more unstable modes. Although the

dominant phonon instability is associated to a zone-center polar mode, we found a non-polar

P21/c ground state arising from the combination of cooperative anti-polar distortions and

oxygen octahedra rotations. This phase is very similar to the experimentally reported polar
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Pc ground state, except for the absence of a tiny polar distortion. Our calculation does not

show however any tendency of the P21/c phase to evolve to a Pc phase suggesting that WO3

is likely not intrinsically ferroelectric. Instead the ferroelectric character might arise from

extrinsic defects such as oxygen vacancies. The P21/c phase is anti-polar and defects could

easily produce a slightly unbalanced anti-dipole structure, yielding a weak net polarization. In

this sense, o�-stoichiometric WO3 might be better described as a ferrielectric compound. [105]

The ground state is determined by two antiparallel movements of W o�-centerings which

exactly compensate each other in the P21/c phase. The displacements are almost identical

in the Pc phase, but the two displacements do not fully compensate each other. We suspect

that such weak ferrielectricity can be induced by defects such as oxygen vacancies.

At the level of our calculations, the P21/c ground-state is almost degenerated in energy with

the P21/n and P 1̄ phases observed at higher temperature. Also, we discovered the existence of

a never observed and low-energy ferroelectric R3m phase with a large polarization. Although

this might not be of direct interest due to the conductive character of usual o�-stoichiometric

samples, the proximity with the P21/c ground-state of this structurally-unrelated R3m polar

phase toward which the system could be switch through a �rst-order transition under moderate

electric �elds, makes WO3 a potential antiferroelectric material.
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Table 4.3: Symmetry adapted modes decomposition and linear couplings of modes of the
Pnma, Pbcn, P21/n , P21/c and P 1̄ phases. From the left to right columns, we show the
mode label (Irrep.) of the symmetry adapted mode, the direction of the mode condensation,
the corresponding subgroup, the amplitude of the distortion in the calculated and in the exper-
imental cases (the modes with an amplitude lower than 0.005 Å are not shown) and the linear
coupling invariants of the most relevant modes where the letters correspond to the one given
in the direction column (we highlight in bold the primary modes).

Space group Irrep. Direction Subgroup
Amplitudes (Å)

Linear Invariants
Calc. Exp.

Pnma
R+

4 (a,a,0) I4/mma 0.61 �
M+

3 (0,0,c) P4/mbm 0.38 � abc
X+

5 (0,a,0,0,0,0) Cmcm 0.06 �

Pbcn

R+
4 (0,0,a) I4/mcm 0.47 0.35

M+
3 (0,b,0) P4/mbm 0.39 0.30 abe, adce

M−3 (c,0,d) Ibam 0.23 0.25 abf, adcf
X−5 (0,0,e,-e,0,0) Pmma 0.22 0.25
X+

5 (0,0,0,0,f,f) Pmma 0.07 0.06

P21/n

R+
4 (0,a,b) C2/m 0.60 0.48 aeg+bdf

M+
3 (c,0,0) P4/mbm 0.34 0.37 ach+aci-bch+bci

M−3 (0,d,e) Ibam 0.27 0.25 acdg−bcef
X−5 (f,-f,0,0,g,g) Pmmn 0.09 0.26 adeh+adei+bdeh−bdei
X+

5 (0,0,h,i,0,0) P21/m 0.06 0.08

P21/c

Γ+
4 (a,-a,-b) Cm 0 0.067

R+
4 (-b,a,-a) C2/c 0.73 0.72 acd+bcd

M−3 (c,0,0) P4/nmm 0.27 0.3
X−5 (0,0,0,-d,0,0) Cmcm 0.10 0.14



Chapter 5

Density-functional study of the medium

polaron formation in WO3

5.1 Introduction

In this chapter, using DFT hybrid functional calculations, we start by analyzing the medium

polaron formation process after the injection of one electron in a supercell of the P21/c ground

state structure of pure WO3 [5] and �nd a self-trapping of this electron on a few d-orbitals

of W, which distorts the crystal structure. We then investigate the di�erent possibilities to

localized this charge carrier in WO3 by increasing together the size of the supercell of the

P21/c ground state structure and α mixing parameter mixing (see chapter3). These allow

the development of a medium polaron inside of WO3 for which we analyze the anisotropic

formation process of this polaron in the P21/c supercell. We then study and characterize the

medium polaron in WO3. We will show that our simple model calculations can reproduce

some of the physical aspects of the medium polaron behavior experimentally observed in WO3.

5.2 Computational details

The standard DFT theory provides an e�cient ab initio method for accurate studies of the

ground-state properties of various material. In this work, we focus on the e�ect of DFT

exchange-correlation hybrid functional for describing the electron-electron interaction leading

to an accurate description of the polaron in WO3. The total electron-electron interaction

85
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energy is given by [8]

Eee = EH + Ex + Ec, (5.2.1)

where EH is the classical Hartree interaction energy between the electrons in the system. Ex

and Ec are the exchange and correlation energy. However, EH contains the self-interaction

of the electrons, which can be eliminate by the exchange energy [106]. Within the LDA and

GGA approximations, the self-interaction energy was not completely canceled [107] while the

hybrid functional gives a better correction of this unphysical energy by combining the DFT

and Hartree-Fock exchange [64] as

Ehybxc = αEHFx + (1− α)EDFTx + EDFTc , (5.2.2)

where EHF (B1)
x is the exact Hartee-Fock (HF) exchange energy and Ex and Ec are the exchange

and correlation energy, respectively, given by the standard DFT theory, and α coe�cient is

the mixing parameter. In particular, a B1-WC hybrid functional [108] has been built by

mixing exact Hartee-Fock with GGA-WC exchange as follows:

EB1WC
xc = αEHFx + (1− α)EGGA−WC

x + EGGA−WC
c , (5.2.3)

where EGGA−WC
x and EGGA−WC

c are the exchange and correlation energy proposed by Wu

and Cohen [109] and the α coe�cient is the mixing parameter which is set to 0.16. This

functional was specially designed to provide a good description of the structural, electronic,

and ferroelectric properties of perovskite oxides [108] compared with experimental data. For

our static calculations which neglect zero point motions, to trap one electron in the system,

we need to increase the fraction of exact HF exchange which is tuned by the mixing parameter

α. Here we will vary this α mixing parameter between 0.16 and 0.25, in keeping with previous

results. The default value for the results presented below is α=0.2. We use the CRYSTAL

code [66], where the B1-WC hybrid functional is implemented.

Additionally, we have used the all-electron double-ζ basis sets for the oxygen atoms and

small core Detlev Figgen pseudo-potentials, [67] associated with double-ζ valence basis sets

for tungsten.
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We performed structural relaxations by relaxing the atomic positions with a �xed cell volume

to the P21/c grand state phase of pure WO3. The convergence criteria is restrained on the

root-mean-square of the gradient and displacements smaller than 5× 10−4 Hartree/Bohr and

5×10−4 Bohr respectively. The electronic self-consistent calculations were converged until the

di�erence of the total energy was smaller than 10−9 Hartree. All calculations were performed

using spin-polarized.

In order to investigate the e�ect of an additional dopant charge on the physical behaviors of

WO3, we have used four supercells, which two of them; 2 × 2 × 1 (S2) and 2 × 2 × 2 (S3)

supercells of the ground state monoclinic P21/c phase (S1) (
√

2,
√

2, 2) [5] that contain 16 and

32 W centers, respectively, and the other two; 4 × 4 × 2 (S4), and 6 × 6 × 2 (S6) supercells

of the cubic Pm3m phase (S0) that contain 32 and 72 W centers, respectively. All of these

supercells and the unit cell are illustrated in Fig. 5.1.

S0

S4

S6

S1

S2

b) a)

S3

Fig. 5.1: Illustration of the S2, S3, S4, S6 supercells, which are used of the calculations of
the polaron. Each unit cells or supercells are drawn with a particular color.

The integration in the Brillouin zone has been performed on a 6×6×3 grid of k-points for the

monoclinic P21/c phase(
√

2,
√

2, 2), 4× 4× 2 and 4× 4× 5 grids for the S2 and S3 supercells,

respectively, and a 2× 2× 5 grid for the S4 and S6 supercells.
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Additional charge was added by the injection of extra electron into the system, with charge

neutrality over space being ensured by a corresponding homogeneous positively-charged back-

ground.

5.3 Analysis of an anisotropic formation process of medium

polaron in WO3

To analyze the formation process of the medium polaron, we start by relaxing the S3 supercell

of the P21/c ground state structure of WO3.

Fig. 5.2: Spin-density distribution of medium size polaron in the S3 supercell of WO3, which
shows the anisotropic formation of the polaron in WO3.

Figure. 5.2 shows that the spin-density distribution of the additional charge for the S3 supercell

is localized on only one layer among the four layers. This means that the extension of the

polaron is localized on only one (ab) plane, which con�rms the anisotropic shape of the polaron

in WO3. Therefore, we perform the calculations of supercells extended along [110] direction

of the P21/c ground state structure of WO3.

In order to investigate the e�ect of the localization of the additional dopant charge in the S6

and S4 supercells of WO3 on the atomic displacements with respect to the pure P21/c ground

state structure, we project the structure on the (001) plane. �gure. 5.3. In Figure. 5.3, we

show the atomic displacements that are intensi�ed on a special zone of the two supercells. The

tungsten displacements line up along two lines (the [100] and [010] directions), which cross at
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the tungsten holding the maximum amount of the doped electron (polaron). This alignment

of dipoles that connect the periodic images of the polarons, may generate a net polarization.

The oxygen displacements appear to be distorted octahedral rotations, from which we can see

that the amplitude of the rotation of the octahedron around the doped electron has
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Fig. 5.3: Polaron formation in the P21/c phase using S6, S4 and S2 supercells. We show
the displacements of the atoms induced by the presence of an extra electron with respect to the
undoped supercell presented previously. The black circles indicate where the polaron is located.
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the largest amplitude compared with other octahedral rotations. This distortion of the octa-

hedron holding the maximum of the doped electron depends on the e�ect of this charge carrier

on the tungsten that keeps a part of this charge with its �rst nearest neighbor oxygens. One

way expect that, due to the Coulomb repulsion between the extra electron partially localized

on one particular tungsten and its �rst neighbors oxygens, we expect that this charge carrier

push the oxygens away and thus the local volume of the octahedron increase (CF theory).

However, the calculated volume of the octahedron maintaining the extra electron is 19.53Å3

and for the same one without an extra electron, is 19.74 Å3. Thus, the volume decreases by

1.1%. This may be due to the strong hybridization between the d orbitals of the tungsten and

p orbitals of the oxygens, which decrease the bond length between the tungsten and oxygens.

On the other hand, the octahedron around the doped electron is strongly distorted. Table

I, shows the W-O bonds and di�erent O-W-O angles for the octahedron having the extra

electron and for the same octahedron but without the extra electron (see Fig. 5.4).

(a) (b)

Fig. 5.4: (a) Coordination of the octahedron holding the maximum of the doped electron
compared to the same octahedron without the extra electron (b). The volume of the octahedron
(a) decreases compared to (b) due to the localization of the extra electron on the central tungsten
position.

We see that along the [100] direction, the WO bond lengths decreases by around 3%, while

along the [010] direction, the bond lengths increase by around 3%, with respect to the P21/c

phase. Along the [001] direction the WO bond lengths change slightly by around 0.5%. The

total distortion is of the Jahn-Teller type. For the O-W-O angles, the oxygens situated on

the (ab) plane rotate around the z axis with di�erent angles, which varies between 1 and 2
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degrees. Nonetheless, along the [001] direction, the two O5z-W-O5z and O6z-W-O6z angles

change only slightly namely by 0.5 degrees. This means that the distortions related to the

octahedron having the maximum of the electron are localized in the ab plane, which indicates

that the deformation of the polaronic octhaheron is anisotropic.

We conclude that the process of the formation of medium size polaron in WO3 is an anisotropic

process, we can see that the polaron is disc-shaped in the ab plane. We also observe that

it localizes on a particular octahedron inside of the W-dxy orbital and �nally, it changes the

shape of the octahedron only in the ab plane.

Table 5.1: Bond distances and angles for the octahedron holding the maximum of the doped
electron in the S6 supercell. The oxygen position notations are as shown in Fig. 5.4. The
subscripts x,y,z are added for convenience to indicate the orientation of the corresponding
WO-bond in the crystal.

Oxygen position WO-bond (without polaron)(Å) WO-bond (with polaron)(Å) di�erence % α (deg)
O1x, [100] 1.99168 1.93706 -2.74 2.3655
O2x, [100] 2.002 1.94093 -3.05 1.0707
O3y, [010] 1.81085 1.86789 3.15 1.2334
O4y, [010] 1.82093 1.86841 2.61 2.5623
O5z, [001] 2.13427 2.13085 -0.16 0.5311
O6z, [001] 1.76166 1.75410 -0.43 0.4229

5.4 Electronic properties of the polaron in WO3

WO3 is a transition-metal oxide in which the tungsten has a partially �lled d sub-shell accord-

ing to its electronic con�guration [Xe] 4f145d46s2. To form the chemical compound of WO3

crystal, a sharing of valence electrons between oxygen ([He] 2s22p4) and tungsten has been

realized to give rise to the anion O2− and cation W6+ which has an empty d sub-shell. The

�ve degenerate d-orbitals (dx2−y2 , dz2 , dxy, dxz and dyz) undergo a splitting. During the pro-

cess of chemical bonding, each tungsten ion is surrounded by six oxygens giving it octahedral

symmetry. The oxygen ions approach the metal ion along the x, y, and z axes. Therefore, the

electrons in the dz2 and dx2−y2 orbitals (which lie along these axes) feel a greater repulsion.

As a consequence, having an electron in these orbitals requires more energy than it would to

put an electron in one of the other orbitals. This causes a breaking of degeneracy of the d

orbitals and, thus, the �ve d-orbitals split into a lower triplet, t2g (dxy, dxz and dyz) and a

doublet, eg (dz2 and dx2−y2). This splitting is known as crystal �eld splitting.

If we add an extra electron in such a degenerate system, it will naturally distort to stabilize
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one level respect to the other according to the John-Teller theorem. The associated electronic

state occupies one of the lowest triplet states, which caused a splitting at the energy levels

of the t2g orbitals. The three lower-energy orbitals are collectively referred to the t2g levels,

though the trapping of an extra electron on one particular W further splits the t2g orbitals as

the extra electron sits on the dxy orbital which further lowers its energy. Fig. 5.5 illustrates

the crystal �eld splitting and splitting related to the localization of the extra electron on cubic

WO3.
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Fig. 5.5: Illustration of the e�ect of an octahedral crystal �eld on the energy levels of a 5d4

transition metal ion. The degeneracy of the orbitals is further lifted by a Jahn-Teller e�ect
through an elongation of the axial bond.

In the P21/c phase, the situation is more complicated as the degeneracy of the t2g states is

already broken. Still we observe a strong coupling with the lattice that will be further discussed

in the next section. Furthermore, Fig. 5.6 shows the spin-polarization (or magnetization)

density of the polaron calculated for the S6 superrcell. The polaron is extended over 9 tungsten

sites presented in a disc shaped in the ab plane, which shows the anisotropic distribution of the

polaron. In the middle of this disc, one particular tungsten has the largest spin-polarization

density. This indicates that the polaron is identi�ed by a dominant spin-polarization density

at this speci�c tungsten site but it still has a large probability density away from the center

of the disc.
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Fig. 5.6: left �gure, sketch of the polaron which extends over 9 tungten sites. Shown is the
(ab) plane, the extension of the polaron along the c-axis is one unit cell, ie. the polaron is
disc-shaped in the (ab) plane [4]. On the right �gure we show our calculated spin density
distribution of the polaron in the S6 supercell, which also shows a disc-shaped of the polaron
in the a-b plane with the electron localized on the W-d xy orbitals.

In Fig. 5.7 we show the total and d orbitals projected density of states around the tungsten

holding the majority of the extra electron in the S4 supercell. By comparing with the P21/c

phase of pure WO3 we �nd that the doping of one electron and its localization inside the

system change the density states close to the Fermi level. Indeed, we can see in the band

gap a narrow energy distribution associated with the extra electron state, which indicates the

localization of this charge. This localization leads to an opening of a small electronic gap

(0.05 eV) that separates the bottom of the conduction band from the Fermi level.
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Fig. 5.7: Calculated total and d orbitals projected density of states of the S4 supercell .

5.5 Symmetry adapted mode analysis of the distorted super-

cells

We use the symmetry adapted mode decomposition, which is implemented in the AMPLIMODE

software [55], to describe the structural distortions for S2 , S4 and S6 supercells of the mon-

oclinic P21/c and cubic structures of WO3, which are relaxed with di�erent values of HF

exact exchange mixing values. To quantify the structural distortions which appear in these

structures, we project them onto symmetry adapted modes �rst for a parent the monoclinic

P21/c structure and then for cubic structure. These two parent structures will de�ne two

complete basis for the atomic distortions of the distorted supercells.
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Fig. 5.8: Symmetry adapted mode decomposition of distorted S2 , S4 and S6 supercells of the
monoclinic P21/c structure of WO3, in which the pure monoclinic P21/c structure modes are
taken as a complete basis for the atomic distortions of these supercells.

The projections of the structural distortions which correspond to the S2, S4, and S6 supercells

relaxed with di�erent HF exact exchange values, onto symmetry adapted modes, are given

by Fig. 5.8 for the monoclinic P21/c phase of WO3. The graph shows the mode amplitude

variations as a function of di�erent supercell sizes and values of HF exact exchange mixing

parameter.

The �rst thing to notice is the appearance of several of new phonon modes; GM1, GM2,

GP1GP1 (1/4,1/4,0), GP1GP1 (1/6,1/6,0), GP1GP1 (1/3,1/3,0), C1, C2, Y1, Y2, Z1 and

Z2, which are induced by the doped electron. The occurrence of these phonon modes depends

on the supercell size, whereas their amplitudes depend on the HF exchange value.

The Γ1 phonon mode is a zone-center phonon mode but is not a polar mode. Its atomic

displacements are given in Fig. 5.9, which shows oxygen octahedral rotations along [001]

direction. This phonon mode can be quanti�ed as an order parameter that can appear in the

Landau free energy expansion. The Γ1 mode is invariant by all the symmetry transformation

associated to the space group of the high-symmetry P21/c structure and thus it will not break

the symmetry. The atomic displacements corresponding to this mode represent the sum of

all variations of the atomic displacement of the P21/c phase due to the localization of the

electron in the supercell of WO3. Fig. 5.8 shows that the amplitude of the Γ1 mode depends
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Fig. 5.9: (a) GP1GP1 mode displacements in the S6 supercell, (b) GP1GP1 mode displace-
ments in the S4 supercell and (c) GM1 invaraint mode displacements of the S6 supercell. All
the displacements are given by the red arrows.

at the same time on the size of the supercell and the percentage of the FH exchange: the

smaller size of the supercell is, the bigger the HF exchange value is and the larger the Γ1

amplitude is. It reaches its maximum value for the S2 supercell with 25% of HF exchange.

A symmetry adapted mode decomposition of the structural distortions associated to the S2

, S4 and S6 supercells , for which the cubic structure is taken as a reference structure, is

used to describe how the system changes its degrees of freedom due to the addition of an
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Fig. 5.10: Symmetry adapted mode decomposition of distorted S2 , S4 and S6 supercells
and bulk of the monoclinic P21/c structure of WO3, in which the cubic modes are taken as a
complete basis for the atomic distortions of these supercells and bulk structure.

extra electron with respect to the undoped case. Fig. A.1 shows the amplitudes of the modes

in the relaxed S2, S4, and S6 supercells with distinct values of Hartree-Fock exact exchange

(normalized with respect to the primitive unit cell of the high-symmetry cubic structure).

The R+
4 rotation pattern (the Glazer tilt pattern a−a−c−) and M−3 antipolar modes are the

condensed modes (primary modes) of the pure P21/c structure without an extra electron,

whereas the presence of an other antipolar X−5 mode (secondary mode) can be explained

by trilinear coupling with the R+
4 and M−3 primary modes [5]. For the S2 supercell, the

mode amplitude of the R+
4 decreases by 1.5, 3.92 and 6.95 % with respect to the pure P21/c

structure for 16, 20 and 25% of HF exchange, respectively and for the S4 supercell, the mode

amplitude of the R+
4 decreases by 0.95, 3.19% with respect to the pure P21/c structure for

20 and 25% of HF exchange, respectively. R+
4 reaches its maximum reduction for the S6

supercell namely compared with previous smaller sizes of supercell, by 31.82% with respect

to the pure P21/c structure for 20% of HF exchange. This may be explained by an electronic

e�ect coming from the partial localization of the extra electron, which is able to induce an

oxygen octahedra rotate in the opposite sense with respect to those of the P21/c phase in

pure WO3. This e�ect depends on the size of the supercell and also HF exchange. In the case

of the largest supercell, the development of the polaronic state is more important than for the

other smalls, and thus the oxygen rotations reduction obtain the largest value. The amplitude

of the M−3 antipolar mode remains almost constant around 0.26 Å for all the supercells with
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di�erent values of HF exchange. For the X−5 antipolar mode, its amplitude increases slightly

by increasing either the HF exchange or size of the supercell but stays relatively small. The

Γ2 phonon mode is a polar mode, which has a displacement that depends on the size of the

supercell. For the S2 and S4 supercells the atomic displacements related to this mode are

identical (see Fig. 5.11).

Fig. 5.11: GM2 polar mode of the S2 supercell.

Fig. 5.12: GM2 polar mode of the S4 supercell.

For the S6 supercell, the Γ2 atomic displacements are similar to those of the previous supercells

but only some oxygens move along [110] direction as shown in Fig. 5.12.
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Fig. 5.13: GM2 polar mode of the S6 supercell.

The amplitude of the Γ2 mode depends also at the same time on the supercell size and the

HF exchange. More the size of the supercell is smaller and the HF exchange value is greater,

more the Γ2 amplitude is higher. For the S4 and S6 supercells, the amplitude of the Γ2 mode

decreases by 43 and 70% with respect to the S2 supercell.

The GP1GP1(1/4, 1/4, 0) and GP1GP1 (1/6, 1/6, 0) modes are the triggered modes following

polaron development in the S4 and S6 supercells, respectively. The coordinates of these modes

in the Brillouin zone indicate that they are not of high symmetry points. They have one

irreducible representation with only the identity symmetry element, which yields the space

group P1. Fig. 5.8 shows that the amplitude of these modes are much bigger than those

of the Γ modes. The latter amplitudes decrease when the new triggered modes appear. In

particular, the amplitude of the GP1GP1 mode decreases from the S4 to S6 supercell by 26%,

while a new GP1GP1 mode at (1/3, 1/3 ,0) appears with smaller amplitude. For the atomic

displacements related to these two modes, Fig. 5.9 shows the same atomic motions for the two

modes, and, thus we may expect that these two modes couple with the electron. We conclude

then that the localization of the charge activates a similar phonon at q ∝ (1/N, 1/N, 0) (N is

the size of the supercell with respect to the pure cubic bulk structure), which tends to Γ by

increasing N.
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5.6 Conclusions

We have succeeded to determine a medium polaron in a region comparable to what is observed

experimentally. To do that, we have increased slightly the mixing parameter α between 0.16

and 0.25 which might compensate the absence of zero point motions in our static calculations.

The localization of the charge activated di�erent distortions have been analysed with AM-

PLIMODE. On this basis, we have found that the dominant distortions involve the oxygen

and tungsten motions at q ∝ (1/N, 1/N, 0) (N is the size of the supercell with respect to the

cubic bulk structure of pure WO3). Furthermore, we have identi�ed two zone-center phonon

modes; the Γ1 mode, for which the atomic motions lead to relaxation of the P21/c phase

after the addition of an extra electron, and the Γ2 mode, which is a polar mode that alows

only some oxygens to move to break the inversion symmetry for the largest supercell S6. The

presence of this polar mode lets us to predict that maybe doped WO3 with one electron may

be a ferroelectric material. This e�ect needs much more investigations to be validated.

At the level of our calculations, we have only focused on the symmetry mode analysis given

by the AMPLIMODE software, which give us information about the symmetry of the phonon

modes in the di�erents supercells of the P21/c structure, but not on the phonon dispersion

curves. This basic information can help us to analyze the electron-phonon coupling due to the

localization of the polaron. Hopefully, we will be able to calculate the real polaron phonon

modes in the future to understand the electron-phonon coupling and its properties behind.

It would be interesting for future to apply an electric �eld along di�erent directions on the

layer where the medium polaron is localized to see how this quasiparticle will move.



Chapter 6

Concluding Remarks and Perspectives

In the present thesis we presented �rst-principles studies of various metastable phases of

pure bulk WO3 and of medium polaron formation in this material. The main results are

summarized as follows.

In Chapter 3, using �rst-principles density-functional calculations, we provided a detailed

microscopic investigation of a variety of the structural phase transitions of WO3. In the

beginning, we calculated the electronic band gap of di�erent phases of WO3 with the B1-

WC hybrid functional, which gives us very good agreement comparing with previous hybrid

functional calculations (PBE0, HSE06, and B3LYP), GW calculations, and experimental

measurements. This allowed us to continue to study of the structural properties of WO3

using this functional. Therefore, we analyzed the intrinsic cubic phonon instabilities of this

material, which gave us all the unstable modes in the cubic high-symmetry con�guration

and that are fundamental for explaining the stability of the distorted structures. We found

the coexistence of di�erent type of antiferrodistortive instabilities (antipolar cation motions,

rotations, and tilts of oxygen octahedra) in all the phase transitions, that either compete with

each other or cooperate together to lower the energy of the system. We clari�ed that the

most dominant distortion in the ground state of WO3 is the antipolar cation motions, which

give rise to a P21/c ground state structure. However, we also identi�ed never observed R3m

and R3c ferroelectric metastable phases with large polarizations and low energies close to the

P21/c ground state. This makes WO3 a potential antiferroelectric material while a tiny polar

distortion was experimentally observed at low temperature but not found in our calculation.

We proposed that the absence of this small ferroelectricity in the ground state of WO3 may

102
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be due its native defects that are associated to the oxygens vacancies and which are not taken

into account in our DFT calculations.

In Chapter 4, we built upon previous work in which a fully �rst-principles scheme was used

to study the properties of WO3, but this time with the addition of a single electron in the

monoclinic P21/c ground state structure. The addition of this extra electron causes a local

deformation in the supercell, which creates the self-trapping of this charge and that stabilizes a

medium polaron in the supercell of WO3. We then described the essential physical behavior of

WO3 in the presence of a medium polaron. These include the characterization of the medium

polaron in the supercell of WO3. We therefore reported a DFT study of the structural,

electronic and lattice dynamic properties of the medium polaron in WO3. We showed how

our simple model calculation, can reproduce some aspects of the observed polaron behavior.

This present work gives a microscopic understanding of the origins of the observed structural

phase diagrams of WO3. In particular, a detailed understanding of the antiferroelectricity

was provided to empathize the main underlying behavior of antiferroelectric materials at

which WO3 represents an ideal example for that. Furthermore, we have shown that making

a medium polaron in the S6 supercell of WO3 can produce large changes of the physical

behavior of this material such as the structural, electronic, and lattice dynamic properties.

Particularly, we observe the appearance of new phonon modes that are activated due to the

localization of a medium polaron. The analysis of these activated polaron phonon modes will

give us a basic idea about the electron-phonon coupling due to the single-electron interacting

with the lattice deformation. Additionally, the appearance of an unexpected polar distortion

in the polaron structure of WO3 indicates that this martial may be becomes ferroelectric when

we dope it with an electron. To assumme the possibility to develop the ferroelectricity inside

of the doped WO3 with electron, we need much more investigations.

Furthermore, if the presence of one single electron in the supercell of WO3 changes its physical

properties then what could happen if we consider the real defects which are the oxygen

vacancies in WO3? Here we get two extra electrons that will be given by one oxygen de�ciency,

which makes the bipolaron. Therefore, it will be of interest to study the bipolaron in WO3

because we expect new functional properties.



Appendix A

Symmetry adapted mode analysis of the

distorted supercells and Energy invariants

A.0.0.1 Symmetry adapted mode analysis of the distorted supercells: cubic ref-

erence

The results in Fig. A.1 show the amplitudes of the modes in the relaxed S2 , S4 , and S6

supercells with distinct values of Hartree-Fock exact exchange (normalized with respect to

the primitive unit cell of the high-symmetry cubic structure).

The R+
4 rotation pattern (the Glazer tilt pattern a−a−c−) and M−3 antipolar modes are already

the condensed modes (primary modes) of the pure P21/c structure without an extra electron,

whereas the presence of an other antipolar X−5 mode (secondary mode) can be explained by

trilinear coupling with the R+
4 and M−3 primary modes [5].

Fig. A.1 shows that for the S2 supercell, the mode amplitude of the R+
4 decreases by 1.5, 3.92

and 6.95 % with respect to the pure P21/c structure for 16, 20 and 25% of HF exchange, re-

sepectively. For the S4 supercell, the mode amplitude of the R+
4 decreases by 0.95, 3.19% with

respect to the pure P21/c structure for 20 and 25% of HF exchange, respectively. However, for

the S6 supercell the R+
4 reaches its maximum reduction, compared to previous smaller sizes of

supercell, by 31.82% with respect to the pure P21/c structure for 20% of HF exchange. This

may can be explained by an electronic e�ect coming from the partially localization of the extra

electron, which is able to make the oxygen octahedra rotate on the opposite direction with

respect to those of the pure P21/c phase. This e�ect depends on the size of the supercell and
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Fig. A.1: Symmetry adapted mode decomposition of distorted S2 , S4 and S6 supercells and
bulk of the monoclinic P21/c structure of WO3, in which the cubic modes are taken as a
complete basis for the atomic distortions of these supercells and bulk structure.

also the HF exchange. In the case of the largest supercell, the development of the polaronic

state is more important than for the other smalls, and thus the oxygen rotations reduction

achieves its largest value.

However for the M−3 antipolar mode, its amplitude remains almost constant around 0.26 A

for all the supercells with di�erent values of HF exchange. For the X−5 antipolar mode, its

amplitude increases slightly by increasing either the HF exchange or size of the supercell but

it's stay relatively small.

Despite the persistence of the frozen phonon modes in the P21/c supercell, new modes are

triggered during the process of the development of the polaron. The most important ones are

those that appear in the S6 supercell at which the polaron has enough space to be built. In this

supercell, two modes with the same irreducible representation T5 at two di�erent points in the

Brillouin zone (1/2, 1/2, 1/6) and (1/2, 1/2, 1/3) occur with the largest amplitudes compared

to the rest of the activated modes. The amplitude of the T5 mode with the coordinates (1/2,

1/2, 1/3) is bigger than the M−3 frozen phonon mode by 50%, whereas the amplitude of the T5

mode with the coordinates (1/2, 1/2, 1/6) is smaller than the T5 mode with the coordinates

(1/2, 1/2, 1/3) by 35%. However, the amplitude of the T5 mode with the coordinates (1/2,

1/2, 1/4) in the Brillouin zone of the S4 supercell is small 0.009A. The atomic displacements

associated to these three modes of the same irreducible representation T5 are given by Fig. A.2
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and Fig. A.3, which show a similarity in the displacements that are driven only by the oxygens

for the three modes. This may mean that the T5 modes are in the same phonon branch.

Fig. A.2: T5(1) mode in the S6 supercell
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Fig. A.3: T5(2) mode in the S6 supercell

Among these new modes, we �nd the R5+ mode with an amplitude that is 37.5% of the

amplitude of the T5 mode with the coordinates (1/2, 1/2, 1/3). Its atomic displacements are

given by Fig. A.4, which shows distorted oxygen octahedral rotations along the [111] direction.
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Fig. A.4: R5+ mode in the S6 supercell

The DT1 mode has the same irreducible representation for two di�erent points in the Brillouin

zone with coordinates (0, 1/6, 0) and (0, 1/4, 0) for the two S6 and S4 supecell, repetitively.

The amplitude of DT1 mode with coordinates (0, 1/6, 0) is much larger than that of the

coordinates (0, 1/4, 0) and it 30% of the amplitude of the T5 mode with the coordinates (1/2,

1/2, 1/3). Its atomic displacements are given by Fig. A.6, which shows the displacements of

the tungstens only. The M5- mode has an amplitude which represents 27.5% of the amplitude

of the T5 mode with the coordinates (1/2, 1/2, 1/3). The atomic displacements related to

this mode is given by Fig. A.5, in which we can see similarity between its displacements and

that for the T5 modes.
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Fig. A.5: M5- mode in the S6 supercell

A polar Γ−4 mode has been activated in all the supercells. Its amplitude is smaller compared

with those of the triggered modes (3% of the amplitude of the T5 mode with the coordinates

(1/2, 1/2, 1/3)); it reaches its maximum value for the S2 supercell with 25% of HF exchange

and decreases with increasing supercell size. The minimum value of the amplitude of the Γ−4

is achieved for the S6 supercell. This amplitude variation of the Γ−4 mode is a�ected by the

size of the supercell, as well as by the HF exchange value. The origin of the appearance of

the polar mode can be understood and explained by di�erent points of view, may be the most

convincing one is through the coupling with the triggered modes. All the possible coupling

with the Γ−4 polar mode will be provided in the next section.
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Fig. A.6: DT5 mode in the S6 supercell

A.0.1 Energy invariants

The pure monoclinic P21/c phase arises from the condensation of the R+
4 and M−3 two unstable

modes (primary modes) of the cubic parent structure, which includes also the X−5 additional

mode (secondary modes) with signi�cant amplitude. However, the appearance of some of

the polaron modes with di�erent amplitude can be traced back in their linear coupling either

with the dominant polaron modes as T5 modes or with also additional modes. This can be

justi�ed from the existence in the energy expansion of the Pm3̄m phase of invariant terms of

the form γQsk
∏N
i=1Q

i
pk

where Qs is the amplitude of the secondary mode s and Qip could be

either the amplitude of the dominant polaron mode or a secondary mode i.

In order to clarify the origin of some polaron modes in the S6 P1 relaxed supercell of WO3, we

restrict ourselves here to the search of such multilinear invariant terms in the energy expansion

around its cubic phase by using the INVARIANTS software [82]. In the last column of Table

II we report these linear invariants up to the fourth order. The letters represent the mode
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amplitudes (Qi) in the directions speci�ed in the third column where the bold letters refer to

the primary modes in the structure (Qs) and the normal letters refer to secondary modes (Qip).

The Γ−4 polar mode appears through trilinear and quadrilinear couplings. The most important

coupling here is that for quadrilinear couplings with one component of the M−5 mode and two

components of M−3 mode (ab
′
c
′
b
′′
+bb

′
c
′
a
′′
+ca

′
c
′
a
′′
+db

′
c
′
c
′′
+ea

′
b

′
c
′′
+fa

′
b

′
b
′′
invariant in

Table A.1). This polar mode can also appears through quadrilinear couplings with three

components of the M−5 mode or one component of the M−5 mode and either two components

of X−5 or Z3 or M−3 modes (see Table A.1). In addition, the M−5 appears also through a

quadrilinear coupling with three components of the T5 mode. This T5 mode does not couple

with any of the others polaron modes and has the largest amplitude compared to the rest of

these particulars modes, this means that the T5 mode is likely activated when the polaron is

formed.
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